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Abstract

We consider a parallelizable:Z2nanifold F which has the homotopy type of the wedge product
of n-spheres and show that the group of pseudo-isotopy classes of orientation preserving diffeo-
morphisms that keep the boundary pointwise fixed and induce the trivial variation operator is a
central extension of the group of all homoto(®: + 1)-spheres byH,, (F; S, (SO(n))). Then we
apply this result to study the periodicity properties of branched cyclic covers of manifolds with sim-
ple open book decompositions andend the previous results of Durfee, Kauffman and Stevens to
dimensions 7 and 15.
0 2004 Elsevier B.V. All rights reserved.

MSC: 57N15; 57N37; 14317

Keywords: Isotopy classes of diffeomorphisms; Cyclic branched covers

1. Introduction and theresults

An open book decomposition of a manifalé”+1 is a presentation of this manifold as
the union of the mapping torug, and the product F x D? along the boundar§ F x S1,
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wherep : F™ — F™ is an orientation preserving diffeomorphism which fixes the boundary

d F pointwise. Open book structures have been used in the study of various topological
problems (for short historical overviews see §2 of [22] or Appendix by Winkelnkemper
in [23]), and in particular in the study of ¢hisolated complex hypersurface singularities.
Let f:(C"*1,0) — (C, 0) be a polynomial mapping with the only singular point at the
origin and with zero locu¥’ = {z € C"*1| f(z) = 0}. Consider the intersection &f with

a small sphere centered at the origin=V N S82"+1. Milnor has shown in [19] that the
mapping

D)= f@)/|f@

is the projection map of a smooth fibration such that the fibe= ®~1(1) is a smooth

(n — 1)-connected parallelizable:2manifold homotopically equivalent to the wedge prod-
uct of n-spheres andF = K is (n — 2)-connected. This gives the open book structure to
the sphere

. stk st

s+ = F, U (K x D?).

Such an open book decomposition$¥'*1 is called a simple fibered knot and the peri-
odicity, in k, of thek-fold cyclic covers of§?**1 branched along has been studied by
Durfee and Kauffman in [8]. Later, Stevens (see [28], Theorem 7 and Proposition 8) gen-
eralized Theorems 4.5 and 5.3 of [8] to a wider class of manifolds with simple open book
decompositiong/?'+1 = F, U (3F x D?) (an open books?'+1 is calledsimple if both

M andF are(n — 1)-connected and/ bounds a parallelizable manifold).

Theorem | (Stevens)Let M; denote the k-fold cyclic cover of M2'*+1 branched along
dF and n # 1, 3 or 7 odd. If Var(¢4) = 0, then M, and M4 are (orientation preserv-
ing) homeomorphic, while M and M,_, k < d are orientation reversing homeomor phic.
Furthermore, My, isdiffeomorphicto (o,/8) X # M.

Hereoy is the signature of a parallelizable manifaly with the boundary Ny = My,
and X' is the generator of the finite cyclic grodP2,+2 of homotopy(2n + 1)-spheres
that bound parallelizable manifolds. Vay denotes the variation homomorphism of a dif-
feomorphismi: F — F, which keeps the boundadyF pointwise fixed, and defined as
follows. Let[z] € H,(F, 0 F) be the homology class of a relative cyelehen one defines
Var(h): H,(F,dF) — H,(F) by the formula Vath)[z] := [h(z) — z] (cf. 81 of [28] or
§1.1 of [1]).

Stevens also proved topological as well as smooth periodicity: feven (see [28],
Theorem 9):

Theorem I1. If for branched cyclic covers My of a (2n + 1)-manifold M with simple open
book decomposition Var(¢?) = 0, then M; and Mo, are homeomorphic and M; and
M.+ 44 are diffeomorphic. Moreover, if n = 2 or 6, then M} and My, are diffeomorphic.

Both of the papers viewed the open bodk**+1 as the boundary of @n + 2)-manifold
and used results of Wall [32], on classification(ef— 1)-connected2n + 1)-manifolds.
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Here, in the third section, we are dealing with the same periodicity problems from a differ-
ent point of view which is based on results of Kreck [15] on the group of isotopy classes of
diffeomorphisms of(n — 1)-connected almost-parallelizable-2nanifolds. We give here
different proofs of these two theorems of Stevens including the eas€3andn = 7 (see
Corollaries 2, 3, and 4 below).

As we have just mentioned, our approach is based on the results of Kreck who has
computed the group of isotopy classes of diffeomorphisms of clésed1)-connected
almost-parallelizable /2manifolds in terms of exact sequences. In the first part of this
paper we use these results to obtain a similar exact sequence for the diffeomorphisms
of a parallelizable handlebody € H(2n, u,n), n > 2, that preserve the boundady
pointwise and induce the trivial variation operator Mar: H.(F,dF) — H,(F). We will
denote the group of pseudo-isotopy classes of such diffeomorphisfigibRiff (F, 9)
and prove the following

Theorem 3. If n > 3 then the following sequence is exact
0 — O2,41 — 7oV Diff (F, ) - Hom(H,(F, dF), S7,(SO(n))) — 0.
If n = 2 then 7oV Diff (F, 9) = 0.

Here, by S, (SO(n)) we mean the image of,(SO(n)) in 7,(SOn + 1)) under the
natural inclusiorSBO(n) < SO(n + 1) and by®,, 1 the group of all homotopy2n + 1)-
spheres (see Section 2.2 for the details).

Remark. Recently Crowley [7] extended results ofilWihs on the classification of closed

(n — 1)-connected2n + 1)-manifolds,n = 3, 7. One could use these results together with
the technique of Durfee, Kauffman and Stevens to complete the periodicity theorems for
n = 3, 7. However our intention was to show how one can apply the higher dimensional
analogs of the mapping class group in studying this kind of problem.

At the end we briefly mention the cyclic coveringsSfbranched along the trefoil knot
as an example which shows that there is no topological periodicity in the:cade

Let F be a manifold with boundar§ F and consider two diffeomorphisms  of F
that are identities on the boundary (in this paperconsider only orientation preserving
diffeomorphisms). As usual, two such diffeomorphisms are cgieddo-isotopic rela-
tive to the boundary if there is a diffeomorphismi: F x I — F x I which satisfies the
following properties:

D Hlrxiop =9, (@ Hlrxyy =¥, (@) Hlarxr =id.

We will denote the group of pseudo-isotopy classes of such diffeomorphisfdiff (F,

reld). The group of pseudo-isotopy classes of orientation preserving diffeomorphisms on
a closed manifold will be denoted by Diff (M). There is a deep result of Cerf [6]
which allows one to replace pseudo-isotopy by isotopy provided that the manifold is simply
connected and of dimension at least six. @lir manifolds are simply connected here, so

n = 2 is the only case when we actually use pseudo-isotopy. For all athe® we will
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use the same notations (where tilde ~ stand$geeudo”) but mean the usual isotopy. We
will call these groupshe mapping class groups.

If M is embedded intdV as a submanifold, then the normal bundleMfin W will
be denoted bw(M; W). Integer coefficients are understood for all homology and co-
homology groups, unless otherwise stated, and symisolnd = are used to denote
diffeomorphism and isontphism, respectively.

2. Kernel of the variation operator
2.1. Double of a pair (X, A)

Let (X, A) be a pair of CW complexes, and consider the p&irx 7, A x I) (here and
laterI = [0, 1], and we denote the boundarybby 7).

Definition 1. The subspacéX x a1) U (A x I) of X x I will be called the double of the
pair (X, A), and denoted bp 4 X.

We will denote the pai¢X x {0}, A x {0}) by (Xg, Ao), the productA x I by A, and the
union(X x {1})) UA by X . Thus we can writd 4 X = XoU X andXoN X4 = A x {0}.

Remark. If we take the pairX, A) to be a manifold with the boundary, then the double
DX will be the boundary of the product x I, which is a closed manifold with the
canonically defined smooth structure (see [21]). In this case we will denote the double
simply byDX.

Now we construct a natural homomorphigpt H.(X, A) — H.(D4X). Consider the
reduced suspensions Bfand A (the common base point is chosen outsid&dfand the
induced isomorphism betwed#i, (X, A) andH,1(X X+, X A™). The excision property
induces a natural isomorphism betwedn, 1 (X X+, X AT) andH,11(X x I, D 4X), and
we define the homomorphist) as the composition of these two isomorphisms with the
boundary mag,1 from the exact sequence of the palf x I, D 4X):

Definition 2.
5q+1

dy = 8,4110i80: Hy(X, A) —> Hyp1(X x I, D4X) ~5 H,(D4X).

The groupsH, (X, A) and H.(D 4X, X) are naturally isomorphic and we can rewrite
the exact sequence of the pél? 4 X, X) in the following form:

o Hyy1(DAX) = Hyy1(X, A) = Hy(X) = Hy(D4X) 25 Hy(X, A)- .

Lemma 1. For each g > 1 the homomorphismd,, isa splitting homomor phismof the above
exact sequence and we have the following short exact sequence that splits:

0— Hy(X) % H (D4X) % H, (X, A) — 0.
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Proof. Itfollows rather easily from our definition of, that for eacly > 1 the composition
Jq 0dg is the identity map of the groufd, (X, A). This property entails our lemma (cf. [24],
Chapter 5, 81.5). O

Let us consider now a homeomorphisfn X — X which is the identity onA, i.e.
f(x)=xforall x € A. For such a map the variation homomorphism(Yar. H,(X, A) —
H,(X) is defined for ally > 1 by the formula Va(f)[z] := [ f(z) — z] for any relative
cycle z € Hy(X, A) (cf. 81 of [28] or §1.1 of [1]). The mayf also induces the map
F (X, A) — (X, A) and amapf : D4 X — D 4X defined as follows:

fx) if x € Xo,
X if x e X4.

foo:= {
If we denote the corresponding induced maps in homology*bwi,f’), f. then we have
the following commutative diagram:

0—= Hy(X) —L > Hy(DAX) —~ Hy(X,A) —=0

C

0— = Hy(X)—“~ H,(D4X)—~ H,(X,A)——=0
Theorem 1. If Var(f) = 0, then £, istheidentity map of H,(D4X) for all q.

Proof. It follows right from the definition of Vagf) that f, — ld = Var(f) o, andf*(r) -
Id = I, o Var(f), wherel, : H.(X) - H.(X, A) is induced by the inclusioX, ) —
(X, A) (cf. 81.1 of [1]). It is also easy to check that the homomorphiginandd, are
connected with the variation homomorphism via the formula

frody=dyold+i,oVar(f).

Hence if VaK f) =0, thenf, = 1d, f*(’) =Idandf, o , =dg old. These three identities
together withj, o d, = Id imply the statement. O

Now we restrict our attention to the case whens a smooth, simply connected man-
ifold of dimension at least four and = 90X is the boundary. Lep € Diff (X, reld) and
¢ € Diff (DX) be the extension by the identity to the second half of the double. Define the
mapw : Diff (X, reld) — Diff (DX) by the formulaw(¢) := ¢.

Theorem 2. The map w induces a monomor phism 77g Diff (X, reld) — 7o Diff (DX).

Proof. It is easy to see thab induces a well-defined map of groups of pseudo-isotopy
classes of diffeomorphisms, i.e. gf is pseudo-isotopic relative to the boundarytthen
w(¢’) is pseudo-isotopic ta (¢). It is obvious that for any two diffeomorphismgs v €

Diff (X, reld), w(p - ¥) = w(p) - w(¥), that isw induces a homomorphism which we also
denote byw.
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To show thatw is actually a monomorphism we use Proposition 1 of Kreck (see
[15, p. 650] for the details)Let A™ be a simply-connected manifold with m > 5 and
h € Diff (3A). h can be extended to a diffeomorphismon A if and only if the twisted dou-
ble A U, —A bounds a 1-connected manifold B such that all relative homotopy groups
mx (B, A) and i (B, —A) are zero, where A and — A mean the two embeddings of A into
the twisted double. Suppose now thab(¢) = ¢ is pseudo-isotopic to the identity. Then
the mapping toru®X,; is diffeomorphic to the produd@X x S*=a3(X x I x S1). On
the other hand, we can presdnk; as the union o, and—X x s1 along the boundary
39X x S1. Sinced(X x D?) = X x ST U—3X x D? we can paste togethéf x I x St
andX x D? along the common sub-manifoki x S* to obtain a new manifold¥, which
coboundsy,, U—3X x D?. Now note thatX,, U—3 X x D? is diffeomorphic to the twisted
doubleX x I U, —X x I where the diffeomorphisra: 3(X x I) — 3(X x I) is defined by
the identities|x, = id, andh|x, = ¢ (cf. [15], Property 1 of on p. 657). The theorem
of Seifert and Van Kampen entails that(W) = {1}, and hencer1 (W, X x I) = {1}. To
show that the other homotopy groups are trivial it is enough to showHh@V, X) = {0}
for all x > 2. This can be seen from the relative Mayer—Vietoris exact sequence of pairs
(X x I x S, X) and(X x D?, X) where byX we mean a fiber of the product

X x ST Hy(X x Y, X) —=> Ho(X x I x SL, X) @ Ho(X x D2 X) — Ho(W, X).

Thus by Proposition 1 of [15], there is a diffeomorphismo [ to itself that gives the
required pseudo-isotopy betwegrandid. O

2.2. woV Diff (F, 9) asan extension

We now letF € H(2n, u,n) be a parallelizable handlebody, that is, a parallelizable
manifold which is obtained by gluing n-handles to the /2-disk and rounding the cor-
ners:

yza
F=D*U| |(D} x D").
i=1

We assume here that> 2. For the classification of handlebodies in general, see [30].
Obviously F has the homotopy type of the wedge product:edpheres and nonempty
boundaryd F which is (n — 2)-connected. The Milnor fibre of an isolated complex hyper-
surface singularity is an example of such a manifold.

Let us consider nowp e 7g Diff (F, reld) and the induced variation homomorphism
Var(y): H,(F,dF) — H,(F). This correspondence gives a well defined map

Var : 7 Diff (F, reld) — Hom(H, (F, dF), H,(F))

which is a derivation (1-cocycle) witlrespect to the natural action of the group
7o Diff (F, reld) on Hom H,, (F, dF), H, (F)) (cf. [28], §2)

Var(h o g) = Var(h) + h, o Var(g).

This formula implies that the isotopy classes of diffeomorphisms that give trivial varia-
tion homomaorphisms form a subgroupsaf Diff (F, reld).
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Definition 3. The subgroup
7oV Diff (F, 9) :={ f € 7o Diff (F, reld) | Var(f)[z] =0, ¥[z] € H,(F,dF)}
will be called the kernel of the variation operator.

In order to describe the algebraic structure of this kernel we will use the results of
Kreck [15] who has computed the group of isotopy classes of diffeomorphisms of closed
oriented(n — 1)-connected almost-parallelizable-Phanifolds in terms of exact sequences.
First we note that the double of our handlebddis such a manifold.

Lemma 2. Let F € H(2n, u, n) be a parallelizable handlebody (n > 2), then the double
DF isaclosed (n — 1)-connected stably-parallelizable 2n-manifold.

Proof. Since F is simply connected an®F = Fo U F, we haver1(DF) = 0. Then
using the exact homology sequence of the p&ir{ 1, d(F x I)) it can be easily seen
that DF is a (n — 1)-connected manifold. Sincg is parallelizable the double will be
stably-parallelizable. O

Next we recall the result of Kreck [15]. Le# be a smooth, closed, orientéd — 1)-
connected almost-parallelizable:-nanifold, n > 2. Denote by Au#, (M) the group
of automorphisms ofd,, (M, Z) preserving the intersection form ol and (forn > 3)
commuting with the functionx: H,(M) — m,-1(S0(n)), which is defined as follows.
Represent € H,(M) by an embedded sphe$§é — M. Then functiornx assigns toc the
classifying map of the corresponding normal bundle. Any diffeomorphfsenDiff (M)
induces a magf, which lies in AutH,, (M). This gives a homomorphism

k1 7o Diff (M) — AUt H,(M), [f1+ fi.

The kernel ofc is denoted bytoS Diff (M) and to each elemerftfrom this kernel Kreck
assigns a homomorphisHy, (M) — S, (SO(n)), wheres : ,(S0(n)) — 7, (SO + 1))
is induced by the inclusion, in the following way. Represert H,, (M) by an imbedded
sphereS” ¢ M and use an isotopy to mak@s» = Id. The stable normal bundig S") ®
¢! of this sphere inM is trivial and therefore the differential of gives an element of
1,(SO(n + 1)). It is easy to see that thiseehent lies in the image &. This construction
leads to a well defined homomorphism (cf. Lemma 1 of [15])

x : 7708 Diff (M) — Hom(H, (M), S, (SO(n))).

If n =6 we haveSr, (SO(n)) =0, and for all other. > 3 the groups,, (SO(n)) are given
in the following table [15, p. 644]:

n (mod 8) 0 1 2 3 4 5 6 7
S, (S0O(n)) Zo®Zp Zop Zop 74 Zp 0O Zp 7

Whenn = 3 (mod 4) the homomorphisma(f) can be defined using the Pontryagin
classp(,+1),4(M ¢) of the mapping torud/ . For the details the reader is referred to Lem-
ma 2 of [15].
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If M?" bounds a parallelizable manifold and> 3, then Theorem 2 of [15] gives two
short exact sequences:

0 — 708 Diff (M) — 70 Diff (M) —> Aut H,(M) — 0, (1)
0— O241 —> 7S Diff (M) <> Hom(H, (M), S7,,(S0(n))) — 0, )

where the map is induced by the identification of each homota@y + 1)-sphere with
the element of the mapping class grotyDiff (D%, reld).

If M is a simply connected manifold of dimension 4, Kreck has proved«hata
monomorphism ([15], Theorem 1).

Let F € H(2n, u,n) be a parallelizable handlebody as above, @&td be the corre-
sponding double. First assume that 2 andy € 7oV Diff (F, 9), then it follows from our
Theorems 1 and 2 and Theorem 1 of Kreck [15] thé&t the trivial element ofrg Diff (DF),
and therefore is the identity ofrg Diff (F, reld).

Remark. In this case, the handlebody does not have to be parallelizable and the ker-
nel of the variation operataofigV Diff (F, ) will be trivial for any simply connected
4-manifoldF.

Next we consider the case wher> 3 and denote the groupr, (SO(n)) by G. Recall
also that we can assume tifaF = F U F,.. SinceF is (n — 1)-connected and the boundary
dF is (n — 2)-connected, the universal coefficient theorem together with the cohomology
exact sequence of the p&iP F, F,) and the excision property give us the following short
exact sequence:

0— Hom(H,(F,dF),G) AR Hom(H, (DF), G) LI Hom(H,(F4),G) — 0,
(3

wherei: F < DF, j:(DF,®) — (DF, F) are inclusions and* and j* are the corre-
sponding induced maps.

Lemma 3. i*(x(¢)) isthetrivial map for any ¢ € 7o Diff (F, reld).

Proof. Take any{z] € H,(F4), then we have*(x (¢))[z] = x (@)[i«(z)]. SihceH,(F) =
,(F) we can present our-cycle[z] by an imbedded” «— F, and we can also assume
that the normal bundle of such a sphere is containefi;in We have define@ as the
identity on F. and this impliesy (¢)[i«(z)] = 0 as required. O

Now we define a homomorphism. : 7oV Diff (F, 9) — Hom(H, (F,dF), G). Take
any ¢ € 7oV Diff (F, d) then ¢ € 70S Diff (DF) (recall Theorem 1 above) angd(¢) €
Hom(H, (DF), G). Sincei*(x (¢)) = 0 there exists unique € Hom(H,,(F, 3 F), G) such
thatj*(h) = x ().

Definition 4. We define the magy, : 7oV Diff (F, 9) - Hom(H, (F,dF), G) by the for-
mula x, () := h.
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It is clear thaty, is a homomorphism. Here we also consider the ma@®o,+1 —
70 Diff (F, reld) defined as in (2) above: present any homot@y+ 1)-sphereX’ as the
union of two disks via a diffeomorphist € g Diff (§%*) & 779 Diff (D%, rel9) = @21
then take a diskb?* embedded into i) and define the diffeomorphism @t by the

formula
; 2n
0 (Z)(x) = { Y(x) ifxeD” —F,

otherwise

It is obvious that In@,) C 7oV Diff (F, 3). Now we describergV Diff (F, 9) as a central
extension of the group,+1 by H*(F,0F; G) = H,(F; G).

Theorem 3. If n = 2 then 7oV Diff (F, 9) = 0, and for all n > 3 the following sequenceis
exact

0— G441 — 7oV Diff (F, 8) X% Hom(H,(F, 9F), G) — O. (4)

Proof. We have mentioned already thatrif= 2, the kernel of the variation operator is
trivial. Assume now that > 3. It follows from Theorems 1 and 2 above that the inclu-
sion mapw : Diff (F, reld) — Diff (DF) induces a monomorphissy, : 7oV Diff (F, 3) —
oS Diff (DF). Since the compositios, - ¢, coincides with the injective mapfrom the
exact sequence (2), we see that gus injective too. It is also clear that Ifm) C Ker(y,).
Consider now anyy € Ker(x,), then x (s, () = j*(x-(¢)) = 0, where j* is as in
(3). Thuss,(p) € Ker(x) = ©2,+1 = Im(1) and sinces,, is a monomorphism we have
¢ € Im(i,) as required.

To prove thaty, is an epimorphism it is enough to show that for a set of generators
{g1,...,gm} Of HOm(H,(F,dF), G) the grouptoV Diff (F, d) contains diffeomorphisms
{1, ..., 0m} such thaty, (¢;) = g;, j € {1,...,m}. Recall thatF = D2 U U?:l(D? X
D™) and H,(F,dF) = Z*. We can choose the following embedded digks— F, i €
{1,..., u}, as a basis of this homology group:

d; :={0}; XD"‘—)D;Z x D" F
(here{0}; is the center of théth handle core diskD!). Take a generatar of G and
consider the homomorphisg; : H,(F, 0 F) — G defined by the formula

x ifk=i,
gxi[dk]~—{0 ifk;éi,ke{l"""““}

end extended linearly to the whole group. The set of such homomorphisms obviously
generates HoH, (F, dF), G). Now we will use an analog of the Dehn twist in higher
dimensions to construct the diffeomorphigm (cf. [30], Lemma 12).

For each diski; consider the “half-handlex= (%DZ) x D" and notice that the closure
of the complement to all these “half-handles”fin

_ ko
Fi= CI(F\ |_|<§D,’j> x D”)
k=1

is diffeomorphic to the closednr2disk D?%', and the intersection of each “half-handle”
with the boundaryd F ~ $%'~1 is 3(3D}) x D" ~ §i~! x D". We take a smooth
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map ¢, : (D", $"~1) — (SO(n), id) that sends a neighborhood §t~1 to id and repre-
sents an elemeiiip, ] € 7,,(SO(n)) such thatS([¢,]) = x and define the diffeomorphism

@il (1ppxpr DY the formula

(px(s)ot,s) if (t,5) € (3D}) x D",

. A , (5)
(t,s) if (,5) € (5D) x D" andk # i.

wxi (t7 S) = {
In particular, this gives a diffeomorphisgne Diff (3F) which is defined omlf"l x D" —
dF by restricting to the boundary on:D;Z (see (5) above) and by the identity everywhere
else. We will show now thap is isotopic to the identity. Consider the handlebody

"
1
k=1 ki
and denote by¥; the manifold obtained fron¥; by removing the open dis%DZ” from

D?'. HencedF; ~ dF; U §2~1, The first equation of (5) together with the identity map
define a diffeomorphism® of F; such that? |21 = ¢ and®|yr, = Id. We use the identity
again to extend thig to a diffeomorphisn® of DF; where

DF;:=DF;\ $D* ~F; Uy, F; and ®|p =Id, &|; =.

Thus¢ is the restriction of® to the boundaryDF; = $2*~1 and hence can be con-
sidered as an element of the inertia grou@df; (cf. [15], Proposition 3). Now it follows
from Lemma 2 above and results of Kosinski ([14], see §3) and Wall [29}ligatsotopic
to the identity. In particular, we can use this isotopy S~ x [3, 21 C 2D to extend
the diffeomorphismox,-|U;:_1(%DZ)XD,I to a diffeomorphism of the whole handlebody
Denote the result of this extension by;. Clearly ¢,; € 7o Diff (F, reld), and we leave it
to the reader to check that (px;) = g¢i. O

Corollary 1. We have the following commutative diagram
0 0

0 Oopy1 —L—= 7oV Diff (F, §) —X—>=Hom(H,(F, dF), G) —=0

I: Sw Jj*

0—— O2,11 ——= 7S Diff (DF) —*—Hom(H, (DF), G) —0

% PEs

i*x i

Hom(H,(F+), G) <= Hom(H,(F.), G)

0 0
where all horizontal and vertical sequences are exact.
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Proof. The standard diagram chasing procedure is left to the reader.

Example 1. Consider the case wheh= S3 x D3. ThenDF = $° x §3, Hom(H,, (F, 3 F),

G) =G =7, ©7 = Zpg andagS Diff (DF) = Has, that is the factor group of the grodp
(upper unitriangular 3x 3 matrices with integer coefficients) modulo the cyclic sub-
group 2&., whereZ is the center of{ (cf. [9] or 81.3 of [16]). ThustoV Diff (F, ) =
S73(S0(3)) B O7 = 7Z & Zog and the first vertical short exact sequence from the previous
corollary can be written as follows

0— Sm3(S0(3)) ® O7 — 7S Diff (53 x §3) — S73(SO(3)) — 0.

Such exact sequence was obtained by Levine ([17], Theorems 2.4 and 3.3) and Sato ([27],
Theorem I1) for the grouproS Diff (S” x SP). See another example at the end of Sec-
tion 3.1 where it is shown that the extension of Theorem 3 can be nontrivial.

3. Manifoldswith open book decompositions
3.1. Periodicity in higher dimensions

In this section we will apply our exact sequence (4) to study the periodicity of branched
cyclic covers of manifolds with open book decompositions.

Definition 5. We will say that a smooth closga: + 1)-dimensional manifold/ has an
open book decomposition if it is diffeomorphic to the union

M ~F,U, (3F x D?),

where F' is m-dimensional manifold with bounda®/F, ¢ € Diff (F, reld) is an orienta-
tion preserving diffeomorphism af that keeps the boundary pointwise fixdd, is the
mapping torus of

Fy:=F x[0,1]/(x,0) ~ ((p(x), l)
andr:9F, — 0F x sl is a diffeomorphism that makes the following diagram commute
dF, —" ~F,

r T

OF x §1—"2> gt
(here p> is the projection onto the second factor ands the bundle projection of the
mapping torus onto the base circle).

Such a union is also called the relative mapping torus with pagend bindingd F
(cf. [22] or [28]). WhenM has dimensior(2n + 1) and F has the homotopy type of a
n-dimensional CW-complex, it is said that the pagelisost canonical. The diffeomor-
phismg is called the geometric monodromy and the induced magH,,(F) — H,(F) is
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the (algebraic) monodromy. If instead @fve take some positive power of this diffeomor-
phism, sayy¥, we obtain the-fold cyclic coverM; of M, branched alongF, i.e.

My = Fy Uy (OF x D?).

Itwas shown in [8] (Theorem 4.5) that if a fibered ki@t is a rational homology sphere
andg? = id for somed > 0, then thek-fold cyclic coversM; of $2'*+1 branched along
d F have the periodic behavior . In case of the links of isolated complex polynomial
singularities these restrictions 6 andg are equivalent to the condition @) = 0.

Remarks.

(i) Notice that the conditiong? = id andd F is a rational homology sphere imply that
Var(¢?) = 0, but the converse is not true (see [28, p. 231]).

(i) Proposition 3.3 of [11] proves that an open bad®**1 with pageF and monodromy
¢ is a homotopy sphere if and only if @) is an isomorphism.

In addition to the almost canonical paggugement we will need to assume more
aboutM (cf. [28], 83, p. 232), i.e. we assume from now on thahas asimple open book
decomposition. It implies, in particular, thad/ bounds a simply connected parallelizable
manifold. We will also assume that> 3, 71(dF) = 1 and Vate?) = 0 for somed > 1
(whereg is the diffeomorphism that give® the open book structure). A parallelizable
simply connected manifold bounded by will be denoted byV.

Before we give proofs of the periodicity theorems (Corollaries 2, 3 and 4 below) we will
first obtain some auxiliary results. It is clear thais a parallelizable manifold. Take now
anyz € H,(F,dF) = n,(F,dF) and choose an embedded digh", dD") «— (F,dF)
that represents this relative cycle. Insidelof = F U F,. we consider the doublBD" =
D" U DY, and since the boundag/D" has trivial normal bundle i F we can add to
F onen-handle along this sphere to obtain the manifélt) := F U (D} x d"). As
we have done above, we extend a diffeomorphiseDiff (F, rel9) to a diffeomorphism
@, € Diff (F(z), reld) using the identity onD} x 4". Then we obviously hav®D" —
F(z) — DF andg, = §5|F(Z)-

Lemma 4. The mapping torus F,, of ¢ isframed if and only if the mapping torus F(z),,
of ¢, isframed.

Proof. We will show that any framing of’, can be extended to a framing 6fz),, . The
other direction is trivial. Since is the identity on the boundary, we hagé1 x §1 <
dF, = (3F) x S*, wheres"~1 is the boundary of our relative homology class\e can
assume thar has a collaB F x [0, 1] andg is the identity map on this collar. Now we
have D" — F — F U (0F x [0, 1]) and we use the disk theorem to changdy an
isotopy to a diffeomorphisng’ such thaty’| p2. = ¢'|srx1 = id and D" C int(D?") C
FU(@F x [0, %]). Then clearlyF, ~ F, and D" x sl Fy with the trivial normal
bundle. Furthermore sincg 1 x [0, 1] < 9 F x [0, 1] with trivial normal bundle too, we
can conneci D" x S* < F, with "1 x ST < (3 F x 1) x 1 = 3(F,), using the collar
(8"71 x [0, 1]) x S*. This implies that the trivial normal bundle 6 ~1 x §t in 3(F,)
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comes from the trivial normal bundle d@” x S in F,. Now notice that the mapping
torus F(z),, is the union ofF, and D% x d" x S* along $"~1 x d" x St < 3(F,).
Therefore the restriction of the framing &f, to $"~! x d" x §1 = (dD") x d" x St
(whereD” x d" x §1 < F, ») can be extended to a framing 81z),, . O

Theorem 4 (n is odd,# 1). Suppose[v/] € 7oV Diff (F, ) and M¥"*+1 ~ F, U, (3 F x D?)
bounds a parallelizable manifold N. Then x,(¥) =0

Proof. It is enough to show that, (¥)[z] = O for an arbitrary relative homology class
z € Hy(F,dF). As we just did above, we represent such a class by an embedded disk
(D",0D™) — (F,0F) and take the doubl®D" = §" — DF. We will denote this dou-
ble bydz (to avoid cumbersome notations we denote by dz both the homology class and
the embedded sphere DD” that represents this class) and its normal bundle iDF by
v(dz; DF) respectively. Note that(dz; DF) is trivial. The proof now splits into two parts.

(1) n = 5: It is clear thaty,, = id on H,(F(z)) and we can isotopé;, to a diffeo-
morphismy. such thaty!|,, = id (see [10]). Extending this new diffeomorphism by the
identity to the diffeomorphismj’ € Diff (DF) we obtain an element ofoS Diff (DF)
which pointwise fixes/z and mapsF(z) to itself. Now it follows from the commutative
diagram of Corollary 1 that it is enough to show that)’)[dz] = 0. Since by Lemma 4
the mapping torus”(z).y, is framed, the normal bundigdz x S1; DFy) is stably triv-
ial. Sincen is odd, the maps = S, (S0(n)) — 7,(On + 1)) — nn(SO(n +2)isa
monomorphism (see [31]) and therefore the map

I*:Hom(H,(DF), G) — Hom(H, (DF), m,(S0))

is a monomorphism too. Hend&(x (¥'))[dz] is the obstruction to triviality of the stable
normal bundlev(dz x S1; DFJ/,) and since this bundle is trivial we hay&v/')[dz] =
as required.

(2) n =3 (mod 8): SincdN = M¥"*+1 ~ F), U, (3F x D?) andd(F x D?) = (3F x
D?)U(F x 1), we can paste together the manifodsind F x D? along the common part
of the boundanp F x D? (respecting orientations of course) to obtain a manifold (after
smoothing the corner)

W2H2:= N Uypypz (F x D?)  with 9W = Fy U (F x S*) ~DFy,.

We use elementary obstruction theory to show that Wiss stably parallelizable. Fix
a frame field of the stable tangent bundle Bfc W. Obstructions to the extension
of this frame field over the whole manifold lie in the groufﬂ*l(W, N;m,(S0)) =
HIYY(F, 0F; 7,(S0)) = Hoy—g—1(F; 71,(S0)). If g =n—1org = 2n — 1 thenr, (SO) =
0 because: =3 (mod 8), ifg #n — 1 orqg # 2n — 1 then Hp,_4_1(F;Z) =0 and
all obstructions lie in the trivial groups anyway. HenDé«‘lﬁ is stably parallelizable and

x () =0 (see [15], Lemma 2) which entaijs (¥) =0. O

Now we can prove the following theareof Stevens including the cases whes 3,7
(cf. [28], Theorem 7).
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Corollary 2. Let M, be the k-fold branched cyclic cover of a (2n + 1)-manifold M =
Fy, U, (OF x D?) with simple open book decomposition, where n is odd, # 1. Suppose
Var(¢9) = 0, then M; and M4 are (orientation preserving) homeomorphic, while My
and M,_x, d > k, are orientation reversing homeomor phic.

Proof. Since Vatyp?) =0 andM, bounds a parallelizable manifold (see Lemma 5 of [28])
we havey, (¢?) = 0 by the previous theorem. The exact sequence (4) impliespthist
isotopic to a diffeomorphism which belongs to the imag@2,+1) and thereforef; -«

is diffeomorphic toF#X" (cf. Lemma 1 of [2]) for someX’ € @2,11. In particular, it
means that .+« is homeomorphic (via some homeomorphism that preserves orientation)
to F, and henceM ., is homeomorphic tal/;. To see the orientation reversing case,
notice that the mapping torus, is diffeomorphic toF,-1 via an orientation reversing
diffeomorphism induced, for instance, by the map¢) — (g(x),1—¢) from F x I to

F x I. This diffeomorphism extends to an orientation reversing homeomorphism of the
corresponding open bookd and M_1. Hence in our situatiod = Fx U, (OF x D?)

is homeomorphic (orient. revers.) £« Uy (3F x D?) which is homeomorphic (orient.

pres.) toF, «#X' Uy (3F x D?)~ F it Uy (3F x D?) = My_. O

Remark. If one definesM;, := Fo U (OF X D?) for anyk € Z, then the first statement
that My is homeomorphic td;, remains true, and the restrictiah> k in the second
part can be omitted.

To show diffeomorphism type periodicity we will basically use the same argument
plus the fact that the homotopy sphek bounds a parallelizable manifold. We start
with proving this fact. Thus fon € N, n > 2, we consider a diffeomorphisra with
[h] € 7oV Diff (F, 3) such that our simple open bodk?*t1 = F;, U, (3 F x D?) bounds
a simply connected parallelizable manifafdandy, (k) = 0. In particular, we can assume
that € Im(o) is the identity except on a small closed diBR" — int(F) embedded into
the interior of F.

Lemma 5. The natural inclusions i1: F < Fj, and iz: F, < M induce isomorphisms
i1+ Hy(F) — H,(Fy) and iz, : H, (Fy,) — H,(M), respectively, and every [z] € H, (M)
can be represented by an embedded sphere S < M with trivial normal bundle v(S"; M).
In addition, H,(M) = H,11(M).

Proof. Thatiy, is an isomorphism follows immediately from the Wang exact sequence,
and the other two isomorphisms follow from the exact sequence of Stevens:

0= Hyr1(M) — Hy(F,8F) 2% H,(F) > H,(M) — 0
which arises from the exact sequence of the p#fr F) (see Proposition 1 of [28]). Since
the normal bundle of an§” — M is stable and/ bounds a parallelizable manifold, the
bundlev(S"; M) must be trivial. O

Now we would like to Kill H,(M) using surgery, and as a result obtain a homotopy
sphereX), € ©,,11 (we again assume > 3). For each generatdt;] € H,(F) we fix
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an embedding; : S x d"™ < F x (0,1) < M disjoint from D?" x (0, 1). Then we
attach handleﬁ);’*l X d;’+l to the productv x I along these embeddings indé x {1}
to obtain a cobordisniV betweenM = M x {0} and the homotopy sphet®, which is
the result of thes@;-surgeries oM. Furthermore, we can choose the embeddipgs
compatible with the framing o# that comes from the framing @¥ (see Lemma 6.2 of
[13]), and hence we gV as a framed manifold. Taking the union &f and W along
M we obtain a parallelizable manifold with boundaXy, i.e. X, € bP,42. Following
Kreck’s construction of the isomorphissn ker(y) — &2,41 (see [15], pp. 655-656) one
can easily show tha¥r, is well defined (depends only on the isotopy clas&)oénd that
tr(Zn) = [h].

Let us denote the signature of a parallelizable manifgldvith boundaryd Ny = M =
F, U, (OF x D?) by oy, and the generator ¢fPy, ;2 by .

Corollary 3 (cf. [28], Proposition 8)Let M?'+1 = F, U, (3 F x D?) be the manifold with
simple open book decomposition where n isodd, # 1 and M, bethe k-fold branched cyclic
cover of M. If Var(p?) = 0 then My is diffeomorphicto (% - X)#M;.

Proof. We have just seen above thdj, s >~ X'#M; with X’ =m - X € b Py, for some
m € N. SinceMy = F U, (3F x D?) ~ 3(F x D*#m ¥ andm X bounds a parallelizable
manifold, sayW,,, with signatures (W,,) = 8m andd(F x D?) boundsF x D? (which
is also parallelizable) with signature zero, the connected sui#i,ofind F x D? along
the boundary (cf. §2 of [13]) will give us a parallelizable manifog := W, #F x D?
with boundaryd N; = M, and signature (Ng) = o (W,,) + o (F x D?) =8m + 0. Thus
m = 294 = % mod (order ofb P3,2) and the corollary follows. 0

Whenn = even, the periodicity ofM; is more complicated. Consider the link of the sin-
gularityz +z2+ - - - +z2 = 0 with n = 2m and denote thédm + 1)-dimensional Kervaire
sphere byr and the tanger§”-sphere bundle t§”*+1 by 7. ThenM; g is diffeomorphic
to My and the diffeomorphism types are lidtin the table (see [8], Proposition 6.1)

Myi>~M7; My Mz>~Ms Mgy Mg Mg
s+l T X (S" x S"th#y  T#Y §" x sl

The following result is due to Stevens ([28], Theorem 9).

Corollary 4. If for branched cyclic covers M, of a (2n + 1)-manifold M with simple open
book decomposition Var(¢?) = 0, then M; and Mo, are homeomorphic and M; and
M 144 are diffeomorphic. Moreover, if n =2 or 6, then My and My, are diffeomorphic.

Proof. Whenn = 2 the mapping class group is trivial afg] = Id. If n = 6 thenG =0
andb P14 =0 (see [13, Lemma 7.2]) which implies th@i“] = Id. For the other even
we know that the grou is isomorphic either t&, or Z» & Z» and hencey, (¢?) has
order two. Therefore?? e b Py, > which means thal/; is homeomorphic tdf;_, »4, and
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since the group Pa,,.+» is either trivial orZ, (see [13]),¢* must be pseudo-isotopic to
the identity. O

Example 2. (The authors are indebted to the referee for suggesting this example.) Consider
again the singularity3 + z2 + - - - + z2 = 0 with n = 2m. Assume in addition that #

0 (mod 4) and that the Kervaire sphe¥ec b Py, 12 is exotic, e.g., whenid +2 #£2/ — 2

(see [3]). Here the Milnor fibeF, is the tangent disc bundle to the sph&f& and hence

DF ~ §2" x §2" |tis also well known that the geometric monodrogngf this singularity
satisfies the propertie; = —Id, Var(¢?) = 0 and Vaty) # 0 (cf. [18], Chapter 3). Since

My is not diffeomorphic toM2 and M1 is not diffeomorphic toMs, Xr([g02]) will be a
generator of HortH,, (F, dF), G) = Z» and [¢*] will be a generator ob Py, 2 = Zo.
SinceB gy +1 = b Payy2® Coken Ja,+1) (cf. [4]) we see that in this casgV Diff (F, 9) =

Z4® CokenJa,+1) and the exact sequence (4) does not split. Furthermore, one can deduce
from our Theorem 2 and results of Sato angvine (see [27], Riposition 2.2 or [17],

§1.2) that the monodroniy] generates the quotiefip Diff (F, reld) /7o V Diff (F, 9) and
thereforerg Diff (F, rel9) = Zg & Cokel(Ja,+1)-

3.2. Periodicity in dimension 3

It is known that if the dimension of the open bodk?'*! is three, then there is ho-
mological periodicity (see references in [8]) but there is no topological one. For the sake
of completeness we illustrate this with the following classical example (cf. [26], Chap-
ter 10.D). Let f(zo, z1) = z3 + 25 be the complex polynomial which defines the curve
V = {f(zo0, z1) = O} in C? with the cusp at the origin. The corresponding Milnor fibra-
tion has monodromy of order six, the boundary of the fibet is the trefoil knotkK
and Varg®) = 0. This fibration gives the open book structure to the standard 3-sphere
§3 = M1 = F,U(K x D?). We show thatM7 # M1 andMg # Mo = (F x SY)U (K x D?).

Let us first comparer1(Mp) with w1(Mg). The theorem of Seifert and Van Kampen
entails thatr(Mp) = 71 (F) which is the free group on two generators. As 6 one can
easily find using the Reidemeister—Schreier theorem a presentatiaf(#®ys) and then
show thatr;(Mg) admits the following presentation:

(Z1,22,..., 26| Z1=28Z2,....Zj=Zj 1Zj11, ..., Le = Z5Z1).

It takes a bit more effort to show that this group is isomorphic to the group of upper unitri-
angular 3x 3 matrices with integer coefficients (cf. [20], §8)

1 a ¢
H= 0 1 bllab,cecZ
0 0 1

Suppose now thatf; were homeomorphic to the sphere. Then we could take the
union of N7 and D* (recall thatN7 is the cyclic covering of>* branched along the fiber
(F,K)— (D* % whereF N $3 = K):

w4 := N7 Ug D,



L.H. Kauffman, N.A. Krylov / Topology and its Applications 148 (2005) 183-200 199

SinceN7 is parallelizable (see [5], Theorem 5 or [12], Chapter XW)} would be a closed
spin-manifold. Hence its signatusg W*) = o (N7) must be a multiple of 16 by the theo-
rem of Rokhlin [25]. Buto (N7) = —8 as one can find using the Seifert pairing/én(F)
(cf. [5,12]), and henceéf; # M;. Actually much more is known. Milnor in [20] proved
that 71(M,) is isomorphic to the commutator subgroup, I'] of the centrally extended
triangle groupl” which has a presentation

~ 2 3
F=Z(yLy2.v3lvi=vs=vi=v1-v2 13

This group!” is infinite whenr > 6 (see [20], §2,3) and hen¢g, I'], that has index — 6,
is infinite too. In particular, none of the cyclic coverings$f branched along the trefoil
knot can be simply connected.
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