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Abstract

We consider a parallelizable 2n-manifoldF which has the homotopy type of the wedge prod
of n-spheres and show that the group of pseudo-isotopy classes of orientation preserving
morphisms that keep the boundary∂F pointwise fixed and induce the trivial variation operator i
central extension of the group of all homotopy(2n + 1)-spheres byHn(F ;Sπn(SO(n))). Then we
apply this result to study the periodicity properties of branched cyclic covers of manifolds with
ple open book decompositions and extend the previous results of Durfee, Kauffman and Steven
dimensions 7 and 15.
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1. Introduction and the results

An open book decomposition of a manifoldMm+1 is a presentation of this manifold a
the union of the mapping torusFϕ and the product∂F × D2 along the boundary∂F × S1,
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whereϕ :Fm → Fm is an orientation preserving diffeomorphism which fixes the boundary
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∂F pointwise. Open book structures have been used in the study of various topo
problems (for short historical overviews see §2 of [22] or Appendix by Winkelnkem
in [23]), and in particular in the study of the isolated complex hypersurface singulariti
Let f : (Cn+1,0) → (C,0) be a polynomial mapping with the only singular point at
origin and with zero locusV = {z ∈ Cn+1 | f (z) = 0}. Consider the intersection ofV with
a small sphere centered at the originK := V ∩ S2n+1

ε . Milnor has shown in [19] that th
mapping

Φ(z) := f (z)/
∣∣f (z)

∣∣, S2n+1
ε \ K → S1

is the projection map of a smooth fibration such that the fiberF := Φ−1(1) is a smooth
(n−1)-connected parallelizable 2n-manifold homotopically equivalent to the wedge pro
uct of n-spheres and∂F = K is (n − 2)-connected. This gives the open book structur
the sphere

S2n+1 = Fϕ ∪ (
K × D2).

Such an open book decomposition ofS2n+1 is called a simple fibered knot and the pe
odicity, in k, of thek-fold cyclic covers ofS2n+1 branched alongK has been studied b
Durfee and Kauffman in [8]. Later, Stevens (see [28], Theorem 7 and Proposition 8
eralized Theorems 4.5 and 5.3 of [8] to a wider class of manifolds with simple open
decompositionsM2n+1 = Fϕ ∪ (∂F × D2) (an open bookM2n+1 is calledsimple if both
M andF are(n − 1)-connected andM bounds a parallelizable manifold).

Theorem I (Stevens). Let Mk denote the k-fold cyclic cover of M2n+1 branched along
∂F and n �= 1, 3 or 7 odd. If Var(ϕd) = 0, then Mk and Mk+d are (orientation preserv-
ing) homeomorphic, while Mk and Md−k , k < d are orientation reversing homeomorphic.
Furthermore, Mk+d is diffeomorphic to (σd/8)Σ # Mk .

Hereσk is the signature of a parallelizable manifoldNk with the boundary∂Nk = Mk ,
andΣ is the generator of the finite cyclic groupbP2n+2 of homotopy(2n + 1)-spheres
that bound parallelizable manifolds. Var(h) denotes the variation homomorphism of a d
feomorphismh :F → F , which keeps the boundary∂F pointwise fixed, and defined a
follows. Let [z] ∈ Hn(F, ∂F ) be the homology class of a relative cyclez, then one define
Var(h) :Hn(F, ∂F ) → Hn(F) by the formula Var(h)[z] := [h(z) − z] (cf. §1 of [28] or
§1.1 of [1]).

Stevens also proved topological as well as smooth periodicity forn even (see [28]
Theorem 9):

Theorem II. If for branched cyclic covers Mk of a (2n + 1)-manifold M with simple open
book decomposition Var(ϕd) = 0, then Mk and Mk+2d are homeomorphic and Mk and
Mk+4d are diffeomorphic. Moreover, if n = 2 or 6, then Mk and Mk+d are diffeomorphic.

Both of the papers viewed the open bookM2n+1 as the boundary of a(2n+2)-manifold
and used results of Wall [32], on classification of(n − 1)-connected(2n + 1)-manifolds.
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diffeomorphisms of(n − 1)-connected almost-parallelizable 2n-manifolds. We give here
different proofs of these two theorems of Stevens including the casesn = 3 andn = 7 (see
Corollaries 2, 3, and 4 below).

As we have just mentioned, our approach is based on the results of Kreck wh
computed the group of isotopy classes of diffeomorphisms of closed(n − 1)-connected
almost-parallelizable 2n-manifolds in terms of exact sequences. In the first part of
paper we use these results to obtain a similar exact sequence for the diffeomorphf

of a parallelizable handlebodyF ∈ H(2n,µ,n), n � 2, that preserve the boundary∂F

pointwise and induce the trivial variation operator Var(f ) :H∗(F, ∂F ) → H∗(F ). We will
denote the group of pseudo-isotopy classes of such diffeomorphisms byπ̃0V Diff (F, ∂)

and prove the following

Theorem 3. If n � 3 then the following sequence is exact

0 → Θ2n+1 → π̃0V Diff (F, ∂) → Hom
(
Hn(F, ∂F ),Sπn

(
SO(n)

)) → 0.

If n = 2 then π̃0V Diff (F, ∂) = 0.

Here, bySπn(SO(n)) we mean the image ofπn(SO(n)) in πn(SO(n + 1)) under the
natural inclusionSO(n) ↪→ SO(n + 1) and byΘ2n+1 the group of all homotopy(2n + 1)-
spheres (see Section 2.2 for the details).

Remark. Recently Crowley [7] extended results of Wilkins on the classification of close
(n − 1)-connected(2n + 1)-manifolds,n = 3,7. One could use these results together w
the technique of Durfee, Kauffman and Stevens to complete the periodicity theore
n = 3,7. However our intention was to show how one can apply the higher dimens
analogs of the mapping class group in studying this kind of problem.

At the end we briefly mention the cyclic coverings ofS3 branched along the trefoil kno
as an example which shows that there is no topological periodicity in the casen = 1.

Let F be a manifold with boundary∂F and consider two diffeomorphismsϕ, ψ of F

that are identities on the boundary (in this paperwe consider only orientation preservin
diffeomorphisms). As usual, two such diffeomorphisms are calledpseudo-isotopic rela-
tive to the boundary if there is a diffeomorphismH :F × I → F × I which satisfies the
following properties:

(1) H|F×{0} = ϕ, (2) H|F×{1} = ψ, (3) H|∂F×I = id.

We will denote the group of pseudo-isotopy classes of such diffeomorphisms byπ̃0 Diff (F,

rel∂). The group of pseudo-isotopy classes of orientation preserving diffeomorphis
a closed manifoldM will be denoted byπ̃0 Diff (M). There is a deep result of Cerf [6
which allows one to replace pseudo-isotopy by isotopy provided that the manifold is s
connected and of dimension at least six. Allour manifolds are simply connected here,
n = 2 is the only case when we actually use pseudo-isotopy. For all othern � 3 we will



186 L.H. Kauffman, N.A. Krylov / Topology and its Applications 148 (2005) 183–200

use the same notations (where tilde ˜ stands for “pseudo”) but mean the usual isotopy. We
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will call these groupsthe mapping class groups.
If M is embedded intoW as a submanifold, then the normal bundle ofM in W will

be denoted byν(M;W). Integer coefficients are understood for all homology and
homology groups, unless otherwise stated, and symbols� and ∼= are used to denot
diffeomorphism and isomorphism, respectively.

2. Kernel of the variation operator

2.1. Double of a pair (X,A)

Let (X,A) be a pair of CW complexes, and consider the pair(X × I,A × I) (here and
laterI = [0,1], and we denote the boundary ofI by ∂I ).

Definition 1. The subspace(X × ∂I) ∪ (A × I) of X × I will be called the double of the
pair (X,A), and denoted byDAX.

We will denote the pair(X×{0},A×{0}) by (X0,A0), the productA×I byA+ and the
union(X×{1})∪A+ byX+. Thus we can writeDAX = X0∪X+ andX0∩X+ = A×{0}.

Remark. If we take the pair(X,A) to be a manifold with the boundary, then the dou
DAX will be the boundary of the productX × I , which is a closed manifold with th
canonically defined smooth structure (see [21]). In this case we will denote the d
simply byDX.

Now we construct a natural homomorphismd∗ :H∗(X,A) → H∗(DAX). Consider the
reduced suspensions ofX andA (the common base point is chosen outside ofX) and the
induced isomorphism betweenH∗(X,A) andH∗+1(ΣX+,ΣA+). The excision property
induces a natural isomorphism betweenH∗+1(ΣX+,ΣA+) andH∗+1(X × I,DAX), and
we define the homomorphismd∗ as the composition of these two isomorphisms with
boundary mapδ∗+1 from the exact sequence of the pair(X × I,DAX):

Definition 2.

dq := δq+1 ◦ iso :Hq(X,A)
∼=−→ Hq+1(X × I,DAX)

δq+1−→ Hq(DAX).

The groupsH∗(X,A) andH∗(DAX,X) are naturally isomorphic and we can rewr
the exact sequence of the pair(DAX,X) in the following form:

· · ·Hq+1(DAX) → Hq+1(X,A) → Hq(X)
iq−→ Hq(DAX)

jq−→ Hq(X,A) · · · .

Lemma 1. For each q � 1 the homomorphism dq is a splitting homomorphism of the above
exact sequence and we have the following short exact sequence that splits:

0 → Hq(X)
iq−→ Hq(DAX)

jq−→ Hq(X,A) → 0.
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Proof. It follows rather easily from our definition ofdq that for eachq � 1 the composition
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jq ◦dq is the identity map of the groupHq(X,A). This property entails our lemma (cf. [24
Chapter 5, §1.5). �

Let us consider now a homeomorphismf :X → X which is the identity onA, i.e.
f (x) = x for all x ∈ A. For such a map the variation homomorphism Var(f ) :Hq(X,A) →
Hq(X) is defined for allq � 1 by the formula Var(f )[z] := [f (z) − z] for any relative
cycle z ∈ Hq(X,A) (cf. §1 of [28] or §1.1 of [1]). The mapf also induces the ma
f (r) : (X,A) → (X,A) and a mapf̃ :DAX → DAX defined as follows:

f̃ (x) :=
{

f (x) if x ∈ X0,

x if x ∈ X+.

If we denote the corresponding induced maps in homology byf∗, f
(r)∗ , f̃∗ then we have

the following commutative diagram:

0 Hq(X)
iq

f∗

Hq(DAX)

f̃∗

jq
Hq(X,A)

f
(r)∗

0

0 Hq(X)
iq

Hq(DAX)
jq

Hq(X,A) 0

Theorem 1. If Var(f ) = 0, then f̃∗ is the identity map of Hq(DAX) for all q .

Proof. It follows right from the definition of Var(f ) thatf∗ − Id = Var(f ) ◦ l∗ andf
(r)∗ −

Id = l∗ ◦ Var(f ), wherel∗ :H∗(X) → H∗(X,A) is induced by the inclusion(X,∅) ↪→
(X,A) (cf. §1.1 of [1]). It is also easy to check that the homomorphismsf̃∗ anddq are
connected with the variation homomorphism via the formula

f̃∗ ◦ dq = dq ◦ Id + iq ◦ Var(f ).

Hence if Var(f ) = 0, thenf∗ = Id, f
(r)∗ = Id andf̃∗ ◦ dq = dq ◦ Id. These three identitie

together withjq ◦ dq = Id imply the statement. �
Now we restrict our attention to the case whenX is a smooth, simply connected ma

ifold of dimension at least four andA = ∂X is the boundary. Letϕ ∈ Diff (X, rel∂) and
ϕ̃ ∈ Diff (DX) be the extension by the identity to the second half of the double. Defin
mapω : Diff (X, rel∂) → Diff (DX) by the formulaω(ϕ) := ϕ̃.

Theorem 2. The map ω induces a monomorphism π̃0 Diff (X, rel∂) → π̃0 Diff (DX).

Proof. It is easy to see thatω induces a well-defined map of groups of pseudo-isot
classes of diffeomorphisms, i.e., ifϕ′ is pseudo-isotopic relative to the boundary toϕ then
ω(ϕ′) is pseudo-isotopic toω(ϕ). It is obvious that for any two diffeomorphismsϕ,ψ ∈
Diff (X, rel∂), ω(ϕ · ψ) = ω(ϕ) · ω(ψ), that isω induces a homomorphism which we al
denote byω.



188 L.H. Kauffman, N.A. Krylov / Topology and its Applications 148 (2005) 183–200

To show thatω is actually a monomorphism we use Proposition 1 of Kreck (see
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[15, p. 650] for the details):Let Am be a simply-connected manifold with m � 5 and
h ∈ Diff (∂A). h can be extended to a diffeomorphism on A if and only if the twisted dou-
ble A ∪h −A bounds a 1-connected manifold B such that all relative homotopy groups
πk(B,A) and πk(B,−A) are zero, where A and −A mean the two embeddings of A into
the twisted double. Suppose now thatω(ϕ) = ϕ̃ is pseudo-isotopic to the identity. The
the mapping torusDXϕ̃ is diffeomorphic to the productDX × S1 = ∂(X × I × S1). On
the other hand, we can presentDXϕ̃ as the union ofXϕ and−X × S1 along the boundar
∂X × S1. Since∂(X × D2) = X × S1 ∪ −∂X × D2 we can paste togetherX × I × S1

andX × D2 along the common sub-manifoldX × S1 to obtain a new manifoldW , which
coboundsXϕ ∪−∂X ×D2. Now note thatXϕ ∪−∂X ×D2 is diffeomorphic to the twisted
doubleX× I ∪h −X× I where the diffeomorphismh : ∂(X× I) → ∂(X× I) is defined by
the identities:h|X0 = id, andh|X+ = ϕ (cf. [15], Property 1 ofW̃ on p. 657). The theorem
of Seifert and Van Kampen entails thatπ1(W) ∼= {1}, and henceπ1(W,X × I) ∼= {1}. To
show that the other homotopy groups are trivial it is enough to show thatH∗(W,X) ∼= {0}
for all ∗ � 2. This can be seen from the relative Mayer–Vietoris exact sequence of
(X × I × S1,X) and(X × D2,X) where byX we mean a fiber of the product

X × S1 :H∗
(
X × S1,X

) ∼=−→ H∗
(
X × I × S1,X

) ⊕ H∗
(
X × D2,X

) → H∗(W,X).

Thus by Proposition 1 of [15], there is a diffeomorphism ofX × I to itself that gives the
required pseudo-isotopy betweenϕ andid. �
2.2. π̃0V Diff (F, ∂) as an extension

We now letF ∈ H(2n,µ,n) be a parallelizable handlebody, that is, a paralleliza
manifold which is obtained by gluingµ n-handles to the 2n-disk and rounding the cor
ners:

F = D2n ∪
µ⊔

i=1

(
Dn

i × Dn
)
.

We assume here thatn � 2. For the classification of handlebodies in general, see
ObviouslyF has the homotopy type of the wedge product ofn-spheres and nonemp
boundary∂F which is(n − 2)-connected. The Milnor fibre of an isolated complex hyp
surface singularity is an example of such a manifold.

Let us consider nowϕ ∈ π̃0 Diff (F, rel∂) and the induced variation homomorphis
Var(ϕ) :Hn(F, ∂F ) → Hn(F). This correspondence gives a well defined map

Var :π̃0 Diff (F, rel∂) → Hom
(
Hn(F, ∂F ),Hn(F )

)
which is a derivation (1-cocycle) withrespect to the natural action of the gro
π̃0 Diff (F, rel∂) on Hom(Hn(F, ∂F ),Hn(F )) (cf. [28], §2)

Var(h ◦ g) = Var(h) + h∗ ◦ Var(g).

This formula implies that the isotopy classes of diffeomorphisms that give trivial v
tion homomorphisms form a subgroup ofπ̃0 Diff (F, rel∂).
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Definition 3. The subgroup
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π̃0V Diff (F, ∂) := {
f ∈ π̃0 Diff (F, rel∂) | Var(f )[z] = 0, ∀[z] ∈ Hn(F, ∂F )

}
will be called the kernel of the variation operator.

In order to describe the algebraic structure of this kernel we will use the resu
Kreck [15] who has computed the group of isotopy classes of diffeomorphisms of c
oriented(n−1)-connected almost-parallelizable 2n-manifolds in terms of exact sequenc
First we note that the double of our handlebodyF is such a manifold.

Lemma 2. Let F ∈ H(2n,µ,n) be a parallelizable handlebody (n � 2), then the double
DF is a closed (n − 1)-connected stably-parallelizable 2n-manifold.

Proof. SinceF is simply connected andDF = F0 ∪ F+, we haveπ1(DF) = 0. Then
using the exact homology sequence of the pair (F × I, ∂(F × I)) it can be easily see
that DF is a (n − 1)-connected manifold. SinceF is parallelizable the double will b
stably-parallelizable. �

Next we recall the result of Kreck [15]. LetM be a smooth, closed, oriented(n − 1)-
connected almost-parallelizable 2n-manifold, n � 2. Denote by AutHn(M) the group
of automorphisms ofHn(M,Z) preserving the intersection form onM and (forn � 3)
commuting with the functionα :Hn(M) → πn−1(SO(n)), which is defined as follows
Representx ∈ Hn(M) by an embedded sphereSn ↪→ M. Then functionα assigns tox the
classifying map of the corresponding normal bundle. Any diffeomorphismf ∈ Diff (M)

induces a mapf∗ which lies in AutHn(M). This gives a homomorphism

κ : π̃0 Diff (M) → AutHn(M), [f ] �→ f∗.
The kernel ofκ is denoted bỹπ0S Diff (M) and to each elementf from this kernel Kreck

assigns a homomorphismHn(M) → Sπn(SO(n)), whereS :πn(SO(n)) → πn(SO(n + 1))

is induced by the inclusion, in the following way. Representx ∈ Hn(M) by an imbedded
sphereSn ⊂ M and use an isotopy to makef |Sn = Id. The stable normal bundleν(Sn) ⊕
ε1 of this sphere inM is trivial and therefore the differential off gives an element o
πn(SO(n + 1)). It is easy to see that this element lies in the image ofS. This construction
leads to a well defined homomorphism (cf. Lemma 1 of [15])

χ : π̃0S Diff (M) → Hom
(
Hn(M),Sπn

(
SO(n)

))
.

If n = 6 we haveSπn(SO(n)) = 0, and for all othern � 3 the groupsSπn(SO(n)) are given
in the following table [15, p. 644]:

n (mod 8) 0 1 2 3 4 5 6 7

Sπn(SO(n)) Z2 ⊕ Z2 Z2 Z2 Z Z2 0 Z2 Z

Whenn ≡ 3 (mod 4) the homomorphismχ(f ) can be defined using the Pontryag
classp(n+1)/4(Mf ) of the mapping torusMf . For the details the reader is referred to Le
ma 2 of [15].
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If M2n bounds a parallelizable manifold andn � 3, then Theorem 2 of [15] gives two
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short exact sequences:

0 → π̃0S Diff (M) → π̃0 Diff (M)
κ−→ AutHn(M) → 0, (1)

0 → Θ2n+1
ι−→ π̃0S Diff (M)

χ−→ Hom
(
Hn(M),Sπn

(
SO(n)

)) → 0, (2)

where the mapι is induced by the identification of each homotopy(2n + 1)-sphere with
the element of the mapping class groupπ̃0 Diff (D2n, rel∂).

If M is a simply connected manifold of dimension 4, Kreck has proved thatκ is a
monomorphism ([15], Theorem 1).

Let F ∈ H(2n,µ,n) be a parallelizable handlebody as above, andDF be the corre-
sponding double. First assume thatn = 2 andϕ ∈ π̃0V Diff (F, ∂), then it follows from our
Theorems 1 and 2 and Theorem 1 of Kreck [15] thatϕ̃ is the trivial element of̃π0 Diff (DF),
and thereforeϕ is the identity ofπ̃0 Diff (F, rel∂).

Remark. In this case, the handlebodyF does not have to be parallelizable and the k
nel of the variation operator̃π0V Diff (F, ∂) will be trivial for any simply connected
4-manifoldF .

Next we consider the case whenn � 3 and denote the groupSπn(SO(n)) by G. Recall
also that we can assume thatDF = F ∪F+. SinceF is (n−1)-connected and the bounda
∂F is (n − 2)-connected, the universal coefficient theorem together with the cohom
exact sequence of the pair(DF,F+) and the excision property give us the following sh
exact sequence:

0 → Hom
(
Hn(F, ∂F ),G

) j∗
−→ Hom

(
Hn(DF),G

) i∗−→ Hom
(
Hn(F+),G

) → 0,

(3)

wherei :F+ ↪→ DF , j : (DF,∅) ↪→ (DF,F) are inclusions andi∗ andj∗ are the corre
sponding induced maps.

Lemma 3. i∗(χ(ϕ̃)) is the trivial map for any ϕ ∈ π̃0 Diff (F, rel∂).

Proof. Take any[z] ∈ Hn(F+), then we havei∗(χ(ϕ̃))[z] = χ(ϕ̃)[i∗(z)]. SinceHn(F) ∼=
πn(F ) we can present ourn-cycle[z] by an imbeddedSn ↪→ F+ and we can also assum
that the normal bundle of such a sphere is contained inF+. We have defined̃ϕ as the
identity onF+ and this impliesχ(ϕ̃)[i∗(z)] = 0 as required. �

Now we define a homomorphismχr : π̃0V Diff (F, ∂) → Hom(Hn(F, ∂F ),G). Take
any ϕ ∈ π̃0V Diff (F, ∂) then ϕ̃ ∈ π̃0S Diff (DF) (recall Theorem 1 above) andχ(ϕ̃) ∈
Hom(Hn(DF),G). Sincei∗(χ(ϕ̃)) = 0 there exists uniqueh ∈ Hom(Hn(F, ∂F ),G) such
thatj∗(h) = χ(ϕ̃).

Definition 4. We define the mapχr : π̃0V Diff (F, ∂) → Hom(Hn(F, ∂F ),G) by the for-
mulaχr(ϕ) := h.
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It is clear thatχr is a homomorphism. Here we also consider the mapιr :Θ2n+1 →
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π̃0 Diff (F, rel∂) defined as in (2) above: present any homotopy(2n + 1)-sphereΣ ′ as the
union of two disks via a diffeomorphismψ ∈ π̃0 Diff (S2n) ∼= π̃0 Diff (D2n, rel∂) ∼= Θ2n+1
then take a diskD2n embedded into int(F ) and define the diffeomorphism ofF by the
formula

ιr (Σ
′)(x) :=

{
ψ(x) if x ∈ D2n ↪→ F,

x otherwise.

It is obvious that Im(ιr) ⊂ π̃0V Diff (F, ∂). Now we describẽπ0V Diff (F, ∂) as a centra
extension of the groupΘ2n+1 by Hn(F, ∂F ;G) ∼= Hn(F ;G).

Theorem 3. If n = 2 then π̃0V Diff (F, ∂) = 0, and for all n � 3 the following sequence is
exact

0 → Θ2n+1
ιr−→ π̃0V Diff (F, ∂)

χr−→ Hom
(
Hn(F, ∂F ),G

) → 0. (4)

Proof. We have mentioned already that ifn = 2, the kernel of the variation operator
trivial. Assume now thatn � 3. It follows from Theorems 1 and 2 above that the inc
sion mapω : Diff (F, rel∂) → Diff (DF) induces a monomorphismsω : π̃0V Diff (F, ∂) →
π̃0S Diff (DF). Since the compositionsω · ιr coincides with the injective mapι from the
exact sequence (2), we see that ourιr is injective too. It is also clear that Im(ιr ) ⊂ Ker(χr).
Consider now anyϕ ∈ Ker(χr), then χ(sω(ϕ)) = j∗(χr(ϕ)) = 0, wherej∗ is as in
(3). Thussω(ϕ) ∈ Ker(χ) ∼= Θ2n+1 ∼= Im(ι) and sincesω is a monomorphism we hav
ϕ ∈ Im(ιr) as required.

To prove thatχr is an epimorphism it is enough to show that for a set of genera
{g1, . . . , gm} of Hom(Hn(F, ∂F ),G) the groupπ̃0V Diff (F, ∂) contains diffeomorphism
{ϕ1, . . . , ϕm} such thatχr(ϕj ) = gj , j ∈ {1, . . . ,m}. Recall thatF = D2n ∪ ⊔µ

i=1(D
n
i ×

Dn) andHn(F, ∂F ) ∼= Zµ. We can choose the following embedded disksdi ↪→ F , i ∈
{1, . . . ,µ}, as a basis of this homology group:

di := {0}i × Dn ↪→ Dn
i × Dn ↪→ F

(here{0}i is the center of theith handle core diskDn
i ). Take a generatorx of G and

consider the homomorphismgxi :Hn(F, ∂F ) → G defined by the formula

gxi[dk] :=
{

x if k = i,

0 if k �= i,
k ∈ {1, . . . ,µ}

end extended linearly to the whole group. The set of such homomorphisms obv
generates Hom(Hn(F, ∂F ),G). Now we will use an analog of the Dehn twist in high
dimensions to construct the diffeomorphismϕxi (cf. [30], Lemma 12).

For each diskdk consider the “half-handle”= (1
2Dn

k ) × Dn and notice that the closur
of the complement to all these “half-handles” inF

F̄ := cl

(
F \

µ⊔
k=1

(
1

2
Dn

k

)
× Dn

)

is diffeomorphic to the closed 2n-disk D2n, and the intersection of each “half-handl
with the boundary∂F̄ � S2n−1 is ∂(1

2Dn
k ) × Dn � Sn−1

k × Dn. We take a smooth
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mapϕx : (Dn,Sn−1) → (SO(n), id) that sends a neighborhood ofSn−1 to id and repre-

ere

ap

-

t

sents an element[ϕx] ∈ πn(SO(n)) such thatS([ϕx]) = x and define the diffeomorphism
ϕxi|⊔µ

k=1(
1
2Dn

k )×Dn by the formula

ϕxi(t, s) :=
{

(ϕx(s) ◦ t, s) if (t, s) ∈ (1
2Dn

i ) × Dn,

(t, s) if (t, s) ∈ (1
2Dn

k ) × Dn andk �= i.
(5)

In particular, this gives a diffeomorphismφ ∈ Diff (∂F̄) which is defined onSn−1
i ×Dn ↪→

∂F̄ by restrictingt to the boundary of12Dn
i (see (5) above) and by the identity everywh

else. We will show now thatφ is isotopic to the identity. Consider the handlebody

Fi := D2n ∪ (
Dn

i × Dn
) = cl

(
F \

µ⊔
k=1,k �=i

(
1

2
Dn

k

)
× Dn

)

and denote byF̂i the manifold obtained fromFi by removing the open disk12D2n from

D2n. Hence∂F̂i � ∂Fi � S2n−1. The first equation of (5) together with the identity m
define a diffeomorphismΦ of F̂i such thatΦ|S2n−1 = φ andΦ|∂Fi = Id. We use the identity
again to extend thisΦ to a diffeomorphismΦ̃ of DF̂i where

DF̂i :=DFi \ 1
2D2n � F̂i ∪∂Fi Fi and Φ̃|Fi = Id, Φ̃|

F̂i
= Φ.

Thusφ is the restriction ofΦ̃ to the boundary∂DF̂i = S2n−1 and hence can be con
sidered as an element of the inertia group ofDFi (cf. [15], Proposition 3). Now it follows
from Lemma 2 above and results of Kosinski ([14], see §3) and Wall [29] thatφ is isotopic
to the identity. In particular, we can use this isotopy onS2n−1 × [1

2, 1
4] ⊂ 1

2D2n to extend
the diffeomorphismϕxi|⊔µ

k=1(
1
2Dn

k )×Dn to a diffeomorphism of the whole handlebodyF .

Denote the result of this extension byϕxi . Clearlyϕxi ∈ π̃0 Diff (F, rel∂), and we leave i
to the reader to check thatχr(ϕxi) = gxi . �
Corollary 1. We have the following commutative diagram

0 0

0 Θ2n+1

≡

ιr
π̃0V Diff (F, ∂)

sω

χr Hom(Hn(F, ∂F ),G)

j∗

0

0 Θ2n+1
ι

π̃0S Diff (DF)

i∗·χ

χ
Hom(Hn(DF),G)

i∗

0

Hom(Hn(F+),G) ≡ Hom(Hn(F+),G)

0 0

where all horizontal and vertical sequences are exact.
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Proof. The standard diagram chasing procedure is left to the reader.�

ub-

ious

o ([27],
ec-

ched

te

e

a

Example 1. Consider the case whenF = S3×D3. ThenDF = S3×S3, Hom(Hn(F, ∂F ),

G) ∼= G ∼= Z, Θ7 ∼= Z28 andπ̃0S Diff (DF) ∼= H28, that is the factor group of the groupH
(upper unitriangular 3× 3 matrices with integer coefficients) modulo the cyclic s
group 28Z, whereZ is the center ofH (cf. [9] or §1.3 of [16]). Thusπ̃0V Diff (F, ∂) ∼=
Sπ3(SO(3)) ⊕ Θ7 ∼= Z ⊕ Z28 and the first vertical short exact sequence from the prev
corollary can be written as follows

0 → Sπ3
(
SO(3)

) ⊕ Θ7 → π̃0S Diff (S3 × S3) → Sπ3
(
SO(3)

) → 0.

Such exact sequence was obtained by Levine ([17], Theorems 2.4 and 3.3) and Sat
Theorem II) for the group̃π0S Diff (Sp × Sp). See another example at the end of S
tion 3.1 where it is shown that the extension of Theorem 3 can be nontrivial.

3. Manifolds with open book decompositions

3.1. Periodicity in higher dimensions

In this section we will apply our exact sequence (4) to study the periodicity of bran
cyclic covers of manifolds with open book decompositions.

Definition 5. We will say that a smooth closed(m + 1)-dimensional manifoldM has an
open book decomposition if it is diffeomorphic to the union

M � Fϕ ∪r

(
∂F × D2),

whereF is m-dimensional manifold with boundary∂F , ϕ ∈ Diff (F, rel∂) is an orienta-
tion preserving diffeomorphism ofF that keeps the boundary pointwise fixed,Fϕ is the
mapping torus ofϕ

Fϕ := F × [0,1]/(x,0) ∼ (
ϕ(x),1

)
andr : ∂Fϕ → ∂F × S1 is a diffeomorphism that makes the following diagram commu

∂Fϕ
in

r

Fϕ

π

∂F × S1 p2
S1

(herep2 is the projection onto the second factor andπ is the bundle projection of th
mapping torus onto the base circle).

Such a union is also called the relative mapping torus with pageF and binding∂F

(cf. [22] or [28]). WhenM has dimension(2n + 1) andF has the homotopy type of
n-dimensional CW-complex, it is said that the page isalmost canonical. The diffeomor-
phismϕ is called the geometric monodromy and the induced mapϕ∗ :Hn(F) → Hn(F) is



194 L.H. Kauffman, N.A. Krylov / Topology and its Applications 148 (2005) 183–200

the (algebraic) monodromy. If instead ofϕ we take some positive power of this diffeomor-

e

ial

at

re

le

le

will
w

e

phism, sayϕk, we obtain thek-fold cyclic coverMk of M, branched along∂F , i.e.

Mk = Fϕk ∪r

(
∂F × D2).

It was shown in [8] (Theorem 4.5) that if a fibered knot∂F is a rational homology spher
andϕd = id for somed > 0, then thek-fold cyclic coversMk of S2n+1 branched along
∂F have the periodic behavior ind . In case of the links of isolated complex polynom
singularities these restrictions on∂F andϕ are equivalent to the condition Var(ϕd) = 0.

Remarks.

(i) Notice that the conditionsϕd∗ = id and∂F is a rational homology sphere imply th
Var(ϕd) = 0, but the converse is not true (see [28, p. 231]).

(ii) Proposition 3.3 of [11] proves that an open bookM2n+1 with pageF and monodromy
ϕ is a homotopy sphere if and only if Var(ϕ) is an isomorphism.

In addition to the almost canonical page requirement we will need to assume mo
aboutM (cf. [28], §3, p. 232), i.e. we assume from now on thatM has asimple open book
decomposition. It implies, in particular, thatM bounds a simply connected parallelizab
manifold. We will also assume thatn � 3, π1(∂F ) = 1 and Var(ϕd) = 0 for somed � 1
(whereϕ is the diffeomorphism that givesM the open book structure). A parallelizab
simply connected manifold bounded byM will be denoted byN .

Before we give proofs of the periodicity theorems (Corollaries 2, 3 and 4 below) we
first obtain some auxiliary results. It is clear thatF is a parallelizable manifold. Take no
any z ∈ Hn(F, ∂F ) ∼= πn(F, ∂F ) and choose an embedded disk(Dn, ∂Dn) ↪→ (F, ∂F )

that represents this relative cycle. Inside ofDF = F ∪ F+ we consider the doubleDDn =
Dn ∪ Dn+, and since the boundary∂Dn has trivial normal bundle in∂F we can add to
F one n-handle along this sphere to obtain the manifoldF(z) := F ∪ (Dn+ × dn). As
we have done above, we extend a diffeomorphismϕ ∈ Diff (F, rel∂) to a diffeomorphism
ϕz ∈ Diff (F (z), rel∂) using the identity onDn+ × dn. Then we obviously haveDDn ↪→
F(z) ↪→ DF andϕz = ϕ̃|F(z).

Lemma 4. The mapping torus Fϕ of ϕ is framed if and only if the mapping torus F(z)ϕz

of ϕz is framed.

Proof. We will show that any framing ofFϕ can be extended to a framing ofF(z)ϕz
. The

other direction is trivial. Sinceϕ is the identity on the boundary, we haveSn−1 × S1 ↪→
∂Fϕ = (∂F ) × S1, whereSn−1 is the boundary of our relative homology classz. We can
assume thatF has a collar∂F × [0,1] andϕ is the identity map on this collar. Now w
haveDn ↪→ F ↪→ F ∪ (∂F × [0,1]) and we use the disk theorem to changeϕ by an
isotopy to a diffeomorphismϕ′ such thatϕ′|D2n = ϕ′|∂F×1 = id and Dn ⊂ int(D2n) ⊂
F ∪ (∂F × [0, 1

2]). Then clearlyFϕ′ � Fϕ andDn × S1 ↪→ Fϕ′ with the trivial normal
bundle. Furthermore sinceSn−1 × [0,1] ↪→ ∂F × [0,1] with trivial normal bundle too, we
can connect∂Dn ×S1 ↪→ Fϕ′ with Sn−1 ×S1 ↪→ (∂F ×1)×S1 = ∂(Fϕ′ ), using the collar
(Sn−1 × [0,1]) × S1. This implies that the trivial normal bundle ofSn−1 × S1 in ∂(Fϕ)
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comes from the trivial normal bundle ofDn × S1 in Fϕ . Now notice that the mapping

s
d disk
-

.

he

e

e

t
fter

n

d

torus F(z)ϕz
is the union ofFϕ and Dn+ × dn × S1 along Sn−1 × dn × S1 ↪→ ∂(Fϕ).

Therefore the restriction of the framing ofFϕ to Sn−1 × dn × S1 = (∂Dn) × dn × S1

(whereDn × dn × S1 ↪→ Fϕ ) can be extended to a framing ofF(z)ϕz
. �

Theorem 4 (n is odd,�= 1). Suppose [ψ] ∈ π̃0V Diff (F, ∂) and M2n+1 � Fψ ∪r (∂F ×D2)

bounds a parallelizable manifold N . Then χr(ψ) = 0.

Proof. It is enough to show thatχr(ψ)[z] = 0 for an arbitrary relative homology clas
z ∈ Hn(F, ∂F ). As we just did above, we represent such a class by an embedde
(Dn, ∂Dn) ↪→ (F, ∂F ) and take the doubleDDn = Sn ↪→ DF . We will denote this dou
ble bydz (to avoid cumbersome notations we denote by dz both the homology class and
the embedded sphere DDn that represents this class) and its normal bundle inDF by
ν(dz;DF) respectively. Note thatν(dz;DF) is trivial. The proof now splits into two parts

(1) n � 5: It is clear thatψz∗ = id on Hn(F(z)) and we can isotopeψz to a diffeo-
morphismψ ′

z such thatψ ′
z|dz = id (see [10]). Extending this new diffeomorphism by t

identity to the diffeomorphismψ̃ ′ ∈ Diff (DF) we obtain an element of̃π0S Diff (DF)

which pointwise fixesdz and mapsF(z) to itself. Now it follows from the commutativ
diagram of Corollary 1 that it is enough to show thatχ(ψ̃ ′)[dz] = 0. Since by Lemma 4
the mapping torusF(z)ψ ′

z
is framed, the normal bundleν(dz × S1;DFψ̃ ′) is stably triv-

ial. Sincen is odd, the mapG = Sπn(SO(n)) ↪→ πn(SO(n + 1)) → πn(SO(n + 2)) is a
monomorphism (see [31]) and therefore the map

l∗ : Hom
(
Hn(DF),G

) → Hom
(
Hn(DF),πn(SO)

)
is a monomorphism too. Hencel∗(χ(ψ̃ ′))[dz] is the obstruction to triviality of the stabl
normal bundleν(dz × S1;DFψ̃ ′) and since this bundle is trivial we haveχ(ψ̃ ′)[dz] = 0,
as required.

(2) n ≡ 3 (mod 8): Since∂N = M2n+1 � Fψ ∪r (∂F × D2) and∂(F × D2) = (∂F ×
D2)∪(F ×S1), we can paste together the manifoldsN andF ×D2 along the common par
of the boundary∂F × D2 (respecting orientations of course) to obtain a manifold (a
smoothing the corner)

W2n+2 := N ∪∂F×D2

(
F × D2) with ∂W = Fψ ∪ (

F × S1) �DFψ̃ .

We use elementary obstruction theory to show that thisW is stably parallelizable. Fix
a frame field of the stable tangent bundle ofN ⊂ W . Obstructions to the extensio
of this frame field over the whole manifold lie in the groupsHq+1(W,N;πq(SO)) ∼=
Hq+1(F, ∂F ;πq(SO)) ∼= H2n−q−1(F ;πq(SO)). If q = n−1 orq = 2n−1 thenπq(SO) ∼=
0 becausen ≡ 3 (mod 8), if q �= n − 1 or q �= 2n − 1 thenH2n−q−1(F ;Z) ∼= 0 and
all obstructions lie in the trivial groups anyway. HenceDFψ̃ is stably parallelizable an

χ(ψ̃) = 0 (see [15], Lemma 2) which entailsχr(ψ) = 0. �
Now we can prove the following theorem of Stevens including the cases whenn = 3,7

(cf. [28], Theorem 7).
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Corollary 2. Let Mk be the k-fold branched cyclic cover of a (2n + 1)-manifold M =

8])

tion)
se,
g

f the

t.

t

ment
art

e

nce,

e
e

opy
Fϕ ∪r (∂F × D2) with simple open book decomposition, where n is odd, �= 1. Suppose
Var(ϕd) = 0, then Mk and Mk+d are (orientation preserving) homeomorphic, while Mk

and Md−k , d > k, are orientation reversing homeomorphic.

Proof. Since Var(ϕd) = 0 andMd bounds a parallelizable manifold (see Lemma 5 of [2
we haveχr(ϕ

d) = 0 by the previous theorem. The exact sequence (4) implies thatϕd is
isotopic to a diffeomorphism which belongs to the imageι(Θ2n+1) and thereforeFϕd+k

is diffeomorphic toFϕk #Σ ′ (cf. Lemma 1 of [2]) for someΣ ′ ∈ Θ2n+1. In particular, it
means thatFϕd+k is homeomorphic (via some homeomorphism that preserves orienta
to Fϕk , and henceMd+k is homeomorphic toMk . To see the orientation reversing ca
notice that the mapping torusFg is diffeomorphic toFg−1 via an orientation reversin
diffeomorphism induced, for instance, by the map(x, t) �→ (g(x),1 − t) from F × I to
F × I . This diffeomorphism extends to an orientation reversing homeomorphism o
corresponding open booksM andM−1. Hence in our situationMk = Fϕk ∪r (∂F × D2)

is homeomorphic (orient. revers.) toFϕ−k ∪r (∂F × D2) which is homeomorphic (orien
pres.) toFϕ−k #Σ ′ ∪r (∂F × D2) � Fϕd−k ∪r (∂F × D2) = Md−k. �
Remark. If one definesMk := Fϕk ∪r (∂F × D2) for anyk ∈ Z, then the first statemen
thatMk is homeomorphic toMk+d remains true, and the restrictiond > k in the second
part can be omitted.

To show diffeomorphism type periodicity we will basically use the same argu
plus the fact that the homotopy sphereΣ ′ bounds a parallelizable manifold. We st
with proving this fact. Thus forn ∈ N, n � 2, we consider a diffeomorphismh with
[h] ∈ π̃0V Diff (F, ∂) such that our simple open bookM2n+1 = Fh ∪r (∂F × D2) bounds
a simply connected parallelizable manifoldN andχr(h) = 0. In particular, we can assum
thath ∈ Im(ι) is the identity except on a small closed diskD2n ↪→ int(F ) embedded into
the interior ofF .

Lemma 5. The natural inclusions i1 :F ↪→ Fh and i2 :Fh ↪→ M induce isomorphisms
i1∗ :Hn(F) → Hn(Fh) and i2∗ :Hn(Fh) → Hn(M), respectively, and every [z] ∈ Hn(M)

can be represented by an embedded sphere Sn ↪→ M with trivial normal bundle ν(Sn;M).
In addition, Hn(M) ∼= Hn+1(M).

Proof. That i1∗ is an isomorphism follows immediately from the Wang exact seque
and the other two isomorphisms follow from the exact sequence of Stevens:

0 → Hn+1(M) → Hn(F, ∂F )
Var(h)−→ Hn(F) → Hn(M) → 0

which arises from the exact sequence of the pair(M,F) (see Proposition 1 of [28]). Sinc
the normal bundle of anySn ↪→ M is stable andM bounds a parallelizable manifold, th
bundleν(Sn;M) must be trivial. �

Now we would like to kill Hn(M) using surgery, and as a result obtain a homot
sphereΣh ∈ Θ2n+1 (we again assumen � 3). For each generator[zi] ∈ Hn(F) we fix
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an embeddingφi :Sn × dn+1 ↪→ F × (0,1) ↪→ M disjoint fromD2n × (0,1). Then we

s
f

e

e

in-
i i

attach handlesDn+1
i × dn+1

i to the productM × I along these embeddings intoM × {1}
to obtain a cobordismW betweenM = M × {0} and the homotopy sphereΣh which is
the result of theseφi -surgeries onM. Furthermore, we can choose the embeddingφi

compatible with the framing ofM that comes from the framing ofN (see Lemma 6.2 o
[13]), and hence we getW as a framed manifold. Taking the union ofN andW along
M we obtain a parallelizable manifold with boundaryΣh, i.e. Σh ∈ bP2n+2. Following
Kreck’s construction of the isomorphismσ : ker(χ) → Θ2n+1 (see [15], pp. 655–656) on
can easily show thatΣh is well defined (depends only on the isotopy class ofh) and that
ιr (Σh) = [h].

Let us denote the signature of a parallelizable manifoldNk with boundary∂Nk = Mk =
Fϕk ∪r (∂F × D2) by σk , and the generator ofbP2n+2 by Σ .

Corollary 3 (cf. [28], Proposition 8). Let M2n+1 = Fϕ ∪r (∂F × D2) be the manifold with
simple open book decomposition where n is odd, �= 1 and Mk be the k-fold branched cyclic
cover of M . If Var(ϕd) = 0 then Mk+d is diffeomorphic to (

σd

8 · Σ)#Mk .

Proof. We have just seen above thatMk+d � Σ ′#Mk with Σ ′ = m · Σ ∈ bP2n+2 for some
m ∈ N. SinceMd = Fϕd ∪r (∂F ×D2) � ∂(F ×D2)#mΣ andmΣ bounds a parallelizabl
manifold, sayWm, with signatureσ(Wm) = 8m and∂(F × D2) boundsF × D2 (which
is also parallelizable) with signature zero, the connected sum ofWm andF × D2 along
the boundary (cf. §2 of [13]) will give us a parallelizable manifoldNd := Wm#F × D2

with boundary∂Nd = Md and signatureσ(Nd) = σ(Wm) + σ(F × D2) = 8m + 0. Thus
m = σ(Nd)

8 ≡ σd

8 mod(order ofbP2n+2) and the corollary follows. �
Whenn = even, the periodicity ofMk is more complicated. Consider the link of the s

gularityz2
0 + z2

1 +· · ·+ z2
n = 0 with n = 2m and denote the(4m+1)-dimensional Kervaire

sphere byΣ and the tangentSn-sphere bundle toSn+1 by T . ThenMk+8 is diffeomorphic
to Mk and the diffeomorphism types are listed in the table (see [8], Proposition 6.1)

M1 � M7 M2 M3 � M5 M4 M6 M8

S2n+1 T Σ (Sn × Sn+1)#Σ T #Σ Sn × Sn+1

The following result is due to Stevens ([28], Theorem 9).

Corollary 4. If for branched cyclic covers Mk of a (2n + 1)-manifold M with simple open
book decomposition Var(ϕd) = 0, then Mk and Mk+2d are homeomorphic and Mk and
Mk+4d are diffeomorphic. Moreover, if n = 2 or 6, then Mk and Mk+d are diffeomorphic.

Proof. Whenn = 2 the mapping class group is trivial and[ϕd ] = Id. If n = 6 thenG ∼= 0
andbP14 ∼= 0 (see [13, Lemma 7.2]) which implies that[ϕd] = Id. For the other evenn
we know that the groupG is isomorphic either toZ2 or Z2 ⊕ Z2 and henceχr(ϕ

d) has
order two. Thereforeϕ2d ∈ bP4m+2 which means thatMk is homeomorphic toMk+2d , and
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since the groupbP4m+2 is either trivial orZ2 (see [13]),ϕ4d must be pseudo-isotopic to

nsider

e

educe

-
sake

hap-
rve
ra-

here

en

nitri-

the
r

the identity. �
Example 2. (The authors are indebted to the referee for suggesting this example.) Co
again the singularityz2

0 + z2
1 + · · · + z2

n = 0 with n = 2m. Assume in addition thatm �=
0 (mod 4) and that the Kervaire sphereΣ ∈ bP4m+2 is exotic, e.g., when 4m + 2 �= 2l − 2
(see [3]). Here the Milnor fiberF , is the tangent disc bundle to the sphereS2m and hence
DF � S2m ×S2m. It is also well known that the geometric monodromyϕ of this singularity
satisfies the properties:ϕ∗ = −Id, Var(ϕ2) = 0 and Var(ϕ) �= 0 (cf. [18], Chapter 3). Sinc
M0 is not diffeomorphic toM2 andM1 is not diffeomorphic toM5, χr([ϕ2]) will be a
generator of Hom(Hn(F, ∂F ),G) ∼= Z2 and [ϕ4] will be a generator ofbP4m+2 ∼= Z2.
SinceΘ4m+1 ∼= bP4m+2⊕Coker(J4m+1) (cf. [4]) we see that in this casẽπ0V Diff (F, ∂) ∼=
Z4⊕Coker(J4m+1) and the exact sequence (4) does not split. Furthermore, one can d
from our Theorem 2 and results of Sato and Levine (see [27], Proposition 2.2 or [17],
§1.2) that the monodromy[ϕ] generates the quotientπ̃0 Diff (F, rel∂)/π̃0V Diff (F, ∂) and
thereforeπ̃0 Diff (F, rel∂) ∼= Z8 ⊕ Coker(J4m+1).

3.2. Periodicity in dimension 3

It is known that if the dimension of the open bookM2n+1 is three, then there is ho
mological periodicity (see references in [8]) but there is no topological one. For the
of completeness we illustrate this with the following classical example (cf. [26], C
ter 10.D). Letf (z0, z1) = z2

0 + z3
1 be the complex polynomial which defines the cu

V = {f (z0, z1) = 0} in C2 with the cusp at the origin. The corresponding Milnor fib
tion has monodromyϕ of order six, the boundary of the fiberF is the trefoil knotK
and Var(ϕ6) = 0. This fibration gives the open book structure to the standard 3-sp
S3 = M1 = Fϕ ∪(K ×D2). We show thatM7 �= M1 andM6 �= M0 = (F ×S1)∪(K ×D2).

Let us first compareπ1(M0) with π1(M6). The theorem of Seifert and Van Kamp
entails thatπ1(M0) ∼= π1(F ) which is the free group on two generators. As forM6 one can
easily find using the Reidemeister–Schreier theorem a presentation forπ1(Fϕ6) and then
show thatπ1(M6) admits the following presentation:

〈Z1,Z2, . . . ,Z6 | Z1 = Z6Z2, . . . ,Zj = Zj−1Zj+1, . . . ,Z6 = Z5Z1〉.
It takes a bit more effort to show that this group is isomorphic to the group of upper u
angular 3× 3 matrices with integer coefficients (cf. [20], §8)

H ∼=




 1 a c

0 1 b

0 0 1


∣∣∣a, b, c ∈ Z


 .

Suppose now thatM7 were homeomorphic to the sphere. Then we could take
union ofN7 andD4 (recall thatN7 is the cyclic covering ofD4 branched along the fibe
(F,K) ↪→ (D4, S3) whereF ∩ S3 = K):

W4 := N7 ∪S3 D4.
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SinceN7 is parallelizable (see [5], Theorem 5 or [12], Chapter XII),W4 would be a closed
-
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63)

on,

9,

5

spin-manifold. Hence its signatureσ(W4) = σ(N7) must be a multiple of 16 by the theo
rem of Rokhlin [25]. Butσ(N7) = −8 as one can find using the Seifert pairing onH1(F )

(cf. [5,12]), and henceM7 �= M1. Actually much more is known. Milnor in [20] prove
that π1(Mr) is isomorphic to the commutator subgroup[Γ,Γ ] of the centrally extende
triangle groupΓ which has a presentation

Γ ∼= 〈
γ1, γ2, γ3 | γ 2

1 = γ 3
2 = γ r

3 = γ1 · γ2 · γ3
〉
.

This groupΓ is infinite whenr � 6 (see [20], §2,3) and hence[Γ,Γ ], that has indexr −6,
is infinite too. In particular, none of the cyclic coverings ofS3 branched along the trefo
knot can be simply connected.
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