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INTRODUCTION 
A KNOT X = (S“, K) is an oriented k-sphere with an oriented 2codimensional submanifold 
K c Sk. We say that a knot 2 = (S’, L) is fibered if a fibration S’ - L L S’ is given such that 
the closure Ft = b-‘(t) of any fiber of b is a closed submanifold of S’ with boundary aF, = L. 
We shall discuss a product operation that associates to two knots X and 2, one of which is 
fibered, a new knot X @ 5’ = (Sk+‘+‘, K @ L). This construction has many useful properties. It 
is commutative (up to orientation), associative, and distributes over connected sums. The 
product of fibered knots is again fibered. Algebraic information about a product may be 
deduced easily from the factors. For example, the monodromy of a product of fibered knots is 
the tensor product of the monodromy of the factors. The Seifert pairing for a product is the 
tensor product of the Seifert pairings for the factors. 

A particularly interesting class of fibered knots is the class of links of isolated complex 
polynomial singularities. That is, let f: (C”, O)+(C, 0) be a polynomial mapping such that 0 E C” 
is an isolated critical point of f. Then the link off is the knot 5?v) = (S?+‘, L(f)), where E > 0 
is sufficiently small and L(f) = ST+’ fl f-‘(O). Milnor [ 171 showed that Yu) has a natural fibered 
structure. If g: Cm+’ +C is another such mapping, then so is f + g: C”+’ x Cm+’ +C given by 
cf + g)(x, y) = f(x) + g(y). We show that Zcf + g) and 5!‘m @ 5?(g) are isomorphic as fibered 
knots. Thus the product operation gives a geometric construction for sum of singularities. 

We show the corresponding result also for isolated singularities of real polynomial maps 
f: Rk+’ + R*, g: RI+’ +R*, except that in certain low dimensions it is still an open question 
whether the isomorphism of 6pcf+ g) and Z’u) @ Z’(g) preserves fibered structure. This 
isomorphism is also proved in a yet more general situation- “tame” singularities (Definition 
1.3)- except that in low dimensions we now only get an h-cobordism of fibered knots. 

The properties of knot product generalize and put in a clearer perspective many known 
results about complex polynomial singularities. In particular, Thorn and Sebastiani[20] showed 
that the monodromy for Zu+ g) is the tensor product of the monodromies of f and g. The 
same result was conjectured for Seifert pairings by A. Durfee and first proved by Sakamoto [ 193. 
Our results generalize the Thorn-Sebastiani theorem and the Sakamoto theorem to (and in fact 
beyond) the real polynomial case. Note that the low dimensional problems mentioned above are 
irrelevant here, since these homological invariants only depend on the h-cobordism class of a 
fibered knot. It is well known that the class of links of real polynomial singularities is a much more 
extensive class than that of links of complex polynomial singularities (see [15] and [17]). Every 
fibered knot is the link of a tame singularity. Thus these generalizations are very non-empty. 

G. Bredon in [2] gave a suspension construction for knots, using 0 (n)-manifolds, which he 
used to give a geometric version of knot cobordism periodicity. His results also generalized 
results of Hirzebruch[9] and Erle[7] about K. Jtinich’s knot manifolds[lO]. We observe that 
Bredon’s construction corresponds in our context to forming X @ Z(z,* + . . + + 2,‘) and our 
results generalize Bredon’s results. Our construction generalizes also results [ 121 and [ 181. Some 
of the results were announced in [13]. 

In a final section we indicate how the product construction, its properties, and its relation to 
isolated singularities, generalizes to arbitrary codimension. 

The paper is organized as follows. 91 discusses fibered knots, open books, and branched 
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fibrations over 0’. A branched fibration over 0’ is a mapping 7: D1+’ + D2 so that T- ‘(0) is 
homeomorphic to the cone over a knot L C S’ and T/D’+’ - r-I(O) is a smooth fibration so that 
its further restriction to the boundary S’ -L gives a fibered structure for the knot Y = (S’, 1,). 
Thus a branched fibration is an analog of a degenerating family of algebraic varieties with 
degenerate fiber over the origin. Given a fibered knot 2 = (S’, L) there is a naturally associated 
branched fibration over D*. 

In 02 we discuss branched fibrations along codimension two submanifolds of a given 
manifold and consider specific branched fibrations obtained by pull-back constructions. These 
generalize cyclic branched coverings. 

43 uses branched 
X = (Sk, K) be a knot 
surface for K (that is, 
Form the pull-back 

where r is a branched 

fibrations to define products of knots. This done as follows: Let 
and (Dk+’ , F) a codimension two embedding of an oriented spanning 
aF = K). Choose a: Dk+’ + D2 transverse to 0 E D2 so that a-‘(O) = F. 

M - D’+’ 

I I 7 

Dk+l (I D2 

fibration for 2. Then (Sk+‘+’ , K @ L) = (d(Dk+’ x D’+‘), dM). We show 
that the product construction is commutative and give a cut-and-paste description of X @ Z. 

If X and Y are both fibered, with associated branched fibrations 7’: Dk”’ + D* and 
T: D’+‘+ D2, then X@ Y is isomorphic to the pair (d(Dk+’ x D’+‘), T-‘(O) fl d(D’+’ x D’+‘)) 
where T: Dkf’ x D’+’ + R2 is the mapping defined by the equation T(x, y) = T’(X) - r(y). Thus, 
for fibered knots the product is directly analogous to the link of a sum of singularities. 

94 relates the product construction to links of algebraic singularities. We first show that 
Z’(J + g) and Z’u) @ Z(g) are isomorphic for complex polynomial singularities. Then by more 
careful vector field arguments we prove this for isolated real polynomial singularities. 

85 shows that the product of fibered knots is fibered and gives an explicit description of the 
fibration. 

In 86 we show that X@ .Z has a spanning manifold with the homotopy type of the join of 
appropriate spanning manifolds for X and Y. This leads to the result about the monodromy of a 
product of fibered knots and to the calculation of a Seifert pairing for X@ _Y. 

In 87 we verify that @ is associative and that it distributes over connected sums. 
08 discusses group actions on knot products and Bredon’s work mentioned above. 
§9 is the promised discussion of other codimensions. 
In this paper we have intentionally avoided too much detail on questions of smoothing 

corners and the like, since we feel this would only have added length and opacity to the 
exposition. We could of course appeal directly to general smoothing theory for this, since the 
smoothing needed is all of sufficiently low codimension. However the smoothing questions are 
in fact much more elementary than this: whatever object 2 we construct, its smooth structure 
can always be obtained by standard angle straightening techniques (see also remark at end of 
03) and the independence of smooth structure (up to isomorphism) from the choices in the 
construction of %’ can always be seen by applying the same angle straightening to a suitable 
version of a x I. We hope we have included sufficient detail that any unconvinced reader can 
fill in the remaining details. A convenient reference for angle straightening is [4]. 

Throughout the paper, the symbol = denotes diffeomorphism (possibly of pairs) after any 
necessary smoothing; the symbol = denotes homeomorphism. 

31. FOUNDATIONS 

In this section we discuss the general setting for branched fibrations and their relationship to 
open book structures and to singularities of mappings. 

An open book structure on a closed compact manifold M is a decomposition M = E U N 
where E is a fiber bundle over S’ with a trivialization of its boundary so that dE = K x S’ = dN, 
and N = K x D2. Here K is a codimension two submanifold of M. We refer to K as the binding 
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of the book. The fibers of the bundle E + S’ are the leaves. For our purposes the following 
definition will be most convenient. 

Definition 1.1. An open book structure is a map b : A4 + II* such that zero is a regular value 
and 6 = b//b]]: M - b-‘(O)+ S’ is a smooth fibration. Two books (M, b) and (M’, b’) are 
equivalent if there exists a diffeomorphism h: M+ M’ such that b' 0 h agrees with b on a 
neighborhood of b-‘(O) and b’ 0 h/lib’ 0 hII =*b/llbll on M - b-‘(O) = M - (b’ 0 h)-‘(O). 

This definition is equivalent to our first description. Given b: M-, D* as above, then 
K = b-‘(O) and we may take N = b-‘(0,‘) where D,* denotes a sufficiently small subdisc about 
zero. 

A knot X = (S’, K) is a pair K C Sk where K is an oriented, compact closed codimension 
two submanifold of the (oriented) sphere Sk. We say that X is a fibered knot if Sk has an open 
book structure with binding K. The book b: Sk + D* will be referred to as the fibered structure 
of X, 

Definition 1.2. A smooth map 7: D”+’ + D* of the (n + I)-ball to D* is a branched fibration 
along 0 E D* if 

(i) TIT-‘(D* - (0)) and T(JD”+’ n ~-‘(a*) are smooth fibrations; 
(ii) 7--‘(O) is homeomorphic to CK where K = T-‘(O) tl 69”“; 
(iii) the cone point of CK is the only singular point of T. 

Observe that in this situation (Dn+‘, D”’ n 7-‘(O)) is a fibered knot with fibered structure 
given by the restriction of T to the boundary of the (n + I)-ball). Hence each branched fibration 
gives rise to a fibered knot. Conversely, we associate to each fibered knot a branched fibration 
as follows: 

Let (9, K) be a fibered knot with fibered structure b: S” +D* and fiber (leaf) E Let 
cb: D”+’ + D* be the coned map cb(rx) = rb(x) for 0 5 r 5 1 and x E S”. One can smooth cb at 
the origin, for instance by composing with the map A: D*-,D* given by h(m) = e’-““rx for 
OS YI: 1 and x E S’; call such a smoothed version T. If we restrict T to E = T-'(D~) for E 
sufficiently small, then T is a fiber bundle over Q*- (0) with fiber F and T-‘(O) = CK, the cone 
over K. E of course has a corner in its boundary, but, as is well known, such a corner can be 
smoothed uniquely up to diffeomorphism. Such a smoothed version of E is diffeomorphic to 
D “+I, as can be seen by pushing out along linear rays through the origin, and (E, TIE) gives the 
desired branched fibration (see Fig. l(a)). In fact, for most purposes the corner will not worry 
us, and it is maybe more intuitive to leave it in. Another way of avoiding worry about the 
corner is to first alter the map b: S” + D* to have only regular values in the interior of D*, in 
which case we can take (Dn+‘, T) as the branched fibration. The fibration of 
something like Fig. l(b). 

D”+’ then looks 

(a) 

Fig. I. 

(b) 

Thus we associate to any fibered ‘knot (S”, K, b), a smooth branched fibration 7: D”+‘+ D*. 
We call this mapping T, a branched fibration corresponding to (S”, K, b). 

We wish to include certain low dimensional cases under these definitions. Thus if [a]: S’+ 
S’ is given by [u](x) = x0, we call [a] the empty (jibered) knot of degree a (since this book has 
no binding). 

If [a]: S’+ S’ denotes the empty knot of degree a, then the corresponding branched 
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fibration is cc,: D2+D2 where p,(z) = Y. That is, it is the standard u-fold ramified cover of D2 
with the origin as branch point. 

Another way to obtain examples is as follows. Let f: R”+‘+R2 be a smooth map with an 
isolated singularity at 0 E R”+’ (and f(O) = 0). Assume also that f-‘(O) is transverse to 
sufficiently small spheres about 0 E R”+‘. Choose O<r+l and let 0~84~. Set E= 
{x E D:+lj j~f(x)jl I 6). Th en we map E to the disk of radius S by 7r: E + DS2, where 7~ is defined 
by r(x) = f(x). If, after smoothing corners, E is diffeomorphic to Dn+‘, then (E, P) is a 
branched fibration (in fact one can check that E, after smoothing corners, is diffeomorphic to 
the cone over its boundary, and deduce that E is diffeomorphic to Dn+‘, at least for n # 3,4.). 

Definition 1.3. Let f: RnC1 +R2 be a smooth map (germ) with f(0) = 0 and an isolated 
singularity at the origin. If f-‘(O) is transverse to sufficiently small spheres about the origin and 
E, as defined above, is diffeomorphic to D”+‘, we say that f is a tame isolated singularity. For 
0 < E 4 1. define the link of f by Lcf) = S,” n f-‘(O). 

Thus we have shown that for a tame isolated singularity there is a branched fibration 
P: E + 0’ and an associated open book ~1: aE + D2 so that Lcf) is the binding of the book and 
(E, aE) = (D*+’ , P). In general, this book structure will not occur naturally on a standardly 
embedded sphere of radius E in R”+‘. However, if f: C”+‘+C is a (complex) polynomial 
mapping with an isolated singularity at the origin, then it follows from Milnor[l7] that f is tame 
and that Sz”+’ inherits the appropriate fibered structure. In fact, Milnor proves that the fibration 
of the complement of L(f) is given by 0: Sf2n+1 - Lcf) + S’ where 4(z) = f(z)/lV(z)ll. 

It is of interest to know when two tame isolated singularities define the same book structure. 
To this end, we make the following definition. 

Definition 1.4. Let f, g: Rnr’ +R2 be two tame isolated singularities. We say that f and g are 
tame topologicufly equivalent if there exists a diffeomorphism (germ at 0) h: R”+’ - {O}+ 
R n+l - (0) such that g 0 h = f and so that for E arbitrarily small there exists E’ + ??such that 
f-‘(O) n D:+’ - h-‘(g-‘(o) f~ &“) is a trivial (product) h-cobordism. Thus equivalence preser- 
ves the cone structure in a weak sense. 

Remark. That f-‘(O) rl Dt+’ - h-‘(g-‘(O) n &+‘) is an h-cobordism follows from the next 
lemma. 

LEMMA 1.5. Let M and N be closed manifolds of equal dimension and CN c CM an 
embedding of cones such that the cone points coincide. Then, if the embedding is smooth except 
at the cone point, the difference CM - CN is an h-cobordism. 

Proof. We can embed CMC CN c CM c CN such that CMC CM and CN C CN are 
standard embeddings. Let B’, A, B, be as in Fig. 2. Then B’ U A = M x I and A U I3 = N x I. 
Hence B’ = B’ U A U B and B’ U A U B = B, so B’ = B. Now we have homotopy equivalences 

A-AU(Mx[O,=))=AU(BUAUBUAU...)= 

(AUB)U(AUB)U.-.=Nx[O,m) and 

A=(Nx(-m,O])UA=(-..UBUAUB)UA= 

. ..(BUA)U(BUA)==.- *(B’UA)U(B’UA)=(-c~,OlxM. 

Hence A is homotopy equivalent to each of its ends. 

< 

N 
Fig. 2. 

Call two fibered knots isomorphic if they have equivalent book structures in the sense of 1.1 
Definition 1.4 is tailored to make the following theorem hold. 

THEOREM 1.6 The set of tame topological equivalence classes of tame isolated singularity 
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We leave the proof to the reader. 
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set of isomorphism classes of fibered knots 

In practice, we shall be concerned with a stronger equivalence relation for fibered knots. Let 
(S”, K, b) denote the fibered knot with fibered structure b: S” + D*. 

Definition 1.7. Two fibered knots (S”, K, b) and (S”, K’, b’) are isotopic if b and b’ are 
equivalent in the sense of Definition 1.1 by a diffeomorphism h: S” -+ S” which is isotopic to the 
identity. 

The corresponding equivalence relation for tame isolated singularities is then as follows. 

Definition 1.8. Two tame isolated singularities f: R”+’ + R* and g: R”+’ + R* are tamely 
isotopic if there is a tame topological equivalence h : R”+’ - {O+R”+’ - (0) as in 1.4 between 
them such that the germ h is isotopic to the germ at 0 of lRn+‘_& 

It is also helpful to have the corresponding terminology for branched fibrations. 

Definition 1.9. Two branched fibrations 7: D”+’ + D* and 7’: D”+’ + D* are topologically 
equivalent if there is a diffeomorphism h: D”+’ -{O}+ D”+’ - (0) with 7 0 h = T’. They are 
isotopic if the diffeomorphism h may be chosen to be isotopic to the identity. 

With these definitions at hand we are prepared to state a theorem comparing the categories 
of fibered knots, tame isolated singularities, and branched fibrations over D*. 

THEOREM 1.10. The following sefs are in l-l correspondence: 
(a) The set of tame topological equivalence classes of tame isolated singularity germs 

f: R=+‘-+R*. 
(b) The se? of isomorphism classes of fibered knots in S”. 
(c) The set of topological equivalence classes of branched fibrations 7: D”“+ D*. 
The same result holds if topological equivalence is replaced by isotopy in (a) and (c), while 

isomorphism is replaced by isotopy in (b). 

The proof will be left to the reader. 

$2. BRANCHED FIBRATIONS 

We now continue the discussion of branched fibrations, extending the concept to branching 
over an arbitrary codimension two submanifold. 

Definition 2.1. Let (F, K, b) be a fibered knot with fiber F. Let Mm be a smooth manifold 
with a codimension two submanifold V”-* C Mm. If A4 has boundary, then we assume that V is 
properly embedded. We say that a smooth mapping P: N + A4 is a b-branched (or K-branched) 
fibration along V if the following conditions are satisfied: 

(i) N - n-‘(V) + M - V is a smooth locally trivia1 fibration with fiber F. 
(ii) for each v E V, a-‘(v) is homeomorphic to CK. 

(iii) on normal disks to V, P is topologically equivalent to (a smoothing of) cb. (See 1.9). 
In order to include the case of standard cyclic branched coverings (that is, ($7, K, b) an 

empty knot of degree a), we use the convention that the cone on the empty set is a single point. 

This definition generalizes Definition 1.2. For example, if T: D”+’ + D* is any smoothing of 
cb, then T is b-branched along 0 E D*. 

Many useful examples are obtained by a pull-back construction. Given A4 and V as in 
Definition 2.1, suppose that there is a smooth map a : A4 + D*, transverse to 0 E 02 with a-‘(O) = V. 
Then we may form the pull-back 

N i ,Dn+’ 

I I 77 T 

MAD*. 

That is, N = {(m, d) E M X D”+‘(a(m) = T(d)}. 
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The manifold N with the differentiable structure described in the next theorem is h- 
branched along V7 C M. The mapping a: N + A4 is given by the equation ~(m, d) = m. In this 
example, if T = cl0 : II*+ II*, then N is a cyclic branched cover of A4 along V. 

THEOREM 2.2 Let T: D”+’ + D* be a smooth branched fibration along 0 E D2. Let Mm be a 
smooth manifold with a properly embedded codimension two submanifold V”-2C M. Suppose 
that there is a smooth map a: M + D*, transverse to 0 E D2, with a-‘(O) = V. Let T( M, a) = N, 
the pull-back construction described above. Then 

(i) 7(M, a) has a well-defined diflerentiable structure so that the mapping 7r: N + M is a 
smooth branched fibration. 

(ii) If r is a smoothing of cb for some fibered knot (9, K, b), then T(M, a) does not depend 
(up to diffeomorphism) on the smoothing we take. In this case we shall write T( M, a) = b( M, a). 

(iii) Suppose that 7, T’: D”+’ + D* are branched fibrations along 0. Then T(M,(Y) and 
+(M, a) are homeomorphic whenever 7 and 7’ are topologically equivalent: they are 
difeomorphic if T and 7’ are isotopic (see Definitions 1.4-1.8). 

(iv) Let (9, K, 6) and (Sn, K’, 6’) be fibered knots. Then b(M,a) and b’(M,a) (see (ii) 
above) are diffeomorphic whenever these fibered knots are isotopic. 

Proof. We shall describe a differentiable structure on N that is dependent only on a and 7. 
We need only specify this structure in a neighborhood of P-‘(V), since N - n-‘( V) has a 
natural differentiable structure as the pull-back of a smooth fibration. Note that V has a trivial 
tubular neighborhood since the map a is transverse to 0 in D*, and 0 is framed in D”. In a 
neighborhood of a-‘(V) the situation is 

WAD n+l 

I I T 

VxD*+--=---U-D2 

with W = 7r-‘( U), U a tubular neighborhood of V in M. Specify a differentiable structure on W 

by requiring that the maps W -% Dn+’ 
f 

and cp: W * Ub V x D* -% V be submersions 
(and hence define a diffeomorphism (4, cp): W + D”+’ x V). 

We now show that this structure is well-defined. Denote by N,, N with the differentiable 
structure defined as above by the tubular neighborhood f: U + V x D*. Similarly, let W, denote 
W with the differentiable structure corresponding to this tubular neighborhood. Let g : U’ + 
V x D* be another tubular neighborhood. Without loss of generality, we may assume that 
U’C U. Note that W, n\ U is smooth, so if W’ = ?r-‘( U’) then cp’: W;G U’ A V x 

D* 5 V is smooth, so (a, 9’): W;+ V X D”+’ is smooth. But this is the map which defines the 
differentiable structure Wi, so we have shown id: Nf + Ng is smooth. Similarly id: N, + Nf is 
smooth, so the differentiable structures are the same, proving (i). 

We can now describe this differentiable structure in a different way: after choosing a tubular 

neighborhood U G V x D* of V in M compatible with a: M + D* (i.e. a 0 f-’ is projection 
onto 0,’ C D* for some c) we can write M = MO U (V x 0’) pasted along the boundary, and this 
induces a splitting N = N, U (V x D”+‘) of N. This determines the differentiable structure on N 
up to diffeomorphism (by uniqueness up to diffeomorphism of pasting of manifolds along 
boundaries). Here we are no longer using anything about T except 7(aD”+‘, which determines 
the pasting map. Since we only need the pasting map up to isotopy, it follows that N is 
determined up to diffeomorphism already by the isotopy class (see definition 1.9) of T. This 
proves (ii) and (iii) (The statement on homeomorphism in (iii) is trivial.). Property (iv) is a 
restatement of (ii). This completes the proof of the theorem. 

The next few lemmas delineate further properties of the pull-back construction. 

LEMMA 2.3. Let V”-*C Mm be a proper embedding of smooth oriented manifolds. If M is 
2-connected then 

(a) There exists a smooth map a: M + D* which is a fibration over a neighborhood of zero, 
and V = a-‘(O) as an oriented submanifold of M. 

(b) a is unique up to smooth homotopy preserving property (a). 
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Remarks. We do not assume compactness. Proper embedding means that V is closed in M 
and V is transversal to &%f with 8V C dW. If M is compact it suffices for (a) that 0 be a regular 
value of a and of alaM and that V = a-‘(O) with correct orientation. Note that the orientation 
for D* gives, via a, an orientation for the normal bundle of V and hence for V. 

The proof actually shows more than the above: For any M (not necessarily 2-connected), 
the existence of a is equivalent to the dual cohomology class in H*(M) of V being zero, and 
uniqueness is equivalent to H’(M) = 0. 

Proof. Let N be a closed tubular neighborhood of V in M. We can identify N with the total 
space of the normal disc bundle of V in M. Let aN denote the sphere bundle of this disc 
bundle. (The notation is potentially confusing, since this is only a portion of the boundary of N 
if V has boundary.) The existence of the map a is clearly equivalent to the existence of a map 
/3: M - N+ S’ which restricts to a bundle trivialization of aN, for a suitable tubular neighbor- 
hood N. Since the bundle N is oriented, there is a natural Thorn class U E H*(N, aN). Note 
that H*(N, aN) = H*(M, M - N) by excision and H’(M, M - N) = H’(N, aN) = 0 by excision 
and the Thorn isomorphism. We shall consider the exact sequence 

0 - H’(M) - H’(M - N) -f-+H*(M,M-N)-H*(M)-+~~ 

H*(N, aN) 

A map @ as above induces also a map A4 + @ and then naturality of the Thorn class and the 
commutative square 

H’(S’) - H*(D*, S’) 

H’(M-N)A H*(M, M - N) 

shows that /3, considered as an element of [M - N, S’] = H’(M - N), goes to the Thorn class 
U E H*(iW, M - N) under 8. Conversely, if we have a class [fi] E [A4 - N, S'l = H’(M - IV) with 
a[/?] = U, then commutativity of 

H’(M-N) ’ *H*(M,M--N) 

H’(S’) - H*(D*, S’) 

(vertical arrows induced by inclusion d - N C A4 of a fiber of N) shows that /3 restricts to a 
homotopy trivialization of the bundle aN. Since differentiable and homotopy classifications of 
S’-bundles agree, we can homotop fl]aN to be a genuine trivialization of aN. This homotopy 
can be extended via a collar to all of M - N, so /3 then has the desired form. 

The existence statement of the Lemma is thus equivalent to the existence of a [/3] E 
[M - N, S’] = H’(M- N) with S[/3] = 0. It thus follows from the exact sequence, since 
H*(M) = 0. To see uniqueness, observe first that the exact sequence shows that &I is unique up 
to homotopy, since H’(M) = 0. Given two different maps a and a’ as in the lemma, it follows 
from this that we can assume that a and a’ agree on A4 - N. They hence determine the same 
homotopy trivialization of the normal bundle of V, hence the same genuine trivialization, so by 
uniqueness of tubular neighborhoods up to isotopy we can in addition assume that a and a’ 
agree on some smaller tubular neighbourhood No C N of V. Now the “difference” y(x) = -- 
a’(x)a-‘(x), (group structure in S’) is a map (N-No. a(N - No))+@‘, 1) whose homology -- 
class [y] E H’(N - No, a(N - No)) is the obstruction to homotoping a to a’ without altering 

- - 
a]N0 and ajM - N. But H”(aRo) = H”(a(N - No), aI@ I\ H’(N - No, a(N - No)), by the 

- - 
exact sequence of the triple (N-NO, a(N - No), afi), and it follows that by applying a 
homotopy to a which rotates each component ‘of the tubular neighbourhood NO a suitable -- 
number of turns, we can reduce the obstruction [y] E H’(N - No, a(N - No)) to zero. This 
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completes the proof; we have in fact shown that maps a classified up to homotopies as in the 
lemma are in I-‘1 correspondence to the set 6-‘(U) E H’(M - N), so the stronger statements of 
the remark follow on observing in the exact sequence that the image of U in H*(M) is the dual 
cohomology class of V, so U is in the image of 6 if and only if this dual class vanishes: also S is 
injective if and only if H’(M) = 0. 

LEMMA 2.4. Let V,m-4C V2m-2 C Mm be proper embeddings of smooth manifolds. Assume 
that M and V2 are each 2-connected. Let i: V2+ M denote the given inclusion. Then there exists 
an embedding of pairs j: ( V2, V,) + (M, V2) so that 

(a) j( VZ) is transverse to V, with j( V2) fl i( V2) = VI. 
(b) j is isotopic to i through maps satisfying (a). 
(c) j is unique up to isotopy through maps satisfying (a) and (b). 

Proof. For the proof, we shall assume that the manifolds are compact. With a little more 
work one can also prove the non-compact case. Note that Vz has a tubular neighborhood 
T: VZ X D* C A4. Let a: V2+ D* be a map as in Lemma 2.3 so that a-‘(O) = VI. Define 
G: V2+M by k(x)= T(x,a(x)). Then 6: (V2, V,)+(M, V2) satisfies properties (a) and (b). To 
see (b), define i,: V2+ M by it(x) = T(x, ta(x)) for 01 t 5 1. Then i0 = i and i, = &. 

Given j!: VZ+ M satisfying (a) and (b) and an isotopy J: V2 x I + it4 as in (b), then for s > 0 
sufficiently small one has J(x, s) = T(h,(x), fJx)) where h,: V2+ V2 is a diffeomorphism (this 
needs compactness). Here fs satisfies Lemma 2.3 and h, is isotopic to the identity by h, 
0 5 r cc s. Uniqueness then follows from the uniqueness in Lemma 2.3. 

COROLLARY 2.5. Let V”-* C Mm be a proper embedding of compact smooth oriented mani- 
folds. Let M be 2-connected and let a: M + 0’ be the map constructed in Lemma 2.3. Let 
(S”, K, b) be a fibered knot. Then the pull-back b(M, a) is actually independent of a. up to 
difleomorphism. 

Remark. Under the hypotheses of this corollary, we may now denote the pull-back b(M, a) 
by b(M, V). The branched fibration 7~ b(M, V)+ M is uniquely determined by V C M and the 
fibered knot (S”, K, b). 

Proof. Let a and a’ be two maps from M to D*, constructed as in Lemma 2.3, and let 
A: M X I+ D* be a homotopy between them, also constructed as in Lemma 2.3. It then follows 
from Ehresmann’s theorem (see [17], p. 98) that b(M x I, A) is a smooth fiber bundle over the 
interval I with fiber b(M, a). Hence b(M x I, A) is diffeomorphic to b(M, a) x I. The technique 
of the proof of Ehresmann’s theorem actually shows that this diffeomorphism can be chosen 
compatible with the maps to M. This fact suffices to prove the corollary. 

COROLLARY 2.6. Given a fibered knot ($7, K, b) and inclusions VI C V2 C M as in Lemma 2.4, 
there is an inclusion of branched fibrations. 

b(V2, VI) ’ * NM V2) 

1 I n 

v2 -M 

where j is the map satisfying (b) of Lemma 2.4. 

Proof. Restrict the branched fibration ?T to j( VJ. Since j( VZ) fl V2 = V,, we see that the 
restricted fibration branches along VI. It is then easy to check that the restriction is b( V2, V,). 

Thus we obtain canonical inclusions of branched fibrations. The empty knots give an 
interesting special case. Let [a] denote the fibered structure for the empty knot of degree a 
(that is [a] = ~1,). Let K C S” C S”+* where (S”, K) is any knot and S” C P2 is the standard 
(unknotted) inclusion. Then, from 2.3, we have j: S” + S”+* so that j(S”) fl S” = K. Hence we 
have the diagram 

[a](S”, K) ’ + [a](S”‘*, S”) 

I I 
S” I sn+2. 
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But [a](S”, K) is the u-fold cyclic branched cover of s” along K, and [a](S*+*, S”) = Sn+* since 
branching along an unknotted sphere has no effect. Therefore j embeds the branched covering 
into Sn+*. Letting K @ [a] stand for j([a](S”, K)), we obtain a new knot (S”+*, K @ [a]). This 
will be referred to as the a-fold cyclic suspension of (S”, K). (See [18]). 

Another application of Lemma 2.3 is the well-known construction of a spanning manifold 
for a knot. Given a knot (Sn, K) there is a homotopy unique (as in Lemma 2.3) map cy: S” --$ D2 
with a-‘(O) = K. Let F denote the closure of K’(t) where & = a#~]]: S” -K + S’, and t is a 
regular value of &. Then F”-’ C S” and aF = K as oriented manifolds. Every spanning surface 
can be obtained in this way. 

$3. PRODUCTS OF KNOTS 

Given a knot 96 = (S’, K) and a fibered knot 9 = (S’, L, b) we will define a product knot 
x @ 2 = (Sk+/+’ , K @L). This will generalize the cyclic suspension discussed at the end of 92. 
We have already explained some of the motivation behind our definition in the introduction. 
While it might seem most natural to give an initial definition of the product that is an obvious 
analog of the link of a sum of singularities, we have chosen instead to define the product by 
using branched fibrations; the embedding of K @ L in Sk+‘+’ is obtained by using the technique 
of Lemma 2.4 and Corollary 2.6. This approach has the advantage that the product is at once 
well-defined in the differentiable category. Furthermore one sees clearly that only one knot 
need be fibered. In Lemmas 3.4 and 3.5 we derive the versions of the product described in the 
introduction. We may write X @ 9 for X @ 9 and K 6J b for K @ L in order to emphasize 
the fibered structure of X 

We shall have need of the boundary of a branched fibration. Suppose V C M with M 
2-connected so that we can form P: b(M, V)+ M. The reader can easily verify that the 
boundary of b(M, V) decomposes as follows: 

a(b(M, V)) = b(aM, al’) U (M x L) 

where L is the binding of the fibered knot (S’, L, b). The union in this equality is taken along 
boundaries; it is also clear that ab(aM, 8V) = aM x L. This decomposition of the boundary 
reflects an essential difference between branched fibrations and branched coverings: The fiber 
of a branched covering map is a discrete collection, of points. Hence the boundary of a 
branched covering is a branched covering of the boundary. For branched fibrations, the fibers 
of the branched fibration are manifolds with boundary. In the case under consideration each 
fiber has boundary diffeomorphic to L, and this contributes the extra term M x L. 

Definition 3.1. Let X and 69 be knots as above, and choose a properly embedded codimen- 
sion two submanifold F C Ilk+’ with aF = K. Then we define K @ b to be the boundary of 
b(Dk”‘, F). That is, 

K @b = a(b(Dk+‘, F)) = b(S’, K) u (D’+’ x L). 

For example, if Y is the empty knot (S’, [a]), then 

K @ [a] = [u](S’, K) U (D’+’ x #) = [u](Sk, K), 

the u-fold cyclic branched cover of Sk along K. 
Note that our definition is independent of the choice of submanifold F C II’+’ (by the 

second equality in the definition), and that K @ b has a well-defined differentiable structure via 
the results of 92. 

To obtain the embedding K @ b c Sk+‘+‘, we proceed by analogy with the cyclic suspen- 
sion. A cyclic branched cover of a sphere along the unknot is again a sphere; the next lemma 
gives the corresponding result for branched fibrations. 

LEMMA 3 2 Let Dk+l CDk+3 . . be the standard (unknotted) embedding. Then for any fibered 
knot (S’, L, b) we have 

b(Dk+3, Dk+‘) s Dk+f+*+ 

Proof. Regard Dk+3 = Dk+’ x 0’ > (D”+’ x 0) = Dk+‘, and choose the map a : Dk+’ + D2 to be 
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projection on the second factor. Pulling back the branched fibration over D* yields 
b(Dk+3, Dk+‘) = Dk+’ x D’+’ = Dk+‘+*, proving the lemma. 

Definition 3.3. Under the same hypotheses as 3.2 let Dk+’ C Dk+3 be the standard inclusion. 
Apply Lemma 2.4 to the triple F c Dk+’ C Dk+3, obtaining an embedding 
j: b(Dk+‘, F) C b(Dk+3, D’[+‘). Taking boundaries, and using Lemma 3.2, we obtain an 
embedding K @ b CS’+‘+‘. This defines the pair X @ 3 = (Sk+‘+‘, K @ 6). 

Once again, this construction is independent of the choice of F. 
Our definition of the product %@ .Z is precisely the a-fold cyclic suspension of X when S’ 

is the empty knot of degree a. 
Here is a more symmetrical description of X@ 9. 

LEMMA 3.4. Let (Sk, K) be a knot and (S’, L, b) a fibered knot. Let F C Dk+’ be Q spanning 
manifold for K as in Definition 3.1. Use Lemma 2.3 to obtain y: Dk+’ + D* with y-‘(O) = F, 0 a 
regular value of y. Let 7: D’+’ + D* be a smoothing of cb. Use these maps to form the pullback 

b(D”+‘, F) - D’+’ 

I I 7 

D k+i 
Y‘02 

Thus b(Dk+‘, F) c Dk+’ x D’+‘. Then the product is obtained by taking boundaties from this 
embedding. That is, (Sk+‘+’ , K @ b) z (a(Dl’+’ x D’+‘), a(b(D’+‘, F))). 

Proof. We have already identified K @ b as the boundary of the pull-back. Therefore it 
suffices to check the embedding. Recall the method of Lemma 2.4. We have the triple 
F C Dk+l C Dk+3 _ - D”’ x D*. The map y gives rise to a map i: Dk+’ + Dk+3 with defining 
equation f(x) = (x, y(x)). Let a: Dk+3 + D* be defined by the equation a(x, z) = z. Thus a 0 + = 
y. Let p : Dk+3 + Dk” be the map defined by the equation p(x, z) = x, for (x, z) E Dk” x D*. We 
then obtain a diffeomorphism fi: b(Dk+3, Dk+‘)+ Dk+l x D’+’ via the equation i(v, y) = 
(~(4, Y), where b(Dk+‘, D”+‘) = {(v, y) E Dk+3 x D’+‘Icy(v) = T(Y)}. 

By definition, K @ b r Sk+‘+’ is obtained by taking boundaries from 
j: b(Dk+‘, F) C b(Dk+3, Dk+‘) where this embedding is defined by the equation j(x, y) = 
(f(x), y). Using our identification of b(Dk+3, Dk+‘) with Dk” X D’+‘, we have an embedding 
p* 0 j: b(Dk+‘, F) bD’+’ x D’+‘. However, i o j(x, Y) = S?(x), Y) = /.X(x, y(x)), y) = 
(p(x, y(x)), y) = (x, y). Thus 6 oj is just the standard embedding b(Dk+‘, F)‘b Dk+l x D’+’ 
arising from the pull-back construction. This completes the proof of the lemma. 

If both knots are fibered, then we can give an even more symmetrical description of the 
product. 

LEMMA 3.5. Let (Sn, K, b) and (Sm, K’, b’) be two fibered knots. Let T: D”+‘+ 0’ and 
r1: Dm+l + D* be branched fibrations corresponding to b and b’ respectively. Then 8 @S’ = 
(a(Dn+’ x Dm+‘), ax) where X is the pull-buck corresponding 

X - Dm+l 

to the diagram below: 

In this diagram X is not a manifold, but its singularity occurs away from the boundary. Note 
that if we let T: D”+’ x Dm+’ + R* be the map defined by the equation T(x, y) = T(X) - T’(Y), then 
aX = T-‘(O) n a(D”+’ x Dm+‘). 

Proof. Let f.(: D*+ D* be a diffeomorphism of D* = {z E Cl jzl= 1) which fixes a collar 
about the boundary and so that f,(e’) = 0 (for some E’ with 0 < ??’ 4 1). We may assume that fc, is 
isotopic to the identity through maps fc: @+d (OS E d ??‘) so that f,, = ld and fJS) = 0. Let 
?c = f. 0 T. Then for 0 < E G r’, Te: Dn+’ --) D* has the origin as a regular value, and T,-‘(O) C Dn+’ 
is a manifold with boundary, isotopic to the fiber of b. Consequently, we may use T* and T’ to 
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form $8 @ 9’ from the pull-back: 

x, - Dm+’ 

579 

I I T’ 

D n+’ 76 + D2. 

By Lemma 3.4, 9? @ S’ = (a(D”+’ x D’“+’ ), ax,). Letting E approach zero isotopes ax, in 
a(D”” x Dm+‘). Of course X0 acquires a singularity, but this occurs away from its boundary. 
Therefore $8 @ 9’ may be obtained from the pull-back diagram for T and 7’. This proves the 
lemma. 

COROLLARY 3.6. Let (S",K,b) and (S",K',b') be two jibered knots. Then 93 @S’= 
(-1) - (” ‘Xm-‘)B’ @ $3. (Here the minus sign refers to knot orientations; - (S, K) = (- S, - K).) 

Proof. By the lemma we may obtain S @ 9’ from the pull-back diagram for 7 and T’. Since 
this is symmetric in T and T’, the only difference between S @ 9’ and 48’ @ 48 lies in the 
orientation change resulting from switching factors. This proves the corollary. 

We shall see later that the two fibered structures 
also. 

combine to make 9l@ 9’ a fibered knot 

In accordance with 3.6, we make the following 
(Sm, L, b) be a fibered knot. Then $8 @ (9, R) = (- 
knots commute (in the graded sense). 

definition: Let (S”, K) be any knot and 
l)(n-lWm-l)(Sn, K) @ 9. Thus products of 

The rest of this section is devoted to giving a cut and paste description of %@ A?. 
Let % = (9, K) be a knot. By Lemma 2.3 we may write Sk = EK U (K x p) pasted along 

boundaries, such that there exists a map a: & + S’ whose restriction al8E~: K x S’ + S’ is the 
projection on the second factor. If Z’= (S’, L, b) is a fibered knot we may write S’ = 
EL U (L x D2) and choose /3: EL +S’ satisfying identical conditions and so that /3 is a smooth 
fiber bundle giving the fibered structure. 

Thus we may form the pull-back EK x slEL: 

EK (I s’. 

This is a well-defined manifold, and 

a(EK x s’E=) s (K x EL) U (L X EK). 

PROPOSITION 3.1. Let X and 9 be as above. Then K@L= 
(K X D’+‘) U (EK x .+EL) U (Dk+’ x L) where these pieces are pasted along their boundaries via 
the following natural identifications: 

c3(KxD’+‘)=((KxEL)U(KxD2xL) 

a(Dk”xL)=(EK~L)U(KxdxL). 

Thus the second factors are identijied with each other, while the first factors are glued to 
~(EK X .+EL). 

The embedding j: K @ L k Sk+‘+’ may be described as follows. Define the following maps 
and view 

Sk+‘+’ z (Sk x D’+‘) U (Dk+’ x S’). 

j,: K x D’+’ b Sk x D’+‘, j’(w, Y) = ((w, T(Y)), Y), (w, T(Y)) E K x D* c Sk. 
j2:EKXslELCEKxELCSkXS’. 

j3: Dkc’ xLdDk+‘xS’, i3(x, 4 = (4 (w a(x))), (w, a(x)) E L x D* c S’. 

The mapping j is obtained by applying j’, j2 and j3 to the three pieces of the decomposition of 

TOP Vol. 16. No. 4-C 
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K @ L given above. Here T: D’+’ + D2 is the branched fibration for cb, and a : Dk+’ + D’ is the 
map transversal to 0 so that a-‘(O) = F, aF = K. 

Proof. Recall the construction for K @ L. Let A4 = Dk+’ 3 F with aF = K. Then 

K @ L = a(b(M, F)) = b(aM, K) U (Dk+’ x L). 

But 

b(aM, K) = T-‘(E~) U K’(K x D2) = ?r-‘(E& U (K x D’+‘) 

where 7~ b(aA4, K)+ Sk is the pull-back branched fibration. Now ~1: nTT-‘(EK)-$EK and 
a(EK) C S’. Hence we have the diagram 

~-‘(&) - ELc D’+’ 

EK ---“--*S’ c D2. 

Hence T-‘(EK) = EK x slEt. Therefore 

K @ L = (K x D’+‘) U (EK x slEL) u (Dk+’ x L). 

This proves the first part. 
The second part follows in the same manner by breaking up the diagram 

b(M, F) - D /+I 

I I 
Dk+' k D2 

and examining the embedding 

K @L = a(b(A4, F)) c a(D’+’ x Dk+‘) = Sk+‘+‘. 

Remark. This a good place to remark on what happens if we try to define the product of two 
non-f&red knots. Suppose that one tries to use the description given in Proposition 3.7 as a 
tentative definition. Then EK x .qEL is no longer necessarily a manifold. If we choose the maps 
a and /3 so that they have disjoint sets of critical values then this space can be given a manifold 
structure. Thus, up to certain choices, arbitrary products can be constructed. While there is no 
canonical product in this general case, it might be interesting to study the entire collection of 
products so obtained. 

Remark. Some remarks about smoothing and differentiable structure are in order at this 
point. Note that given (M, V) as in Lemma 2.3, b(A4, V) does have a “corner” in its boundary 
along aM x L (b is the fibered structure for (S’, L, b)), which however is uniquely smoothable 
up to diffeomorphism by standard angle straightening. Note that at some points we have a pair 
A C I3 of manifolds with corners in their boundaries (for example in Definition 3.3) and want to 
straighten comers simultaneously, for which one should really check that A meets B’s corner 
transversally in A’s comer (as is the case for 3.3). Only smoothing of the above type is needed 
and we leave it to the reader to check these details. For example in 3.4 and 3.5 one should 
multiply the bottom arrow in a diagram of the form 

X - Dn+’ 

I I T 

Dk+’ d D2 

by some r < 1 to arrange that y(D”‘) C 8’ before taking the pull-back. This arranges that 8X is 
transverse to the comer in 8(Dk+’ x Dn+‘) so there are no problems with differentiable 
structure. 
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$4. LINKS OFSINGULARITIES 
Let f: (CR+’ , O)+(C, 0) be a polynomial mapping with an isolated singularity at the origin. 

Recall that one defines the link of the singularity, Lcf) c S*"+', by the formula L(j) = 
f-‘(O) n S’“+‘. Here S*“+’ denotes a sphere of small radius about the origin. We write 
ZU) = (P+‘, Lcf)). 

Milnor proved that the fibered structure associated with such a singularity occurs naturally 
on SZn+‘. The fibering of the complement is given by the mapping fi S*“+’ - L(f)+ S’, 
T(x) = f(x)l!~(x)]]. Th us we shall let A?Lp(f) denote this knot with its fibered structure. 

Given another such singularity g: (Cm+‘, O)+ (C, 0), we may form f + g: C”+’ x Cm*’ +C by 
cf + g)(x, y) = f(x) + g(y). In this section we show that Ycf + g) = Zu) @ Z(g). In fact, these 
knots are ambient isotopic. In referring to isotopy of knots in this section we shall often write = 
as a sign of equivalence of pairs and append the word isotopy in parentheses. Thus = may be 
used with dual meaning, but no confusion should arise. 

The same remarks hold more generally for polynomial mappings f: (R’+‘, 0) + (R*, 0) with an 
isolated singularity at the origin, except that the fibration Sk - UJ)+ S’ can in general no 
longer be given by f = ~/]~[I. We shall show that the formula _%‘u + g) = Zw @ Z(g) still holds 
in this more general situation. However, the proof is less transparent, so for reasons of clarity 
we shall first give a detailed proof of the complex case and then indicate the necessary 
alteration for the real case. 

Finally, we shall describe to what extent the result is still true for arbitrary tame sin- 
gularities. 

The factor which makes the complex case easier is the following useful lemma, which is a 
slight sharpening of Lemma 5.9 of Milnor[17]. 

LEMMA 4.1. Let f: (Cn+’ , O)-*(C, 0) be a complex polynomial with an isolated singularity a? 
the origin. For suficiently small e there exists a smooth vector field v on D, - (0) lying over the 
radial vector field w(x) = x on C = R* and satisfying: IzI increases along trajectories of u 

Proof. We construct v locally. It can then be pasted together by a smooth partition of unity. 
Lemma 5.9 of [17] says one can find a vector field v on D, -f-‘(O) such that lzl increases along 
v-trajectories and such that f(z) has constant argument and increasing norm along v-tra- 
jectories. Thus after adjusting the length of this v by a positive real function, it is suitable on 
D, - f-‘(O). For z. E f-‘(O) n (De - {0}), transversality of f-‘(O) with small spheres implies that 
the function q(z), ‘lzl - 1~~1): P’ + C x R = R3 is regular in a neighborhood of ZO, so it is 
projection onto the first three coordinates in suitable local coordinates z. E U = V C R3 x R*“-’ 
about zo. In these coordinates v(a, b, c, . . .) = (a, b, c + Izol, 0,. . ., 0) is a suitable vector field on 
the neighborhood U of zo. This completes the proof. 

LEMMA 4.2. Let f: (PI, O)+ (C, 0) and g: (Cm+’ , O)+ (C, 0) be complex .polynomial map- 
pings, each having an isolated singulatity at the origin. Choose 0 c E 6 1 and 0 < 8, Q E, 
0 < S, 4 ??. Let neighborhoods Nf and NB be given as follows 

Nf = {x E Cn+‘( I/XII 5 e, IV(x)ll 5 ~$1 

Ng = {Y E Cm+‘] llvll~ Q, IlsWIl 5 621. 

Then 
%_f + g) = @(Nf x NJ, (f + g)-‘(O) n a(N, x N,)) 

after smoothing comers. 

Remark. To avoid problems with smoothing comers one should choose 6, # 82 (see the 
remark at the-end of $3). 

Proof. Suppose we have a vector field v for f + g as in Lemma 4.1 (in particular v is 
tangential to (f + g)-‘(O)) but with the additional properties: along v-trajectories each of the 
functions A (x, Y) = Ix]], Ilu II, ll.Wl, V(Y I is nondecreasing, and actually strictly increasing out- 
side a small neighborhood of A(x, y) = 0. Then by pushing points of a(Nf x N,) out along 
u-trajectories we obtain a diffeomorphism (except for the comers) h: (a(Nf x N,), cf + g)-‘(O) n 
WY, x &I) + (S Z(r+m)+3, Lcf + g)), which can be interpreted as a smoothing of comers of the 
first pair. By uniqueness up to diffeomorphism of such smoothing the lemma is thus proven. 
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To find a suitable u choose vector fields vf and u* for f and g as in Lemma 4.1. Then 
u = 1/2(uf, ug) has the required properties on (C”+’ - (0)) X (Cm+’ - (0)) and u = (uf, 0) respec- 
tively u = (0, ug) do so on neighborhoods of (C”+’ - (0) x (0) and (0) x (Cm+’ - (0)) respectively. 
Pasting by a partition of unity gives the required u, completing the proof. 

PROPOSITION 4.3. Let f and g be complex polynomial mappings as in 4.2. Then ._Ycf+ g) = 
Y(f) @ T(g) (isotopic). 

Proof. Since Z(g) = Z’(- g), we can look instead at 55<f - g). By 4.2 this is isomorphic to 
the pair (a(Nf x N,), cf - g)-‘(O) n (8Nf x N,)) = (J(Nf x N,), ax) where X is the pull-back 

X----+N, 

I j B 

Nf 
f D2. 

But this has already been identified as .Zm @ Z’(g) in Lemma 3.5, since the maps Nf + D* and 
Ng + D* are branched fibrations corresponding to Z’(j) and Z’(g) respectively. 

The real case 
In the real case problems are caused by the fact that Lemma 4.1 is no longer true (a 

counter-example is given by Milnor[l7, p. !#I). The following weaker version is still true and 
will be useful. 

LEMMA 4.4. Let f: (R”+’ , O)+ (R*, 0) be a real polynomial with isolated singularity at the 
origin. For suficiently small e there exists a smooth vector field u on D, - (0) such that Jzl 
increases along u-trajectories and If(z)1 increases or is constant zero along any u-trajectory. 

Proof. Such a vector field is constructed on D, -f-‘(O) in the proof of 11.3 in [17], and can 
be constructed in a neighborhood of (0, - (0)) I-I f’(0) as in Lemma 4.1 above. 

We shall show that Lemma 4.2 holds without change in the real case, whence Proposition 
4.3 also follows. Suppose therefore we have f: (R”+l, O)+ (R*, O), g: (Rm+‘, O)+ (R*, 0) poly- 
nomial mappings with isolated singularities at zero. Let 

Nf = {x E R”+‘I 11x11~ E, IlRx)ll~ 6,) 

NE = {Y E Rm+‘l llyll~ E, k<y,II 5 621 

where e, S1, S2 will be chosen sufficiently small. To prove Lemma 4.2 we shall, as in the 
complex case, use a vector field o which points in a direction of increasing 11(x, y)ll and is 
tangent to V = cf + g)-*(O). That such a vector field exists is clear by transversality of V with 
small spheres, but we must check that we can choose u transversal outwards on the boundary 
of Nf x NB’ So this first choice so far only works outside Nf X NF If uf and u, are vector fields 
as in Lemma 4.4 for f and g then, as in the proof of 4.2, they can be used to construct a vector 
field u which points in a direction of increasing 11(x, y>ll and is transversal outwards on 
a(Nf x N,); however, this u may not be tangent to V, so it can only be used in the complement 
of V. It thus remains to construct a suitable vector field u on a neighborhood of V fl 
a(Nf x N,); the three local candidates for u can then be put together by a partition of unity. 

The boundary of Nf x Ng is the union of the pieces 

A = {xl llxll= E, IV(x>‘ll~ 6,) x Ng, 

B = Nf x {Y I llvll = ~3 ik<y>II 5 6213 

C = {XI llxll~ c i.fCx>ll = &lx Ng, 

D = Nf x {Y I llvll~ Q, k(y)li = 621. 

A suitable vector field is easily found in a neighborhood of V fl A and V n B, so it remains only 
to consider V n (C U D). Let k and 1 be the restrictions to V of the polynomial functions W(x>ll’ 
and 11(x, y)II’. An application of the curve selection lemma as in Corollary 3.4 of Milnor[171 
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shows that near zero on V the differentials dk and dl cannot point in opposite directions unless 
one of them vanishes (see Remark below). But dl only vanishes at zero, and dk only along 
f(x) = 0 since f(x) (which equals -g(y) on V) is regular on V near the origin except when 
f(x) = - g(y) = 0. Since V fl (C U D) contains no point with f(x) = 0, there exists a vector field 
on V in a neighborhood of V n (C U D) pointing in a direction of increasing 11(x, y)jj and 
increasing IlfWll = lldy>ll. If u is an extension of this to a neighborhood of V n (C U D) in 
R”+’ x Rm+‘, then 2, has the desired properties in a neighborhood of any point of V fl (C U D) - 

(A U B). This completes the proof. 

Remark. To extend the proof of Milnor’s Corollary 3.4 to the situation mentioned above, 
one must check that dk and dl can be described by polynomials. This is in fact not true, but 
with the natural identification of the cotangent space of V with a subspace of R”+’ x Rm+‘, one 
has 

l/grad U + g)ll’ dk = llgrad cf + g)l12(grad k) - (grad (f + g); grad k) grad (f + g) 

so one can use jlgrad (f + g)l12 dk instead of dk and similarly for dl. The proof in question then 
extends without difficulty. 

We have thus proved 

PROPOSITION 4.5. Proposition 4.3 holds for isolated real polynomial singularities. 

For arbitrary tame singularities f and g the above argument fails. In fact it is even not clear 
if f + g is necessarily tame, so -(Pcf + g) may not even be defined.? Suppose however that f + g 
is also tame. Then the neighborhood pair (Nf+g, cf + g)-‘(O) n N,+g) is isomorphic to the cone 
over its boundary, 2’ecf + g) = (aN,+g, ~!,cf + g)), and the neighborhood pair (Nf x 

Ng, cf + g)-‘(O) r? (Nf x N,)) is isomorphic to the cone over its boundary which we have seen is 
2cf) @ .2(g). Thus the cones on J’(j + g) and Ycf) 0 2’(g) are locally isomorphic, so by a 
standard argument (see Lemma 1.5) we have. 

PROPOSITION 4.6. If f: (R”+l, O)+ (R2, 0), g: (Rm+’ , O)+ (R2, 0) are smooth maps with tame 
isolated singulatities at the origin and f + g is also tame, then Z’ecf+ g) and .5?(j) @ .2’(g) are 
h-cobordunt (in the strongest sense). 

COROLLARY 4.1. In the situation of 4.6, if n 2 3 and m 2 3 then Z(j+ g) = Z’(f) @ Z’(g) 
(isotopic). 

Proof. A van Kampen argument shows r,(Lcf) @ L(g)) = (1). In the next section we will 
show that 2!ipcf) @Y(g) has a fibered structure with simply connected fiber, so ‘IT,(S”+~+’ - 
L(j) @ L(g)) = Z. Given an h-cobordism (M”+mf2, N’+,) between 2Yj + g) and 2’(j) @ 2?(g), 
apply the h-cobordism theorem first to N and then the relative h-cobordism theorem to the 
complement of an open tubular neighborhood of N. This complement has fundamental group 
Z, so the h-cobordism theorem applies (Wh (Z) = { 1)). This proves (M, NJ= 
(S n,tm “, L(f) @ L(g) x I) and hence the corollary. 

Once we have the explicit description of fibered structure of a product of fibered knots, it 
will become clear that the isotopy Y(f + g) = J?(f) @ 9(g) for complex polynomial singularities 
preserves fibered structure. In the real polynomial case this is however not clear, and remains a 
problem in low dimensions. In higher dimensions, namely in the situation of Corollary 4.7, there 
is no problem, since by a theorem of Durfee[5] and Kato[ 111, two fibered knots in this 
dimension which are isotopic as knots are isotopic as fibered knots. This theorem needs simple 
connectivity of both knot and fiber, which however holds for 6pcf) @ 2’(g), and hence also for 
2’u + g) since the fiber of a fibered knot is unique up to h-cobordism. 

We can thus state (slightly prematurely). 

PROPOSITION 4.8. The isotopies Ycf + g) = 2’(j) @ Y(g) of Proposition 4.3 and Corollary 4.7 
preserve fibered structure. This is also true of the h-cobordism in Proposition 4.6. 

tFor a tame isolated singularity f: R”” +R* we define _Yecf, = (&VI, L(f)), which has a natural fibered structure ($1). 
rather than 5?(j) = (S,“, L(f)), which doesn’t. For polynomial singularities these definitions are compatible. since we may 
push one out into the other along a vector field as in Lemma 4.4. 
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Corollary 4.7 and Proposition 4.8 also hold under the modified assumption: n + m L 6 and 
M-,Cf) 0 L(g)) = 01. 

$5. FIRERED STRUCTURE AND EXTERIORS OF PRODUCTS 

In this section we examine the knot complement of a product of knots. It will then be 
apparent that the product of fibered knots is again fibered. Other structural details will also 
emerge and to clarify these we preface our discussion with some remarks on arbitrary knots. 

If X = (Sk, K) is any knot then by Lemma 2.3 there exists a map Q: Sk + D2 with 0 E D2 as a 
regular value and K = a-‘(O) as an oriented submanifold. The map ti = a/llall: Sk - K+ S’ 
represents Sk - K as a “fibration with singular fibers” over S’. The non-singular fibers of this 
map are spanning surfaces for K and are of great importance for the calculation of homological 
invariants of ZZ. One can always arrange that the critical points of d are non-degenerate, hence 
isolated, hence finite in number, since they occur in a compact subset of Sk - K. 

Now suppose JZ’ = (S’, L, b) is a fibered knot. We shall show that the knot complement 
S k+“l - K @ L of the product admits a fibration with singular fibers over S’ as above, which is 
a fiberwise Z-branched fibration of Bk+’ x S’ branched along a fiber-wise embedding Sk - 
K C fik+’ x S’. In particular a fiber of Sk+‘+’ - K @ L is singular only if the corresponding 
fiber of Sk - K is. 

In order to describe this fibering, we need to be a bit more precise about the mapping 
a: Dk+l + D2 associated with a knot K C Sk. When K C Sk is fibered, we have taken this map to 
be the associated branched fibration. Even when the knot is not fibered, there is still a smooth 
map a such that a-‘(O) is homeomorphic to CK. The next lemma articulates a useful vector field 
associated with such a map. This vector field will play the same role as the vector fields used in 
studying polynomial singularities (compare with Lemma 4.1). 

LEMMA 5.1. Let 3Y = (Sk, K) be a knot and a: Sk + D2 a smooth map with 0 E D2 as a 
regular value and K = a-‘(O). Then there exists a smooth extension a: Dk+’ + D2 of a and a 
vector field v on De+’ - (0) such that 

(i) v lifts the radial vector field w(y) = y on D2. 
(ii) llxll increases along v-trajectories, x E Dk+‘. 

(iii) the critical set of a is the cone consisting of all v-trajectories through critical points of 
5 = a&/l. 

Proof. (iii) is a consequence of (i) and (ii). To satisfy (i) and (ii), smooth the cone on a as in 
Pl. Then the radial vector field on Dk+’ is suitable after adjusting by the positive real valued 
factor la(x)l/l&(x)l, x E D’+‘, to satisfy (i). Note that I&(x)I is non-zero on Dk+’ - 
(0). QED. 

Using the notation of Lemma 5.1, we may assume that 1 E S’ is a regular value of ti, so 
a-‘( 1) U K = F is a smooth spanning surface for K. Then, for sufficiently small E, we have that 
cue’(e) = F, is a properly embedded smooth submanifold of Dk+’ isomorphic to F and with 
boundary isotopic to K, as can be seen by pushing F, out to F along the vector field v. We may 
further assume that a(Dk+‘) is contained in the disk of radius 1 -E, so that the map 
a - e: Dk+‘+ D2 is defined. Note that a - E has zero as a regular value and (a - E)-‘(O) = F,. 

Now if #l: D’+’ + D2 is the branched fibration corresponding to the fibered knot Z’ = 
(S’, L, b) then we have the pull-back branched fibration 

X,- D1+’ 

D k+l Q-C 

and by definition, K @ L = ax,. As in the proof of 3.5, as ??goes to zero a singularity appears in 
the interior of X, but not in the boundary, so 

K @ L = ax,, = a{(~, y) E Dk+’ x D’+‘la(x) - /3(y) = 0). 

For sufficiently small E write 
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& ={xE SklIla(x)/lc}= Sk-K x h,' 

EL= {x EDkf'l lla<x)ll= c}. 

There is an isomorphism EK = E;(, x++ x’, obtained by pushing in along the vector field of 
Lemma 5.1. 

PROPOSITION 5.2. With notation as above, let 

E = {(x, y) E Dk+’ x o’+‘\ [la(x) - /3(y)lJ = C}. 

Then 

(i) E = EKoL = Sk+‘+’ - (K @ L x fi2). 

(ii) En\ Dk+’ x S’, where v is the mapping ~(x, y) = (x, (a(x) - /3(y))/e), exhibits E as a 
branched fibration of Dk+’ x S’ along {(x, A) E Dk+’ x S’la(x)- he} = j(EK), where j: EK+ 
Dk+’ x S’ by j(x) = (x’, a(x)). 

(iii) Hence if both (3Y, a) and (9, b) are fibered knots, then l?l@ .Z’has fibered structure given 

by EKaL = E pPa=P S’ where pr: Dk+’ x S’ -+ S’ is projection on the second factor. 
(iv) With P: E+ S’ as in (iii), the fiber P-‘(A) is describable us follows: Take the fiber 

K’(h) C Sk of St and push it (keeping its boundary fixed) into Dk+’ to get a proper embedding 
F’ C Dk+’ and then take the Z-branched fibration of Dk+’ branched along F’. This holds even if 
X is not a fibered knot if A is a regular value of 5. 

Proof. (i) Take vector fields V, and l)b on Dk+’ and D’+’ as in Lemma 5.1. The vector field 
U = (U,, ub) On D”’ x D’+’ is transverse to E, and pushing E out along v yields an isomorphism 

E = {(x, y) E a(D’+’ x D’+‘) = Sk+‘+!‘1 Ila(x) - /?(y)(l 2 E}. 

Since 

{(x, y) E Sk+‘+‘/ [la(x) - /3(y)(ls E} = (K @ L) x D2, 

we have E = EKoL. 
(ii) is clear. In fact the map Dk+’ x S’ cp\ D2, where cp(x, A) = a(x) - EA, has zero as a 

regular value and cp-‘(0) = j(EK), so the commutative diagram 

E (X.Y )-rx 
) D’ 

DkxS’ ‘p +D* 

identifies E as the Z-branched fibration in question. 
(iii) The map P: E+ S’ is given by P(x, y) = (a(x)- fi(y))/e. Thus on JE = 

a((K @ L) x 0’) = (K @ L) x S’ it is projection on the second factor as it should be. Now it 
follows easily from Lemma 5.1 (iii) that A E S’ is a critical value of P if and only if it is a 
critical value of 6, so P is a fibration if Cr is. 

(iv) We can assume A = 1. Then the fiber P-‘(l) is the space X, defined above, which is the 
Z-branched fibration of Dk” along F, = a-'(e). As remarked above, F, is obtainable by 
pushing F = K’( 1) into Dk+’ along the vector field u. This completes the proof. 

Remark. In part (i) above we used a vector field to show 

E P EKoL = {(x, y) E a(D”” X D”‘)l(&) - B(y)11 1 c}. 

Let i’: (Dk+’ X D’+‘) - XO+ S’ be defined by the formula P(x, y) = (a(x) - /3(y))/l(a(x) - @(y>Il. 
Then PIE = P. The vector field we used points in the direction of constant F, so the above 
isomorphism commutes with the maps P = FIE and FIE KBL to S’. A similar remark holds in 
the proof of 4.2. It hence follows that the isotopy of links of complex polynomial singularities 
d;pcf + g) = .Zu) @ Z(g) of Proposition 4.3 does preserve fibered structure, as claimed in 54. 

Another way of interpreting Proposition 5.2 is as follows: EKoL is the Y-branched fibration 
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of II’+’ x S’ along j(EK) where j: EK + Dk+’ x S’ is essentially the embedding of Lemma 2.4. 
That is, Sk+* = (Dk+’ x S’) U (Sk x I?), and by 2.4 the triple K C Sk C Sk+2 gives an embedding 
j: Sk+Sk+2 with j(S’) n Sk = K transversally. The embedding j: EK +D’[+’ x S’ is just the 
restriction. 

&FIRER STRUCTURE AND SEIFRRT PAIRING 

This section is a continuation of $5. Given K @ L C Sk+‘+‘, we shall examine submanifolds 
of Sk+‘+’ with boundary K @ L. 

Let X = (Sk, K) be an arbitrary knot and choose a: Dk+’ + D* as in Lemma 5.1. Let 
3’ = (S’, L) be a fibered knot with /3: II’+’ +D2 a branched fibration for 3. By OS, X@ 3’~ 
(a(Dl’+’ x D’+‘), aXO) where X0 is the pull-back (we are replacing /3 by - /3 for convenience) 

x, - II’+’ 

I I -6 

That is, 

D k+l 
--=-+ D2. 

X0 = {(x, y) E a(Dk+’ x D’+‘)Ja(x) + /3(y) = 0). 

Let y: Dk+’ x D”‘-+D2 be given by the formula y(x, y) = 1/2(a(x)+p(y)). Let a = aISk, 
b = /3]S’ and c = yJ8(Dk+’ x D’+‘) = yIS’+‘+‘. 

For t E S’ denote the radial line from 0 to t by [0, t] and put F’ = a-‘[0, t], G, = b-‘[0, t], 
H1 = c-‘[0, t], so G, is a fiber of 3 and E and II’ are (possibly singular) spanning surfaces for 
x and % @ 9. Choose to so that Fb is nonsingular. Then by the proof of 5.2, Hb is also a good 
spanning surface for % @ 9. Also, all nearby values of to will still have this property. 

LEMMA 6.1. There exists un inclusion FI * G, + H1 which is a homotopy equivalence for t near 
to, by a homotopy equivalence which varies continuously with t. Furthermore, the diagram 

F, *G, '!'Jl > Sk *S’ 

I 
Ht - Sk+‘+’ 

commutes, where the horizontal arrows are the inclusions. 

Proof. Recall that the join of two spaces X and Y can be described as the union 
X * Y = (CX X Y) U (X x CY), pasted along X x Y, where CX denotes the cone over X. Using 
the vector field of 5.1, it is clear that CFt = {y E D”“I/3(y) E [0, t]}, so we can express F, * G, as 
a subset of 

Sk * S’ = (CSk x S’) U (Sk x CS’) = (Dk+’ x S’) U (Sk x D’+‘) = ,(Dk+’ x D’+‘) 

as follows: 

F, * G, = (CF, x G,) u (Ft x CG,) 

= {(x, Y) E Dk+’ x S’la(x) E [O, tl, B(Y) E W, tll 

U {(x7 Y) E Sk x D’%(x) E W, tl, B(Y) E W, tl) 

= {(x, y) E a(Dk+’ X D’+‘)la(x) E [0, t] and B(Y) E [O, tll. 
Since 

Ht = {(x, y) E a(Dk+’ x @+‘)I l/2(&) + B(Y )) E F-h tl), 

we have a natural inclusion F1 * Gl -+ H, making the diagram of the lemma commute. 
It thus remains to show that this inclusion is a homotopy equivalence for t near to, by a 

homotopy equivalence which varies continuously with t. For this we consider the following 
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diagram of inclusions: 

A = {(x, y) E (Dk+’ x D’+‘) - {O,la<x> E K4 tl, B(Y) E 10, 4 

B = {(x, y) E (Dk+’ x D’+‘) - @II 1/2(4x) + B(Y )) E [O, a 

F,*G,=dA--+A 
? 

The horizontal arrows are homotopy equivalences, since we can slide points out to the relevant 
boundaries using the vector fields of Lemma 5.1. It thus suffices to show that the inclusion 
A C B is a homotopy equivalence. For this we need two new vector fields. 

Using the fact that any t close to to is a regular value of the map 5 = a/llaII: Sk - K + S’, we 
can easily modify the vector field of 5.1 slightly to get a vector field v on Dk+l such that ~~x~~ is 
non-decreasing along u-trajectories and o lifts a vector field on 0’ of the’form illustrated in Fig. 
3(a). Here [0, t] is a line of zeros of the field on D*. 

On the other hand, using the fact that #I is a branched fibration, we can find a vector field on 
D’+’ which covers the vector field on D* given by Fig. 3(b), and by mixing this in the right 
proportions with a “radial” vector field, as given by 5.1, we can obtain a vector field w on D’+’ 
which covers the vector field on D2 shown in Fig. 3(c). Now given any (x, y) E B we can 
simultaneously move x along a u-trajectory and y along a w-trajectory in such a way that 
1/2(4x) + /3(y)) remains in the interval [0, t]. This gives a deformation retraction of B onto A 
as was to be shown. The required continuity properties are easily seen. This completes the 
proof of Lemma 6.1. 

(b) 

(c) 

Fig. 3. 

Remark. Let g: G + G be the gluing map for the fibration over S’ associated with the book 
structure on 9. Suppose X also has an open book structure with gluing map f: F -+ F. Then the 
above lemma implies that the gluing map h: H + H, when restricted to F * G, is given by 
f*g:F*G+F*G. 

In this situation the homology map induced by f, g or h is called the monodromy of the 
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fibered knot X, 9, %@ 9. Since fi,(F * G) is naturally isomorphic to (G*(F) @ fi,(G))+r (see 
Proposition 6.2), this shows that the mono&my of a product of fibered knots is the tensor 
product of the individual monodromies. For links Ycf + g) = 6pcf) @ Z’(g) of isolated complex 
hypersurface singularities this was first shown by Thorn and Sebastiani[20]. 

Lemma 6.1 will allow us to extract algebraic information about K @ L C Sk+‘+‘. Recall that 
we have Seifert pairings 

eg: 9&(F) x X+,(F) - z 

@I 9’&(G) x X+,(G) -Z. 

Here X* denotes the quotient of the reduced homology, fi,, by the torsion subgroup. 
The Seifert pairing is defined by the formula 0*(x, y) = f(i,x, y) where i,x is the result of 

translating x into the complement of the spanning manifold in the positive normal direction. 
The symbol I( ,) means linking number in the ambient sphere. Actually, this pairing depends 
upon the choice of spanning manifold for the knot. When we write O&, 6& Oh, we understand 
that these pairings are taken for the specific manifolds F, G, and H respectively. 

In order to formulate the next proposition it is convenient to shift the grading on X, by 
putting ZP- = &. , . 

PROPOSITION 6.2. Let X = (S“, K) and S = (S’, L) be us above with K = dF, L = aG, K @L = 
aH as above. Then 

and 

where we are taking the standard graded tensor product but using %‘G-grading. That is, for 
elements of homogeneous degree: 

e&j&a @ a’, b @ b’) = (- l)‘““b’@(a, b)Ogu’, b’), 

where 1x1 denotes the degree of x in the Xi-grading (that is, x E XL, = %‘,,I_,). 

The following special case of this proposition is particularly important for applications. 
Suppose k = 2n + 1, I = 2m + 1, and denote by 8%: X=(F) x %?“(F)+Z, BP: 9&(G) x %‘,,JG)+Z 
the middle-dimensional part of t%, 0%. 

COROLLARY 6.3. In the above situation if 9 is Q simple fibered knot (that is G is (m - I)- 
connected), then 

Proof of 6.2. The isomorphism 

(~3’) 0 WG)), = p+Q=n %-(F) 0 &WI - X-(F * G) = %‘,JH) 

is given by [al @I [b]+[a * b]. That this gives an isomorphism follows immediately from the 
Mayer Vietoris sequence for F * G = (CF X G) U (F x CG). The rest of the proposition follows 
from the definition of the Seifert pairing, from Lemma 6.1, and from the following lemma. 

LEMMA 6.4. Let a and /3 be disjoint cycles of dimension p and k - p - 1 in Sk and let a’, /3’ be 
disjoint cycles of dimension q and I- q - 1 in S’. Then in Sk * S’ = Sk+‘+‘, 

/(a * a’, /? * fi’) = (- l)(q+lWk-p)l(a, /3)l(a’, #I’). 

Proof. If a, /?, a’, /3’ are embedded spheres, this is proved algebraically by Sakamoto[l9]. 
We describe below how the general case follows geometrically from this, but the lemma can 
also be seen completely geometrically as follows. By definition 1(x, y) = (x, Y) where ( ,) is the 
intersection number in the appropriate sphere, and aY = y. Note that if dB = k3, then 
a(B * f3’) = f3 * /3’, so I(a *a’,/3 */3’)=(a * a’, B *f3’). Dividing a *a' up as a *a’= 
(a X Ca’) U (Car X a’) C (Sk x CS’) U (CS' X S') and similarly B * j3’ = (B x C/3’) U (CB x /3’), we 

see that the only contribution to (a * a’, B * 8’) comes from the intersection of a x Ca’ and 
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B x C/3’ (since all other intersections are empty), so 

(a * a’, I3 * /?‘) = (-- 1) (q+‘Kk-P)(a, B)(Ca’, C/3’) 

=(-1) (q+lMk-p)l(a, /3)(Ca', C/3'>, 

where the sign comes from transposing B and Ca’ of dimensions (k-p) and (q + 1) respec- 
tively. It thus only remains to show (Ca’, C/3’) = /(a’, /3’). This is in fact a known alternative 
definition of linking numbers in the sphere. However, we can also argue as follows: If a’ and #Y 
are standardly embedded spheres with linking number -+ 1 then the formula (Ca’, C/3’) = /(a’, fl’) 
is.geometrically clear, so Lemma 6.4 is proved in this case. It is clearly also proven if we can 
choose a and B above disjoint. By symmetry it also holds if we can find B’ with JB’ = /3’ and 
a' n B' = 0. By linearity the lemma thus holds if a’ and /3’ are disjoint unions of “nicely 
positioned” embedded spheres. We now show how to reduce to this case. 

For arbitrary cycles a, /3, a’, p’, choose B’ with aB’ = /3’ and assume B’ and a’ are in 
general position, so they intersect only in isolated transversal intersections of top dimensional 
simplices. Let D be the union of small disks in B’ around these intersection points and put 
fi” = aD. If B” = B’ - fi, then aB” = p’ U (- 8") and B” fl a’ = 0. Hence by definition of linking, 

/(a', p')- /(a', j?") = /(a', j3' U - /3”)= (a’, I?“)= 0. 

By the same arguments, since (/3 * B”) n (a * a’) = 0, I(a * a', /3 * /3') - /(a * a', /3 * p") = 0. 
Thus the lemma holds for a, 8, a', p' if it holds for a, fi, a', 8". In this way we can successively 
replace each of a, /3, a’, /3’ by a union of standardly embedded spheres which are “nicely 
positioned” with respect to each other. This is more than we needed to do. 

Example. If we apply Corollary 6.3 to cyclic suspensions we get the following result. 

PROPOSITION 6.5. Let KC S2”+’ be a knot with spanning manifold F and corresponding 
Seifert pairing 0%: 2&(F) x l%(F)+ 2. Then the a-fold cyclic suspension K @ [a] C S2”+j spans 
a manifold F, c S2n+3 with F, the homotopy type of F * (ZlaZ) and Seifert pairing 

Here A0 denotes the Seifert pairing of the empty knot of degree a. 

Since the empty knot-has a spanning manifold consisting of a points in S’ it is easy to see 
that A, has an (a - 1) x (a - 1) matrix form, 

This result may be used to deduce the signature periodicity theorem of [18] by using the 
method outlined in ([6], 65). 

By iteration we find that the Seifert pairing of [a,,] @ [a,] @ - . . @[a,] is 
(- 1) n(n+‘)‘2A(lo @ A,, @ - - - @ Aan. As we shall see in the next section this is the (well-known) 
computation of the Seifert pairing for the Brieskorn knots. 

$7. PRODUCTS ARR ASSOCIATIVE AND THEY DISTRIRUTE 
OVER CONNECTED SUMS 

Associativity of the knot product operation follows by essentially the same argument one 
would use for links of singularities. 

THEOREM 7.1. The product operation is associatiue. That is, given three knots SC, 3 and Y so 
that at feast two are fibered, then .(a@$) @ 2~ X @I u @ 2’). When all three knots are 
fibered, then this is an isomorphism of fibered knots. 

Proof. Letting k, t and 1 be the ambient dimensions for St, 3 and 2 respectively, let 
a: Dk(+‘-+D2, p: D’+‘+,O2, y: D’+’ + D2, be the associated branched fibrations for the fibered 
knots, or the representative mapping as constructed in Lemma 5.1 for a non-fibered knot. L,et 
g = 1/3(a -p - y):D'+'X D'+'X D'+' = D+ D2. Then it follows from the methods of §S that 
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the triple pull-back (do, g-‘(O) fl aD) represents the product of X, 2 and 9. Thus the theorem 
follows from this description. 

Remark. Note that this associativity property shows that to form the product of a knot 96 
with a collection of books ai, 9&, . . ., BB,, it suffices to form the book 9 = 93, @ 9!?* 0. - . 8, 

and then take X@ 9. For example, it follows from 04 that [a01 @ - * - @ [a,] 2 

6p(z,S + z,a’ + - ’ . + 2,““). Hence 96 @ [ ao] @ - - - @[a,] may be interpreted as the result of a 
sequence of cyclic suspensions, or as the product of X with a single Brieskorn book. 

Now recall that for knots X and X’ of the same dimension k, one has the notion of the 
connected sum X#X’ = (Sk, K#K’). This is described as follows: Let (D’, D(K)) denote the 
manifold pair obtained by removing a small ball from Sk that intersects K transversally in an 
unknotted (k - 2)-disk. Then X# X’ = (D’, D(K)) U.Y (Dlk, D(K’)) where one pastes the two 
k-balls along their boundaries so that aD(K) is matched to aD(K’). That is, one has diffeomor- 
phisms hi: (aok, aD(K))+(S’-‘, Ske3) and hZ: (JD’k, aD(K’))+(Sk-‘, Ske3), one of which 
reverses orientation. The pieces for the connected sum are glued together by the map 
H = hz-’ 0 h,. We shall speak informally, identifying (aok, aD(K)) with (Sk-‘, SkeM3). 

Remark. If K or K’ is not connected, then X# 96 is only well defined after choosing a 
component of K and K’. We assume such components have always been chosen when we talk 
about #. Connected sum of empty knots is not allowed, that is, we are assuming k > 1 
throughout this discussion. 

LEMMA 7.2. If X and X’ are fibered knots of the sume dimension, then 96 # X’ is also a fzbered 
knot. 

Proof. Cut the ball from Sk so that (ok,D(K)) has a book structure induced from the 
fibered structure of X and so that this restricts to the trivial book structure on (Sk-‘, Sk-‘) = 
(aok, aD(K)). Do the same for (Dfk, D(K)). Since X# X’ = (Dk U D”, D(K) U D(P)) these 
books glue together, giving a fibered structure for X# x’. 

Given a closed n-manifold M”, let p(M), the puncture of h4, be the manifold with boundary 
.Y’, obtained by removing an n-ball from M. Thus M# M’= p(M) Up(M) (union along 
P). 

LEMMA 7.3. Let X and 3 be knots. Assume that 3 has fibered structure b: S’--, D2. Let 
(Dk, D(K)) be the knotted pair associated to St us described above. Then 

p(K @ L) = b(Dk, D(K)) U (D’+’ x L). 

Here the union sign denotes partial boundary identifications as follows: 

aDk+’ = Sk = Dk U D,,‘, ab(Dk, D(K)) = b(Sk-‘, Sk-3) U Dk x L; 

the two pieces are matched along Dk x L. 

Proof. 
K@L:=b(Sk,K)U(DkxL) 

= b(Dk, K) U b(D,k, Dk-‘) U (Dk x L). 

However, b(Dok, Dk-*) = Dk-* x D’+‘. Hence p(K @ L) = b(Dk, K) U (Dk x L). It is easy to see 
that the identifications are as described in the statement of the lemma. 

THEOREM 7.4. The product operation distributes over connected sums. That is, given knots X 
and x’ of the same dimension, and a third knot 9 so that either 3 is fibered or both X and 96’ 
are fibered, then 

9 

(x#3c)@Y~(.x@~#(~‘~. 

Connected sums of fibered knots are given a fibered structure us in Lemma 7.2. If all three knots 
are fibered, then this is an isomorphism of fibered knots. 

Proof. We leave most of this proof to the reader. We shall illustrate the argument by 
showing that (K # K’) @ L = (K @ L) R (K’@ L) when 9 is fibered. Let 9 have fibered 
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structure b: S’ +D’. Regard Dk+’ = fik+’ U bk+' where afik+’ = Dk U Dok and Jbk’” = 
Dk U Dok. The two balls are glued along Do’ to form Dk+‘. 

Then 

(K # K’) @ L = b(Sk, K #K’) u p+* x L) 

= b(Dk, D(K)) u b(l)“, D(K)) u (Ilk+* x L) 

= (b(@, D(K)) u (Dk+’ x L)) u (b(D”, D(K)) u ,Dk+’ x L)) 

=p(K@L)Up(K’@L) (by 7.3) 
=(K@L)#(R@L). 

The rest of the proof proceeds along similar lines. When 9’ is not fibered the proof is most 
easily carried out by using the cut and paste description of Proposition 3.7. 

88. GROUP ACTIONS AND GROMRTRIC KNOT PRRIODICITY 

Let Cr denote the Levine cobordism (concordance) group of spherical knots in Szl+‘. It is 
well-known that for I L 3, C, = C/+2 ([14]). An explicit construction for this isomorphism has 
been given by G. Bredon ([2]). In this section we give an exposition of Bredon’s construction 
from the point of view of knot products. 

Definition 8.1. Let L c S3 denote the link of two,,unknotted circles with linking number one. 
This is a fibered link. In fact, 9 = (S3, L) = [2] @ [2] = Z’(.z,* + Zig). Thus, with our conventions, 
it has Seifert matrix of form (- 1) - (1) @ (1) = (- 1) (see Proposition 6.5). Note that the fibered 
structure for Z’ is the lift of the trivial fibered structure on S2 via the Hopf map. 

THEOREM 8.2. Let w: Cl + Cl+* be defined by the formula w(X) = X@ 2’ where 2 is rhe 
fibered link of 8.1. Then o is an isomorphism for 12 3. 

Proof. By ([14]) it is sufficient to see that w(m and X have the same Seifert pairing, up to 
sign. Since 6, has matrix (- l), we see from 6.2 that 

e,, = (- i)‘e,. 

This proves the theorem. 
Since o(X) = X @ _%’ = X@ ([2] @ [2]) = (X (EJ [2]) @ [2], the isomorphism is also obtained 

by performing two 2-fold cyclic suspensions. Iteration of o amounts to tensoring with the 
Brieskom books 2” = sP(zi2 + .z: + - . . + zn2). 

Now let G = 0 (n) be the orthogonal group of real n x n matrices g such that g’ = g-’ 
(t = transpose). We show that G acts on knots of the form X@ 5%. Thus iteration of the 
periodicity isomorphism produces knots with more and more symmetry. 

The group G acts on C” as follows: Regard 

2 = (z,, . . ., z,) = (x1 + iY 1, . . ., xn + iy,) = x + iy E C" 

with x, y E R”. Define g - z = (gx) + i(gy) (i = d- 1). Next let f(z) = zi2 + zz2 + * - - + zn2. If 
z =x + iy and ( ,) denotes the standard inner product on R”, then we have the formula 
f(z) = ((x, x) - (y, y)) + 2i(x, y). Thus f(gz) = f(z) for all g E 0 (n). This shows that 0 (n) acts 
smoothly on the pair (S2”-‘, L,). 

The orthogonal group acts naturally on Sh+’ = {(Y, z) E Rk+’ x CR1 I/Y]]’ + ]]z]]* = I] by 
g + (y, z) = (y, g . z). If we regard S*+’ = a@‘+’ x 02”) then this action is (after smoothing 
comers) the same as that obtained from the action on Dk+’ x D2”. We shall refer to this as the 
standard 0 (n) action on S2n+k. 

PROP~SRION 8.3. Given any knot X = (Sk, K), the knot K @ L, c S'"+' has a smooth 0 (n) 
action obtained by restricting the standard 0 (n) action on S2n+k. 

Proof. Let f(z) = zt + - - . + z,‘. Then it is easy to verify that f(oZ”) = d. Hence if we 
regard f: 02” + D2 and let E = ~-‘(D~~ f or small E, then f(E: E + 0,’ is a branched fibration for 
%. Since f(gz) = f(z) for all y E 0 (n), we see that E has an O(n)-action. In fact, after 
smoothing comers, E is equivariantly di#eomorphic to oz” with the standard action. Thus we 
obtain a branched fibration T: d” -+ d so that T(gz) = r(z) for all z E 02” and g E 0 (n). Now 
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let a: D”+’ + 0’ be a map as in Lemma 5.1, so SC @ Y” can be described as in OS, as 
(a(Dk+’ x D*“), ax), where X is the pull-back 

x-D*” 

Dk+l A D*. 

By definition, this pull-back is invariant under the standard action of 0 (n), so we must only 
check that the necessary corner smoothing can be done equivariantly. This is in fact true, since 
the smoothing methods we have sketched earlier only depend on the theorem on uniqueness of 
tubular neighborhoods, which holds equivariantly (see e.g. [l]). Alternatively, observe that if 
Sg2n+k is a sphere of small radius around the origin in Dkc' X D*=, then (Sa2n+k, S2+k fl X) is an 
equivariantly smoothed version of (a(Dk+' X D2n), dX), since the former may be pushed out to 
the latter by the vector field used in 35. 

It is easy to verify that K @ L. is the O(n)-manifold corresponding to a knot x constructed 
by Bredon (see also Jlnich[lO], Hirzebruch[9] and Erle[7]). The above construction of 
0 (n)-manifolds can also be done, and generalized, by showing that the whole discussion of 
knot products is valid in a suitable equivariant category. 

49. PRODUCTS OF KNOTS IN OTHER CODMRNSIONS 

The results of this paper all go through in other codimensions, but in codimension 4 2 3 we 
need additional structure (which is “for free” if 4 = 1,2; see Lemma 2.3). Namely a well framed 
knot of codimension q consists of a smooth oriented manifold pair (Sk, KkTq) plus a smooth 
map (the well framing) p : Sk + Dq with 0 as a regular value and K = p-‘(O) as an oriented 
submanifold. Well framings are equivalent if they are smoothly homotopic through well 
framings. If the well framing p is such that p = p/llpII: Sk - K+ Sq-’ is a fibration, we call 
(Sk, Kk-q, p) a fibered knot. 

Fibered knots arise in the same way as in codimension 2 as links of tame isolated 
singularities of maps (Rk" , 0) + (Rq, 0). By Milnor [ 17, 5 111, polynomial singularities are tame. 

Even if a well framed knot (Sk, Kkeq, p) is not fibered, any non-singular fiber of p = p/llpI( is 
a spanning surface for the knot which can be used to define a Seifert pairing 6*: &Y;+,(F) x 
%‘~-,(F) + Z as in 96. I n contrast to codimension 2, this pairing is graded symmetric if q 2 3. 

The results of this paper (construction of branched fibrations, product of knots, associativity 
and distributivity of product over sum, behaviour of Seifert form under product, and con- 
nection with links of singularities) go through as in codimension 2, but with the following 
modifications. 

9.1. The relationship Z’u + g) = Zm @ Z(g) for links of isolated singularities of polynomial 
maps f: (Rk+' ,O)+(Rq,O) and g: (Rm+' , O)+(Rq, 0) still holds, but we do not know if fibered 
structure is preserved. If f, g, f + g, are just tame this isomorphism only holds up to h-cobordism 
when k + m + 1 = 3,4,3 + q, or 4 + q. For singularities for which a vector field as in Lemma 4.1 
exists, everything works, including preservation of fibered structure. 

9.2. If x = (Sk, Skmq, p) is a well framed spherical knot and 6p = (S, L'Tq, p’) is fibered, then 
in contrast to q = 2, a@ 19 is a spherical knot if q 2 3. The proof is by observing that the cut 
and paste description of K @ l, analogous to Proposition 3.7, looks homologically the same as if 
% were the trivial knot. 

The following remarks show that the construction does yield interesting knots also for q 3 3. 
The empty knot (S”,@) can be considered to have any codimension. In particular, the Hopf 
fibration S*‘-’ + Sk, k = 2,4,8, gives the empty knot (S*‘-‘, 8) the structure of a fibered knot of 
codimension k + 1, which we denote pk). 5?,,(*’ = Z(*) x () . . . @ .Z’(*) (n times) can be described as 
Kuiper’s link of the polynomial map f: C” X C” +C x R, f(x, Y) = <x%llxlP-Ilvll'> (see Minnow, 
9111. U (n) acts on ZZi*) and we get a similar connection between special U (n)-actions and 
3-codimensional knots as for O(n)-actions and 2-codimensional knots in OS. Similar remarks 
apply to codimension 5, Z’i4r, and Sp (n). 

Signature of a well framed knot is well defined as signature of a spanning surface, since 
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spanning surfaces are unique up to bordism modulo the boundary. In codimension 4 = k + 1 as 

above, St @ 9’) and X have the same signature-in fact the intersection form of a spanning 
surface for X and the corresponding spanning surface for St@ 9’) are the same. It follows 
that if X = (Sk, Kkeq, p) is a well framed spherical knot of non-zero signature then 
K @ L’k’ @ . * * @ LCk’ is always a nonstandard sphere if we take sufficiently many factors. 
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