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I. Introduction 

A branched fibration is a topological analog of a degenerating family of 

algebraic varieties that is parametrized over a manifold M , with the degenerate 

fibers lying over a codimension two submanifold V~ M . This is a common situation 

in algebraic geometry, but there is a wide avenue of choice for the corresponding 

topological notion. We have chosen a definition that abstracts the main features 

associated with isolated (complex) hypersurface singularities. This means that the 

degeneration will be closely associated to a fibered knot; the knot plays the role 

of the link of the singularity. 

In section 2 we review the definitions of knot, fibered knot and Seifert 

pairing. Theorem 2.9 shows that, over the complex numbers, the Seifert pairing of 

a fibered knot is non-trivial only on subspaces associated with unit-length eigen- 

values of the monodromy. 

In section 3 branched fibrations are defined and related to fibered knots and 

singularities. This is based on joint work of the author and Walter Neumann 

([KN]). Theorem 3.2 states the main properties of the knot product construction of 

[KN]. This construction associates to a knot K = (sk,K) and a fibered knot 

i = (SZ,L) a new product knot K eL= (Sk+~+I,K @ L) . The product knot has a 

spanning manifold that is defined in terms of branched fibrations. In fact 

K ® L = ~M where M = T (Dk+~F) , a branched fibration of D k+l along a submani- 

fold F ~ D k+l with ~F = K . The branched fibration is obtained by a pull-back 

construction from a simpler branched fibration T:D i+l + D 2 , branched over 0 ~ D 2 . 

This branched fibration T is directly associated with the fibered knot L . 

This situation leads to a signature problem: Let ~ (K) denote the 
T 

signature of the branched fibration T (Dh+I,F) when 4[ (k + Z) Theorem 3.6 

gives a formula for this signature in terms of the eigenvalues of the monodromy 

for L and the Seifert forms of K and L . This result generalizes some 

computations of signatures of branched coverings (see [DK] and [N]). 

In section 4, Theorem 3.6 is applied to some special cases involving 

Brieskorn singularities, cyclic branched coverings and concordance invariants of 

links in S 3 . 

In section 5 we show how to construct a more general class of branched 

fibrations by mimicking a method due to F. Hirzebrueh ([HI) for ramified covers. 

This leads towards the question of a more general formula for signatures of 

branched fibrations. This seems to be a difficult problem and may, in fact, 

require a more general concept of branched fibration or a change in viewpoint. 
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In any case, I hope to have given an initial framework for these questions 

and to have shown some of the interesting connections among singularities, knot 

theory, and signatures. 

Throughout the paper all manifolds are smooth; ~ denotes isormorphism or 

diffeomorphism, while = denotes homeomorphism. 

II. Knots and Fibered Knots 

This section will recall some standard notions in knot theory. The main 

result (Theorem 2.9) shows that, over the complex numbers, the Seifert pairing of 

a fibered knot is nontrivial only on subspaces associated with unit-length eigen- 

values of the monodromy. This fact will be of use for the signature computations 

of section III. 

Definition 2.1. A knot K = (Sn,K) is a pair consisting of an oriented n-sphere 

S n and a codimension two, compact, closed, oriented submanifold K C S n . If K 

is a homotopy sphere, then the knot is said to be s~herical. 

When n = 3 , this definition is intended to include links. That is, a 

link K C S 3 is a collection of disjoint embedded oriented circles. 

Definition 2.2. A spanning surface for a knot K = (Sn,K) is a compact oriented 

(n-l)-manifold F , embedded in sn so that ~F = K . Here the symbol, ~ , denotes 

oriented boundary. 

It is worth remarking that knots always have spanning surfaces. Since the 

proof of this result is short and it motivates the definition of fibered knot, we 

include the argument in the next lemma. 

Lemma 2.3. If K = (Sn,K) is any knot, then there exists a spanning surface 

n 
F C S for K . 

Proof. Let E = S n - N ° where N is a closed tubular neighborhood of K . Note 

1 
that H (E;~) = [E,S I] where [ , ] denotes homotopy classes of maps. Let 

1 
~:E + S represent a sum of the generators of HI(E;~ ) with orientations specified 

by the orientation of KC S n . We may assume that e is transverse regular to 

1 D 2 
* e S . It is not hard to see that N is diffeomorphic to K x with ~ -i(,) 

-i 
corresponding to K x * Thus, by adding a collar to d (*) , one obtains 

F C S n with ~F = K . 

Remark. It may happen that the mapping ~:E + S 1 described above can be chosen to 

be a smooth fibration. In this case one says that ~ is a fibered knot. The formal 

definition is as follows: 

Definition 2.4. A knot K = (Sn,K) is fibered with fibered structure b:S n ÷ D 2 , 

if there is a smooth mapping b:S n ÷ D 2 , transverse to 0 ~ D 2 such that 

i) b-l(0) = K ~ S n . 

ii) b/IIbl J:S n - K ÷ S 1 is a smooth fibration. 
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Here llbl I (x) denotes the distance from b(x) to the origin in jR2 A 

fibered knot with fibered structure b will sometimes be indicated by the notation 

(Sn,K;b) 

The first example of a fibered knot is the empty knot of degree a , [a] = 

(sl,~;a) Here a:S 1 ÷ S 1 is defined by the formula a(x) = x a (complex multipli- 

cation; a is an integer). The map is vacuously transverse to 0 e D 2 and a typical 

fiber is F a-l(1) {i,~,~ 2 a-l} 
= = , .... ~ where ~ = exp(2~i/a) Just as all of 

mathematics unfolds from the empty set, so do many interesting knots come from 

these empty knots. This comes about by the product construction discussed in the 

next section. 

Another construction that gives rise to fibered knots involves the notion 

of the link of a singularity. Let f:~n ÷ ~ be a complex polynomial mapping such 

that f(0) = 0 . One says that f has an isolated singularity at 0 if the gradient 

Vf = (~f/Szl,$f/~z 2 ..... Sf/~z ) vanishes at 0 8 n and is non-zero in some deleted 
n 

neighborhood of 0 e ~n . Under these conditions one can define a knot, the link 

of f by L(f) = (s2n-l,L(f)) where L(f) = f-l(0) ~ S 2n-I for 0 < ¢ << 1 . For 

g sufficiently small, L(f) is independent of the choice of s . In ([M]) Milnor 

shows that [(f) is a fibered knot. The fibration of the complement is given by the 

mapping f/l[fl I:S~ n-l^ - L(f) ÷ S 1 . The Brieskorn polynomials (see [B]) f(z) = 

a 0 a 1 z0 + Zl + "'" + zann provide one such class of isolated singularities. 

One method for studying a knot is to consider invariants for the embedding 

of a spanning surface. The simplest of these is the Seifert pairing: 

Definition 2.5. Let K = (Sn,K) be a knot with spanning surface F~ S n . The 

Seifert pairing eK:H,(F ) x Hn_,_I(F ) + ~ is defined as follows: Let i:F ÷ 

S n - F be the mapping obtained by pushing F into its complement along the 

positive normal direction. Then 6K(x,y) = i(i,x,y) where i denotes linking 

numbers in S n , 

Here H, denotes the free part of the reduced homology. That is, H,(X) = 

H,(X)/T,(X) where T,(X) C H,(X) is the torsion subgroup of the reduced integral 

homology group. While the Seifert pairing actually depends upon the choice of 

spanning surface F , we have chosen to omit this dependence in the notation. 

If the submanifold F has a middle dimension, then there is a well-known 

relationship between the Seifert pairing and the intersection form on F . This 

is given by the following theorem of J.Levine ([LI]) . 

Theorem 2.6. Let F2nc S 2n+l be a compact oriented 2n-dimensional manifold with 

boundary embedded in S 2n+l . Let Q:Hn(F) × Hn(F) + ~ be the middle-dimensional 

Seifert pairing, and let <,>:Hn(F) × Hn(F) + ~ be the intersection form on F . 

Then, for x,y e H (F) , <x,y> = @(x,y) + (-l)n@(y,x) . 
n 

This is a key relationship for signature computations. If F 2n is given 

as above, and n is even, then <,> is a symmetric form and the signature of F 
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o(P) , is defined to be the signature of the form (Hn(F),<,>) . Thus the Seifert 

pairing determines the signature of F . 

In the case of fibered knots, extra structure is provided by the monodromy 

h,:H,(F) ÷ H,(F) where F is a typical fiber. Here h:F ÷ F is the diffeomorphism 

of the fiber that'defines the structure for the corresponding fiber bundle over S 1 . 

The following proposition is well known. 

Proposition 2.7. Let i = (Sn,L) be a fibered knot with fiber G and monodromy 

h . Let @'L denote the 8eifert pairing with respect to G . Then @i(x,h,y) = 

(-i) IxllYl@[(y,x) . Here if x ~ H,(F) , then Ixl = * + 1 . 

Remark: In matrix terms this proposition becomes H = @-I@T where H is a matrix 

of h, with respect to some basis for H,(F) and ~ is a matrix of the Seifert 

pairing. The graded transpose ~T is defined by the equations @T = 
P 

(-i) (p-l) (n-p)~t where 0 is that part of the 8eifert matrix coming from the 
P P 

Seifert pairing on Hp(F) x Hn_p_l(F) and t denotes ordinary transpose. 

In what follows, we write h instead of h. . 

Corollary 2.8. Let K = (s2n+I,K) be a fibered knot with fiber F and monodromy 

h . Let <,>:Hn(F) x Hn(F) + ~ denote the intersection pairing and @:Hn(F) x 

Hn(F) ÷ ~ denote the Seifert pairing in the middle dimension. Then for x,y e 

Hn(F), <x,y> = @(x,(m-h)y) 

Proof. By 2.7, (-i) (n+l) (n+l)@(y,x) : @(x,hy) By 2.6, <x,y> = @(x,y) + 

(-l)n@(y,x) = @(x,y) - @(x,hy) = @(x, (I-h)y) This proves the corollary. 

In the rest of this section we will analyze the relationship between the 

eigenvalues of the monodromy and the structure of the Seifert pairing in the middle 

dimension. Thus we fix a fibered knot K = (s2n+l,K) with fiber F , monodromy 

h , and Seifert and intersection forms as in Corollary 2.8. Let A = Hn(F) ~ • . 

Then <,> and @ extend to forms on A via the formulas <x ® e,y ~ ~> = 

~8<x,y > and @(x ~ ~,y ~ ~) = ~8@(x,y) for e,8 e ~ and x,y e Hn(F) . The 

bar denotes complex conjugation. Thus <,> be comes a Hermitian or skew-Hermitian 

form on A , and @ a sesquilinear form. Let h:A ÷ A denote the usual monodromy 

tensored with i~ . 

Consider the Jordan normal form for h:A ÷ A . Then A = ~A X where l is 

an eigenvalue for h and A 1 is the corresponding subspace. (A basis can be 

chosen for A l such that h I = hlA l is a l-Jordan block , and h = @ h I) . 

Theorem 2.9. Let K be a fibered knot as above with monodromy h and complex 

Seifert pairing @:A x A ÷ { . Then ~ is an orthogonal direct sum of its restric- 

tions to the Jordan subspaces A l . That is, if x 8 A 1 and y e A with I # 

then @(x,y) = 0 . Furthermore, if @IAl~ 0 then I llll = 1 . Thus, only unit 

length eigenvalues of the monodromy are relevant to the Seifert pairing. 
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Proof. To prove that 01A l 7 0 :> IIkIl = 1 it will suffice to assume that I # 1 

and that hlA l corresponds to a single Jordan block. That is, we assume that Al 

has a basis {e0,el,...,es} such that he 0 = le O and he k = le k + ek_ 1 for 

k = 1,2,...,s . We shall let 0 denote 01A l with this basis. The proof will 

proceed by induction on s . 

Note that <x,y> = (-l)n<y,x> . Thus we have <e0,e0 > = @(e, (I-h) e0) = 

0(e0, (l-l)e 0) Hence <e0,e0 > = (l-l)@(e0,e 0) . Therefore (1-1)@(e0,e 0) = 

(-l)n(l-l)@(eo'eo) " Since we also know that <x,y> = @(x,y) + (-l)n@(y,x) and 

are assuming that I ~ 1 , this implies that (l-l)@(e0,e 0) = @(e0,e 0) + 

[(l-l)/(l-~]@(e0,e0) . Hence, if @(e0,e 0) ~ O , then (i-~ (l-h) = (I-~ + (l-h) . 

Therefore l~ = 1 and I I~I]= 1 . This completes the proof for s = 0 . 

Continuing by induction, we assume that the result has been shown for all 

Jordan blocks of size less than s . Let Bs_ 1 [e0,el,...,es_ I] ~ A l denote the 

subspace spanned by these basis vectors. By induction, if @IBm_ 1 7 0 then 

I I~II = 1 . Thus we may assume that @IBm_ 1 z 0 . Under this assumption we now make 

a second induction on s to show that @(es,ek) ~ 0 or @(ek, e s) ~ 0 for any 

k satisfying 0 ~ k < s implies that I III I = 1 . 

To start this second induction, note that <as,e0> = @(es,(I-h) e0) = 

(l-k)@(es,e 0) while <e0,es > = @(e0,(I-h) es) = @(e0, (l-l)e s - as_l) = (l-i)O(e0,es) 

(since @IBm_ 1 ~ 0 , @(e0,es_l) = 0). The same argument as in the first induction 

at s = 0 now shows that @~e0,e s) ~ 0 => I Ill I = 1 . To complete this second 

,e k) = @(ek,e s) induction, suppose that @(e s = 0 for 0 ~ k < £ ~ s - 1 . Then 

a similar computation shows that @(es,ez) ~ 0 or @(el,e s) ~ 0 => Ilkl I = 1 . 

This completes the second induction. 

We now may therefore assume that @(ei,e j) = 0 for i ~ s and j ~ s . 

Thus, since @ 7 0 , @(es,e s) ~ O . But <ess, e > = @(es,(l-l)es - as-l) = 

(l-l)@(es,e s) . Hence the same calculuation as before shows that IlIIl = 1 . This 

completes the first induction and hence the proof that OlAf 7 0 => I I~II = 1 . 

The rest of the proof is obtained by very similar induction arguments. The 

details will be omitted. Different Jordan blocks corresponding to the same eigenvalue 

I are, in fact, orthogonal for @ . 

Remark. For eigenvectors there is a direct relationship between the eigenvalue and 

the value of the Seifert pairing. Suppose that @(x,x) = o~ 0 and that hx = 

lx . Then (as in the proof above) (l-l)e = (-l)n(l-i)e . If I ~ 1 , then 

(l-l)/(l-~) = -l . Hence ~ = (-1)n+l~ . For example, if ~ = 1 - w with w ~ i, 

[]~II = 1 and n = 0 then ~ =-(i-~)/(i-~) = ~. If ~ = (l-~o)...(l~ n) 

with w i ~ 1 ,II~ill = 1 then I = W0Wl...w-- n. 

An example. Consider the empty knot of degree a, [a] = (sl,~;a)~ where a is a 

2 .., a-l} where positive integer. This knot has spanning surface F = {l,~,w ,. 

= exp(2~i/a) Thus ~0(F) ~ ~ a-i with basis {e0,el, .... Ca_ 2} where 
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ek = [ k] _ [ k+l] and [p] denotes the integral homology class of the point 

p e F . The monodromy acts via rotation by 2~/a , hence h[~ k] = [ k~l] and 

2 + ... + wa-i = 0 and therefore he k = ek+ 1 (but note that 1 + ~ + w 

ea_ 1 = -(e 0 + e I + ... + e a 2 ) ) . Let A = H0(F;~) . The eigenvalues of the 
--.2 -a-i 

mondromy are ~,~ ,...,~ A corresponding basis of eigenvectors is given by 

k .2k (a-l)k 
E k = e 0 + ~ e I + ~ e 2 + ... + ~ ea_ 1 . The integral Seifert pairing has 

matrix ia with respect to the basis { e 0 ..... ea_ ~} , where 

a ~--~ is an (a-l) × (a-l) matrix. 

1 

. 1 

1 

It is an easy calculation to see that the Seifert pairing over • is diagonal. 

Its matrix Aa ' with respect to the basis {EI,E 2,.•.,Ea_ I} is given by 

the diagonal matrix 

A = 
a 

1 _ 2 

a _  

III. Branched Fibrations and Knot Products 

In this section we define branched fibrations and explain their relationship 

to singularities, fibered knots and knot products. 

2 n+l 2 
Definition 3.1. A branched fibration over D is a smooth mapping T:D ÷ D 

such that T-I(0) < CL where L c S n is a knot, and CL denotes the cone on L . 

The mapping T must satisfy the following two conditions: 

i) TIsn:s n ÷ D 2 is a fibered structure for (Sn,L) . (see 2.4). 

ii)TID n+l - CL:D n+l - CL ÷ D 2 - {0} is a smooth fibration. 

Any fibered knot gives rise to a branched fibration as follows: Let 

[ = (Sn,L;b) be a fibered knot. We may alter the structure map b so that it 

has only regular values in the interior of D 2 . Then define cb:D n+l ÷ D 2 by 

the equation cb(rx) rb(x) where 0 < r <i and x e S n Let T:D n+l 
2 

= . + D  

n+l 2 
be the result of smoothing cb at the cone point. Then T:D ÷ D is a branched 

fibration so that TIS n is the given fibered structure for [ . 

This correspondence between branched fibrations over the disk and fibered 

knots is an abstraction from the case of isolated singularities. If f:(~n,0) ÷ 

(~,0) is an isolated complex polynomial singularity with link i(f) = (s2n-l,L(f)), 
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then we let Nf = {z ~ D 2n llf(z) II < 6} where 0 < ~ << £ . Then f:Nf ÷ D 2 is 
£ 

a branched fibration. 

Note that the most elementary branched fibration over D 2 is simply a ramified 

2 2 a 
covering of the disk:~a:D ÷ D , ~a(Z) = z This corresponds to the empty knot 

of degree a . 

2 
÷ D 2 is a local model for a cyclic branched covering, a Just as Za:D 

n+l 2 
branched fibration T:D ÷ D may be used as alocal model for more general 

branched fibrations. 

Thus suppose we are given a manifold M containing a properly embedded 

codimension two submanifold V ~ M . Suppose that there exists a smooth mapping 

e:M ÷ D 2 , transverse to 0 e D 2 , so that V = e-l(0) . Then a new branched fibra- 

tion TM:T(M,V) ÷ M is formed by constructing the pull-back 

n+l 
T (M,V) --> D 

1 
M ~> D 2 

That is, T(M,V) = {(re,x) e M x Dn+lle(m)' = Y (x)} and TM(m,x) = m . The mapping 
I 

fibration away from V~ M and T-~(v) = CL for each v ~ V 
YM 

is a smooth 

(L C. S n is the fibered knot corresponding to T ) . 

If T = ~ :D 2 + D 2 , then this pull-back yields an a-fold cyclic branched 
a 

covering with branch set V . In the general case, the restriction of T M to a 

normal disk to v e v recovers T The construction T (M,V) will not always be 

independent of e ; this is the case when M is 2-connected (see [KN]) . See 

([KN]) also for a general definition of a branched fibration of M along V . 

Product Construction. Let KC S n be any knot and L~ S n be a fibered knot with 

associated branched fibration T :D m+l ÷ D 2 . Then there is a well-defined knot 

product K ~ [= (sn+m+l,K ~ L) . It is defined as follows: 

Let Fnc D n+l be a properly embedded submanifold of D n+l such that 

~F K~ S n Let ~:D n+l ÷ D 2 be a mapping transverse to 0 e D 2 = . so that 

-i 
(0) = F . We may then form the pull-back 

T (Dn+I ,F )  - - >  D m+l 

n+l a 2 
D --> D 

The knot product is defined by taking boundaries: 

(sn+m+l,K ~ L) = (~(D n+l × D m+l) ,~T (Dn+I,F)) 

Note that when L = [a] , the empty knot of degree a , then K ~ [a] is 

the a-fold cyclic branched covering of S n along K and the construction gives an 

embedding K ~ [a] C S n+2 . This new knot, K ~ [a] , is called the a-fold cyclic 
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suspension of K • 

This product construction enjoys a number of useful properties, as summarized 

in the next theorem (proved in [KN]). 

Theorem 3.2. Let K = (Sn,K) be a knot and L = (Sm,L) a fibered knot. Then 

i) If K and L are both fibered then so is K ® i , and 

L ~ K : (-l)(n-l)(m-l)K ~ L. (Here-(S,K) = (-S,-K).) 

ii) The product operation is associative. 

iii) Suppose that F ~ ~n+l is obtained by pushing the interior of a spanning 

surface F for K into the interior of D n+l . Let T:D m+l + D 2 be the branched 

fibration corresponding to L; let G be a spanning manifold for [ . Then 

K ® L has a spanning manifold M that 'is diffeomorphic to Y (Dn+I,F) Furthermore, 

M has the homotopy type of the join F*G . 

iv) With notation as in iii), note that H~(M) ~ H~(F) ~ ~(G) (~ = ~*-i ' 

H as in section 2). If O K and @L are seifert pairings of K and L with respect 
~ 
F and G , and @KeL the Seifert pairing of K ~ L to the spannning surfaces 

with respect to M , then 

gK~L = GK ~ @L 

using the above decomposition of the homology of M . That is, for elements of 

homogeneous degree 

@K®/(a®a',b®b') = (-I) Ia'Jlb]@K(a,b)0L(a,,b,) 

(where x ~ HTx I = Hl xi_ 1 defines the H, grading). 

v) If f: (~n,0) ÷ ({,0) and g"({m,0) ÷ ({,0) are isolated complex 

hypersurface singularities, then f + g:( n x {m,0 ) ÷ (~,0), (f + g) (x,y) = 

f(x) + g(y) is also an isolated singularity and /(f + g) ~ L(f) ~ L(g) . 

signature problems. Given a knot K = (s4n+I,K) with spanning surface F of 

dimension 4n one defines the signature of K , o(K) , to be the signature of the 

spanning surface. Thus O(K) = o(F) . Standard arguments using the Novikov 

addition theorem (see [AS],[KT]) show that this signature is independent of the 

choice of spanning surface. In order to generalize this notion, let 

D £+I D 2 T: ÷ be a branched fibration corresponding to a fibered knot i = (Si,L) . 

Let L = (sk,K) be any knot and assume that 41 (k + Z) Define the T-signature 

of K , a (K) , by the formula ~ (K) = 0(K ® L) . 
T T 

Since we know from 3.2 that K ® L has a spanning surface M r T (Dk+I,F) 

where F is a pushed-in spanning surface for K , the T-signature is the signature 

of this branched fibration. Thus o (K) : a(T(Dk+I,F)) The rest of this section 
T 

will be devoted to showing how to compute this signature. We shall use part iv) 

of Theorem 3.2 to reduce the problem to signatures of forms related to the 

Seifert pairings of the two knots. 
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Lemma 3.3. Let K = (sk,K) be any knot, L = (SZ,L) be a fibered knot with associ- 

k+l 
ated branched fibration T . Let F ~ D be a pushed in spanning surface for 

K , and G be a fiber for i . Let M = T (Dk+I,F). Assume that 4[ (k + ~) . 

Then o(M) = 0 unless k and ~ are both odd. Given that k and Z are odd, 

let A = H (F) @ H (G) where p = (k-l)/2, q = (Z-I)/2 . Let <,>:A x A ÷ 
P q 

denote the restriction of the intersection form on Hn(M) to A (via 3.2, iv) 

with n = (k + ~)/2) . Then o T (K) = j(A,<,>) . 

Proof: We know that Hn(M) ~ • H (F) ® Ht(G) . The intersection form decomposes 

s+t=n~l 

as an orthogonal sum on parts A(s,t) @ A(k-s-l,Z-t-l) = B(s,t), A(s,t) = 

Hs(F) ® Ht(G) × Hk_s_I(F) ~ HZ_t_ 1 Let d(B(s,t)) denote the signature of the 

form on Hn(M) × H (M) restrictied to B(s,t) Now suppose that s ~ k-s-i or 
n 

t # Z-t-i - Then the form on B(s,t) will have a matrix N = [~t O~ if a 

basis of B(s,t) is chosen with respect to ~e tensor decomposition. But certainly 

o(N) = 0 and this suffices to prove the lemma. 

In the light of this lemma we let K = (sk,K), L = (S~,L) where k = 2p + 1 

and ~ = 2q + 1 . Assume that 41 (k + ~) . Let @ be the Seifert pairing for K 

on H (F) and ~ be the Seifert pairing for i on H (G) . We will continue to 
P q 

use this notation for the rest of the section. 

c 
Definition 3.4. Let @I be the complex hermitian or skew-hermitian form defined 

s ±i by the equation @I = (i-~)@ + ~(i-I)0" where 8 = andlisany complex number of 

unit length. (* denotes conjugate transpose here.) Define d(K;l,e) by the 

~ is skew-hermitian then 0 (@~) formula o(K;l~) = o(@ ) . Note that if a form @i 

is, by definition, the signature of the hermitian form (-i)@~ . 

The notation that follows will be useful in formulating the next theorem. Let 

F and G be spanning surfaces for K and L as described above. Let A = H (F;~) ® 
P 

(G;~) and write H (G;~) = ~ B1 where B 1 is the Jordan subspace of H (G;~) 
q q q 

corresponding to an eigenvalue ~ of the monodromy h:H (G;~) ÷ H (G;~) . Finally, 
q q 

let Q(1) denote the restriction of the Seifert pairing ~ to the subspace B1 . 

Definition 3.5. With notation as above, let e = (-i) q and ~ = (-I) (P+I) (q+l) 

Define O(T;~) by the formula o(T;l) = ~(~(I) + 8~(I)*) Define ~(K) by 

the formula 01(K) = ~ o ( O  ~(I} + O* ~ ~(I)*) . 
T 

Theorem 3.6. Let K = (s2p+I,K) be any knot and T a branched fibration corres- 

ponding to the fibered knot L = (s2q+I,L) . Let ~ = (-i) q and D = (-i) (p+I) (q+l) 

Then, using the notation developed above, one has the following formulas for o (K) . 
T 

i) O (K) = ZoI(K) where 1 runs over all eigenvalues of the monodromy h 
T IT 

for T satisfying llli] = 1 . 
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2) If each Jordan subspace B l for IIII J : 1 , i # 1 is in fact the 
1 

X-eigenSpace (i.e., hIB 1 has no nilpotent part), then G T (K) = ~o(Y;l)o(K;l,s) 

Hence 

T ' Y 
leE 

where E = {iIII~II = i, ~ ~ 1 , ~ an eigenvalue of h} 

Proof. First note that the sign ~ : (-i) (p+I) (q+l) 
comes from the grading conven- 

tion on the Seifert pairing for K ~ L as given in 3.2(iv). By 3.3, we need only 

consider A = Hp(F) ~ Hq(G) for signature computations. Since by Theorem 2.9 

the decomposition A = ~B 1 gives an orthogonal decomposition of @i ' we conclude 

that the signature uT(K ) : o(K ~ L) is the sum of the signatures obtained from 

tens@ring H (F;~) with BI . This gives part i). 
P 

To see the reduction in part 2) it is convenient to use matrix notation. Let 

V denote a matrix for ~(I) Let H be the monodromy on this subspace. Let W 

be a matrix for @~ on H (F;{) . Then by the remark after Proposition 2.7, 
P 

H = -CV-Iv * where ~ = (-i) q and * denotes conjugate transpose. For part 2) 

we are given that H = II , I an identity matrix, and I ~ 1 , I llll := 1 . Thus 
% 

= -elV . Let X = W ~ V + W* @ V* . Then we know that 0~(K) = ~o(x) . But V* 

X = W @ V -elW* 8 V and it is easy to see from this that X = [(I-I)W + E(I-I)W*] 

[((i-i) (I-~))-I(v + sV*)] . Since the signature of a tensor product of (skew)hermitia] 

forms is the product of the signatures, this shows that o(X) = 0(K;I,c)o(T;I) 

This completes the proof of the theorem. 

Remark. The signatures o(K;I,E) are well-known (see [DK], [L2] and [T]) It is 

also worth remarking that computing ~ (K) actually amounts to finding ~ (T (Dk+I,F) 
Y 

k+l 
where F C-D is any properly embedded codimension-two submanifold with 

S k . We defined 0 (K) when F was a pushed-in spanning surface. A ~F K~ 

standard (see [KT]) Novikov addition argument shows that ~ (K) = o(T (Dk+I,F)) for 
T 

an arbitrary surface as above. 

IV. Applications and Examples 

Brieskorn manifolds. Here T is the branched fibration corresponding to the 

a 0 a I n 
singularity f(z) = z 0 + a I + ... +Zn n(n+~d L = (s2n+I,L) where L = L(f) . 

By Theorem 3.2, we know that @u -- (-i) 2 A ®A ®...®A where A is the 

a 0 a I an a 

Seifert pairing for the empty knot of degree a . Since (as in section 2) i : a 

Diag(l -~ 1 - 2 ,I _ a-l) where ~ exp(2~i/a) we let ~k" exp(2~i/ak) r . . .  = , = • 

Then @ is isomorphic to a diagonal matrix with entries e(<) = 

(i_~;0) <l K (-i) (l-e I )... (i-~ n) where ~ for n = (<0 ..... <n ) and 0 < <. < a. ] ] 

j = 0,1 .... n . The monodromy matrix H is also diagonal with eigenvalues 

<0 <i K ~ign (Re (e (~)) 
I~ = D 0 Z1 "''5 n Thus o(T;l~) = 

,n even 

n LSign(Im(e(K) ) ,n odd 
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where Re and Im 

(as in [B]) that if E(<) = ~(T;~<) then 
÷ 

s (<) = ~i if 

otherwise 

stand for real and imaginary parts respectively. 

0 < ~< < 1 (mod 2) 
s /as 

s 

(mod 2) 1 < ~<s/as < 2 
s 

It then follows 

Thus, given K = (s2p+I,K) with 41 (p+n) we conclude that 

~ (K) = (-i) (n+l) (p+l) ÷ ÷ ÷ ~ ÷~(<)a(K;XK,~) 
0<K<a 

+ + 
where s = (-i) n and < < a means K. < a. for all i . 

1 l 
a 

Covers. A case of special interest is f(z 0) = zoO This Cyclic corresponds to 
a-i 

a standard cyclic cover. Thus a[a] (K) = ~ u(K;xS,I) where K = (s2q+l,K) 
F 

S=I 

q is odd,and X = exp(2zi/a) 

Note that 5[a] (K) = 0([a] (D2q+2,F)) = Sign(F a) where FC D 2q+l is a 

spanning manifold for K and F is the a-fold cyclic branched covering of D 2q+2 
a 

along F . In this case the decomposition corresponds to an eigenspace decomposition 

of ~+l(Fa;~) with respect to the covering translation for the branched covering 

Fa + D2q +2 The monodromy of the empty knot [a] corresponds directly to this 

deck transformation. 

Links in S 3. Recall that two oriented links L and L' ~ S 3 are concordant if 

there is an embedding j:C x [0,1]c.~ S 3 x [0,i] such that (S3,L) = (S 3 x 0,j(C x 0)) 

and (S3,L ,) = (S 3 x I,j(C x i)) where C is a disjoint collection of (oriented) 

circles. If a is a power of a prime number, then it follows as in [GD] that 

~[a] (L) is a concordance invariant of L C S 3 . Similarly, ~(L;w,l) is a 

concordance invariant for ~ = exp(2~iK/a), 0 < < < a, a = pS , p a prime. 

Let g (L) = g(L;~,l) . By using our approach for cyclic covers, we can extract 
w 

information about these signatures. For example, we shall give a well-known 

(see [T]) relationship among signature, genus and nullity. 

First recall some further definitions: The multiplicity, #(L), of a link 

L C S 3 is the number of components of the link. Given L ~ S 3 , let F' ~ D 4 

be a pushed-in connected spanning surface for L , and let F' denote the a-fold a 

cyclic cover of D 4 branched along E' , and L the a-fold cyclic cover of S 3 
a 

branched along L . With w as above, let <,> = (I~)0 + (l-m)@* where 

Q:HI(F,;{) x HI(F';~) ÷ ~ is the Seifert pairing. The e-nullity is defined 

by the formula, qw (L) = (nullity <,> ) + 1 . It is easy to see that q~ (L) - 1 

equals the rank of the ~-eigenspace of HI(La;~) with respect to the covering 

transformation. 



214 

Theorem 4.1. Let F~ D 4 be any connected orientable, properly embedded surface 

so that ~F = L ~ S 3 . Let g(F) denote the genus of F . Let ~ be a primitive 

th s 
a root of unity where a = p , p a prime. Then 

Io (L) I < g(F) + v(L) - qw (L) . 

Proof. Let N denote the a-fold cyclic branched cover of D 4 along F . It is 

easy to see that Hl(N) = 0 , and the relative sequence for (N,$N) then shows 

that 81(N,~N) = 0 (81 = first Betti number). Hence 83(N) = 0 by Lefschetz 

duality. Let X denote Euler characteristic. Then X(N) = a - (a-I)X(F) and 

X(F) = 1 - BI(F) = 1 - (2g + ~ - i) = (2 - 2g) - ~ where g = g(F) and 

a C = ~(L) Hence 82(N) = (a - I)BI(F) . Let H2(N;~) = @ = H(K) where H(~) 

denotes the eigenspace corresponding to w < Then dimH (<) = (a_~) dimH 2 (N;C) = 

~I(F) Let '> = <;>w = the intersection pairing restricted to H(1) . Thus 

low(L) I < dimH(1) - nullity <,> 

= ~I(F) - nullity <,> 

= 2g + ~ - 1 - Nw (L) + 1 

= 2g + ~ - Nw 

Hence low (L) ~ 2g(F) + ~(L) - n w (L) . This proves the theorem. 

G-signatures. For cyclic covers these methods also let us calculate g-signatures 

where g is some power of the covering translation. Let K = (s2q+I,K) with 

D2q +2 q odd, and let F ~ be a spanning manifold in the disk so that 8F = K . 

Let g:F ÷ F be a covering translation so that g,:Hn+l(Fa;~) ÷ Hn+l(Fa;~) is 
a a th 

represented on the eigenspaces H(<) by multiplication by 6 < for ~ an a 

root of unity. The usual definition of g-signature (see [AS]) becomes 

~a-i ~K(H(<)) in this context. Since our method gives O(H(K)) in O (g'Fa) = K=I 

terms of the Seifert pairing, this formula may be computed explicitly. 

An interesting special case is given by V ~ > S 2 , a d-fold cyclic cover 

branched along d points. The branched covering space V is the completion 

of the covering of X = S 2 - {d points} which corresponds to the representation 

~I(X) ~ > ~ > >~/d~ where e takes each standardly oriented generator to 

1 e ~ It is easy to see that V - {d-disks} ~ F d where F d is the fiber of 

d d 
the branched fibration corresponding to z 0 + z I . From this one computes directly 

i0 
that 0(g,V) = d coth(i@/2) where g corresponds to ~ = e This is, of 

course,a very special case of the Atiyah-Singer G-signature theorem. This 

approach has been used by Patrick Gilmer in [G]. It is also instructive to form 

V directly by a cut-and-paste construction and then do the calculations from a 

direct geometric base. 
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V. A Generalized Hirzebruch Construction 

So far we have restricted ourselves to branched fibrations closely related 

to knot theory. In order to form more general branched fibrations, we generalize 

a construction due to Hirzebruch ([HI) . 

Let vm-2~ M m be an inclusion of closed manifolds. Assume that the 

homology class of V , [V] e Hm_~(M;TZ ) , is Poincare dual to dx for x e 

H2(M;2Z ) where d is a (non-zero) integer. Under these conditions there is 

a well-defined d-fold cyclic branched cover of M with branch set V . We assert 

the corresponding statement for a certain class of branched fibrations. 

Definition 5.1. Call a branched fibration T :D 2k ÷ D 2 d-equivariant if it satisfies 

the following conditions: Let S 1 act on D 2k = {z e ~I Ii z I I = i} by the formula 

~i ~2 ~k 
I • (Zl,Z2, .... Zk) = (I Zl,l z 2 .... ,I Zk) for a chosen set of positive integers 

~l'~2'''''~k " Then, with respect to this action, T (I • z) = IdT (z) 

For example, the branched fibration corresponding to a Brieskorn polynomial 

a k f(zl,...,z k) = z~ I + ... + z k is d-equivariant for d = least common multiple 

(al,a 2 ..... a k) - 

Proposition 5.2. Let T:D 2k ÷ D z be a d-equivariant branched fibration. Let 

m-2 
V ~ M TM be an embedding of closed manifolds so that the Poincare dual of 

[V] ~ Hm_2(M;~Z ) is divisible by d . Then there is a manifold M and a smooth 

mapping ~ :M ÷ M forming a T-branched fibration of M along V . 

Proof. Let ~ ÷ M be the complex disk bundle with first Chern class Cl(A) = x 

where dx = Poincare dual of [V] . Let D~ denote D 2 with the circle action 

1 
• z = Adz . Note that if X and Y are S -spaces, then one defines 

X x Y = {[x,y] l(~x,y) (x,~y) for i e S 1 ~ ; [x,y] = equivalence class of (x,y)} 
S1 2 × = 

Thus D 0 S1 A A -d where A denotes the circle bundle associated with ~ and 

is the d-fold tensor product of A with itself. 
2k 

Let E = D x A . Then T induces a mapping T:E ÷ ~ by the formula 
S 1 

T[z,x] = [T(z),x] . Note that T is a T-branched fibration of / along its 

zero section M ~/ . 

Since Cl(~) = dx is Poincar~ dual to V ~ M , there exists a section 

s:M ÷ Ad so that s is transverse to M and s(M) ~ M = V . 
^ 

Let M = ~-is(M) and ~:M ÷ M be the restriction of a:E ÷ M where 

a[z,x] = p(x) , and p: A ÷ M is the bundle projection. This constructs the 

desired branched fibration. 

Remark. For branched coverings this construction appears in an article of 

Hirzebruch ([HI) The construction is summarized by the following diagram: 
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T 

The next theorem generalizes a result obtained by P.Gilmer for cyclic 

coverings (~]) 

Theorem 5.3. With notation as above, we may obtain information on the tangent 

d 
bundle of M as follows: Let T( ) denote the re'al tangent bundle. Let /A 

denote the underlying real vector bundle of ~ and • the underlying real vector 

bundle of E ÷ M . Then 

T([~) • ~*(/k d) : I[*(T(M) ~gE) . 

Proof. The proof is identical in form to that given by Gilmer. We have 

• v~ = i*T(E) T(M) 

= i*(a*T(M) @ a'E) 

= z*(T(M) • ~) 

~d y 
while vE = i,/,vS(M ) = ~,(~d) Here v x denotes the normal bundle of 

in Y . 

Remark. For cyclic branched covers, this result is extraordinarily useful, since 

dim M = dim M and M is closed if M is closed. Thus the formula of 5.3 in 

conjunction with the Hirzebruch Index Theorem gives formulas for the signature of 

cyclic branched covers. 

The situation is not all so fortunate for branched fibrations. Now M need 

not be closed and it will have higher dimension than M . Thus 5.3 is only a first 

step towards the Signature of branched fibrations. We hope to continue this 

study in another paper. 
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