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SIGNATURE OF LINKS
BY

LOUIS H. KAUFFMAN AND LAURENCE R. TAYLOR

ABSTRACT. Let L be an oriented tame link in the three sphere $3. we
study the Murasugi signature, o(L), and the nullity, n(L). It is shown that o(L)
is a locally flat topological concordance invariant and that n(L) is a topological
concordance invariant (no local flatness assumption here). Known results about
the signature are re-proved (in some cases generalized) using branched coverings.

0. Introduction. Let L be an (oriented) tame link of multiplicity u in the
three-sphere S3. That is, L consists of u oriented circles K, . .., K . disjointly
imbedded in S3. Various authors have investigated a numerical invariant, the
signature of L (notation: o(L)). The signature was first defined for knots (u = 1)
by H. Trotter [21]. J. Milnor found another definition for this knot signature
(see [12]) in terms of the cohomology ring structure of the infinite cyclic cover
of the knot complement. In [2], D. Erle showed that the definitions of Milnor
and Trotter are equivalent. In [15], K. Murasugi formulated a definition of
signature for arbitrary links.

In this paper we investigate the Murasugi signature in the context of branched
covering spaces. To be specific, let D* denote the four dimensional ball with
dD* = 83, and let L C S3 be a link and FC D* a properly imbedded, orientable,
locally flat surface with 8F = L C §3. Let M denote the double branched cover
of D* along F. Then we show that o(L) is the signature of the four manifold M
(see Lemma 1.1 and Theorem 3.1). Our proof of Theorem 3.1 contains the
technicalities necessary to show this in the topological category. Using this view-
point we are able to prove that o(L) is a topological concordance invariant
(Theorem 3.8). We also rederive many of Murasugi’s results, generalizing some
of them (see Theorems 3.9-3.16). ,

The paper is organized as follows: §1 contains the classical definitions of
the signature and nullity of a link. It also deals with necessary background con-
cerning branched coverings.
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§2 contains theorems about the nullity of a link. The nullity is one plus
the first Betti number of the double branched cover of §3 with branch set all of
L; it is denoted n(L). We show that nullity is an invariant of link concordance
and isotopy (Theorem 2.6). The section also contains a useful lemma about
double coverings (Lemma 2.8).

§3 discusses the link signature. We show that o(L) may be computed from
various double branched covers (Theorem 3.1) and that it is independent of the
choice of spanning surface used in its definition. A number of specific results
about signature are collected here. One key to our approach rests in Theorem
3.4 which gives the basic estimate for our inequalities.

84 contains examples.

1. Definitions and branched covers. The three-sphere, S3, will be given a
fixed orientation throughout.

Let L be a tame (i.e., locally flat) oriented link imbedded in $3. Choose an
orientable spanning surface F for L; orient F so that 9F = L with the chosen
orientation.

The Seifert pairing 6: H,(F) x H,(F) — Z is defined by the formula
6(a, b) = l(isa, b). Here I( ,) denotes linking number in S3, and i, denotes the
operation of pushing into the complement of F along the positive normal direction.
Define a pairing f: H,(F) x H,(F) — Z by the formula

fla, b) = 0(a, b) + 6(b, a).

This symmetrization of the Seifert pairing is bilinear, and hence it has a well-de-
fined signature.

DEFINITION. The signature of L is defined by the equation o(L) = signature
of f.

This is essentially the Murasugi definition. In [15] Murasugi takes F to be
a Seifert surface. This is a surface constructed by Seifert’s algorithm (see [17])
from a projection of the link on §2. He then associates a matrix M with this sur-
face and defines o(L) = signature(M + M"). One can verify that M is the matrix
of § with respect to an appropriate choice of basis for H, (F) (see [7, pp. 37-50]).
We allow an arbitrary spanning surface in our definition, but this will be seen to
be legitimate in §3.

A few remarks about branched coverings will allow the first reformulation
of this definition of signature.

Let NV be any oriented manifold with boundary such that H,(V; Z,) = 0.
Let F be any orientable codimension two locally-flat submanifold such that

[F,0F]=0€H,_,(N,dN;Z,) (n=dim®V)).

Consider the relative sequence for the pair (N, N — F).
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0=H'(N;Z,) — H'N - F; Z,) — H*(N, N - F; Z,) — H*(N; Z,)

1 2

A

H, ,(F,0F;Z,) — H,_,(N, oN; Z,)
3

H(F; Z,)

The maps 1, 2 and 3 are isomorphisms induced by Alexander duality (1) and
Lefschetz duality (2 and 3). Thus H'(N - F; Z,) = H°(F; Z,). Choose a €
HY(N - F; Z,) so that a corresponds, under this isomorphism to the sum of the
generators of HO(F; Z,). Note that a is independent of the orientation choice
for F. Let N~ F be the two-fold covering space of N — F determined by a.

Lt N=N-FUF , and topologize it as follows. Let m: N —> N be de-
fined by n(x) = p(x) for x € N-Fand n(x) = x for x EF. Here p: N-F—
N — F is the covering map. Let N have the topology generated by the sets
7~ Y(U) where U is open in N = F, and p~}(V N (N — F)) U (V N F) where V is
a connected open set in NV having nonempty intersection with F. Then the map
m is continuous, and it is clear from the local-flatness of F that Nisa topological
manifold. The manifold N will be referred to as the double branched cover of
N along F; it will be oriented so that  has degree +2.

LemMA 1.1. Let N = D* and let F C N be the result of pushing a span-
ning surface for the link L into D* so that 9F = L, FN\ 8% = L. Then o(L) =
o(N'). Here o(]T’) denotes the signature of the middle dimensional cup-product
form on H*(N, aN).

ProoF. This follows from Proposition 5.2 of [8] where it is shown that
the intersection form on Hz(ﬁ) has matrix ¥ + V? where V is the matrix of the
Seifert pairing 8 with respect to an appropriate basis.

This lemma is the key to our approach to the link signature in §3.

Another useful invariant of links is the nullity. Let L C S> be a tame,
oriented link. Let M denote the double branched cover of S along L. The
nullity of L is defined by the formula n(L) = 8,(M) + 1. Here §, denotes the
first Betti number.

It follows from Lemma 1.1 and the homology sequence for the pair (N, dN)
that (L) = nullity(V + V*) + 1, for V the Seifert matrix for a connected span-
ning surface. This shows that our definition of nullity coincides with that of
Murasugi.

REMARK 1.2. It follows from Proposition 5.2 of [8] that if we take even
a disconnected spanning surface for L in S3, and let N be the double branched
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cover of D* along the pushed-in surface, then H,(N) — H,(, dN) is given by
V + V. Hence the signature of ¥ + V7 is always the signature of the link. If
the spanning surface F has r components, then n(L) = nullity(V + vt +r.

2. Nullity theorems. Our definition of the nullity provides easy proofs of
many theorems. As a start, since branched covers do not depend on the orienta-
tion of either the base manifold or the branch set we obtain the following.

THEOREM 2.1. The nullity is independent of the orientation on S3 and the
orientation of the link. It is also independent of the choice of spanning surface.

If L, and L, are links in S3 let L, o L, be the link obtained from S3# 53
with L, in one piece and L, in the other (disjointly). Let L; © L, be the link
obtained by choosing a 3-ball, B;, in each S* such that B; N L; is a single strand.
Form $3 # 53 by removing these 3-balls, and let the gluing homeomorphism
§2 — §? take the two points in 3B, N L, to the two in 3B, N L,. The link
L, ®L, is not well defined, but we let this symbol denote any link obtained by
the above procedure.

THEOREM 22. n(L, o L,) =n(L,) + n(L,),n(L, ®L,) = n(L,) + nL,)
- 1.

The proof, which is left to the reader, consists of looking at double branched
covers for L; o L, and L, ® L,.

Let us decompose the double branched cover, N, of S3 along L as follows.
There is V, a tubular neighborhood of the branch set, and ]T/I, a double cover of
M = 83 — T; here T is a tubular neighborhood of L C S3. Mayer-Vietoris gives

1 ~
H,(0V) = H,(v) ® H, (i) — H,(N) ——> Hy(7)

S

H,(3T) —=> H,(T) ® H, (M) —> H,(5%) —— Ho(3T)

Maps 3 and 4 are easily seen to be zero. The map 7 is induced from a col-
lection of tori double covering themselves. Thus, with rational coefficients, it is
an isomorphism. Hence 1 is a monomorphism since 2 clearly is. We conclude that
n(L) = B, (3D — u@) + 1.

This shows that the nullity depends only on M, or only on S3—Landa
homomorphism H,(S® - L; Z,) — Z,.

To compute n(L), we could compute H*(M; Z,) and apply the Bockstein
spectral sequence. This is not as facetious as it sounds, for H*(JT{ 3 Z,) is easy to
compute using the Gysin sequence. (We are indebted to Frank Connolly for sug-
gesting the Gysin sequence approach, which greatly simplified matters.) The Gysin
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sequence reads
C—> Hyy (M 2,) DX 1, 2,) — H(8; 2,) " B (0 Z,) — -

(e.g., Spanier [18, p. 260]).

In our case, using Alexander duality, H,(M; Z,) = Z“(L) generated by me-
redians in 3T; H,(M; Z,) = Z4®)~1 and H,(3T; Z,) maps onto it. The map

H,(0T) — H,(M) —x->H 1 (M) is given by the matrix L = (l ;) where [;

I (ith component, jth component) for i # j, and [;; = — 2% (L) =131l (ThlS may be
seen by 1nterpretlng the map nx as intersection w1th a spanning surface for L.)

Since BI(M) < dim H, (M, Z,), we conclude the following.

THEOREM 2.3. n(l) < nulhtyZ L where we take the nullity over the field
Z,.

CoROLLARY 24. 1 <n(L) < ulL).

REMARK 2.5. The integer nullity, ) L is a link homotopy invariant since
Milnor [13] shows L is. Example (1) shows that nullity is not a link homotopy
invariant.

We can now define n(L) = dim (quotient group of H, (JTI; Z,) consisting of
permanent cycles in the Bockstein spectral sequence) —u(L) + 1. This defines a
nullity even for wild links.

Two links L, and L, are said to be link concordant if there exists a topo-
logical imbedding of F = u(L,) copies of S! x I'in 3 x I, such that 9_F C
83 x0isL,; andd, FC 83 x 1isL,. Alink L is said to be null link concordant
if there is an imbedding of F, = u(L) copies of D? in D* such that 3F, C S is
L. Neither imbedding is required to be nice in any fashion whatsoever.

THEOREM 2.6. If L, and L, are link concordant, then n(L) = n(L,). If
L is null link concordant, then n(L) = u(L).

COROLLARY 2.7. Nullity is a link isotopy invariant (see Milnor [14]).

Proor (of 2.6). By adding a collar, we may assume our imbeddings are
proper (F C N is proper if F N ON = 0F). Let M = $3 x I - F with boundary
components 3, M and d_M. Alexander duality shows 9,M C M is a mod-2 ho-
mology equivalence. The Gysin sequence shows 9, M C M is a mod-2 homology
equivalence. The Bockstein spectral sequence shows n(L;) = n(L,).

Now consider D* — F,. Since H,(D* — F,) = Z4®) s the only nontrivial
homology group (except H,), the Gysin sequence shows H,(D* — F,) = Zz+(1)-1
is the only nontrivial homology group. Thus, using the Gysin sequence again,

H l(S3 -L)—H, (54"—7) must be onto. The naturality of the Gysin sequence
and the Bockstein spectral sequence shows n(L) = u(L).
The next to the last sentence contains an observation we will need again.
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LemMMA 28. Let f: X — Y induce a monomorphism on Ho( s Z,) and an
epimorphism on H,( ; Z,). If f X — Y is a double cover, then f* is monic on
Hy( ;Z,) and epic on H,( ; Z,). IfH (Y Z) is finitely generated, then f* is

epic on H,( ; Q). (f* is the map induced by fon homology.)

The proof is just the relative Gysin sequence and universal coefficients.
As a final result, we state

THEOREM 29. (L) = 1 if and only if V(1) # 0.
This result is proved in [5, Theorem 1]. Recall [4]

= JA@), ) =1,
7.0 {A(t, Lo, DA =0 HE) L) =2,

where A(t, ¢, . . ., t) is the Alexander polynomial.

3. The signature. Let L C S3 be an oriented link. Let F C D* be a prop-
erly imbedded, oriented, locally flat surface with 9F = L. Let N(F) denote the
double branched cover of D* along F. We wish to show that o(L) = o(V(F)).
Thus the link signature is independent of the choice of spanning surface. In the
piecewise-linear or differentiable categories, this is an easy matter: Let F'cp?
be another such surface. Let F” C D’ be a properly imbedded submanifold so
that 9F" = FU —F' C D* U—D* = §*. Then aN(F") = N(F) U =N(F").
Hence, by the Novikov addition theorem (see [1, p. 588]), o(N(F)) = o(N(F")).
In particular, let F' denote a pushed-in spanning surface for L. Then o(L) =
o(N(F")) = o(N(F)), proving the assertion.

In fact, we shall generalize this idea as follows. Let M be an oriented four
manifold with boundary such that #,(M; Z,) = 0. Let F be any orientable co-
dimension-two, locally-flat submanifold with [F, 3F] = 0 € H,(M, 0M; Z,).
Then, as in §1, we can form N, the double branched cover of M along F.

Suppose that oM = S3 with 8F C S3 some link L. Suppose also that
[F, oF] = x € H,(M, oM; Z),with x divisible by 2.

Define x? € Z as follows. Let F; C S3 denote a spanning surface for
oF C 83. Let M = M U D* with the boundary three-spheres identified. Let

=[F-F,|l€ H,(M; Z), and define x? = X2 where x? denotes the self-inter-
section number of X.

Note that x2 may also be interpreted as the linking number of 0F with oF'
in S3. Here F' denotes the result of pushing F off itself in M so that F N F'=
gand F' N M = oF".

The fundamental observation of this section is the following result.

THEOREM 3.1. o(L) = o(V) — 20(M) + Yix? where the double branched
cover N is oriented so that m: N —> M has degree +2.
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Proor. If F C M is a smooth imbedding, we proceed as follows. Let B
be the double branched cover of D* along some pushed-in surface for L. Thus
o(L) = o(B) by Lemma 1.1. Now Proposition 6.15 of [1] (see [6] for an ele-
mentary proof) shows o(V) — o(B) = 20(M) — x*/2 from which our result follows.
The same result is still true for locally-flat imbeddings [19]. We will close this
section with a proof of 3.1 for x = 0, in the topological category.

REMARK 3.2. Note that 3.1 shows that o(L) is independent of the choice
of spanning surface. If F is any locally-flat, orientable surface in D% with 3F =
L C 83, then o(L) = o(N) where N is the double branched cover of D* along F.

Given a link L C 8%, let ML) = 2, ¢;cjcp(r) UK;» Kj) where L = K| U
K, U---UK,. Here is a proof of the following theorem due to Murasugi [15].
From our approach, one sees that the result depends only on the fact that double
branched covers are independent of orientations.

THEOREM 3.3. o(L) + N(L) is independent of the orientations of the com-
ponents of L.

PROOF. Let each component K; bound F; C D*. We can always take the
Fyso that F; N F; N Fy, =g for i, j, k distinct, and so that F; N F; is exactly
[I(K;, K;)| points.

Let B* C D* be a small ball about a point in F; N F;. We can insist that

(F, n aB*) U (F; N aB*) C 3B* be either or (see Wall [22]). The
i j

first link bounds two disjoint disks in CP? — B* such that [D;1=-[D,] in
H,(CP? — B*). The other does the same except in (—CP?) — B*.

Let M denote the connected sum of D% and a collection of copies of CP?
and —CP?, one for each intersection point. M is obtained by adding a *CP? at
each crossing of F; N F; and then removing the double point. This gives F C M
with 9F = L C dM = §3. Then [F, 0F] =0 EH,M M;Z).

Hence o(L) = o(V) — 20(M).

Let L* be the link obtained by reorienting one component, say K,. Then,
for the new surface F* bounding L* we have [F*, 0F*] = 2x. It is not hard to
see X2 = ~Z; <j<u(r)!Ky, K;). (Here K has the new orientation.) Hence
o(L*) = o(V) — 20(M) - 22 UK,, K;), or o(L*) = o(L) - 2ZI(K, K;), or o(L*)
+ ML*) = o(L) + ML), proving the theorem.

The following situation gives our remaining theorems. Let M be a 4-mani-
fold with H,(M; Z,) = 0 and M a collection of copies of S3. In practice, M is
D*, 83 x I, 8%, or S3 x I-D*. Let each component of dM contain a link L,
and let F C M be a surface with oF = U,-L,-. Let N be the double branched
cover of M along F. By the Novikov addition theorem, o(N) = Efg (laM)o(L,.).
Now o(N) is also the signature of the cup product form on H*(V, dN; Q). In
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general, this form is singular, but if K is the cokernel of H!(dN; Q) —
H?(N, 3N; Q), then the form restricts to a nonsingular form on K with the same
signature. Hence |o(V)| < dim K and o(V) = dim K(mod 2).

THEOREM 34. The dimension of K is given by

Bo(3M)

dim K = 2x(M) = X(F) + 26,(V) = X n(L) + 26,(3M) - 2.
i=1

COROLLARY 3.5. If L C 83, is a link, then o(L) = n(L) + u(L) (mod 2).

Proor. Write down the cohomology sequence of the pair (V, 0V) begin-
ning with 0 — H°(V) and ending with H2(N, 8N) — K — 0. Then dim K is an
alternating sum of various Betti numbers. The following formulas are useful:
20(M) = X(F) = XV, B, (N, IN) = B,(N), B, (N, ON) = B5(N), 6,(®N) = En(L;)
- Bo(@M), B,(0N) = B,(dM). The proof is now obvious. To get 3.5, apply 3.4
to any orientable surface in D* spanning L.

Thus we need ways of computing or estimating 8, (V).

THEOREM 3.6. Let oM be the component of OM containing L; and let
0,F =F N o,M. If Fis orientable, and if Hy(0,F) — H(F) is onto, then
B,V <m(Ly) - 1.

Proor. Use Alexander duality to compute H,(M — F, 9,M — 9,F; Z,) = 0.
Use Lemma 2.8 to show H l(JI7I‘—77, afn?a',.'ﬁ) = 0, first with Z, coefficients
and thus also with Q. Use Alexander duality again to show H,(V, 9;N; Q) = 0.
This completes the proof.

THEOREM 3.7. Let F C M as above have B,(F) components. Then ;(N) <
BO(F) - L

Proor. Using Mayer-Vietoris, it is sufficient to show ﬁl(m') < 2By (F)
— 1. Let /\ be a wedge of B,(F) circles. There is a map A— M — F which is
onto in H,( ; Z,), as is not hard to see. By Lemma 2.8, A— M= Fis also onto
in H,( ; Q). But Bl(/N\) = 2B,(F) — 1 as is well known. This completes the proof.

THEOREM 3.8. Signature is a topological concordance invariant.

Proor. LetL, and L, C S3 be concordant; that is, there is a locally-flat
imbedding of F = u(L,) copies of S* x I'in S* x I with 9, F =L, and 3_F =
—L,, the mirror image of L,. It is easy to see o(—L,) = —o(L,). N is the double
branched cover. By Theorem 3.6, 8,(V) <n(L,) — 1 and n(L,) — 1. Theorem
3.4 shows dim K <-—|n(L,) — n(L,)|. Thus n(L,) = n(L,) (which also follows
from 2.6) and o(V) = 0. Hence o(L,) = o(L,).
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THEOREM 3.9. Let F be an orientable surface in D* spanning L C S3, and
assume F has no closed components. Then

lo(L)I < 2 genus(F) — u(L) — max(n(L), 26,(F) — n(L))-
CoRrOLLARY 3.10 (MURASUGI [15, THEOREM 9.1]).

lo(L)l < 2 genus(F) + u(L) — By(F).
CoRrOLLARY 3.11. Suppose V;(—1) # 0. Then

lo(L)l < 2 genus(F) + u(L) + 1 — 2B,(F).

CoOROLLARY 3.12. If g*(L) is the minimal genus of an oriented connected
surface in D* spanning L, then

lo(L)I < 28*(L) + u(L) - n(L).

Proor. Apply Theorem 3.4. Estimate §,(V) once using Theorem 3.6 and
again using 3.7. The corollaries are obvious.

Now let L C S2 be a link, and let S C §* be the standard imbedding.
There exist closed locally-flat surfaces P C S% such that P N S = L and every
component of P meets S3. Define the slice genus, &,(L), as the minimum genus
of such an oriented surface. Since S3 divides S* into two components, it also
divides P into surfaces F; and F,. Let h(L) be the minimum of o (F,) — B,(P)
over all P C S% such that PN §3 = L, each component of P meets 3, and
genus(P) = g (L).

A slice link is one for which g(L) = 0, and a slice link in the strong sense
is one for which g (L) = k(L) = 0.

TuEOREM 3.13. |o(L)| < g((L) + min(0, n(L) = By(P)) and 0 <
(L) = n(L)/2 < 284(L) + h(L).

PROOF. Let N be the double branched cover of S% along P. Let W, and
W, be the two pieces of N mapping onto the two pieces of $* — S3. Thus,
dW, = 0W, = M, the double branched cover of S° along L. The sequence
H(W;, M; Q) — H*(N; Q) — H*(W,; Q) and Mayer-Vietoris show dim K, +
dim K, < dim H*(V; Q) where K; is the cokernel of H'(M) — Hz(Wi, M).
Hence [o(L)| < % dim H*(V; Q).

We also know that dim H*(V; Q) = =2 + 28,(V) + x(V) and x(N) =
4= x(P) =4 —2B,(P) + 28(L). By Theorem 3.7, 8, (V) < B,(P) — 1. One
checks that H,(S> - L; Z,) — H,(S* - P; Z,) is onto, and then, that H,(M; Q)
— H,(N; Q) is also onto. Hence 8,;(V) < n(L) — 1. This gives the first formula.

To see the second formula, proceed as follows. Let F; = P N W,. Then
H,(W;, W; = F;) = 0 by the Thom isomorphism, so H, (W, — F)—H W) is
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onto. It is now easy to see that H,(W, — F;, M — 0F;) — H(W,, M) is onto.
By Lemma 2.8, to show H, (W;, M) = 0, it is enough to show H,(D* — F, S - oF))
=0. By Alexander duality this group is isomorphic to H3(D*, F,), which is 0.
This shows 85(W;) = 0 and 8,(M) = B,(W,).

Next show B, (W,) = x(F;) — 1. Estimate x(F;) = B,(F;) — B,(F;, OF,) using
the excision @, (F;, 0F;) = 8,(P, dF}) so as to show

ﬁl(M) > [Bo(Fl) - ﬁo(Fz)l + 30(17) - BI(P) -1
Since P=F; UF,,

Bo(Fy) + Bo(Fp) = u) — B,(P) + Bo(P),

from which the required formula follows easily.

COROLLARY 3.14. If L is a slice link, o(L) = 0. If moreover, L is a slice
link in the strong sense, then n(L) = u(L).

REMARK 3.15. If F C D* spans L, then &(L) < 2 genus(F) + u(L) — By(F),
so we recover 3.10 from 3.13.

We next wish to consider the effect of the following operation. Let L; C
53 be a link and let D3 C S3 intersect L, in a two stranded braid b,. Both
strings of b, are oriented. Let b, be another two stranded braid with the same
orientation as b,, and let L, be the link obtained by replacing b, with b,. Two
examples of this operation are: (1) change an overcrossing to an undercrossing;
and (2) add two components of a link together.

A two stranded braid may be visualized as in Figure 1 and is classified by
the number of crossings, and whether the first cross is under or over. Our braids
also have an orientation.

X

FiGURrE 1 FIGURE 2

Given a two stranded braid b, define o(?) as follows. If the two strands
have opposite orientations, a(b) = 0. If they have the same orientation, o(b) =
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€ * (N — 1) where N is the number of crossings, € = 1, and € = +1 if the braid
ends as in Figure 2 (that is, a left-right overcrossing in the direction of the
orientations).

THEOREM 3.16. With notation as above,
lo(Ly) = o(b,) — (o(L,) = 0B )| + In(L,) = nLI + L) — L)l < 3.
Modulo 2, the left-hand side is congruent to o(b,) — o(b,). Furthermore,

ML) —nL)I<1 and (L) - uL,y) <1.

We defer the proof momentarily, and discuss some consequences.

Given two arcs in a link, we may isotop them into a disc D3 in such a way
that the braid is trivial and the two strands have the same orientation. We may
replace this braid by either one of two braids with a single crossing. Call either
of these the link obtained by adding either two components of our original link,
or one component to itself.

CoroOLLARY 3.17. Let L, be a link and let L, be a link obtained by adding
two components of L. Then

lo(L,) - 0(L1)| + |77(L2) - "I(Ll)l <1
CorROLLARY 3.18. o(L, ® L) =0o(L,) + o(L,), o(L, o L) = o(L,) +
o(L,).

COROLLARY 3.19. If L, is a link and L, is the link obtained by adding
two components of L, and if n(L,) = u(L,), then

n(Ly) = ulLy) and oL,) = o(L,).

CorOLLARY 3.20. Let L, be a link and L, be the link obtained from L,
by changing an overcrossing in a projection of L, to an undercrossing. Then
lo(L,) = o(L )| + In(L,) —n(L )l =0o0r2and In(L,) —n(L,)I < 1.

DEeFINITION. The unlinking number, U(L), of a link L is the minimum
number of operations of the type: change an underpass to an overpass, needed to
produce the trivial link on u(L) components.

COROLLARY 321. lo(L)| + u(L) = n(L) < 2UL) and p(L) - n(L) < U(L).

Proor (oF 3.16). First consider the case where the braid strands have the
same orientation. Then, if the braid b has N crossings, one can choose a spanning
surface for the link so that the matrix M = ¥ + V' has the form
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= |
1 2 #]
1 #2 %]
] - *]
1 +2 %]
] £2 *1
M=
*1

where the upper left-hand block is an (¥ — 1) x (V — 1) matrix. Braid replace-
ment corresponds to changing the size, and possibly the sign, of this block along
with the signs of the auxiliary *1 entries.

Now M is certainly congruent to a matrix M of the following form

(12
13/2
+4/3
CEIN(N-D | 4]

S
I

+1 a, a

_ S

The theorem now follows by considering the effect of changing N and the
signs upon the signature and nullity of M.

To be more precise, we see that o(M) = o(b) + a(M) and nullity(M) =
nulhty(M) where the matrix # denotes the lower rlght -hand block of M with @
replaced by ozo = ay *(V — 1)/N. Thus the value of “o depends upon NV and the
sign, €, of the braid. It is easy to check that the signature of M can change by
at most two when oz;, is varied. If the signature of M changes by two, then the
nullity remains constant. If the signature of M changes by zero or one, then the
nullity may change by at most one. Finally, the multiplicity, u(L), changes by
no more than one, under braid replacement We sum this up by observmg that
if M1 is the matrix for L, and M, is the matrix for L,, then lo(M,) — o(M, )+
(L) = 1Ll + (L) — u(L,)l < 3. Hence the theorem follows, since o(M))
=0o(L;) — o) fori=1,2.

The case where the braid strands have opposite orientation is handled similarly.
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This completes the proof of 3.16. To prove Corollary 3.18, note that sig-
natures of four-manifolds add for boundary connected sum. Hence o(L, ° L,) =
o(L,) + o(L,). Now apply 3.17 and 2.2. The other corollaries follow easily.

Finally, we give the promised proof of Theorem 3.1 in the case x = 0.

Proor. We need only show that if F is a locally-flat orientable surface in
M, a closed, compact 4-manifold and if V is the double branched cover of M
along F, then o(N) = 20(M).

F x R C M x R! has a normal bundle by [9], so we get a map f: M x
R' —MSTOP(2) with f transverse to BSTOP(2) and f~!(BSTOP(2)) = F x R!.
Let g: M — MSTOP(2) be the composite of M — M x 0 C M x R! with f.
Then g~ }(BSTOP(2)) = F, but we do not claim g is transverse to BSTOP(2).

By Kneser [11] and Thom [20], MSTOP(2) = K(Z, 2), so g is null-homo-
topic since x = 0. Thus there is a map H: M x I — MSTOP(2) such that H|M x
[0,e] =fIM x [0, €] and HM x [1 — ¢, 1]) = e € MSTOP(2) for some e,
0<e<¥%.

H is transverse to BSTOP(2) on M x (0, e] UM x [1 — ¢, 1), so by the
transverse regularity theorem [10], we can make H transverse to BSTOP(2) on
Mx(0,1) rel Mx(0,e]UM x [1—¢,1). Hence we get P C M x I such that
Pis locally-flat, )P =F,PNM x 1 =g,and PN M x 0 = dP.

It is possible to add a O-handle to M x 0 UM x 1 so that we have M# - M
bounded by W with H becoming a map h: W — MSTOP(2) such that P =
h~!(BSTOP(2)). Then H,(W, dW; Z) = H,(M; Z) and [P, 9P] goes to x under
this map. Hence we can form the double branched cover of W along P. This
bounds N# — M# — M, so N# — M# — M has zero signature. Hence o(V) = 20(M).

REMARK. The reader will note that the only time we used Theorem 3.1
with x # 0 was in a case where everything could be taken smooth.

4. Examples. In the following examples we omit all calculational details.
Nullity may be rather easily calculated from a projection of the link via an algo-
rithm due to H. Seifert [17]. This is also discussed by Fox [3]. Signatures may
be calculated by using Murasugi’s matrix [15] or by directly finding the Seifert
pairing (see [7]).

(1) Let L be the link illustrated in Figure 3 (the Whitehead link [23]).
One finds that n(L) = 1. On the other hand, L is link homotopic to a trivial link
of two circles. Since the latter has nullity 2, we see that nullity is not an invari-
ant of link homotopy, and the inequality of Theorem 2.3 may be strict.

(2) Let L and L' be the links illustrated in Figure 4. They differ only in
orientation, and yet o(L) = —3 while o(L") = 1. Thus link signature depends
strongly upon the orientation choice. The difference is seen clearly by comparison
of spanning surfaces for L and L'.
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\l/homotopy

A

FIGURE 3

@ oo

FIGURE 4

COC o0
——

n half-twists
FIGURE 5

(3) For n an odd, nonnegative integer, let L, be the link in Figure 5. We
find that o(L,) = 2 —n. Since $* — L,, is homeomorphic to 53 - L, for any
odd integers n, m, this gives an infinite family of links all sharing the same com-
plement. Since they all have different signatures, no two are concordant.

This underscores the necessity of knowing the link, not merely the comple-
ment.

As a final remark, we wish to note that the approach to signature used here
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can be extended to higher order cyclic branched covers. We hope to make these
higher signatures the subject of another paper.
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