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A linking is understood as a pair (G, ¢) such that G is a finite abelian group and ¢
i a nonsingular, symmetric bilinear pairing G xG—Q/Z. It 1s convenient to
identify a linking (G, ¢) with a matrix which represents ¢ relative to the generators
of a cyclic splitting of G unless confusion might occur. The linking occurs often in
the study of topology. For example, given a closed oriented 3-manifold M, we have
a unique linking (1H,(M), ¢,,) defined by the Poincaré duality, where tH (M) is
the torsion part of the integral homology group H,(M). The purpose of this paper
is to determine completely the structure of the abelian semigroup 9 of all linkings
(up to isomorphism) under block sum and to observe that any linking is
isomorphic to the linking ¢,, of a closed connected oriented 3-manifold M. To do
this, we shall present a complete system of invariants of isomorphic linkings, which
arises naturally from our purpose. Such a complete system had already been
known by Seifert [11] in the case of odd-primary groups, and in general by Burger
[2, Satz 5] in terms of Minkowski’s beautiful theory. Though they are related
directly or indirectly to each other (cf. Fox [5]), we do not discuss here any relation
between them.

N is isomorphic to a direct sum (-Bmp of the abelian semigroups N, of

linkings on p-groups (up to isomorphismf Wall [15, Theorem (4)] showed that for
each odd p, 0, has a presentation with generators (r™", (p " *n(p)) (k= 1) (which are
linkings on Z ) and relations 2(p~*)=2(p " *n(p)), where n(p) is a fixed quadratic
non-residue (modp). Wall [15] gave also generators of N, (cf. van Kampen [13]).
They are (in our notations) A*(n)=(2"*n) (k=1) (which are linkings on Z,.),

-k
where n=1(k=1), +1(k=2), +1, +5(k=3), and Ek:(z?k 20 )(kgn, EX
21—k 2>k

- (2_k 21_k) (k2) (which are linkings on Z,®Z,). So, the remaining

problem is to give a presentation of R, relative to these generators. For
convenience, we will use the symbol A¥rn) for any odd n under the identification
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that A1(n)=A(1), 4%(n)=A*(—1)®""2) and for k2= 3 A¥n)= AXx') if and only if
n=n'(mod8) (cf. Wall [15], Vinogradov [14, p. 69]).

We shall show the following:
Theorem 0.1. R, has a presentation with generators AX(n) (k2 1), where n=1(k=1),
+1(k=2), +1, + 5(k=3), Ef(k=1) and EX(k=2), and relations

Ak )@ AXn,) = An, + 4@ A, +4) (k2 3) (0.1)
A n)@244(—n)=A(—n)DEy(k=1) 0.2)
34Kn)= AN~ n+HDEX(k22) (0.3)
2EE =2EX(k22) (04)
AKn,)® A* ()= AXn, +2n)D A Y(ny +2n,) (k21) (1.1)
AM@E = A+ HBEST (k1) (1.2}
Ef @AM i(n) = EX@ A+ (n+4) (k 22) (1.3)
A1, )@ A** 2(ny) = AHn, + O A Hn, + 4) (k2 D). @1)

These relations (0.1), (0.2), ..., (2.1) are easily verified. The true meaning of
Theorem 0.1 is that any relation is generated by them.

Section 1 is a preliminary section. In Sect. 2 we define and calculate an
invariant of a linking on a 2-group, which comes from the Gaussian sum of a
certain associated quadratic function. In Sect. 3 we exhibit all linkings on
homogeneous 2-groups (up to isomorphism). In Sect. 4 we classify a linking in
terms of our invariants and prove Theorem 0.1. In Sect. § we study split linkings
and hyperbolic linkings. In particular, we shall calculate the Witt groups of
homogeneous linkings and more general linkings. In Sect. 6 we study the linkings
of 3-manifolds. Several topological applications are given, besides realizing any
linking by ¢,, of a closed connected oriented 3-manifold M.

1. Preliminaries

Two linkings (G, ¢), (G, ¢') are isomorphic if there is an isomorphism f:G— G’ such
that ¢(x, y)=¢'(f(x), f(3)) for all x, ye G. We denote it by (G, ¢)=(G', ¢') but the
equality (G, ¢)=(G", ¢') is also used and called a relation when both (G, ¢) and
(G, ¢) are written as block sums of some copies of the given matrices (p~¥),
(p"*n(p)), A¥n), E¥ and E. The isomorphism class of (G, ¢) is denoted by [G, ¢].
Let p be a prime number and k be an integer = 1. For any linking (G, ¢) let G" be

the subgroup of G generated by elements of order p° with s<k, G,= ( G" and
k21

¢,=9|G, xG,. G, is the p-component of G and ¢, is a linking on G,. Any linking
(G, ¢) has a primary (orthogonal) splitting @ (G, ¢,), and the isomorphism class

[G, ¢] determines the 1somorph1sm class [G ¢,] uniquely for each p. Let G"
=G*/G*~! +pG:+ . Define a pairing

¢',‘, : G’; X G;‘,—-»Q/Z
by the identity
FHIx1, YD) =p""¢(x, )
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for x, ye G, which is clearly well defined. (G, ¢ is also a linking by a fact that
(G,, ¢,) has a homogeneous splitting, that is, an orthogonal splitting (—B (G, ¢4

such that G’; is isomorphic to a dlrect sum of copies of Z . (see Wall [15]) Note

that G¥ is a vector space over Z,. Let r =r(G)= dim,_ Gk, r" isa group invariant of

G. In case (G, ¢) is a linking of a homogeneous p-group of exponent k, ie., (G, ¢)
=(G¥, ¢%), then we can also obtain an induced linking (I*G, I°$), defined for each
(1 <)s<k by I'G=G/p*G and F¢([x], [y])=p* *d(x,y) for x,ye G and for each
szk by (I'G, F¢)=(G, ¢). Given a homogeneous splitting @(G #%) of (G, ¢,),

then we have always (I' G5, I' ¢*) = (G ¢") for all k=1.

First we assume p is odd We regard ( ¢") as an inner product space over Z,
(et [107) by using the canonical 1mbedd1ng Z ,—0/Z sending 1 to p~'. Denote 1t
by (G}, #%).

Definition 1.1. The Legendre s symbol (det¢ ./p) is denoted by xk(¢).
xp(qS) is an invariant of the 1som0rphlsm class [G,¢] by a property of
Legendre’s symbol (cf. Seifert [11, p. 199]).

Let @ (G%, ¢%) be any homogeneous splitting of (G,, ¢,). As Wall [15] showed,

we have (G5, ¢¥)=ri(p™) or (ry — 1) ("9 ®(p*n(p)) according to whether (@) =1
or —1.
Hence we have the following:

Lemma 1.1. The isomorphism class [ G%, ¢*1 is determined uniquely by the invariants
ry and x3(¢) of [G, ¢].

Now we consider the case p=2. In this case, the arguments will be more
complicated because, in general, a homogeneous splitting of (G,, ¢,) is not unique
(see the relations in Theorem 0.1).

Definition 1.2. c(¢) is the characteristic element of ¢%, which is specified uniquely
by the identity

P(cH(¢), %)= (x.%)
for all xe G
c*(¢) is an invariant of [G, qS] in the sense that any isomorphism (G, ¢)=(G', ¢)
induces an isomorphism (G%, ¢%) = (G, $%) sending c¥(¢) to c(¢").
2. The Gaussian Sum and its Associated Invariant
We consider a linking (G, ¢) with c*(¢)=0. Then there exists a function
G,/ G’;*Q/ Z
defined by
a([xD)=2""1¢(x, x)
for xeG,. [Note that if x'=x+x,, x,eG%, then
271 (v, x) =241 §(x, x)+ B5(cH(9), [x0]) ]
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We denote by GS,(¢) the Gaussian sum
Y. exp(2migy(x)),

xeGo/G%

where i= |/ —1.

Lemma 2.1. We have the following properties.

(1) If (G, $)=(G', ¢)D(G", ¢") and c*(¢$)=0, then cM(¢")=c*(¢")=0 and GS,(¢)
=GS,(¢') GS(9")-

(2) GS () =GS (I **°¢7) for s<k<m.

o |2 2 exp((— 1) V227i/8) (m even)

(3) GS,(A™(m)= {2<'"-1>/2eXp(2nm/8) (m odd)

@) GS,(Epy=2""", GS,(ED)=(-1)"" 12" H(m22).
Proof. (1) is clear. [Note that ¢(x,x)=¢'(x’,x)+¢"(x",x") for x=x"+x", x'e G,
x"€G".] For (2) let G be a homogeneous 2-group of exponent m on which ¢% is
defined. Let g,, g, be the functions associated with ¢7, I" ~***¢7. It follows that g,
¢, define the same function on G/2™~*@G, showing (2). For (3) we show that

GS,(A™(n)) =2GS (A"~ *(n))

for m=4. In fact,

(mz2)

am-1
GS,(A™(n)= 3 exp(2ninj*/2™)

=1
2m-2 a2m=2

= Y exp(nin(2j)*/2™+ Y. exp(2nin(2j—1)2/2")
j=1 =1
2m-3 a2m-3

= Y exp(ain/?/2"~2)+ Y expmin(2™”3+j)?/2""?)
=1 i=1
2m-3 m=-3

+ ¥ exp(2min(2j—1)¥2™+ Y. exp(Qmin[2(2™ 3 +j)—11*/2™).
=1 =1
Note that (2"~ j)2/2"~ 2= 2/2"~*(mod1) and [22" >+ j)—11%/2"=1/2
+(2j—1)%/2"(mod 1). Hence we have

am-3

GS,(A"(n)=2 Y exp(ninj*/2"~?)=2GS (4" *(n)).
j=1
Form=2, 3, GS,(A™(n)) is easily calculated and (3) is obtained. (4) follows from (1),
(3) by applying GS, to the relations (0.2) and (0.3). This completes the proof.
Since any linking is isomorphic to a block sum of some copies of A™(n) (m=1),
Ep(m=1) and ET(m>2), we see the following:

Corollary 2.1. For any linking (G, ¢) with c*($)=0, GS(@#) is not zero and there
exists a unique integer ¢ (mod8) such that

GS(¢$)=IGS(d)lexp(2mic/8).

Let Zg=Zgu{oo} be a semigroup (consisting of 9 elements) whose extra
summations are defined by

w+om=0w+n=n+w=0, HeZy.
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Definition 2.1. ¢,(¢) is the integer o(mod8) or oo according to whether c¥(¢) is O or
not.

Thus, for each k21 there exists an invariant o,(¢) of [G,¢] in Z,. By
definition, a homogeneous linking ¢%(m=2) has o (¢T)+w for k<m. The
invariant ¢,(¢3) was introduced by Brown [1] concerning generalizations of the
Kervaire-Brown-Peterson-Browder invariant.

The following is easily obtained from Lemma 2.1

Corollary 2.2. (1) 0, :N-Z g is a semigroup homomorphism for all k=1,
() o () =0 (I" " 2¢T) for s<k<m,

(3) o, (A™(n) = {(-—1)(71—1)/2 (m—k odd)

n (m—k even), ou(E)=0
and

o (EM)y=2{1—(-1""%], where k<m.
For our purpose the following Lemma is important.

Lemma 2.2. Let (G, ¢) be a linking with cX(¢)=c(¢) =0 for some k, s(k<s). For any
homogeneous splitting P (G%,¢7) of (G, ¢,), there exists an element

mz1

0(¢, k,s)e{0,4} C Z, such that
o(P)— (D) =0, (@5 N+ dhT )+ ... +0(d3) +0(9, K, 5).

0(d, k, s) does not depend on a choice of a homogeneous splitting of (G,, ¢,) if and
only if one of the following cases occurs.

(1) s—k is even. In this case, o,{¢5)=0(¢, k,5)=0.

(2) s—k is odd and c***($)=0. In this case, O(¢, k,s)=0,, (§)— ().

(3) s—kis odd, r(G)=0 and ¢*~ () =0. In this case, (P, k,s)=0,_ ($) — 7 (D).

Proof. By Corollary 2.2(1) and c*(¢)=c%(¢)=0, a(¢)= Y. od7) and o (¢)
mzk+1

= Y oJé?) so that

mzs+1

o(@)— o (P =085 )+ ... +0,(d}) + 0@, k,5),

where we let 0(,k,s)= ) (07— 0($7). Since ¢7 is a block sum of suitable
mzs+1

copies of A™(n), EF, and E?, it follows from Corollary 2.2(3) that o,(¢7%)
—~a(¢%)=0mod4). Hence 0(¢, k,5)=0 or 4, showing the first half. In Case (1) we
can also see that o,(¢7) —0o(¢7)=0 and hence 0(¢, k,s)=0. Further, in this case
a.(¢3)=0, since ¢3 is a block sum of some copies of Ej and E5. In Case (2), by
using Case (1) we obtain that ;

o(@) -0 () =0(9)—0,, () +0(9,k,5).
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Hence 0(¢, k, s)=0,, ;(¢) — o). In Case (3), we see from Case (1) that
Uk(¢) - os(¢) = Uk(¢) 0y (¢) +0+ 0(¢3 k’ S) s

s0 that 0(d, k, $)=0,_ ,($)— a,($).

Let s—k be odd and ¢** 1(¢)+0. Now we show that if r5(G)+0 or ¢*~!(¢)+0
(in this case k<s—3), then 0{¢, k, 5) is not uniquely determined. First consider the
case r5{G)=+0. In this case, for any homogeneous splitting @d)"‘ of ¢, we can

write ¢ = E5 (or E)®@5 and ¢3t =4 (m)@P5t! for some ¢, 4°* (n) and

@3 L Let 5 =E5 (or E5)@@5 and 95+ 1= A4+ Y(n+ @S5t . By the relation (1.3)
DL = EBqS's“ Consider the new splitting

D 95093045 6—) ¢7 of ¢,.

mss—1

We write
o) — o) =0 (5 )+ ...+ o () +0(d, k,5).

Since s—k is odd, by Corollary 2.2 we have o,(¢3)+4=10,(¢"). Hence 0(¢, k,s)

=0'(¢, k, s) + 4. Next, consider the case ¢~ }(¢) +0 (hence k £ s— 3). In this case we

can write @5 ' A" n)@Dd5 ! and ¢yl At 1(n)(-B$sH for some A% 1(n),

57, ATn), @51 Let @5 =AW+ 4D and @5t =4 (n+A)
®@stt. By the relation (2.1), ¢35 '@ 5 x¢% DL . Consider the new

splitting

D s1005 ' @s0¢5" D 97 of 4,

mzs—1

and write
o @) — o P)=0 (P8 D+ ...+ o (@5 D+ 0oi(d3) +0(g, k. 5).

Since (s~ 1)—k(=2) is even, we see from Corollary 2.2 that g (¢; ™ )=0(¢3"")
+4, so that 0(¢, k, s)=4+0'(¢, k, 5). This proves Lemma 2.2.

3. Exhibition of Linking on Homogeneous 2-Groups

Let (G, ¢) be a linking on a homogeneous 2-group of exponent 1. In case ¢'(¢) =0,
r=r3(G) is even and (G, p)=(r/2)E}. In case ¢'(¢)+0 and ¢{c'(§),c'(9)=0, r is
even and (G, $)=24 (1)®[(r—2)/2]EL. In case ¢(c'(@),c'(¢))=+0, r is odd and
(G, )= A*(V)D[(r—1)/2] E}. (Cf. Wall [15, p. 290].) Hence we have the following:

Lemma 3.1. Any linking (G,$) on a homogeneous 2-group of exponent 1 is
isomorphic to one of the following linkings, which belong to mutually distinct
isomorphism classes :

Li=sE, Li=241)@s,E}, Li=A*)@s,EL,

where s,(#0), s,, 5, are any integers Z0. The invariants r3(G) and o($) form a
complete system of invariants.
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Lemma 3.2. Any linking (G,¢) on a homogeneous 2-group of exponent 2 is
isomorphic to one of the following linkings, which belong to mutually distinct
isomorphism classes:

L} =s,E3, L%,2=E%®52E(Zw

L} (=241)@s,E}, L3 ,=24%-1)®s E2,

L] ;=A@ AH(-1)@s;E5, L3 ,=A()OAN-VSE{®sEZ,

LY\ =4*()@s,E5, L3 ,=A)OEI®s,E],

L§,3=A2(——1)G-)39E(2,, L§,4=A2(_1)@E3@310E(2)=

where s,(#0), s,, ..., 5,0 are any integers 2 0. The invariants r3(G), o,($), a,(¢) form
a complete system of invariants in this case.

Proof. By Lemma 3.1, I'¢ is isomorphic to one of L}, L}, and L}. If I'¢ = L! (or
L3, respectively), then ¢ is isomorphic to L ; or L? (or L}, L5, LY jor L3 »
respectively) by usmg the relation 2EZ= 2Ef in (04) In case I ‘¢~L§, ¢ is
isomorphic to L%, L, Lj, or L}, by using 2E}=2E? and the relation
24%(M)@ E? =24~ n)@®EX(n= + 1) obtained from the relations (0.2) and (0.3). By
Lemma 3.1, the invariants rz(G) and o,(¢) distinguish between L1 » L§ ;» and
L§ j~ Further, we have that al(L =0,4 according as j=1,2, o-l(L2 1)=2,-20,
4 accordmg asj=1,2,3,4and al(L3 =L75, —1, 3 according as ]"-—1 2,3, 4.
This completes the proof.

Lemma 3.3. Any linking (G, ¢) on a homogeneous 2-group of exponent k=3 is
isomorphic to one of the following linkings, which belong to mutually distinct
isomorphism classes :

Ly =s,Eq, LI{, 2 =E{®s,E5, Lg, 1,1=241)®s, Ef,
Lg, 1,25 A1) Ak(s)@slaE’(cJ s LZ, 2,17 244 —1)®s, Ef,
LIE, 2,27 A{—-1)@ AN~ 5)@5,4E’(‘) > Lg, 3,1 Ay@ a4 (— 1)@35}3'5 >
LY 5 =A@ A= 5)@ssEl, LS 4 =A@ A—-1)DE,®scE},
Ly 4 =A@ A - O E ®ssEs, LY, ,=A)®s,ES,
Lg, 1,2=AO)®s1Ey, LY 5 = AM)DE; @s,ES,
L§’2’2=A"(5)®E'§€+—)SQE’5, L§,3,1 =AY~ 1)@S9E’5’
L} 5 ;= A= 5)®s,Ef,
LY 4,1 = A~ )DE @s,,Ep., L 4 2 =AN—S5)DE; ®s)Es

where s,(#0), 55, S3, S5, -+ S, S10 are any integers 20. The invariants ri(G), o,(¢),
6, _,(9) and o, _ (@) form a complete system of invariants in this case.

Proof. By Lemma 3.2, the system of invariants r%(G), 5,(¢), and o, _ ,(¢) determines
the isomorphism class of (I*G, I?$) uniquely. Assume (IG,I*¢)= L2, for some a,
b.If a=1, then clearly (G, ¢)~L .Incase a2 2, we have (G, ¢p)= Lf , or LE , , by
usmg the relation (0.1). L} , | and L% , ; belong to distinct 1somorphlsm classes,
since g, _ (AXn))=n+5n= a,, A (Sn)) n=11. This completes the proof.
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4. Classification of Linkings in the General Case

and Proof of Theorem 0.1

Theorem 4.1. Two linkings (G, ¢), (G, ¢') are isomorphic if and only if ri(G) =ri(G"),
xp(q’)) x" (¢) and o(P)=0(¢") for all prime p, odd prime p’ and k>1

Proof. By Lemma 1.1 it suffices to prove that if 4(G)=r%(G’) and 5,(¢p) = ,(¢") for
all k= 1, then (G,, ¢,) (G, ¢,). The proof consists of the following two steps:

Step 1. There exist homogeneous splittings €D @5, P T of ¢,, ¢, such that
Por=I*¢ for allmz1. ) "

Step 2. Assume there are homogeneous splittings P ¢%, @ @7 of ¢, ¢’ such that
@ =12¢™ for all m21. Then there exist homogeneous ";plittings Do, Por
of ¢, ¢, such that ¢ 7 for all mz1, so that ¢, =), i "

Proof of Step 1. By Lemma 3.1 note that I'¢T=I1'¢7, and in particular, ¢} =7
for any homogeneous splittings P ¢7, P @7 of (/)2, @), since o, (P)= oo if and
only if ¢,(¢3)= co. Suppose there exist homogeneous splittings @ 7, @ ¢ of
é,, &, such that I’¢7=1*¢7 for all m<k—1(k=2). Let I'¢} ~I q&’z":L1 Then
by Lemma 3.2 we have Izqﬁ’;:Lﬁ w IP¢¥ L2, forsome b, b'. If o, , ,(¢)= 00, then
by the relation (1, 1) and (1, 3) we find new splittings @ ¢7, P ¢5" of ¢, ¢ such
that 1255'2"2-1243’2'" forallmsk. If 6,(¢) + o0 and o, _ ((¢)= 0 or if 7,(¢) = oo for all
m< k— 1, then the relation (1.2) or a successive use of the relation (1.1) also enables
us to find such splittings of ¢,, ¢,. [ Notice a fact (obtained from (1.1)) that for any
oddn,,...,n, there exist oddn),...n; with nj=n{mod4), igk-1, and
n,=n, +2(mod 4) such that
A D)@ AYn)D ... DA n) =AY (1)D A n,)® .. @A n).]

If o, 1(4))4: oo and o,_,(¢)== 00, then we see from Lemma 2.2, Case (1), that
o, 1(¢5)= Oy~ (D), so that o,(I%¢%)=a,(I*¢7) by Corollary 2.2(2). Since
I'¢k=1'¢¥, it follows from Lemma 3.2 that I’¢%=I*¢7. Now assume that

g, +1(<j))=¢=oo o(P)=0,_ l(qS) o, and cfp)+w for some j<k—1. Since
o($)=co, the label a of L2, and L2, is 2 or 3. We use the following

Sublemma. o (I*¢%)=0,(I*¢ ) (mod 4).

From this sublemma we see that b, b’ {1,2} or b,b’e {3,4}. Since o, _,(¢)= 0
write ¢4 = 4*" Y(n)@ 4! for some A*(n), ¢5 1. If a=2 and b,b'e{1,2}, then
we use the relation

A ()@ AXn, )@ A'(ny)

= A" Yn+2n, + 2n,)D A¥(n, + 2n)@® AX(n, +2n+4n))
obtained from the relation (1.1). If a=2 and b, b’ {3,4} or if a=3, then we use the
relation (1.2). It follows that there exist new splittings @ ¢%, @D @7 of ¢,, ¢, such

that I2¢% = I*¢"" for all m<k. By induction on k, we complete the proof of Step 1
except for the proof of the sublemma.
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Proof of Sublemma. Using ¢,,(¢)=g,{(¢’) for all m, we obtain from Lemma 2.2 the
congruence

oA N+ .+ a () +o (5 )=0(dd TN+ .. 4o (Yo ()T ) (mod4).

By Corollary 2.2 the assumption I’¢7=I?¢}", m<k—1, implies that o{¢7)
=0 (¢7) (mod 4) for j<m<k— 1. Since 6, 4(¢) % o, qb"“lsablock sum ofcoples
of E"+1 and E{*'. So, by Corollary 2.2, o{¢%"")=0 (mod4). Similarly,
a(qﬁ’“ D=0 (mod 4). By the above congruence we have o (¢%)=0(¢7) (mod 4),
and hence by Corollary 2.2, o,(I*¢%)=0,(I*¢5) (mod 4). ThlS proves the sub-
lemma.

Proof of Step 2. Assume the splittings @ ¢7%, P ¢ of ¢,, ¢, have 2T = [*p"
for all m. For m=1, 2 this implies ¢7=¢7" Suppose ¢7=¢7 for all
m<k—1(k23). If g,(¢)+c0, then the isomorphism I*¢%=I?¢¥ lifts to an
isomorphism ¢4 = ¢S, Let o,(¢)= co. Let I*¢% = >~ L2, for some a(+1) and b.
By Lemma 3.3, ¢%, ¢ are isomorphic to L, , or Lk, ,. If o, ,(¢)=c0 or if
Oy — 2| P) = o for all integers m with 1 <k —2m < k—2, then by the relation (2.1) we

can find new splittings P ¢7, P 7" of ¢,, ¢, such that ¢7 =7 for all m< k and
I*¢7m=1*¢ for all m=k+1. [Notice the following relations derived from (2.1):

A DN@An)D .. DA Yn,_ ) )D A" Hny)
=A'MDAn)® .. DA¥ (n,_ YD A*  (n,+4),

AXn )@ A ()® ... AT (n)D AT 2 (n, )
=A%n)D AN n,)® .. DATM)D A Un,, , +4).]

Assume 6, , 5(¢)# 0 and ¢,(¢)+ o for some j=k—2m (m, an integer 21). Since
k+2—jis even, we obtain from Lemma 2.2(1) and o,($)=0,(¢") for any m that

oL+ Ao )+ o Py =0 ¢TI+ .+ () +a P ).

By assumption, ¢ =¢7" for msk—1, so that a(¢3)=0/¢7) for j<m=<k—1.

Since 12¢%*! ~12¢”‘“ d)k“ ~¢** ! or ¢4t ! and qS”‘“ are isomorphic to Lﬁ*’,,‘ X

or Li*yt , for the same a'(+1), b'. By Corollary 2.2, 6 (4** (n)) = (4** 1(5n)), since

k+1—j is odd. Hence o/¢5*")=0(d5 "). It follows that o (¢ )=0{¢%). By

Corollary 2.2, ¢ {A¥n)) + 0o (A"(Sn)) Usmg that ¢% and ¢'¥ are 1somorphxc toLl,

or L, ,, we see that ¢% = ¢ By induction on k, we complete the proof of Step 2.
This completes the proof of Theorem 4.1.

Proof of Theorem 0.1. First we note that any block sum
P73 =A"n)D.. @A™ n)Dr EyDr, EY

is deformed only by the relations (0.1), (0.2), and (0.3) so that I'¢7 = L{, L}or Ll
To see this, it suffices to show that for any odd n,, n,, and na, there is an oddn,
such that

A™(n )@ A™(n, )P A™(n,)= A™(n, )@ Ey(or ET).
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But we can take n,= +1, +5. So this is easily done. Consider any relation (R ¢7
= @ @3 such that ¢7%, ¢ are block sums of copies of A™(n) (n= +1, +3), Ef and

E7. We show that the relations in Theorem 0.1 are sufficient to deform both sides
of the relation (R) so that ¢7=¢7'=Lim=1), L2 (m=2), or L7, ,(m23) for
some a, b, b'. By Lemma 3.1 and the above remark, we can assume ['¢7=1'¢7"
=L}, L} or L} for all mz1. Consider the proof of Theorem 4.1. The proofs of
Step 1 and Lemma 3.2! show that the relations in Theorem 0.1 are sufficient to
deform both sides of (R) so that I?¢7=I*¢*=LZ, for each m=2 and some q, b.
Then the proofs of Step 2 and Lemma 3.3 show that the relations in Theorem 0.1
are sufficient to deform both sides of (R) so that ¢5=¢"=L7, ., for each m=3
and some a, b, b'. This completes the proof of Theorem 0.1.

5. Split Linkings and Hyperbolic Linkings

A linking (G, ¢) is split, if there exists a direct summand H of G that is a self-
orthogonal complement (i.e., H* = H) with respect to ¢.
A split linking can be stated in terms of invariants as follows:

Proposition 5.1. A linking (G, ) is split if and only if r;‘,(G)EO(mod 2), x‘;‘(:b)
=(—=1)#® =D gnd 6 ($)=0 or oo for all prime p, odd prime p' and k2 1.

Proof. Suppose (G, ¢) is split by a direct summand H with H* = H. The p-primary
component H, of H is a direct summand of G, such that H »=H,, with respect to
¢,, so that G,=H ®H, Given an element xe H, of the highest order, p*, then
there exists an element x'e G, of order p* with @ %, x) = p~* Since @ ,(x, x)=0, we
0 —k o
see from [15, Lemma (1)] that (G, ¢,)= (p‘ c p " )(-B(G’p, ¢,) for some linking
(G, ¢,) and ueQ/Z. Let H,=H, NG, Cleatly, H 5 =H, with respect to @,
Further, H), is a direct summand of G/, {Note that [H |=|H}| p* since [Gi= lH’pl2
and |G,|=|G,|p*=|H,|>. Then the inclusion H,®{x)CH, is an isomorphism,
where (x) is the subgroup of H, generated by x. Let pr, : H,=H,®<{x)—~H, be
the projection to the first factor. For an epimorphism r : G,—H , with r|[H ,=id, we
define r' : G',~ H/, to be the composite G,C G,—— H,~~— H/, We have r|H/,=id,
that is, H}, is a direct summand of G,.] Hence (G}, ¢;) is split. When p is odd,

(p‘f,‘ ”uj;(po ”(;k) =@ (—p~),

so that by induction (G,, ¢,) is isomorphic to a block sum of copies of (p™)

®(—p™9 (k=1). It follows that r%(G)=0(mod2) and xk(¢)=(—1)ye-1/4
—k

29k 2u ) =B} or AX1)@ 4K~ 1), so

that by induction (G,,¢,) is isomorphic to a block sum of copies of B,

A1) AY—1) (k=1). It follows from Corollary 2.2 that ¢,(¢)=0 or oo for all

for all odd prime p and k=1. When p=2, (

1 For mz3 note the relation 24™(m)@Ey (or E}, respectively)= A™(—n)@A™(—n+HDET (or Ef,
respectively) obtained from (0.2) and (0.3) for any oddn, which lifts the relation 24 ny®EL
=24 ~W@Ei(n=+1)
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k2 1. To see the converse, we use, when p is odd, the matrix r(p =@ r(—~p~* with
2r=r¥G), and when p=2, the matrix rBj or rA¥1)@rdX(—1) with 2r=r4G)
according to whether g,(¢)=0 or co. Take a block sum of these matrices for all
prlme p and k2=1. The resulting split linking (G, d)) has r5(G')=rkG), x-(¢)
= xp (@), and o,(¢") =0, (¢) for all prime p, odd prime p’ and k>1 By Theorem 41,
(G, d)=(G', ¢') and (G, ¢) is split. This completes the proof.

Let 9t* be the abelian semigroup of linkings on homogeneous p-groups of
exponent k. The abelian semigroup R, R, or 91’,‘, modulo split linkings forms an
abelian group called the Witt group of linkings, the Witt group of linkings on
p-groups, or the Witt group of linkings on homogeneous p-groups of exponent k and
denoted by W, W, or W;f, respectively. We shall show the following

Proposition 52. W= @ W, When p is odd, W, @W" and, for each k=1,

~Z,®Z,0rZ, accordmg to whether p= 1(mod 4) or 3(mod 4)2. When p 2, W,
is lsomorphlc toa dlrect sum of infinite copies of Z,, and W; > Z,, Wi~ Z g and, for
each k=3, WixZ,DZ,.

Proof. Clearly the canonical isomorphism = PN, induces an isomorphism
p
W= @ W,. For any odd p, we obtain from Lemma 1.1 and Proposition 5.1 the

remammg first half, where W" is generated by (p~* and (p *n(p)) when
p=1(mod4) or (p~% alone when p=3mod4) (cf. {10, Lemma IV.1.5]). To
calculate W we use Lemmas 3.1, 3.2 and 3.3. By Lemma 3.1 W is generated by
AY(1). By Proposition 5.1, ri(mod 2) induces an isomorphism W1 ~Z,. By Lemma
3.2, W} is generated by at most 8 elements. Since o,(4%(1))=1, we see from
Proposition 5.1 that ¢, induces an isomorphism W7 =~ Z, sending 4%(1) to 1. By
Lemma 3.3, W¥ is generated by at most 16 elements. By Proposition 5.1 note that
841) and 2[A1)@®AX(—5)] represent 0 in Wk Since o,_,(4*1)=1,
0y (AH1)D AK—5))=0, and 0, _,(A(1)D A —5))= —4, we obtain an isomor-
phism Z,®Z,=W¥F sending (1,0) to A%1) and (0,1) to A¥1)dA4X-5). To
calculate W,, note that any linking 4%(n) represents the same element as AX1) in

W,, since for k=2, Theorem 4.1 shows that @ A™(1)® AXn)= (—E A™(1). Then

from the calculation of W¥ it follows that VI’2 is generated by Ak(l) k=1, which
represent the elements of order 2. By Proposition 5.1, ¥4 (mod 2) guarantees us that
these elements are linearly independent over Z,. This completes the proof.
A linking (G, @) is hyperbolic if (G, ¢) is isomorphic to a block sum of matrices
—k

of the form (p(z X p 0 ) (p=a prime number, k=1). The following is direct from

Proposition 5.1.

Corollary 5.1. A linking (G, ¢) is hyperbolic if and only if r"(G) =0(mod 2), x (¢)
=(—~1y%2~ 4 gnd 6,(¢)=0 for all odd prime p and k2 1.

2 Thanks to A. Ranicki for this statement

3 This was also proved by L. Guillou and A. Marin [6] (see also E. H. Brown, Jr. [1])
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6. The Linking Pairings of 3-Manifolds

We consider the linking (tH,(M), ¢,,) of a closed connected oriented 3-manifold
M. The invarizfnts r(tH,(M)), 2§{($,0), and 6,(¢,,) are denoted by ri(M), x&(M), and
7,(M), respectively.

The following Lemma improves a classical resuit of Hantzch [7].
Lemma 6.1. If M is imbedded piecewise-linearly in a 4-sphere S*, then the linking ¢,
is hyperbolic.

Proof. M divides S* into two compact, connected, orientable 4-manifolds ¥, V,. By
Mayer-Vietoris sequence, the homomorphism

T=iyu+iy  tH,(M)>tH (V)®1H (V)
is an isomorphism (tH, =the torsion part of H ). By Poincaré duality and the

universal-coefficient theorem, the homology exact sequence of the pair (V;, M)
induces the following exact sequence

0—tH(V}, M) H (M)5tH (V)-0,
j=1,2.[Note that [tH (M)|=|tH (V)% j=1,2.] Let ¢,:tH ,(V;, M) x tH ,(V)~Q/Z
be the pairing defined by the Poincaré duality. Let GY=7"'[tH (V)] (C<H (M),
j=1,2. Let x,x’e GY. Then i,(x)=i,.(x")=0. By (#), there is xe tH,(V,, M) with
3,% =x. Hence ¢, (X, X') =@ (0%, X') = $ (X, i,4(x'))=0. Similarly, @,,(x,x")=0 for
x, x'e GY. Since ¢,, is nonsingular, tH ,(M)=G{®G3 and |G}|=|G?|, ¢,, induces
an isomorphism G2 —»Hom{G?, Q/Z]. Hence by taking the generators of a primary
cyclic splitting of GY and then taking the dual generators of G5, we see that ¢, is
hyperbolic. This completes the proof.

ILet N be an open oriented 3-manifold. The linking pairing
¢y :TH (N) x TH (N)—Q/Z is still defined, though it may be singular (cf. [12]).

Corollary 6.1. If N is imbedded piecewise-linearly in S*, then we have 2*~ 1 (x, x)
=0 for xetH(N) with 2*x=0,k=1,2,3....

Progf. Suppose 27 ¢ (x,x)%0 for some x with 2*x=0. Then for a compact
submanifold N’ of N we also have 2¢7 ¢ ,.(x’, x') &0 for some x’ with 2*x'=0. If N
and hence N’ imbed in $*, then so does the double D(N’) of N'. But ¢*(D(N")) %0,
ie., 6 (D(N"))= co. This contradicts Lemma 6.1.

For our application we take, as N, a punctured manifold M, of M, that is, M,
=M — {x} for some xe M. In this case, ¢, is isomorphic to ¢,,.

Example 6.1. The lens space L(n,m) has H,(L(n,m))=Z, and ¢, ,,\= (n”'m) (cf.
[12]). For odd n, L(n, m), is imbeddable in $* by Zeeman [16], whereas for even ,
L(n,m), is still non-imbeddable in §* by Corollary 6.1 (cf. Epstein [3]).

Example 6.1 shows that for oddn the connected sum L(n,m)# — L(n,m) is
imbeddable in §* On the other hand, the invariant y enables us to see the
following
Proposition 6.1. If L(n,m)# L(n,m’) is imbedded piecewise-linearly in S*, then
L(n,m) and — L{n,m) have the same oriented homotopy type.

Proof. Since — L(n,m)=L(n, —m), it suffices to show that —mm’ is a quadratic
residue (mod n). Let n=p$'...p¢*, where p, are distinct odd prime numbers and
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) oow

m full twists m full twists
Fig. 1 K{m) K'(m)

e;21. Since (n, m) (n,m’)=1, there are unique splittings n~im=p;®m, +...
+p; em, and n”'m' =p;em| + ... +p; °m, Since x wi(L(n,m) % L(n, m')) = (mym /pi)
=(— 1)("‘””’2—( 1/p,) by Corollary 5.1 and LemmaG 1 —it follows that —mm} is
a quadratic residue (modp) and hence (modp{), i=1, 2,..,s. Then

—mm,=k¥mod p%), i=1, 2, ...,s, taking k as the sum ¥ kups'...p%...p% where
=1

¥

I

= kXmod p&") and ups'...p%.. p¢==1(mod pf?). This implies that —mm' is a
quadratlc residue (modn) (cf. [14, p. 49]), completing the proof.

The p-invariant is also known as an invariant of the imbeddability of a Z,-
homology 3-sphere into S* ([8]). It is independent of our invariant xb
For example, w(L(7,1)# L(7,3))%+0 but L(7,3) and —L(7,1) have the same
oriented homotopy type, whereas u(L(9,2)4 L(9,5))=0 but y3(L(9,2)# L(9,5))
=1%(—1)23~1% Using all of their information, we can decide the imbeddability
of L(n,m)# L{(n,m’) for n<11. The first unknown example is L(11,2)# L(11,3).
Example 6.2. For each k= 1 there exists a closed connected oriented 3-manifold M
with H,(M)=Z,@Z,. and ¢,, > B},

In fact, by [9] we construct M with H (M)=Z,.®Z,. such that M is
imbedded in $*. By Lemma 6.1, ¢,,= Bk,

Lemma 6.2. If M, is a fiber of a fibered 2-knot K CS* and H,(M)=Z,.®Z ,.(k=2),
then ¢,, = B".

Proof. Let X =S* — K and X be its infinite cyclic cover, homeomorphlc to M, xR,
Let G=H (X) Note that G2 H ,(M)=Z,®Z,.. There is a linking ¢ on G,
1somorph1c to ¢,, such that ¢(tx,ty)=¢(x,y) for all x,ye G, where t: GG is an
automorphism induced by a generator of the infinite cyclic transformation group
of X. By Corollary 6.1, 5,(¢) = 0,(¢,,) % o0 (i.€., *(¢) =0), so that ¢, = Bk or Bt (cf.
Lemmas 3.2, 3.3). It sufﬁces to show that o,_,(¢)=0. Recall that the function
Gy :G,/GE (=G4 > Q/Z is defined by q,_,([x])=2*"2¢(x,x). 2q,_, =0, since
29,1 ([xD)= L([x], H(¢)) and *(¢)=0. By Wang exact sequence, t——1 Gt Gk
is an isomorphism. It follows that d(tx, x)=2"1 for any x+0 in G since tx+x
and hence G%={0, x, tx, x+tx}. For any x#0 in G" write x= (t—— D)x'. Then
G- 1 () =Gy, (X" ~x) =g, _ (X} + g4, (— x)+¢z(zx —Xx')= ¢ (e, x)=2"1
Hence GS,_,(¢)=1-1—1—1=—2 and o,_,(¢)=4. This completes the proof.
Example 6.3. For each k 22 there exists a closed connected oriented 3-manifold M
with H,(M)=Z,.®Z . such that ¢, =~ B*.

Tao see this, we show that for each k=1 there is a closed connected oriented 3-
manifold M with H,(M)=2Z,.®Z,. such that M, is a fiber of a fibered 2-knot.
Then the assertion follows from Lemma 6.2. Consider the knots K(m) and
K'(m)(mz=1) illustrated in Fig. 1.
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K(1) is a trefoil knot and K'(1) is a figure-eight knot. Note that K(m), K'(m)

have Seifert matrices ( ;n ?), ((r)n i), respectively. Let M(m), M'(m) be the 3-fold

branched covers of S§° along K(m), K'(m), respectively. By Fox [4],
H,Mm)=Z,,_®Z,;,_, and H(M(m)xZ,,,,DZ,,,,- By Zeeman [16],
M(m),, M'(m), are fibers of some fibered 2-knots. Since for each k=1 there is an
integer m such that 2*=3m—1 or 3m+ 1, we have constructed an M with H (M)
=Z®Z, such that M, is a fiber of some fibered 2-knot for each k= 1.

By taking connected sums of some copies of manifolds in Examples 6.1, 6.2,
and 6.3, we see the following:

Theorem 6.1 For .any linking (G, ) there exists a closed connected oriented
3-manifold M with H,(M)=G and ¢, = ¢.

Acknowledgements. We would like to thank Joan S. Birman for help in preparing this manuscript.

References

. Brown, E.H,, Jr.: Generalizations of the Kervaire invariant. Ann. Math. 95, 368-384 (1972)
. Burger, E.: Uber Gruppen mit Verschlingungen. J. Reine Angew. Math. 188, 193-200 (1950)
. Epstein, D.B.A.: Embedding punctured manifolds. Proc. Amer. Math. Soc. 16, 175-176 (1965)
. Fox, R.H.: Quick trip through knot theory. Topology of 3-manifolds and related topics, ed. Fort,
M.K., Jr. Englewood Cliffs, NJ: Prentice Hall 1961
. Fox, R.H.: Review of [2]. Math. Rev. 13, 204 (1952)
. Guillou, L., Marin, A.: Une extension d’'un théoréme de Rohlin sur la signature. C. R. Acad. Sci.
Paris 288, Série A 95-98 (1977)
7. Hantzch, W.: Einlagerung von Mannigfaltigkeiten in euklidische Rdume. Math. Z. 43, 38-58
(1938)
8. Hirzebruch, F., Neumann, W.D., Koh, S.S.: Differentiable manifolds and quadratic forms. New
York: Marcel Dekker, 1971
9. Kawauchi, A.: On n-manifolds whose punctured manifolds are imbeddable in (n+ 1)-spheres and
spherical manifolds. Hiroshima Math. J. 9, 47-57 (1979)
10. Milnor, J., Husemoller, D.: Symmetric bilinear forms. Ergebnisse 73. Berlin, Heidelberg, New
York: Springer-Verlag 1973
11. Seifert, H.: Verschlingungsinvarianten. Sitzungsber. Akad. Berlin, Phys.-Math. KI1. 16, 811-828
(1933)
12. Seifert, H., Threlfall, W.: Lehrbuch der Topologie. Leipzig: Teubner 1934
13. van Kampen, E.R.: Invariants derived from looping coefficients. Amer. J. Math. 60, 595-610 (1938)
14. Vinogradov, L M.: An introduction to the theory of numbers. London, New York: Pergamon
Press 1955
15. Wall, C.T.C.: Quadratic forms on finite groups, and related topics, Topology 2, 281-298 (1964)
16. Zeeman, E.C.: Twisting spun knots. Trans. Amer. Math. Soc. 115, 471495 (1965)

W~

(=

Received March 17, 1980

Note added in proof. We are informed by J. S. Birman that from a different viewpoint she and D.
Johnsen have obtained several results of this paper independently at the same time.



