
STATE MODELS AND THE JONES POLYNOMIAL 

(f&riced in recisrdfirm I Srpremher 1986) 

$1. INTRODIJ’CTION 

IN THIS PAPER I construct a state model for the (original) Jones polynomial [5]. (In [6] a state 

model was constructed for the Conway polynomial.) 

As we shall see, this model for the Jones polynomial arises as a normalization of a regular 

isotopy invariant of unoriented knots and links, called here the bracket polynomial, and 

denoted (K) for a link projection K. The concept of regular isotopy will be explained below. 

The bracket polynomial has a very simple state model. 

In $2 (Theorem 2.10) I use the bracket polynomial to prove (via Proposition 2.9 and an 

observation of Kunio Murasugi) that the number of crossings in a connected, reduced 

alternating projection of a link L is a topological invariant of L. iA projection is reduced if it 

has no isthmus in the sense of Fig. 5.) In other words, arty two connected, reduced alternating 

projections ofthe link L hnce the same nwnber of crossings. This is a remarkable application of 

our technique. It solves affirmatively a conjecture going back to the knot tabulations of Tait, 

Kirkman and Little over a century ago (see [16], [9], [lo]). 

Along with this application to alternating links, we also use the bracket polynomial to 

obtain a necessary condition for an alternating reduced link diagram to be ambient isotopic 

to its mirror image (Theorem 3.1). One consequence of this theorem is that a reduced 

alternating diagram with twist number greater than or equal to one-third the number of 

crossings is necessarily chiral. 

The paper is organized as follows. In 52 the bracket polynomial is developed, and its 

relationship with the Jones polynomial is explained. This provides a self-contained 

introduction to the Jones polynomial and to our techniques. The last part of $2 contains the 

applications to alternating knots, and to bounds on the minimal and maximal degrees of the 

polynomial. $3 contains the results about chiralit’y of alternating knots. $4 discusses the 

structure of our state model in the case of braids. Here the states have an algebraic structure 

related to Jones’s representation of the braid group into a Von Neumann Algebra. 

52. BRACKET ISVARIANT 

We first describe a general scheme ofcalculation from unoriented knot and link diagrams. 

This scheme associates a polynomial in three variables A, B and d to each diagram. It is well- 

defined on equivalence classes of diagrams. Two diagrams are equicalent if their underlying 

planar graphs are equivalent under orientation preserving homeomorphisms of the plane. 

Note that the Reidemeister moves change the graphical structure. 

We distinguish three relations on diagrams: equivalence (as above), ambient isotopy and 

regular isotopy. Two diagrams are ambient isotopic ifone can be obtained from the other by a 

sequence of Reidemeister moves of type I, type II and type III (see Fig. 1) plus equivalence as 
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defined above. Two diagrams are regularly isotopic if they are ambient isotopic without the use 

of the type I move. Regular isotopy turns out to be a convenient concept for us. 

DEFIMTION 2.1. Let K be an unoriented knot or link diagram. Let (K) be the element of the 
ring Z [A, B, d] defined by means of the rules: 

(i) (O)=l 

(ii) (OuK)=d(K), K not empty 

(iii) ( /\‘)=A(=)+B( )(). 

Remark. A formula may involve the bracket and a few small diagrams. These smallfigures 

represent larger diagrams that difler only as indicated in the small diagrams. 

The bracket, (K), is well defined on diagrams, but it is not invariant under any of the 

Reidemeister moves. It is the purpose of this section to determine relations among A, B, d so 

that (K) becomes invariant under Reidemeister moves. We will obtain invariance under 

types II and III, hence the use of regular isotopy. 

Some comments are in order about the rules: Rule(i) says that (K) takes the value 1 on a 

single unknotted circle diagram. Rule (ii) says that (K) is multiplied by din the presence of a 

disjoint circular component. This component can surround other parts of the diagram. 

Rule(iii) applies to diagrams that differ locally at the site of a single crossing. We can use 

rule (iii) to keep expanding the formulas until we reach diagrams consisting of disjoint unions 

of circles (Jordan curves in the plane). Rules (ii) and (iii) then imply that the value of(K) on a 

disjoint collection of circles is d raised to one less than the cardinality of the collection. 

Note that rule (iii) entails the formula 

(x)=B(=)+A()(). 

In fact, we can create a mnemonic for this expansion by labelling the crossings as shown in 

Fig. 2. This label A marks the two local regions swept out by turning the overcrossing line 
counterclockwise until it coincides with the undercrossing line. 

For the expansion formula (iii) we can indicate which way a crossing is to be split by 

scoring a marker on it that connects the two regions that will be joined by the splitting. See 

Fig. 2. 
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If U is the underlying planar graph for K, then a state ofU is a choice of splitting marker 

for every vertex of U. Again see Fig. 2. I choose to call the underlying planar graph for a 

diagram K the universe for K (see [6]). This terminology distinguishes the underlying planar 

graph from the link projection and from other graphs that can arise. Thus we speak of the 

states of a universe. 

Since splitting all the vertices of a state results in a configuration of disjoint circles, we see 

that the states are in one-to-one correspondence with final configurations in the expansion of 

the bracket. Accordingly, we define (K 1 S) for a diagram K and a state S by the formula 

(K/S)=A’B’ 

where i is the number of state markers touching A labels, andj is the number ofstate markers 

touching B labels. The total contribution of a given state to the polynomial is then given by 

the formula. 

(KIS)d’s’-’ 

where ISI denotes the number of circles in the splitting of S. View Fig. 2. 

These observations are summarized in the statement of the following proposition, whose 

proof we omit. 

PROPOSITION 2.2. (K) is uniquely determined on diagrams by the rules (i), (ii), (iii). If is 

given by the formula 

(K)=~(KIS)d’S’-l 
s 

where this summation is ocer all states of the diagram, and S denotes the number of components 

in the splitting of a state S. 

We now see how (K) behaves under elementary diagram moves, and consequently 

determine how to adjust A, B, and d to obtain a topological invariant. 
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LEWA 2.3. The follo\ving formula holds, bvhere the three diagrams represenr rhe Same 

projection except in the area indicated. 

(3: )=XB(x)+(ABd+A’+B’)(=). 

Hence ( 3: ) = (DC) for all diagrams if 

Proof 

AB=l and d=-A’--Ae2. 

(xz)=A<J-\)+B<~~_). 

Thus 

Hence 

<3:> =+<x>+-J<351>] 

+e [ ‘5<x> +A <3C> 1. 

<I<> = (AB~+A*+B*) <-_>+a?<~>. 

This completes the proof. 

LEMMA 2.4. Type II irlcariance for ( ) implies type III invariance. 

(by II-invariance) 

Hence (x)=(Yx ,). This is type III invariance. 

Thus we see that by choosing 

B=A-‘,d= -A*-A-* 

(K) becomes a Laurent polynomial in A, and it is an invariant of regular isotopy (i.e. 

invariant under moves of type II and III). It is not invariant under the type I moves, but 

behaves as follows: 

PROPOSITION 2.5. With 

then 

B=A-1, d= -A’--A-2 

(‘!)=(-A3) (-) 

Proof: This is a direct calculation, and is omitted. 

From now on, unless otherwise specified, we assume that A, B and d are chosen as indicated 
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in Proposition 2.5. With these choices, the bracket polynomial is an invariant of regular 

isotopy for unoriented knots and links. 

The simplest invariant of regular isotopy for oriented diagrams is the ~r’ist number (or 

writhe) \L’(K). This is the sum of the signs of all the crossings where each crossing is given a sign 

of plus or minus 1 according to the conventions shown in Fig. 3. 

To obtain an invariant of ambient isotopy for oriented knots and links we define a 

Laurent polynomialf[K] by the formula 

f[K]=(-,4)-‘“‘“‘(K), 

where w(K) denotes the twist number of the diagram K. The bracket is defined on oriented 

diagrams by forgetting the orientation. 

THEOREM 2.6. The polynomial f[K] EZ[A,A-‘1 defined nboue is an ambient isotopy 

inrnriant for oriented links K. 

Proof By combining the behaviour of the twist number under type I Reidemeister moves 

with the behaviour of the bracket (Proposition 2.Q it follows that f [K] is invariant under 

type I moves. Thusf[K] is invariant under all three moves, and is therefore an invariant of 

ambient isotopy. 

Both the bracket and the polynomialf[K] behave as follows on taking mirror images: 

PROPOSITION 2.7. Let K! denote the mirror image of K (obtained by recersing all the 

crossings of K). Then 
(K!) (A)=(K) (A-‘) 

f[K!] (A)=f[K] (A-‘). 

Proof: Just note that switching all crossings results in the replacement of every 

appearance of A by its inverse in the expansion of the bracket. This proves the first part. Since 

the twist number of a mirror image is the negative of the twist number of the original. the 

second part follows as well. 

The Jones polynomial 

Now recall that the Jones polynomial [S] is defined by the identities: 

vo= 1 

t-‘vx -tV=/, = 4-1 v= ( > J’ 

The Jones polynomial is an ambient isotopy,invariant of oriented knots and links. 

Sign conventions 

Fig. 3. 
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V,(t)=f[K](t-“‘). 

Proof: <x> =a<=> +a-‘<)(> 

<x> =A-‘<=> +A <)(> 

Hence a<,‘<> -a-‘<x)=(&a-*)< x>. 

Multiplying this last formula by appropriate writhes, we have 

The result follows at once by substituting t raised to the negative one-quarter power for A. 

Figure 4 illustrates the calculation of the bracket for the Hopf link and for the trefoil knot. 

This calculation, in conjunction with Proposition 2.7, produces a short elementary proof of 

the distinction between the trefoil and its mirror image. 

Remark. Some formal results about the Jones polynomial (reversing formula [i 11, [12], 

Birman “infinity’‘-formula [21]) follow immediately and trivially from Theorem 2.5 and the 

definition of the bracket polynomial. We leave the verification of these relations as an exercise 

for the interested reader. 

Alternating links 

We now give applications to alternating links. The first result determines the highest and 

lowest degree terms in the bracket polynomial for an alternating diagram. 

PROPOSITION 2.9. Let K be an alternating knot or link diagram that is connected and 

reduced. Let K be shaded so that all the crossings are of shaded type A (the regions labelled “A” 

are shaded). Then the term in (K) of highest degree in A has degree V + 2W - 2, where V is the 
number of crossings in K, and W is the number of white regionsfor this shading. The co-efficient 

of this power of A in (K) is (- l)w-‘. 

With the same hypotheses, the lowest degree term has degree -V-Z(B- l), u.here B 

denotes the number of black (shaded) regions in the diagram. This term is manic with 

co-efficient ( - l)B- ‘. 

<@> = A-’ <a> +A <a> 
I A-’ (-A-3) + A (-A3) 

<@> = A <@> +A-’ <&> 
D A(-A4-A-4)+A-‘( -A3)-* 

-_ -/,5-A-3+ A-7 

Sample bracket calcutations 

Fig. 4. 
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Before proving this result, some commentary on terminology is needed. A reduced 

diagram is one that does not contain an isthmus as shown in Fig. 5. An isthmus is a crossing in 

the diagram so that two of the four local regions at the crossing are part of the same region in 

the larger diagram. 

Note that a connected alternating diagram, bvhen shaded in checkerboardfashion, has all of 
its crossings ofthe Same shaded type (see Fig. 6). By flipping the shading, if necessary, we may 

assume that it is the A-labelled regions that are shaded. 

We shall call a diagram satisfying these hypotheses (connected, reduced) a simple diagram. 
Thus Proposition2.9 says that if K is a simple diagram, then 

max deg (K) = V+ 2 W- 2 

min deg (K) = - V-2B+2. 

The idea behind our pinpointin g of the maxima1 degree is this: by choosing the state 

obtained by splitting every crossing in the A-direction, we obtain Wcomponents (where lVis 

the number of white regions), and hence a degree of V i 2( CV- 1) from the corresponding part 

of the summation for the bracket polynomial. 

Proojof 2.9. Let S be the state obtained by splitting every crossing in the diagram in the 

A-direction. Then (K 1 S) = AV, and /S/ = W, where W is the number of white regions in the 

shading. Thus this state contributes the term 

Fig. 6. 
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to the state expansion of (S). Since 

d= -AZ-A-’ 

this means that the highest degree contribution of the state S is the degree V+2(E’-- 1). 

Now consider any other state S’. The state S’ can be obtained from S by switching some 

subset of state markers of S. Thus there is a sequence of states S(O), S(l), S(2), . , S(n) so 

that S = S(O), S’ = S(l), and S(i + 1) is obtained from S(i) by switching one state marker from 

type A to type A-‘. Since a state marker of type A-’ contributes (l/A), we see that 

(Kl S(i+l))=A-’ (K/S(i)). Also, IS(i+l)/ is within 1 of IS(i)/, since switching a single 

state marker can change the component count of the split state by at most one. It follows 

that the maximal degree contribution of S(i+ 1) is less than or equal to the maximal degree 

contribution of S(i). 

However, we assert that the maximal degree contribution actually falls from S(0) to S(1). 

This follows from the above assumption, if it is shown that switching any state marker in S will 

cause n decrease in the number ofcomponents of the corresponding split state. This follows from 

the assumption of diagram simplicity. (If the number of split components did not decrease 

from S = S(0) to S(l), then some white region would touch both sides of a crossing. This can 

only happen in the presence of an isthmus.) 

Thus we have shown that the term of maximal degree in the entire bracket polynomial is 

contributed by the state S, and is not cancelled by terms from any other state. This completes 

the proof. 

Finally we give the main application. 

THEOREM 2.10. The number of crossings in a simple alternating projection of a link L is a 

topological invariant of L. Hence any two simple alternating projections of a given link have the 

same number of crossings. 

Proof Let span (K) denote the difference 

span (K) = maxdeg (K) - mindeg (K). 
Then 

span (K)=[V+2W-2]-[- V-28+2] 

=2V+2(W+B)-4. 

Since W+ B equals the total number of regions in the diagram, and this exceeds the number 

of crossings by two, we have 

span (K)=2y+2(I’+2)-4=4V. 

This completes the proof. 

Remark. It is worth remarking that Proposition2.9 can be generalized to imply an 

inequality: 

span (K) < 4V, 

for an arbitrary (not necessarily alternating) diagram K. 

This result has been observed by Kunio Murasugi and (independently) Morwen 

Thistlethwaite (see [14] and [17]), each using the ideas of an early version of this paper. We 

give here our short proof via the: 
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DUAL STATE LEVY;\ 2.11. Let S he a statefor a connected unirerse U. Let .$ denote the state 

obtained from S by reversing all the state markers of S (call this the dual state of S). Then 

ISi+iSi <R 

where R denotes the number of regions in U. 

Proof: The proof is by induction on the number of vertices Vin U. It is easily seen to be 

true for V= 0, 1,2. Therefore suppose the result true for all universes with less than Vvertices. 

Let U be connected. with Yvertices. Let U’ and U” be the two universes obtained by splitting 

U at a given vertex P in the two possible ways. Then, by connectivity of U, one of U’ or U” is 

also connected. We may suppose that U’ is connected. Apply the induction hypothesis to U’. 

If S is a state of C, then either .S or 5 is split at the vertex P in the same direction that 

formed U’. We can assume that S is so split. Then, by ignoring the site at P, Scan be construed 

as a state S’ of U’. 

By induction, / S’l + 191 d R’ where R’ denotes the number of regions of U’. By 

construction, R’= R - 1 where R is the number of regions of U. And S’ and S have the same 

number ofsplit components: /SI = /S’I. On the other hand, it is possible that 9, being obtained 

from 9 by splicing at the site p, may have (at most) one less split component than s^‘. 

Thus Ipi+ 1 > 5. These facts imply the inequality jS( + Is^l ,< R, completing the inductive 

proof of the Lemma. 

The inequality mentioned prior to the proof of this lemma now follows by repeating the 

proof of 2.9, using the state S where all the markers are of type A. No relation with the 

checkerboard shading is required, nor do we need assume anything other than connectivity 

of the diagram. We then obtain: 

maxdeg (K) 6 V+2(1Sl--1) 

mindeg (K) 2 - V- 2( Is^l- 1). 

The lemma, in conjunction with the calculation of 2.10 then gives the inequality: 

span (K) < 4V. 

Finally we note that both Murasugi and Thistlethwaite prove the stronger inequality: 

span (K) < 4 V when K is a connected non-alternating diagram. Wu [IS] gives a proof of this 

inequality by strengthening our dual state Lemma. 

$3. CHIRALITY OF ALTERNATING LINKS 

Here we apply Proposition 2.9 to obtain a necessary condition for an oriented alternating 

link to be achiral (ambient isotopic to its mirror image). 

THEOREM 3.1. Let K be a simple alternating diagram shaded as in Proposition 2.9. Let W 

and B denote the number of white and black regions in this shading. Suppose that K has twist 

number w(K). If K is ambient isotopic to K! then 

3w(K) = W - B. 

It follows from this formula that 

W=(1/2) (V+3w(K))+ 1 

B=(1/2) (V-3w(K))+ 1 

where V denotes the number of crossings in the diagram. 
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Proof: We use the Jones polynomial in the form of the ambient isotopy invariant 

.r‘[k’] (i-1) (see Theorem 2.8). It follows from 2.9 and the definition off[K] that f[K] has 

maximal and minimal A-degrees rnux (f) and min (f) given by the formulas 

max(f)= -3\v+ V+2(W- 1) 

min(f)= -3\t’- V-2(B- 1) 

where iv is the twist number ~t’=w(K). 

In order for K to be achiral it is necessary that -min (f)=ma.u (f) (by Proposition 2.6). 

Thus 

Hence 

3w+V+2(B-l)=-3w+V+2(W-1). 

3w = W-B. 

The remaining formulas follow by using the relation w+ B = V+ 2. This completes the proof. 

COROLLARY 3.2. Let K be a simple alternating diagram. Let T = 1 w(K) I. Assume K is not the 

unknotted circle diagram. Then, ifT > V/3 (V is the number of crossings in the diagram) then K 

is chirnl. 

This corollary is an easy consequence of Theorem 3.1. We omit the proof. It follows at 

once from Corollary 3.2 that special alternating (simple) links are chiral. This fact was first 

proved by Murasugi [13], using his signature invariant. 

Remark. There exist chiral alternating knots satisfying the condition 3w(K) = W-B of 

Theorem 3-l. Thus the condition of 3.1 is necessary but not sufficient for achirality. Figure 7 

depicts such an example. A signature calculation shows that this knot (10, in Rolfsen’s tables 

[ 151) is chiral. 

Note also that it is easy to produce an alternating prime knot ofzero twist number that is 

chiral (remove two crossings from the top line of Fig. 7). Erica Flapan has observed the non- 

alternating knot 101Z5 to have the same property (chiral, twist number zero, prime). 

Remark. It is entirely possible that the venerable conjecture (that the twist number is a 

topological invariant for reduced alternating diagrams) is true. This would generalize 3.1 

except for the case of twist number zero. In this case, 3.1 demands B = W for achirality. More 

may be true. We make the following conjecture. 

Fig. 7. 
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CONJECTURE. Let K be a prime reduced alternating diagram, and suppose that K is achiral 

bvith twist number zero. Then the two planar graphs B(K) and W(K) are isomorphic as abstract 

graphs. 

Here B(K) is the graph formed from the black shading: one vertex for each shaded region. 

one edge for each crossing shared by shaded regions. W(f<) is the planar dual to B(K) formed 

from the white regions. (See Note added in Proof.) 

$4. BRAID STATES AND THE DIAGR.4.M ALGEBRA 

The bracket also provides an entry into the representation theory associated vvith the 

Jones polynomial. In order to see this we define a diagram algebra, D[n], based on the 

patterns shown in Fig. 8. Here diagrams with free ends are multiplied as braids. while 

multiplication by the closed loop 6 denotes disjoint union. Addition is formal with no 

imposed relations. As the figure shows, the resulting (multiplicative) monoid has relations 

1 

h; = 6hi = hia 

hihi+,hi=hi 

hi+lhihi+I=hi+I 
hihj=hjhi, /i-j1 > 1. 

(We omit the proof here that it has exactly these relations. See [7], [8].) 

The original Jones polynomial was defined via a representation into an abstract algebra 

satisfying (essentially) these multiplicative relations. The diagram algebra forms the 

beginning of a direct geometric connection between these algebras and the theory of braids. 

In our terms the relation ( X) =A (E ) + A - ’ ( )( ) becomes the pattern for a 

representation of the braid group (see [5]) into the free additive algebra with the above 

multiplicative relations and 
a=d= -.A’-A-’ 

Generators of n-strand braid group 

h, h n-t 

Generators of n -strand diagram monotd 

__“o-_ h ,u 
n h,’ ’ 8 h, 

n 

U “, h,.,“, = 4 

n 
Diagram monoid relations 

Fig. 8. 
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(specializing the loop variable). If Gi is the ith braid generator then the representation is given 

by the formula 

p(ai) = Ah, + rl - 1 1. 

Let B[n] denote the n-strand braid group. A braid is a product of the generators 

fl *1 
crl , a2 , . . . , a,‘_‘,. 

(See Fig. 8.) For a braid b, let (b) denote the evaluation of the bracket polynomial on the 

closure of b. 

Since the states corresponding to a given braid b are obtained by eliminating crossings 

horizontally ( z ) or vertically ( )( ), we see that the generators for the diagram monoid 

correspond to horizontal splits on the generators of the braid group. (Vertical splits give 

identity braids.) 

The relations in the diagram monoid allow one to algebraically determine the number of 

components in the closure of h-hence the value of(h), for any product h in D[n]. This gives 

a diagrammatic interpretation to trace computations in the representation theory. 

Note how the bracket expansion and the form of the representation fit together. By 

representing each braid generator as a sum of two algebraic terms, the product correspon- 

ding to a braid word has a power-of-two number of terms. Each term is a power of A 

multiplied by a product of generators of the diagram algebra. Each such product corresponds 

to one of the states in the bracket expansion. 

Finally it is worth mentioning that a rich generalization of the braid group is obtained by 

allowing products of braid generators with elements of the diagram monoid. The resulting 

system, up to regular isotopy, can be defined so that it has relations corresponding to 

standard braiding relations, diagram monoid relations, plus extra relations of the type 

illustrated in Fig. 9. Call this structure the Braid Monoid. (See [7] and [8].) Yetter [ 191 has 

studied a version of the braid monoid, and Birman and Wenzel [4] use an algebra derived 

from it to study representations of the braid group and the Kauffman polynomial [S]. 

This section has been an introduction to braid states and the diagram algebra. For 

relations with chromatic polynomials and the Potts model (Cl], [S]), see [7]. (By associating 

an appropriate alternating link diagram to any planar graph, and by choosing A,B, d 

appropriately, dichromatic polynomials and partition functions (for the Potts model) can be 

computed using the bracket expansion. Thus our formalism provides a relat;onship among 

knot theory, graph theory and physics. In the case of braids, the simple topology of the 

diagram algebra underlies all three aspects.) 

A basic braid monoid relation 

Fig. 9. 
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-Vote added in Proof 

The invariance of the twist number for reduced alternating diagrams has been proved (in- 

dependently) by Murasugi and Thistlethwaite. 
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