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A linking is understood as a pair (G, ~b) such that G is a finite abelian group and ~b 
is a nonsingular, symmetric bilinear pairing G x G~Q/Z. It is convenient to 
identify a linking (G, ~) with a matrix which represents ~b relative to the generators 
of a cyclic splitting of G unless confusion might occur. The linking occurs often in 
the study of topology. For example, given a closed oriented 3-manifold M, we have 
a unique linking (~HI(M),q~M) defined by the Poincar~ duality, where "rHI(M ) is 
the torsion part of the integral homology group Hi(M). The purpose of this paper 
is to determine completely the structure of the abelian semigroup 9l of all linkings 
(up to isomorphism) under block sum and to observe that any linking is 
isomorphic to the linking ~b~ of a closed connected oriented 3-manifold M. To do 
this, we shall present a complete system of invariants of isomorphic linkings, which 
arises naturally from our purpose. Such a complete system had already been 
known by Seifert [ 11] in the case of odd-primary groups, and in general by Burger 
[2, Satz 5] in terms of Minkowski's beautiful theory. Though they are related 
directly or indirectly to each other (cf. Fox [5]), we do not discuss here any relation 
between them. 

91 is isomorphic to a direct sum ( ~  F/p of the abelian semigroups 91p of 
P 

linkings on p-groups (up to isomorphism). Wall [15, Theorem (4)] showed that for 
each odd p, 91p has a presentation with generators (p-k), (p-kn(p) ) (k > 1) (which are 
linkings on Zvk ) and relations 2(p-k)=2(p-kn(p)), where n(p) is a fixed quadratic 
non-residue (modp). Wall [15] gave also generators of 9l 2 (cf. van Kampen [13]). 
They are (in our notations) A~'(n)=(2-kn) ( k > l )  (which are linkings on Z2k), 

where n = l ( k = l ) ,  + l (k=2) ,  •  •  and Eko = 2_ k (k>l) ,  E~ 

[a 1-k 2 -~) 
= ~2_ k 21_ k (k>2) (which are linkings on Z2k~Z2~ ). So, the remaining 

problem is to give a presentation of 912 relative to these generators. For 
convenience, we will use the symbol Ak(n) for any odd n under the identification 
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that A l(n) = A x( 1 ), A Z(n) = A 2(( _ 1)t,- t~t2) and for k > 3 Ak(n) = Ak(n ') if and only if 
n-=n'(mod8) (cf. Wall 1,15], Vinogradov [14, p. 69]). 

We shall show the following: 
T h e o r e m  0.1. Yl 2 has a presentation with generators Ak(n) (k~  1), where n = l(k = 1), 
__+ l(k=2), __+ 1, __+5(k>3), Eko(k> 1) and Ek(k~2), and relations 

Ak(n:)~ Ak(n2) = Ak(nt + 4)~) Ak(n2 + 4) (k > 3) (0.1) 

Ak(n)~ 2Ak(-  n) = ak( - n)O) Eko(k ~ 1) (0.2) 

3Ak(n) = Ak(-- n + 4)@Ek(k > 2) (0.3) 

2Eko= 2Ek(k > 2) (0.4) 

Ak(n:)~A k+ l(n2) = Ak(nl + 2n2) t~A k+ l(n 2 +2n0(k>__ 1) (1.1) 

Ak(n)~)E~+ 1 = A~,(n + 4)~)E~ + ~(k _-> 1) (1.2) 

E] ~9 A k + l(n) = Eko ~ A k + ~(n + 4) (k ->_ 2) (1.3) 

Ak(nl)~A k+ 2(n2) = Ak(nl + 4)~)A k+ 2(n 2 q- 4) (k_-> 1). (2.1) 

These relations (0.1), (0.2) ..... (2.1) are easily verified. The true meaning of 
Theorem 0.1 is that any relation is generated by them. 

Section 1 is a preliminary section. In Sect. 2 we define and calculate an 
invariant of a linking on a 2-group, which comes from the Gaussian sum of a 
certain associated quadratic function. In Sect. 3 we exhibit all linkings on 
homogeneous 2-groups (up to isomorphism). In Sect. 4 we classify a linking in 
terms of our invariants and prove Theorem 0.1. In Sect. 5 we study split linkings 
and hyperbolic linkings. In particular, we shall calculate the Witt groups of 
homogeneous linkings and more general linkings. In Sect. 6 we study the linkings 
of 3-manifolds. Several topological applications are given, besides realizing any 
linking by qbu of a dosed connected oriented 3-martifold M. 

1. P r e l i m i n a r i e s  

Two linkings (G, ~b), (G', q~') are isomorphic if there is an isomorphism f :  G--* G' such 
that q~(x, y)= rip'(f (x), f(y)) for all x, ye  G. We denote it by (G, ~b)= (G', ~b') but the 
equality (G,~b)=(G', q~') is also used and called a relation when both (G, ~b) and 
(G', ~b') are written as block sums of some copies of the given matrices (p-k), 
(p-kn(p)), Ak(n), E~o and E~. The isomorphism class of (G, ~b) is denoted by I-G, ~b]. 
Let p be a prime number and k be an integer > 1. For any linking (G, tk) let dk be 
the subgroup of G generated by elements of order pS with s<k,  Gp= k~l ~rk and 

~p = ~blGp x G r G~ is the p-component of G and ~bp is a linking on Gp. Any linking 
(G, r has a primary (orthogonal) splitting ~ )  (Gp, r and the isomorphism class 

p 
[G, ~] determines the isomorphism class I,Gp, ~bp] uniquely for each p. Let dk 
_ - k  - k -  1 _ ,~k+ 
--G~Gp +e,Jp . Define a pairing 

~k. ~k • ~k_~ dp~,.Gp G v Q/Z 

by the identity 

I,y]) = # -  l (x, y) 
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for x, ye  (~, which is clearly well defined. ~~ ~k (Gp, 4)) is also a linking by a fact that 
(Gp, qSp) has a homooeneous splitting, that is, an orthogonal splitting k_~ ~ (G~, 4)~) 

such that G k is isomorphic to a direct sum of copies of Z k (see Wall [15]). Note 
that G~ is a vector space over Z v Let r~=r~(G)=dimzpG ~. ~ is a group invariant of 
G. In case (G, ~a) is a linking of a homogeneous p-group of exponent k, i.e., (G, 4)) 

k k = (Gp, 4)p), then we can also obtain an induced linking (PG, P4)), defined for each 
(1N)s< k by ISG= G/pSG and P4)([x], [y])=pk-S~b(x, y) for x, yE G and for each 

_ _  k k s >--k by (PG, P4))=(G, 4)). Given a homogeneous splitting @ (Gp, 4)p) of (Gp, 4)p), 
I k 1 k ,~  ~k ~k then we have always (I G,, 1 4).)= (G,, 4),) for all k->_ 1. 

. . . .  k ~k First we assume p is odd. We regard (Gp, 4)p) as an inner product space over Z v 
(cf. [10]) by using the canonical imbedding Z/ -*Q/Z  sending 1 to p-1. Denote it 
by (0~, q]k,). 

Definition t.t.  The Legendre's symbol (det~k./p) is denoted by zk(4)). 
xk(4)) is an invariant of the isomorphism class [G,4)] by a property of 

Legendre's symbol (el. Seifert [11, p. 199]). 
Let ( ~  (G k, 4)k) be any homogeneous splitting of (G,, 4),). As Wall [15] showed, 

k k ~ k -k (r~_l)(p-k)~(p-kn(p))accordingtowhetherx~(4))=l we have (Gp, 4)p) = rp(p ) or 
or - 1. 

Hence we have the following: 

Lemma 1.1. The isomorphism class [ G~, ck~] is determined uniquely by the invariants 
k and xk(r of [G, r rp 

Now we consider the case p =  2. In this case, the arguments will be more 
complicated because, in general, a homogeneous splitting of (G v 4)2) is not unique 
(see the relations in Theorem 0.1). 

Definition 1.2. ck(4)) is the characteristic element of ~k, which is specified uniquely 
by the identity 

~k C k 4)2((4)), X) = ~(X,X) 

for all xe (~. 

ck(4)) is an invariant of [G, ~b] in the sense that any isomorphism (G, 4))---(G', 4)') 
induces an isomorphism -k -k ~ ~,k ~,k (G2,4)2)=(G2,~p2) sending ek(~b) to ck(~b'). 

2. The Gaussian Sum and its Associated Invariant 

We consider a linking (G, 4)) with ck(4))= 0. Then there exists a function 

qk : G2/G~-*Q/Z 

defined by 

q~([x]) = 2 k- * 4)(x, x) 

for x e G  v [Note that if x ' = x  + x o, Xoe(r ~, then 

2 k- 14)(x', x') = 2 k-1 ~)(x, x) "l- ~)k(ck(~), [XO]). ] 
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We denote by GSk(~p) the Gaussian sum 

~. exp(21ziqk(x)), 
x~62/~ k 

where i = ]/~--1. 

Lemma 2.1. We have the following properties. 
(1) I f  (G, d~) ~- (G', dp')@(G", dp") and ck(r = O, then c~(r ') = ck(dp ") = 0 and GSk(r 

= 6s~(r 6sM,") .  
(2) GSk(r = GSs(I"- k + sqb,~) for s < k < m. 

j2t,. - 1)/2 exp((- 1) ~"- 1)/22r~i/8) (m even)(m>__2) 
(3) GSI(Am(n))= [2t" . _  1)/2exp(2zin/8 ) (m odd) 

(4) GS,(E'~) = 2,.- ', GSI(E 7) = ( - 1) m- 12"- l(m > 2). 

Proof (1) is clear. [Note that r162 for x = x ' + x " ,  x 'sG',  
x ' e  G".] For (2) let G be a homogeneous 2-group of exponent m on which ~b 7 is 
defined. Let qk, q', be the functions associated with q~', Im-k+'qS~ '. It follows that qk, 
q'~ define the same function on G/2"-kG, showing (2). For (3) we show that 

GSx(A,.(n)) = 2GSI(A,.- 2(n)) 

2m-1  

exp( 2ninfl /2") 
j = l  

2 m - 2  2m-2  

= ~ exp(2nin(2j)2/2")+ ~, exp(2nin(2j-1)2/2 ") 
j = l  j = l  

2 m - 3  2m-3  

= ~ exp(2~inj2/2"-2)+ ~ exp(2~in(2"-3+j)2/2 "-2)  
j=l j=l 

2 m - 3  2 m - 3  

+ ~, exp(27tin(2j- 1)2/2m)+ E exp( 2~in[2(2"-3 4 j ) -  112/2m). 
j=l j=1 

Note that (2"- 3 +j)2/2m- 2 =j2/2m- 2(mod 1) and [2(2 m- 3 +j)  _ 112/2,. - 1/2 
+ ( 2 j -  1)2/2m(mod 1). Hence we have 

2m-3  

GSI(A,.(n)) = 2 ~ exp(2ninj2/2 m- 2) = 2GSI(A,.- 2(n)). 
j = l  

For m=  2, 3, GSI(A,.(n)) is easily calculated and (3) is obtained. (4) follows from (1), 
(3) by applying GS 1 to the relations (0.2) and (0.3). This completes the proof. 

Since any linking is isomorphic to a block sum of some copies of A,.(n) (m > 1), 
E~(m > 1) and E'~I (m > 2), we see the following: 

Corollary 2.1. For any linkino (G,d?) with ck(~b)=0, GSk(qb ) is not zero and there 
exists a unique integer a (mod8) such that 

G Sk( r ) = I G S~( dp )lexp( 2nia /8 ) . 

Let Za=Zsu{oo}  be a semigroup (consisting of 9 elements) whose extra 
summations are defined by 

o 9 + c t 3 = ~ q - n = n + ~ = o g ,  n ~ Z  s. 

for m = 4. In fact, 

GSI(Am(n)) = 
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Definition 2.1. ak(r is the integer a(mod8) or cc according to whether ck(O) is 0 or 
not. 

Thus, for each k > l  there exists an invariant ak(O) of [G,0]  in 2 s. By 
definition, a homogeneous linking 0~'(m>2) has ak(0~')4:~ for k<m.  The 
invariant e~(02 z) was introduced by Brown [1] concerning generalizations of the 
Kervaire-Brown-Peterson-Browder invariant. 

The following is easily obtained from Lemma 2.1 

Corollary 2.2. (1) ak :91--,Z 8 is a semigroup homomorphismfor all k>= 1, 

(2) " - " - ~ + ~  " ak(r  a f l  Oz)for s < k < m ,  

{(n-1)("-1)/2 ( m - k o d t O  ak(E~0)= 0 
(3) irk(Am(n)) = ( m - k  even), 

and 

ak(E'~)=2[1--(--l)m-k], where k < m .  

For our purpose the following Lemma is important. 

Lemma 2.2. Let (6, d?) be a linkinq with ck(O) = c~(0)= Of  or some k, s(k <= s). For any 
homogeneous splitting ( ~  (G"~,O'~) of  (G2,02), there exists an element 

m > l  

0(O, k, s)e (0, 4} C Zs such that 

ak(O)- a~(O) = ak(O k+ 1) + ak(O~+ 2) + . . .  + ak(O~) + 0(0, k, s). 

0(O, k, s) does not depend on a choice o f  a homogeneous splitting of  (G z, ~b2) if  and 
only if  one of  the following cases occurs. 

(1) s - k  is even. In this case, ak(r 
(2) s - k  is odd and cS+l(O)=O. In this case, o(O,k,s)=a~+l(O)-a,(O).  
(3) s - k is odd, rS2(G) = 0 and c s- 1(0 ) = O. In this case, 0(0, k, s) = (r s_ 1(0) - as(O). 

Proof By Corollary 2.2(1) and ck(O)=cS(O)=O, ak(0)= 

a m =- ~ s(O2), so that 
rn>-_s+ l 

k + 1  trk(qb) -- a~(O) = ak(02 ) + . . .  + o'k(~b~) + 0(0, k, s), 

ak(O~' ) and a~(r 
r a ~ k +  1 

where we let 0(O, k, s) = ~ (a~(t~)-  a,(r Since r is a block sum of suitable 
m ~ s +  1 

copies of Am(n), E"~, and E'~, it follows from Corollary 2.2(3) that a~(0~') 
-a,(r = 0(mod 4). Hence 0(O, k, s)= 0 or 4, showing the first half. In Case (1) we 
can also see that ak(4~' ) -as(r  and hence 0(r k, s)=0. Further, in this case 
ak(0 ~) = 0, since 0~ is a block sum of some copies of E~ and El. In Case (2), by 
using Case (1) we obtain that 

ak(0)  - as (0 )  = a~(0)  - * s +  1(0)  + O(0, k, s ) .  
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Hence O(ck, k,s)=a,+l(r ). In Case (3), we see from Case (1) that  

~1r - ~s(r = ak(~)-  ~ _  ~(r + o + o(r k, s), 

so that 0(r k, s )=  a,_ l(q~)- a,(~b). 
Let  s -  k be odd and d + l(q~) 4= 0. Now we show that  if r~(G) 4= 0 or c ' -  ~(r 4 = 0 

On this case k < s - 3 ) ,  then 0(~b, k, s) is not uniquely determined. First consider the 
case ~(G)4=0. In this case, for any homogeneous splitting ( ~ b ~  of ~b 2 we can 

m 

write r E~ (or E~)~q~  and qb~ + ~ = A "+ ~ ( n ) ~  +~ for some ~ ,  A '+ ~(n) and 
~ +  ~. Let ~b~ = E~ (or E ~ ) ~  and 4~ s+ ~ = A s+ l(n + 4 ) ~ q ~  + ~. By the relation (1.3) 
q~, ~ ,~ ,+ t ,,,,h,,@,~,,+l Consider the new splitting 2 W 2  -~- W 2  W 2  �9 

~m(~A,s~,k,s+ 1 rn @ .,-~ ,,-~ .,.2 | r  of r  
m ~ s - - 1  m ~ s +  2 

We write 

c ,g r  ~,(r = ~M,~ + ~) + . . .  + ~ ( r  + o'(r k, s). 

Since s - k  is odd, by  Coro l lary  2.2 we have %( r  4 = a~(~b~'). Hence 0(q5, k, s) 
= 0'(~, k, s) + 4. Next,  consider the case c ~- ~ (~b) 4= 0 (hence k < s - 3). In this casc we 
can write 4~- ~ -~ A ' -  l ( n ' ) ~ -  ~ and ~b~ + i ___ A,+ l(n)@q~+ 1 for some A ~- l(n'), 

S - - I  ~2_,  A~+~(n), dP~2 +l. Let ~2"~'~+~=A~-~(n'+4)~r -~ and #)':~+~-A~+~(n+A) 
s + l  @q5~ . By the relation (2.1), ~-2"~'~-~(~'~'s+~'r2 ~-~b~-~,hs+~.2 . Consider the new 

splitting 

r162162162  +~ @ ~ of r 
~n~a--1 m~_s+ 2 

and write 

,~gr =,~ gr  + ') +.. .  + ~(~,'~- ') + ,~(#,~) + o'(r ~, s) . 

~(r )=~(0~ ) Since ( s - 1 ) - k ( = >  2) is even, we see from Corol lary 2.2 that , ,-1 , -  
+ 4, so that 0(4~, k, s) = 4 + 0'(r k, s). This proves Lemma 2.2. 

3. Exhibition of Linking on Homogeneous 2-Groups 

Let (G, ~) be a linking on a homogeneous  2-group of exponent  1. In case cX(~b) =0 ,  
r=r~(G) is even and (G, dp)~-(r/2)E~. In case c1(~b)=4=0 and qg(cl(qg),cX(qS))=0, r is 
even and (G,c~)~-2Al(1)~[(r-2)/2]Eio . In case q~(cl(~b),ct(~b))4=0, r is odd  and 
(G, q~)~ Al (1 )~ [ ( r  - 1)/2lEo i. (Cf. Wall [15, p. 290].) Hence we have the following: 

[,emma 3.1. Any linking (G, qS) on a homogeneous 2-group of exponent 1 is 
isomorphic to one of  the following linkinos, which belong to mutually distinct 
isomorphism classes: 

L~'-S,~o,- 1 L~=2a~(1)es2E~, L~=ai(1)eS3Eo ', 

where sx( 4=O), s 2, s 3 are any integers >=0. The invariants r~(G) and al(~) form a 
complete system of invariants. 
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l_emma 3.2. Any linking (G,49) on a homogeneous 2-group of exponent 2 is 
isomorphic to one of the following linkings, which belong to mutually distinct 
isomorphism classes: 

L 2 =stE 2 L 2 _ 2 2 1,1 ' 1 , 2 - - g l ( ~ ) s 2 E o ,  

L2 =2A2(1)@s3 E2 L2 2=2A2( -1)~)s* E2 2,1 , 2, 

t 2 =a2 (1 )0 )a2 (_  1)~ssEo: , L 2 _ A2(1)~)A2(_ 1)OE2~s6 E2 2,3 2 , 4 1  , 

L 2 =A2(1)Os7E 2, L 2 =A2(1)0)E 2~s8E2o, 3, 1 3, 2 
L 2 = A 2 ( _  1)t~s9E2, 2 2 L3,4=A ( -  1)GE2(~Sto E2, 3,3 

where s,( 4: 0), s 2 ..... s, o are any integers > O. The invariants r2(G), tr1(49), tr2(49) form 
a complete system of invariants in this case. 

Proof. By Lemma 3.1, 1149 is isomorphic to one of L l, L2 t, and L31. If 1149 _-LI (or 
L3 t, respectively), then ~b is isomorphic to L12x or L 2 2 (or L 2,1, L3 2, 2, L2.3 or L2,,,  
respectively) by using the relation 2E2=2E2~ in i0.4). In case I149~-L~, 49 is 
isomorphic 2 2 2 2 �9 2 2 to  L 2 1, L2 2, L2 3 o r  L3. 4 by us ing  2Eo=2E 1 and the relation 
2A2(n)~E 2 = 2A:('-- n)@'E2(n -" + 1) obtained from the relations (0.2) and (0.3). By 
Lemma 3.1, the invariants r~(G) and tr2(~b) distinguish between L 2 ~, L 2 ~,, and 
L 2, ~,.. Further, we have that tr 1 (L 2 ) = 0, 4 according as j = 1, 2, a 1 (L 2 j,) = 2~ - 2, 0, 
4 according as f =  1, 2, 3, 4 and al(L2,j,,) = 1, 5, - 1, 3 according as ' j "=  I, 2, 3, 4. 
This completes the proof. 

Lemma 3.3. Any linking (G, 49) on a homogeneous 2-group of exponent k~_3 is 
isomorphic to one of the following linkinas, which belong to mutually distinct 
isomorphism classes: 

L k = s l E  ~ L ~ - k k L k =2Ak(1)@~aE~, 1,1 ' 1 , 2 - E I @ S 2 E o ,  2,1,1 

gk2, 1,2 ~-- AR(1)(~Ak(5)Gs'3Eko, Lk2,2,1 = 2Ak(-- 1)(~s4Eko, 

L g = A k ( _ l ) ~ A k ( _  5)~s,Eo,,  k L k2, a, 1 =Ak(1)~Ak(--1)@ssEko 2,2,2 

Lk2,3,2 = Ak(1)~Ak(-- 5)~s'sE ~ , L~, 4,1 = A~'(1)(~A~'(- 1)@El Os6E~o, 

Lk2, 4, 2 = A k ( 1 ) ( ~ A k ( _ 5 ) ~ ) E k i  @s6Eo , ' k  L k3,1,i =Ak(1)(~sTEko,  

L k = Ak(5)@s'vEko, L k = Ak(1)@E] @ssEko 3,1,2 3,2,1 ' 

L k = A k ( 5 ) ~ E ~  ~saEo,, k L k3,3,1 = Ak(-- 1)I~s9E~ 3,2,2 

L k = Ak( -  5)~9s'9 Ek , 3,3,2 

L ~ 3,4.1 =Ak( - 1)(~E~ (~SloE~, Lk3,4,2=Ak(--5)(~)Ekt@s'loEko, 

where s a( 4: 0), s2, s3, s' 3 . . . .  , slo, s'l o are any integers > O. The invariants ~(G), ~rk(49), 
ak-1(49) and cr k_ 2(49)form a complete system of invariants in this case. 

Proof. By Lemma 3.2, the system of invariants ~(G), Crk(~b), and o" k_ i(49) determines 
the isomorphism class of  (12G, I249) uniquely. Assume (IZG, 1249)= L,  ~, ~ for some a, 
b. Ifa=l,thenclearly(G, dp)gL~t,~.Incasea>=2,wehave(G,~b)=Lo, ~ orL~,b,2hy 
using the relation (0.1). L .  ~ ~ i and L~. ~ 2 be long  to distinct isomorphism classes, 
since o" k_ 2(Ak(n)) = n 4: 5n ------'~k- 2(Ak(Sn)) ', n = -I- 1. This completes the proof. 
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4. Classification of  Linkings in the General Case 
and Proof of  Theorem 0.1 

Theorem 4.1. Two linkings (G, q~), (G', ~b') are isomorphic if and only if ~(G)= ~(G'), 
Z~,(t~) =k,~p.(q~') and ak(dp)=ak(~p') for all prime p, odd prime p' and k>= 1. 

Proof By Lemma 1.1 it suffices to prove that if rk2(G)= r~(G') and ~k(qS)= ~rk(~b') for 
- -  m~ p r all k > l, then (G 2, tk2)=(G2, ~b2). The proof consists of the following two steps: 

Step 1. There exist homogeneous splittings ~ 49~, ~ ~b~ m of ~b2, 49'2 such that 
in m 

2 m 2 . . ~ t m  I (b2~--[ tp2 for all m ~ l .  

Step 2. Assume there are homogeneous splittings @ ck~, @ 4)'2' of  q52, 49'2 such that 
rtl m 

I 2 ~ "-- I 2 49'2m for all m >= 1. Then there exist homogeneous splittings ~ qS'~, ~ ~ '2'~ 
i n  nt 

of ~b 2, r such that ~ " ] ~ 2  m for all m__>l, so that 492~-49'2. 

Proof of Step l. By Lemma 3.1 note that lX49~"~-Ildpr~, and in particular, qS~-~qS~ 1 
for any homogeneous splittings @ qS~', @ ~b'2" of 492, 49~, since crm(49) = co if and 

nl n l  

only if trm(49 ~) = oo. Suppose there exist homogeneous splittings @ ~b~', @ 4 ~  of 
rn irt 

r [ l " h k  ~ I I " h t k ~ ] - I  Then 492, ~52 such that .12"hm'~12"fi'm,/-2 = .  v2 for all m<_k-_ l(k__>2). L e t .  v 2 = -  v-2 = ~ , .  
by Lemma 3.2 we have [2..fik , .~  [2 i 2 , . h , k  ~ 2 ~ b'. - "r =~,,b, v2 ~L~,v tor some b, If Ok+ 1(49)= OO, then 

by the relation (1, 1) and (1, 3) we find new splittings @ ~b2,~m @ C~'2m of ~b 2, q~2' such 
m m 

that 1 2q~, ~ i26'2, for all m_<_ k. If crk(~b)~= oo and cry_ t(q~)= oo or if am(49)= oo for all 
m __< k -  1, then the relation (1.2) or a successive use of the relation (1.1) also enables 
us to find such splittings of 492, q~- [Notice a fact (obtained from (1.1)) that for any 
o d d n  2 . . . . .  n k there exist odd n'2 ..... n~ with n'~- ni(mod 4), i~  k -  1, and 
n~-  n k + 2(mod 4) such that 

A l(1)(~ A 2(n2)(~ . . . ~  Ak(nt,) = A I(1)~ A 2(n~2)~ . . . ~ Ak(n~,).] 

If c~§ and Crk_t(40#oo, then we see from Lemma 2.2, Case (1), that 
k r k  2 r el(I  492) O r k _ l ( ~ 2 ) - - ' ~ O ' k _ l ( 4 9 2 )  , SO that ffl(I2~bk) ~- by Corollary 2.2(2). Since 

Ilc~k~I~49'2 k, it follows from Lemma 3.2 that I249k~--I2qS'2 k. Now assume that 
oi+l(qS)=~oo, trk(q~)=tr~_l(49)=oo, and tr~(q~)#oo for some j < k - 1 .  Since 
tri(~)= oo, the label a of L2.~ and L,2v is 2 or 3, We use the following 

Subterama. a~(la/P~2)- er~(I2~b'k2) (rood 4). 
From this sublemma we see that b, b' ~ { 1, 2} or b, b' ~ { 3, 4}. Since Ok- 1 (q~) = o0, 

write r ~ k-1 -k-1 a k -  ~k2-1 = A  (n)~b 2 for some ~(n), . If a = 2  and b,b'~{1,2}, then 
we use the relation 

A s- l(n)~Ak(nx)~Ak(n~) 

= A t -  l(n + 2nl + 2n2)09 Ak(nl + 2n)@A~'(n2 + 2n + 4nl) 
obtained from the relation (1.1). If a = 2 and b, b'e {3, 4} or if a = 3, then we use the 
relation (1.2). It follows that there exist new splittings <~) q~, (~) ~ of 492, 49~ such 

m m 

that 12t~ ' -  12q~ m for all m <= k. By induction on k, we complete the proof of Step 1 
except for the proof of the sublemma. 
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Proof of Sub[emma. Using a,,(0) = a,~(0') for all m, we obtain from Lemma 2.2 the 
congruence 

1~_ ta~,J + l) ... + a~(02k) + a~(0~k + 1) (mod 4). + 

~12"h'm, m < k - 1 ,  implies that afl~bT) By Corollary 2.2 the assumption 1207= ,r2 
- ai(02" ) (mod 4) for j < m < k -  1. Since a k + 1(0) 4: o% 0~ + 1 is a block sum of copies 
of E~ +t and E] 01. So, by Corollary 2.2, afl0~+l)=0 (rood4). Similarly, 

z z t k +  1 )  aj~q, 2 =0  (rood4). By the above congruence we have ~rj(0~)--aj(0~ ) (mod4), 
and hence by Corollary 2.2, a1(12c~k2)=_al(IZ(a'zk ) (rood4). This proves the sub- 
lemma. 

Proof of Step 2. Assume the splittings @ 07, (~) 02" of 02, 02 have 1207-_ 120~ ra 
rtl r n  

m ~ / m  for all m. For r e= l ,  2 this implies 02=q~2. Suppose ~b~-~0~ " for all 
m < k - l ( k > 3 ) .  If ak(0)4:oO, then the isomorphism 2 k~  2 ,k I q~2=I 02 lifts to an 
isomorphism 0~ ~ q~. Let trk((9 ) = 0O. Let I20~ g I202 k_- L~ z b for some a( 4:1) and b. 
By Lemma 3.3, qS~, 02 k are isomorphic to L~,b, ~ or L].~I2 . If ak+2(0)=~ or if 
ak- 2m(0) = o~ for all integers m with 1 __< k -  2m < k - 2, then by the relation (2.1) we 
can find new splittings @) ~7, ~ ~2" of 02, 02 such that t~7--- q~2" for all m < k and 

m m 
2 ~m ~2ff . tm 1 02 ~ q)z for all re>k+ 1. [Notice the following relations derived from (2.1): 

At(1)@A3(nl)~ . . .~  A2s- l(n, s-lJ~O A2s+ lr ~, ~ 

=At(1)~A3(nt)G ...~)A2~-t (n~_ 1)GA2~+1 (n~+4), 

A2(nl)@A,(n2)~ 2~ 2s+2 �9 . .OA (ns)(~A (n,+ 1) 

= AZ(nl)@A4(n2) ~ .  .. ~ Azstn~ s,)(~A2S+ 2ln, s+ l +4).] 

Assume ak+2(0)4: oo and %(0)4: oo for some j = k - 2 m  (m, an integer >1). Since 
k + 2 - j  is even, we obtain from Lemma 2.2(1) and am(0)=a,,(0') for any m that 

+ + . . .  + + + = + + . . .  + o j ( 0 2  + + 1). 

By assumption, 0~'--0T for r e < k - l ,  so that a](0~')=as(0T) for j < m < k - 1 .  
Since I20~ + 1 1, or ---I202 ~+ 0~2 +1-~b2 ~+a 0~2 +t and 02 ~+~ are isomorphic to L],+r ~ 

k + l  ~ t k + l  k + l  or L,, v. ~ for the same a (4:1), b. By Corollary 2.2, ~rj(A in)) = aria (5n)), since 
k + l - S j  is odd. Hence %(0~+t)=af102 ~01). It follows that a~.(0~)=a~02~). By 
Corollary 2 2, ~r (A~(n)) 4: ~r.(Ak(5n)) Using that 0~2 and 0~ are isomorphic to L] ~ �9 ./ ./ �9 , �9 

k k r ~  tk  or L,, ~, 2, we see that 0 2  = ( # 2 "  By induction on k, we complete the proof of Step 2. 
This completes the proof of Theorem 4.1. 

Proof of Theorem 0.1. First we note that any block sum 

m _  m m m m 02--A (n~)~ . . .~A  (n~)~roEo~r~E ~ 

is deformed only by the relations (0.1), (0.2), and (0.3) so that IXO~=Li, L~ or La 1. 
To see this, it suffices to show that for any odd n~, n2, and n a, there is an odd n, 
such that 

A'(n 1) + A"(n2) ~ Am(n a ) = A=(n4) (3 E"d(or ET). 
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But we can take n~ = + 1, _ 5. So this is easily done. Consider any relation ( R ~  ~b~' 
m 

= (~) ~'~ such that ~b~, ~b~ '~ are block sums of copies of A'(n) (n = _ 1, _+ 3), E~ and 
i l l  

E~'. We show that the relations in Theorem 0. I are sufficient to deform both sides 
. . . .  =L~(m=l ) ,  L~,b(m=2), or L ~  ~,(m>3) for of the relation (R) so that ~b~-q~ z 

some a, b, b'. By Lemma 3.1 and the above remark, we can assume l~b~=I~q~2 ~ 
=L~, L~ or L~ t for all m_>_l. Consider the proof of Theorem 4.1. The proofs of 
Step 1 and Lemma 3.2 ~ show that the relations in Theorem 0.1 are sufficient to 

m ~,h,- z for each m > 2  and some a, b. deform both sides of(R) so that I ~b 2 = I  wz =L,.b 
Then the proofs of Step 2 and Lemma 3.3 show that the relations in Theorem 0.1 

t m ~  m are sufficient to deform both sides of (R) so that ~b~ = ~bz -L~,~.~, for each m > 3 
and some a, b, b'. This completes the proof of Theorem 0.1. 

5. Split Linkings and Hyperbolic Linkings 

A linking (G, q~) is split, if there exists a direct summand H of G that is a self- 
orthogonal complement (i.e., H •  H) with respect to qS. 

A split linking can be stated in terms of invariants as follows : 

Proposition 5.1. A linking (G,~b) is split if and only if  ~(G)---0(mod 2), ~,(~b) 
= ( - 1 )  ',~'cp'- 1~/4 and trk(~b)=0 or 0o for all prime p, odd prime p' and k >>_ 1. 

Proof. Suppose (G, ~b) is split by a direct summand H with H l = H. The p-primary 
Hp = Hp with respect to component Hp of H is a direct summand of Gp such that • 

~p, so that Gp~- H~Hp .  Given an element xeHp of the highest order, pk, then 
there exists an element x 'e  G~ of order pk with ~bp(x, x ' )=  p-k. Since ~bp(x, x )=  0, we 

see from 1-15, Lemma (1)] that (Gp,~bp)_~" ( 0 p k t " p-k U , ~(Gp, ~b~) for some linking 

(G~,~b~) and u~Q/Z. Let Clearly, H~=H'p with respect to q~. 
Further, Hp is a direct summand of G' r [Note that I n e t  = In'~tp k since IG'p[ = In'pl 2 
and IGpl=JG'plp2k=lHpl 2. Then the inclusion H'p@(x)CHp is an isomorphism, 
where ( x )  is the subgroup of lip generated by x. Let pr I :Hp=Hp@(X)  H e be 
the projection to the first factor. For  an epimorphism r : Gp--*Hp with rlH p =id, we 

r r p r l  / r / �9 define r' : G~--* H~ to be the composite G e ( Gp ~ Hp ~ H e. We have r IHp = td, 
that is, H~ is a direct summand of G~.] Hence (G'p, ~bp) is split. When p is odd, 

_ k  ~ _ ~  --_-(p-~)~(- p-~), 

so that by induction (Gp, ~bp) is isomorphic to a block sum of copies of (p-k) 
~ ( _ p - k )  (k~l ) .  It follows that ~(G)- -0(mod2)  and zk(~))----(--1) r~'Cp-ll/4 

for all odd prime p and k > 1. When p = 2, 2_ k ~ B~ or Ak(1)@ Ak(-- 1), so 

that by induction (G 2, 4~2) is isomorphic to a block sum of copies of B~, 
A~(1)~Ak( - 1) (k-> 1). It follows from Corollary 2.2 that ek(40=0 or oo for all 

1 For m>3 note the relation 2A~(n)~)E'~ (or E~'. respectively)=A~-n)~A~(-n+4)~E'~ (or E~', 
respectivvty) obtained from (0.2) and (0.3) for any oddn, which lifts the relation 2A~(n)~E~ 
=2A~(-n)~E2(n= + 1) 
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k-> 1. To see the converse, we use, when p is odd, the matrix r(p-k)~r(--p-k) with 
2r=~(G),  and when p=2, the matrix rB k or rAk(1)~rAk(-1) with 2r=r~2(G) 
according to whether ak(~b)=0 or ~ .  Take a block sum of these matrices for all 
prime p and k >  1. The resulting split linking (G',~b') has rk(G')=g(G), g,(ck') 
= zk.(~b), and ak(~' ) = ak(~b ) for all prime p, odd prime p' and k > 1. By Theorem 4.1, 
(G, qS)= (G, ~b ) and (G, q~) is split. This completes the proof. 

Let 9l~ be the abelian semigroup of linkings on homogeneous p-groups of 
exponent/c. The abelian semigroup ~q, 9~, or T/k modulo split linkings forms an 
abelian group called the Witt oroup of  linkings, the Witt group of linkinos on 
p-groups, or the Witt group of linkin~?s on homogeneous p-oroups of exponent k and 
denoted by W, Wp or VC~p, respectively. We shall show the following 

Proposition 5.2. W_~ ( ~  l/Vp. When p is odd, Wry-Ok W~ and, for each k > 1, 
P 

t ~  W~ = Z 2 O Z  2 or Z 4 according to whether p =- l(mod 4) or 3(rood 4) z. When p = 2, W 2 
is isomorphic to a direct sum of infinite copies of Z2, and W~ ~- Z2, W~ ~- Z 83 and, for 
each k> 3, W ~ - Z 8 0 Z 2  . 

Proof. Clearly the canonical isomorphism 92 ~ ( ~  9/p induces an isomorphism 
P 

W ~  ( ~  Wp. For any odd p, we obtain from Lemma 1.1 and Proposition 5.1 the 
P 

remaining first half, where W k is generated by (p-k) and (p-kn(p)) when 
p = l ( m o d 4 )  or (p-k) alone when p--3(mod4) (cf. [10, Lemma IV.1.5]). To 
calculate W~2 we use Lemmas 3.1, 3.2 and 3.3. By Lemma 3.1 W2 ~ is generated by 
AI(1). By Proposition 5.1, r~(mod 2) induces an isomorphism W21 ~ Z  2. By Lemma 
3.2, W 2 is generated by at most 8 elements. Since al(A2(1))= 1, we see from 
Proposition 5.1 that a 1 induces an isomorphism W22 ~ Z  8 sending AZ(1) to 1. By 
Lemma 3.3, W2 k is generated by at most 16 elements. By Proposition 5.1 note that 
8Ak(1) and 2[Ak(1)•Ak(--5)] represent 0 in W2 k. Since ak_l(Ak(1))=l, 
Crk_l(Ak(1)~Ak(--5))=O, and trk_2(At(1)GbAk(--5))=--4, we obtain an isomor- 
phism Za~)Z2~-Wk2 sending (1,0) to Ak(1) and (0,1) to At(1)~)Ak(-5). To 
calculate W2, note that any linking At(n) represents the same element as At(l) in 

k - 1  k 
W 2, since for k>2,  Theorem 4.1 shows that ( ~  A'(1)~Ak(n)= ~ A'(I). Then 

m = l  m = l  

from the calculation of W~ it follows that W 2 is generated by At(l), k >  1, which 
represent the elements of order 2. By Proposition 5.1, r~(mod2) guarantees us that 
these elements are linearly independent over Z 2. This completes the proof. 

A linking (G, tk) is hyperbolic if (G, ~b) is isomorphic to a block sum of matrices 

of the form ( 0 PO t ) p-k (p = a prime number, k > 1). The following is direct from 

Proposition 5.1. 

Corollary 5.1. A linking (G,c~) is hyperbolic if and only if ~(G)-0(mod2) ,  zk(t#) 
= ( _  1),gtp-l)/a and trk(~b) = 0  for all odd prime p and k ~  1. 

2 Thanks to A. Ranicki for this statement 
3 This was also proved by L. Guillou and  A. Matin [6] (see also E. H. Brown, Jr. [1]) 



40 A. Kawauchi and S. Kojima 

6. The Linking Pairings of 3-Manifolds 

We consider the linking (~Ht(M), ~b~t ) of a closed connected oriented 3-manifold 
M. The invariants ~(zHI(M)), ~(q~),  and ak(dp~t ) are denoted by k k rp(m), zv(M), and 
~q(M), respectively. 

The following Lemma improves a classical result of Hantzch [7]. 

Lemma 6.i. I f  M is imbedded piecewise-Iinearly in a 4-~phere S ~, then the linking gPM 
i~ hyperbolic. 

Proof M divides S 4 into two compact, connected, orientable 4-manifolds V1, V 2. By 
Mayer-Vietoris sequence, the homomorphism 

T= ix, + i2, :zH I(M)~zHI(Va)OzHI(V2) 
is an isomorphism (zH.  = the torsion part of  H,). By Poincar6 duality and the 
universal-coefficient theorem, the homology exact sequence of the pair (V~, M) 
induces the following exact sequence 

O-ozHz(V~, M)% zH t(M)h; rHi(Vj)--*O , 

] =  1,2. [Note that [z H I ( M)I = Iz H , ( Vj)j2, j=  I,2.] Let ~ ~ : z H z( V j, M) x z H I ( Vj)~Q/Z 
be the pairing defined by the Poincar6 duality. Let G~ - I[zHI(V~)] (C~HI(M)), 
j = 1, 2. Let x, x'~ G ~ Then i2.(x)z i2.(x')= 0. By (:~)2 there is x e zH2(V 2, M) with 
O2x = x. Hence gPM(X, X') = C~t(OzX, X') = q~2(X, /2,(X')) --  0. Similarly, dPu(X , x') = 0 for 
x, x'~ G ~ Since qS/~ is nonsingular, zH~(M)= G~ ~ and ]G~ = IG~ ~SM induces 
an isomorphism G o ~ Hom[G ~ Q/Z]. Hence by taking the generators of a primary 
cyclic splitting of G O and then taking the dual generators of G ~ we see that q5 M is 
hyperbolic. This completes the proof. 

Let N be an open oriented 3-manifold. The linking pairing 
c~s : zHa(N ) x zHa(N)--*Q/Z is still defined, though it may be singular (cf. [12]). 

Corollary 6.1. I f  N is imbedded piecewise-linearly in S 4, then we have 2 k- a dpN(x, x) 
= 0  for x~zHI{N) with 2kx =0, k=  1, 2, 3 .... 

Proof Suppose 2k-lCbs(x,x):~O for some x with 2kx=0. Then for a compact 
submanifold N' of N we also have 2 k- adpN,(X', x')+ 0 for some x' with 2~x'= 0. If N 
and hence N' imbed in S 4, then so does the double D(N') of N'. But ck(D(N'))4:0, 
i.e., trk(D(N'))= oo. This contradicts Lemma 6.1. 

For our application we take, as N, a punctured manifold M 0 of M, that is, M 0 
= M - { x }  for some x e M .  In Ibis case, qS~ is isomorphic to t ~ .  

Example 6.t. The lens space L(n, m) has H a(L(n, m))_~ Z,  and ~bL~,,m)~ (n-am) (cf. 
[12]). For odd n, L(n, m) o is imbeddable in S 4 by Zeeman [16], whereas for even n, 
L(n,m)o is still non-imbeddable in S 4 by Corollary 6.1 (cf. Epstein [3]). 

Example 6.1 shows that for odd n the connected sum L(n, m ) # - L ( n ,  m) is 
imbeddable in S ~. On the other hand, the invariant X k enables us to see the 
following 

Proposition 6.1. I f  L(n,m)~ L(n,m') is imbedded piecewise-linearly in S 4, then 
L(n, m') and -L (n ,  m) have the same oriented homotopy type. 
Proof Since -L(n ,  m)= L(n, -m) ,  it suffices to show that - ram'  is a quadratic 
residue (modn). Let n=p~ ~ ~~ . . .p, ,  where p~ are distinct odd prime numbers and 
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Fig. 1 
rn full tw is ts  m full tw is ts  

K ( rn)  K'(m) 

el__> 1. Since (n, m) = (n, m') = 1, there are unique splittings n-  1 m--~ Pl e'ml "I-"" 
- t ,__ -el,,., a- +pZe'm's. Since Z~'(L(n,m)~L(n,m'))=(mirn'i/pi) ifP2 esms and n- m - P l  -,1 . . . .  r, 

= ( - 1)(P~ - 1~r2 = ( _ 1/Pi) by Corollary 5.1 and Lemma 6.1 - it follows that - mira' i is 
a quadratic residue (mod pi) and hence (mod p~'), i=1, 2 . . . .  ,s. Then 

-mira' i -  k2(modp~'), i=  1, 2 ..... s, taking k as the sum ~, kiulp]~...p~...p~, where 
i=1 

-mira' i - k E ( m o d  p~') and uip]~.. .p~.. .p~--1(mud p~). This implies that -ram' is a 
quadratic residue (modn) (cf. [14, p. 49]), completing the proof. 

The/~-invariant is also known as an invariant of the imbeddability of a Z 2- 
homology 3-sphere into S 4 ([8-1). It is independent of our invariant ~ .  
For example, /I(L(7,1)#L(7,3))4:0 but L(7,3) and -L(7,1)  have the same 
oriented homotopy type, whereas /~(L(9, 2) ~ L(9, 5)) = 0 but z2(L(9, 2) 4b L(9, 5)) 
= 14=(- 1) 213 - 1)/4. Using all of their information, we can decide the imbeddability 
of L(n, m) # L(n, m') for n < 1 I. The first unknown example is L(11, 2) 4~ L(11, 3). 
Example 6.2. For each k > 1 there exists a closed connected oriented 3-manifold M 
with H 1 (M) = Z2~@ Z2~ and ~bu ~ B k. 

In fact, by [9] we construct M with HI(M)=Z2uc~)Z2~ such that M is 
imbedded in S 4. By Lemma 6.1, ~bu_---B k. 

Lemma 6.2. I f  M o is a fiber of  a fibered 2-knot K C S 4 and H ~(M) = Z2~t~)Z2u(k >= 2), 
then ~b M ~- B~. 

Proof LetX = S 4 - K and)~ be its infinite cyclic cover, homeomorphic to M o x R 1. 
Let G=Hx0~ ). Note that G~-HI(M)=Z2~OZ2~.  There is a linking ~b on G, 
isomorphic to ~b u such that ~b(tx, ty)= ~(x, y) for all x, ye G, where t : G ~ G  is an 
automorphism induced by a generator of the infinite cyclic transformation group 
of.~. By Corollary 6.1, o'k(~b ) = trk(~bu)4: oo (i.e., ck(~b)= 0), so that ~b u ~ B k or B k (cf. 
Lemmas 3.2, 3.3). It suffices to show that Crk_l(~b)4:0. Recall that the function 
qk-1 : G2/G~-)(= C'k)~Q/Z is defined by qk-~([X])= 2 k- 2~b(x, x). 2Ok_ ~ =0, since 
2q k_ a([x])=~b~([x], ck(~b)) and ck(~b~=0. By Wang exact sequence, t - 1 :  Gk2~G k 
is an isomorphism. It follows that e~k(tx, X)=2-1 for any x4:0 in ~k, since t x4 :x  
and hence G~={0, x, tx, x + t x } .  For any x4:0 in ~k write x = ( t - - 1 ) x .  Then 

t ' x '  + - x ' )  = 2 -  ' .  qk-l(x)=qlc_l( tx  ' - x ' ) = q k _ l (  x )+qk_ l ( - -  ) -x')=qb~(tx' ,  
Hence GS k_ l(~b)= 1 - 1 - 1 - 1  = - 2  and tr k_ l(~b)= 4. This completes the proof. 
Example 6.3. For each k >__2 there exists a closed connected oriented 3-manifold M 
with Ht(M)=Z2k@Z2~  such that dpM~-B k. 

To see this, we show that for each k_>- 1 there is a dosed connected oriented 3- 
manifold M with HI(M)=Z2k@Z2k such that M o is a fiber of a fibered 2-knot. 
Then the assertion follows from Lemma 6.2. Consider the knots K(m) and 
K'(m)(m> 1) illustrated in Fig. 1. 



42 A. Kawauchi and S. Kojima 

K(1) is a trefoil  k n o t  a n d  K'(1) is a f igure-eight  knot .  N o t e  tha t  K(m), K'(m) 
0 m 

h a v e S e i f e r t m a t r i ~  1 ) ' ( 0  - I )  'respectively'LetM(m)'M'(m)bethe3"f~ 

b r a n c h e d  covers  of  S 3 a l o n g  K(m), K'(m), respectively.  By F o x  [4] ,  
HI(M(m))~-Zam_I~Zam_t a n d  HI(M'(m))~-Zam+I~Z3=+I. By Z e e m a n  [16],  
M(m)o, M'(m)o are  fibers o f  some  f ibered 2-knots .  Since for each k > 1 there  is a n  
in teger  m such  tha t  2~= 3 m - 1  or  3 m +  1, we have  cons t ruc t ed  a n  M with  H t ( M )  
= Z 2 ~ ) Z 2 k  such  tha t  M o is a fiber of some  fibered 2 - k n o t  for each k >  1. 

By t ak ing  connec t ed  s u m s  of  s o m e  copies  of  man i fo ld s  in  Example s  6.1, 6.2, 
a n d  6.3, we see the  fo l lowing :  

Theorem 6.1 For any linking (G, dp) there exists a closed connected oriented 
3-manifold M with H t (M) ~- G and dpu ~- q~. 

Acknowledgements. We would like to thank Joan S. Birman for help in preparing this manuscript. 

References 
1. Brown, E.H., Jr. : Generalizations of the Kervaire invariant. Ann. Math. 95, 368-384 (1972) 
2. Burger, E. : Ober Gruppen mit Verschlingungen. J. Reine Angew. Math. 188, 193-200 (1950) 
3. Epstein, D.B.A.: Embedding punctured manifolds. Proc. Amer. Math. Soe. 16, 175-176 (1965) 
4. Fox, R.H. : Quick trip through knot theory. Topology of 3-manifolds and related topics, ed. Fort, 

M.K., Jr. Englewood Cliffs, NJ: Prentice Hall 1961 
5. Fox, R.H. : Review of [21. Math. Rev. 13, 204 (1952) 
6. Guillou, L., Marin, A. : Une extension d'un th6or~me de Rohlin sur la signature. C. R. Acad. Sci. 

Paris 285, S6rie A 95-98 (1977) 
7. Hantzch, W.: Einlagerung yon Mannigfaltigkeiten in euklidische R~iume. Math. Z. 43, 38-58 

(1938) 
8. Hirzebrueh, F., Neumann, W.D., Koh, S.S : Differentiable manifolds and quadratic forms. New 

York: Marcel Dekker, 1971 
9. Kawauchi, A. : On n-manifolds whose punctured manifolds are imbeddable in (n + 1)-spheres and 

spherical manifolds. Hiroshima Math. J. 9, 47-57 (1979) 
10. Milnor, J., Husemoller, D.: Symmetric bilinear forms. Ergebnisse 73. Berlin, Heidelberg, New 

York: Springer-Verlag 1973 
11. Seifert, H.: Verschlingungsinvarianten. Sitzmngsber. Akad. Berlin, Phys.-Math. K1. 16, 811-828 

(1933) 
12. Seifert, H., Threlfall, W.: Lehrbuch der Topologie. Leipzig: Teubner 1934 
13. van Kampen, E.R. : Invariants derived from looping coefficients. Amer. J. Math. 60, 595-610 (1938) 
14. Vinogradov, I.M.: An introduction to the theory of numbers. London, New York: Pergamon 

Press 1955 
15. Wall, C.T.C. : Quadratic forms on finite groups, and related topics, Topology 2, 281-298 (1964) 
16. Zeeman, E.C.: Twisting spun knots. Trans. Amer. Math. Soc. 115, 471--495 (1965) 

Received March 17, 1980 
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