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Obstructions to Embedding and Isotopy
in the Metastable Range

C. Kearton
Department of Mathematics, University of Durham, Science Laboratories, Durham, DH1 3 LE, UK.

0. Introduction

Let f:(M,0M)—(Q, 0Q) be a piecewise linear map from a manifold of dimension m
to one of dimension g. Assuming that 3(m+ 1) <2g, and that certain connectivity
conditions are satisfied, this paper describes an obstruction to homotoping
freléM to an embedding.

If f,g:(M,0M)—(Q, Q) are embeddings which agree on M and are homo-
topic rel M by a homotopy F, then under similar conditions to those mentioned
above, the theory yields an obstruction d(f,g; F) to isotoping f to greldM. The
drawback to this obstruction is its dependence on the homotopy F; examples are
given where this can be overcome.

Finally, smoothing theory is used to prove the main results in the smooth
category.

1. Preliminaries

The stable r-stem of the sphere will be denoted by =n"; thus n"=nx,  (S") for
sufficiently large values of n. Let = be any group, and for e let 4* be a k x k ma-
trix with entries in 7". Then a (n, n")-matrix of order k is a formal sum 4 = Z oA’

with 4*=0 for all but finitely many a. Thus the ijth entry of 4 is 4;;= ) aA},.

Two such matrices A, B, will be called equivalent (A~ B) if there exist
V1» .-, V€T such that

AL=BY'" . Vaem, 1sisk,
lsjsk.
If A is a (7, 7')-matrix, then the conjugate transpose A’ of A4 is defined by

A=Y a A%y

xEeM

where (A4%) is the transpose of A*.
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104 C. Kearton

We shall work in the PL category throughout. A map f:M-Q of
one manifold to another is proper if it is a map of triads
f (M, oM, intM)—(Q,0Q,intQ). If f is a proper map, then a homotopy of f reldM
is a homotopy through proper maps which is fixed on M. A homotopy of
fmoddM is a homotopy through proper maps, but allows movement on the
boundary. A homotopy of f ReldM is a homotopy of fmoddM which is an
isotopy on the boundary. R

If &t is the fundamental group of Q, and Q the universal cover of Q, then = acts
on @ as the group of covering transformations. The group action will be written on
the left; thus if o, fe m and xe Q, then axe Q and a(fx)=(xf)x. If f : M—Q is a map,
and f¢:M—Q is a lift of f, then f*:M—Q is defined by

fAx)=a(fx)) VxeM.

Here e denotes the identity element of 7.

All manifolds will be oriented.

Suppose that for i=1,2 we have proper embeddings f; : B"— B%, whose images
are disjoint on the boundary, where B" denotes the n-dimensional ball. Assume
that the three balls are oriented, and that the following inequalities hold: m >3,
q—m=3, 3m—2q+2<0.

Then dB?— f,(0B7) has the homotopy type of $4~™~1, since spheres unknot in
codimension 3 or more. Moreover, $4~™ ! inherits an orientation from ¢B? and
0B, via the duality isomorphisms of Alexander and Poincaré. Thus f,|0B7]
induces an element of 7, (S " ")=n?""%since m— 1 <2(q—m—1)—1.

Define L(f,, f,) to be this element of 7?™ 4. Then the following result is a
consequence of [4], Lemma 5.1.

Lemma 1.1. L(f}, f,)=(— 1)m+qL(f2af1)-

2. Embedding rel the Boundary

Theorem 2.1. Let M be a compact m-dimensional manifold with k components, each
of which is s-connected ; and let Q be a compact connected q-dimensional manifold
with fundamental group n and n(Q)=0 for 1 <i=t. Let f:M—Q be a proper map
which is an embedding on the boundary. Assume that the following inequalities are
satisfied: s=21, m=3, q—m=3, 2m—q<s, 2m—q+1<t, 3m—2q+3<0.

Then f determines, up to equivalence, a (m,n>™~9)-matrix A of order k, satisfying
A=(—1)"*94" and with AS=0 for all i.

The equivalence class of A depends only on the homotopy class of f reldM,
and A=0 iff f can be homotoped rel0M to an embedding.

The proof of this theorem will occupy the rest of the section.

Let M; denote the ith component of M, and set f,=f|M,. Since s=1, M, is
simply-connected and f lifts to Q; let f¢ denote some fixed lift of /. Then as in the
preceding section, f* is a lift of f, for each aen. Set f*= f*|M,. Note that f*|0M is
an embedding, and that f*(0M)n f#(0M)=0 unless a = p.

Homotop f, rel0M, to a proper map in general position. Then the singular set,
S(f), of f has dimension at most 2m—gq. There are no triple points, because
3m—2q<0.




Obstructions to Embedding and Isotopy 105

Lemma 2.2. f can be homotoped, rel OM, so that f# is an embedding for each i and
each a.

Proof. For each i, consider the map ff:M,.—>Q~. By Irwin’s theorem, there is a
homotopy, reldM,, taking ff to an embedding. Composing with the projection
p:0—Q gives a homotopy of f; for each i, and hence of f.[]

For each (i,a) % (j, B), define T/ CintM; by

=(f)" '[Im fZnIm ff].
Of course, T}f"jﬁ is a subset of S(f), and so has dimension at most 2m—gq.
Lemma 2.3. T"/n T} +0
= (i,yu)=(,o') for some vyen
G,7B)=(" B
- T =T

i,

Proof. For the intersection to be non-empty, we must have i==7, for otherwise
M;AM; =@. If j=i, then a=%f by definition, and since f has no triple points,
j=j=i. If j%i, then j =j again because f has no triple points. Thus i=i"and j=j'".

Define yen by ya=ao'. If xe 5 nT}5", then

[f(x)=fy) forsome yeM;

f*(x)=fF(y) forsome yeM;.

Therefore f7%(y)=y/f(y)=27(x)=f7*(x)= fF'(y). Now x=y implies that i=j,
and f(x)= f/( x) Wthh 1s 1mp0551ble as oc=#=ﬂ in thlS case. Similarly x =y’ implies
that i=j, f?*x)= fF(x), B =ya=0o’ which is impossible. Thus y=)’, as f has no
triple points, and so f#(y)=f7*(y) and hence f'=yB.

This proves the first implication ; the second implication is trivial. []

Lemma 24. S(f)= |J T/
pen—{e}

sH= U T
(. eF G

the unions being disjoint.

Proof. Immediate from Lemma 2.3. [J

Lemma 2.5. Only finitely many T, % are non-empty.

Proof. In any given triangulation, S(f) is a finite polyhedron. [

Lemma 2.6. For each (i, o), (j, ﬁ) with (i, ) *(j, B) and T, ‘i#{b there exists an m-ball
BY ”Cth and a g-ball A3 Cth with the followmg properties.

B! =B  forall yen
Azb = Ay

B — 4B,
AL -—Af’ia.
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The B} B are identical or disjoint.
The A“J" are identical or disjoint.
There are only finitely many B’ % and A7 8,
AR =B PUBLY
S(f1By By =T O Tl
a, f,a . Ra, ,a a, p
f|B,~,}3UBj,,- By OB AL
is a proper map which is an embedding on the boundary.

Proof. Consider those T/ which are non-empty. By [2], Theorem 7.7, there exists
for each T/ a compact PL subspace Cyf such that

Cofc(intM—=S(f)uTef,  Cyf~point

i,j°

Cofo1f dimCyf<2m—q+1.

i,j

By general position, we can ambient isotop the C7' b rel T *# 5o that they are
pairwise disjoint: this requires the inequality 2(2m—q + 1) q <O which is implied
by the hypotheses of the theorem.

Similarly, there exist D{"# such that

DefcintQ, Df ”\.pomt

DPy fAcehoffcst™),  dimDgf<2m—q+2.
Note that

B D BF(Cs VOB (CoD = FHCEE Y fHCED),
so that we may take Dff =pD%F ™"

By general position, we may arrange that the D] b are pairwise disjoint (or
identical), and that

dim[(D#f — fo(CePyu fACE m(UIm fv)]

yeER

S2m—q+2+m—q

=3m—2q+2<0.
Thus C7f=(f)"'D¢f and C2F7 ' =(fF)" D¢ L.
For ﬁxedz],/i set D= De”andC feCe”uf/’(C ). Let v:Dy—D be a

homeomorphism, and C,=v 1C Recall that p: Q—»Q is the prOJectlon and note
S(pv)NCy =9 since f has no triple points. Regarding v as v: DO—>Q we may by
general position homotop v, rel C,, so that dimS(pv) <2(2m—q+2)—q <0 by the
hypotheses of the theorem. Thus pv:D,—Q is an embedding, and so p|D is an
embedding.

Let B; *# be a second derived neighbourhood of C## in some triangulation of
M, and Ae '# a second derived neighbourhood of pD in a corresponding
trlangulatlon of Q; that is, a triangulation compatible thh f.

For each (i,a)+(j,p), set Brf=By? % and Arf=A2? '’ These are the
required balls, and their propertles follow at once from those of o) #and Dy b O
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We are now in a position to define the matrix A. Set
AL ;= L(f1B!, f1B:)

where each map is a proper embedding into A7 ‘2. When T j"—(b and therefore
T/, =0, we define A/ ; to be Oen®" "4

Lemma 2.7. A'=(—1)""14.
Proof. A% is the homotopy class of
f10B;! 0BG P —0A5F — f(0BY)
which is the same as that of
floB% e 0B e 04k e — f(0BEE”
by Lemma 2.6. By Lemma 1.1 this is (—1)"*4 times the homotopy class of
f10Bef 0B 048 e — f(0BE"e).
Since A%, e =ApP"" thisis A?;", and so A} ;=(—1)""94f". O

i,j »
Recall that we made an arbitrary choice of the lifts f?.

Lemma 2.8. Suppose that using another choice of lifts, f{°= f", the matrix B is
obtained in place of A. Then B” =Al"; 11 for all i, j, B.

Proof - Let” distinguish the sets Corresponding to the new choice of lifts f;. Then
T;'I,aj’ﬂ - (fi/a)— I[Imfi/amlmfj/ﬁ]
=(f;w.)- I[Imf,-w'ﬁlmfjﬂ"l]
= T:‘I)fluﬁ)’;

and so Bl =By,
;s the homotopy class of f|0B;":0B;5’—0A;%" — f(0B};°), which is the
same as that of

flaBg".}t?vJ . (733"').“’—»(3/43"‘}-”“ — f(an,yi,‘ ny,
SIOBE T P - 0BE T P 0 AT 1T — f(0BY ).

Whence the result. []

In other words, f determines 4 up to equivalence, modulo our choice of C;/,

etc.

Now suppose that F : M x I->Q x I is a homotopy of f reloM, with (F = f and
,F=g. Choose a lift F¢: M x I-Q x I so that ,F¢= f¢, and let g° =, F. Note that
F FIM x t.

First note that F can be homotoped rel (M x I) so that F? is an embedding for

each (i,«). This follows from Lemma 2.2, replacing f by F, M by M x I, and Q by
Q x I. The necessary inequalities are implied by the hypotheses of the theorem.

Lemma 2.9. If A is the matrix given by f, and B that given by g, then A=B.
Proof. Let ,C**, D** be the sets arising in the proof of Lemma 2.6 for F, =0, 1.

i,jore i, j

If Ce”#ﬂ for ¢=0,1, join OC”’ to a point (x,00e0Mx0, ,C¢f to
(x, l)e(?Mxl and let C""be the union of these two sets with xxICaMxI We
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may assume that the arcs are embedded and disjoint for different i,j, , and do not
meet S(F). Let D{f be similarly defined.
For (i, ) % (j, B), define

Syl =(F)~ "(ImF;nIm F4) C(intM;) x I .

By general position we may assume that dimS;* jf’ <2m-—q+1, and that F has
no triple points as 3(m+1)—2(g+1)=3m—2q+ 1 <0.
As in Lemma 2.6, using [2], Lemma 7.8, we can find sets E{°?, G7/ satisfying

i
Ef"fC(M X I-S(F))US?:JP, Eivf\Ef:}’ﬁ@(M X I)=Cf;f,
e, e, N ] 4 e,
EpfoCplusyt,  dimEpf<2m—q+2,
Gf;f cOxI, ijf\ Gf,'!?m{)(Q X I)ZDf,’f ,

Grl=pGef™",  dimGpf<2m—q+3,

Gyl O F{(ESf)OFYESF .

This requires the inequality

2m—q+1<min(s,m+1—-2m+1)—g—1)—-2)
=min(s,g—m—2),

which is satisfied under the hypotheses of the theorem.
By general position we may move G{f keeping X! ;= F{(E7f)UF (E$!™") fixed,
so that

dim|(G7f = XE ) (| ImF")| S@m—q+3)+(m+ 1)~ (q-+1)

yen
=3m—-2q+3<0.
Thus Epf=(F)~'Gpf, E¢F ™' =(F})™'G¢f. As in Lemma 2.2, we can arrange

for p|Gp ! to be an embedding.

By the nature of Cf;f we can arrange that near M x I, Ef;f has the form I x I,
with (I x )n(OM x I)=0x I and (I x )n(M x 0I)=1 x éI. A similar arrangement
can be made for pG,?;j’. Excising [0, 1) x I in each case, and taking second derived
neighbourhoods in some triangulation, we obtain (m+ 1)-balls Kf_’}’CM x I and
(q+ 1)-balls L £ CQ x I. For each (i,a) *(j, f), set Kpf =Kg2 Fand L f =18,
These balls have the following properties.

af _ gy, B a,fp_ 7y, B — 1B,
Ki,j_Ki,j ? Li,j_Liy,j _Lj,ia’

F"(L?,’f)=K?.'jﬁUK€:ia’
K2Pna(M x I)=,B2PU,B2?,
L3Pna@ x 1) = Az o, AL E,

a, p B,ay __ qu. B B, i
S(FIKZ PUK® %) =S BUSEaC(intM) x I,
FIK2POKE 2 K2 POKR o [2F

is a proper map.
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Now observe that F restricts to a map
cl[OK! —(oBy P By ] = cl[OLyF — (oA7F O, AR ]— F(KE ) ;

this is a homotopy which implies that 4/ =B/,

A modification of the argument above works when ,C;! =g for either ¢ =0 or
. O

The proof of the theorem is now almost complete. Clearly if f is homotopic
rel0M to an embedding, then A =0. Conversely, if 4 =0, then for each (i,e) +(j, B)
we can homotop fIB{#UB}¢ to an embedding reld(B¢#UB¢), and hence
homotop freldM to an embeddmg

The theorem can be strengthened as follows.

Proposition 2.10. The matrix A is determined up to equivalence by the homotopy
class of f ReloM.

Proof. If F is a homotopy from f to g Reld, then F may be written as a product of
homotopies G, H, where G is an isotopy on a collar neighbourhood of M and the
identity elsewhere, and H is fixed on the boundary. Then G preserves A, as the
singular set is unaffected, and H preserves A by the theorem. [

3. Connected Sums

Assume that M, Q, and f satisfy the hypotheses of Theorem 2.1, and that M
has an extra component M, For 2<i<k, set N;=M; and g,=f,. Let
N'=M,u(I x B UM, with M;n(I x B")=ix B"CintM,, for i=0, 1. Clearly

N, =(My—0x B")U(I x 3B")U(M, — 1 x BYy~M, %M, ,

the interior connected sum. Define h: N'—Q so that (h|M)* fo and (h|M )° = f},
and let g, : N, —Q be the restriction of h to N . I claim that g, is determined up to
homotopy rel ON,. For let r: N’—»MOUI x0UM, be a retraction. Then
h=~hgrrelM,uM,, and hyr is determined up to homotopy relM,uM, by h|I x 0,
which is determined up to homotopy reldI x0 by f5(0x0) and f{(1x0). This
establishes the claim, and so g is determined up to homotopy rel6N.

We can choose ¢g{ to agree with f5 and ff on N,nM, and N,nM,
respectively, and we choose g¢ = f for 2<i<k.

Proposition 3.1. With the choice of lifts above, let A be the obstruction to
homotoping f reldM to an embedding, and B the obstruction to homotoping g relON
to an embedding. Then for each Bem,

Bl =Al,, 2<Zigk, 25jsk,
B =A% +4,,;. 25jsk,
B€,1:Ag.o+Ag.1+A[;,o+Atf.1ﬂ p+e.
Proof . Note that S(g)C(N,nM,)U(N,AM )u U"Ni, so that S(g) is the union of

the T/ determined by f. For i=2 and ]>2 these are the same as those
determmed by g, and so the first assertion follows.
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For j22, Tg? and T# he in Ny, and if they are non-empty then we may join
them by an embedded arcx/ which apart from its endpoints misses all the C{*} of
Lemma 2.6. Similarly, T "’ and Tf ! lie in N, and we may join them by an
embedded arc y” which apart from its endpomts misses all the C{". Moreover, we
can by general position arrange that the arcs are mutually dlSjOlnt and we can also
choose the endpoints of xf so that their images under g coincide with those of yj o

Now gl(x”)ugj(yj ') is an embedded loop in Q, and hence spans a 2-disc HY;
by general position we may assume that Hf is embedded and misses all the D}/ of
Lemma 2.6 except for the endpoints of the two arcs which make up aHf

Then TpfuxfuTyt, Ted ‘uyj uTyf ', and DGROHSUDSY are all col-
lapsible. Takmg regular nerghbourhoods as in Lemma 2 6 we obtam m-balls and
g-balls for g, and the second assertion follows by homotopy addition.

Finally, for f+e, note that
(@9 '[ImgnImgf ] =To U TS { U TP BUTEY

with a similar result for (g8)”![Img{nImgh]. An adaptation of the argument
above yields the final assertion. []

Proposition 3.2. Let M, Q, and f satisfy the hypotheses of Theorem 2.1, with
obstruction matrix A with respect to some choice of lifts. Let h:S*""—Q be an
embedding such that ImhnIm f =ImhnIm f), is a single point, and the intersection is
transverse. Let the following be given: acn®™ ™9, aen, such that (n,a)#(1, e).

Then there is a proper map g: M —Q, agreeing with f on OM, with obstruction
matrix B such that B=A except for B}, and B: . Furthermore, B ,=A%  +a,
which determines B.

Proof. Let x=Imhnlmf; by taking regular neighbourhoods in a suitable
triangulation, there are balls B*"™"CS?"™, B"CM,, B?CQ such that

h|Bi™™:B1"™—B1"" x B" = B¢

and f|B™:B™— B ™ x B"=B? are the standard embeddings.

Let c¢:S" !'>84 ™! represent aern®™ 9=m, ,(S? ™ '), and define
Jo:S"=Q by f,=h,Sc where Sc is the suspension of c¢. Note that
M ixq, (ST Y) because m—1<2(q—m—1)—1 is guaranteed by the hy-
potheses of Theorem 2.1. Now hyc:S™ '—>B?—Im f~S9"""! x B™ can be homo-
toped to an embedding by Irwin’s theorem [3], so by the Alexander trick f,, can be
homotoped to an embedding. Setting M,=S", we have a proper map
Jouf :MyuM—Q which satisfies the hypotheses of f in Proposition 3.1. By
choosing an appropriate lift for f§, we can arrange that 43  ,=a and Aé, ;=0
otherwise. Now just apply Proposition 3.1 to construct g. [

4. Obstructions to Isotopy reld

Let M be a compact m-dimensional manifold with k components, each of which is
s-connected ; and let @ be a compact connected g-dimensional manifold with
fundamental group n and n(Q)=0 for 1 <i<t. Let f,g:M—Q be two proper
embeddings which agree on dM, and let F: M x I-Q x I be a homotopy reléM
from f to g. Assuming that s=21, m=2,q—m=3,2m—q+1<s,2m—q+2<t,and
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3m—2q+4<0, we define d(f,g;F) to be the obstruction 4 to homotoping
Freld(M x I) to an embedding. Thus d(f,g; F) is a (r,n?™ ~%*!)-matrix of order k,
defined up to equivalence.

The following result is an easy corollary of Theorem 2.1.

Proposition 4.1. Let f,g,F,M,Q be as above. If d(f,g;F)=0, then f is isotopic to
greloM. Conversely, if f is isotopic to g relOM, then for some homotopy F reloM,
d(f.g;F)=0.

Proof. 1f d(f,g;F)=0, just apply Theorem 2.1 to F:MxI—-QxI; we can
homotop Freld(M x I) to an embedding G : M x - Q x I, such that G and F agree
on (M x I). G is thus a concordance between f and g which is fixed on dM. Since
the codimension is at least 3, concordance implies isotopy [2], Theorem 9.1, and
so f is isotopic to grelOM.

Conversely, if F is an isotopy from f to greloM, then d(f,g;F)=0. O

In general, we may state the following results.

Theorem 4.2. Let ¥=0 be such that ©" is the trivial group. Let M be a compact
m-dimensional manifold, each of whose components is (r + 1)-connected ; and let Q be
a compact connected (2m—r)-dimensional manifold such that 7w(Q)=0 for
1<i<r+2. Assume that m=2r+2; then every proper map f:M—Q which is an
embedding on the boundary can be homotoped relOM to an embedding.

Theorem 4.3. Let r, M, and Q be as above except that Q is (2m—r + 1)-dimensional.
Assume that m=>2r+ 3 ; then any two proper embeddings f,g : M —Q which agree on
the boundary and are homotopic rel0M are isotopic rel M.

Consider embeddings f,g:S™—SP x S*, with m=2, 3m<2(p—1). Any two such
embeddings are homotopic, as =, (S? x S!)=n,(S? )@, (S')=0. Moreover, any
two homotopies F,G:S™"x1—57xS! xI from f to g differ by an element of
7,4 1(SPxS'x)=0, and so F and G are homotopic rel 9(S™ x I). Thus the
obstruction d(f,g;F) does not depend upon the homotopy F in this case.
Furthermore, there is a natural choice for a “null-embedding” f,; let f, be the
restriction to the boundary of an embedding B™*!—S? x S*. The isotopy classes of
embeddings f:S™—SP x S' are then classified by d(f,f, ; F), which depends only on
f. Compare the result of Hacon [8].

Alternatively, as every f:S™—S” x S' is null-homotopic, let 4 be the obstruc-
tion to embedding F:B™*'—>S”x S' x I where F is a null-homotopy of f. Since
B™*! has only one component, and m=(t:) is abelian, 4 is independent of any
choices, and is just a Laurent polynomial in t with coefficients in 7*™ 2, which is +
symmetric with constant term zero. Thus only half the coefficients are needed to
classify f, and these are the invariants used by Hacon.

5. An Example

The drawback of d(f, g F) is its dependence on the homotopy F. In general there
seems to be little that one can do about this. However, there are circumstances
which arise naturally in the study of high-dimensional knots in which progress can’
be made.
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Assume that 2<2r<n+ 1, and consider a handle decomposition of " with one
O-handle h°, k(r—1)-handles h;~'(1<i<k), k r-handles hj(1<i<k), and one
n-handle. Suppose that h} cancels h; !, and that the set of n-balls h; "' UhI(1 Si<k)
are mutually disjoint.

Let P=h®OU%h;™", and N=0P= #4(S""'xS"""). Then N has a regular
neighbourhood in S" of the form B' x N, and from the handle decomposition
above we obtain a handle decomposition of S" on B'x N with k r-handles,
k(n—r+1)-handles, and two n-handles.

Embed S" in S"*' as the equatorial n-sphere. Then S§" has a regular
neighbourhood of the form B! x $", and so N has a regular neighbourhood of the
form B! x B! x N=B%x N. Moreover, we obtain a handle decomposition of
B! x S" on B? x N with k r-handles, k(n —r+ 1)-handles, and two n-handles: each
handle is of the form B! x (handle of S" on B! x N).

If Q=cI[S"*'—B?x N], then by adding two (n+1)-handles to B! x S" we
obtain a handle decomposition of §"*! on B?xN, or of Q on a collar
neighbourhood of dQ.

From the handle decomposition, it follows that (Q, dQ) is (r — 1)-connected and
that 7,(Q)=(¢:), the infinite cyclic group.

Now assume the additional inequalities r>3, 3r>n+5. Let Q denote the
universal cover of Q. From the handle decomposition we easily obtain the
following result.

. .k
Lemma 5.1. If 2r<n+1, then H,(Q, Q)= Z[t,t~ '] with basis given by the cores
1

of the r-handles, and H, _, , 1(Q~, 6Q~);éZD, t~ 17 with basis given by the cores of
the (n—r+ 1)-handles. 1

If 2r=n+1, then H,(Q, 6@);@52[@ t~ 17 with basis given by the cores of the r
and (n—r +1)-handles. 1

1
Now set M = { ] BY,and let f, g:M—Q be two proper embeddings which agree
i=1

on dM and are homotopic rel M. If m=r and 2r <n, then f and g are isotopic
rel M : this is a consequence of [2], Theorem 10.1. In the cases m=r, 2r=n or
n+ 1, there is an obstruction, as there is in the case m=n—r+1. For 2r=n+1,
note that n—r+1=r.

Let [‘*:M—»Q: be a lift of f, and (f) the image of f under the Hurewicz map
7,(0.20)~H (0, 60).

Proposition 5.1. Assume that 2r<n+ Lm=n—r+1,r23,3r>n+S5. If (f7), - (f)
can be extended to a basis of H, _, , ,(Q, 0Q), regarded as a Z[t,t~ ']-module, then f
is isotopic to grel IM.

Proof. We may as well assume that k=I[, and that (f),...,(f¢) is a basis of
H,,_,H(Q, 00). By the Hurewicz theorem, note that the classes of H,(Q~) are all
spherical. According to [1] Theorem 2.6, therefore, there exist maps h;:S"—int Q
such that (hS), ..., (h}) is a dual basis to (f7), ..., (f;). Thus the algebraic intersection
of (hf) and (f?) is 1 if (i, ) =(j, B) and 0 otherwise.
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Let F:M x I-Q x I be a homotopy from f to grel OM. Then (FY), ...,(F§) is a
Z[t,t™']-basis for H,_,, 1(@ x 1,0(Q x I)), and by homotoping h; into int(Q x I),
(h3), ..., (h}) is a dual basis to (F¢), ..., (F).

In these dimensions algebraic and geometric intersection can be made to
coincide, so we may assume that Im hfnIm F/ is a single point if (i,a)=(j, ) and
empty otherwise. This implies that Imh,nIm F; is a single point if i=j, empty
otherwise. By general position, as 2r <n+ 2, we can assume that h is an embedding.

Now by repeated use of Proposition 3.2, it is an easy matter to alter F until d
(f,g;F) is zero; whence the result. [

6. The Smooth Case

Finally we use an argument of Hudson [6] to show that Theorem 2.1 and
Proposition 4.1 are true in the smooth category.

Theorem 6.1. Let f, M, and Q be as in Theorem 2.1, except that everything is in the
smooth category. Then the conclusion of Theorem 2.1 holds in this casc.

Proof. By [5] 10.6, there is a smooth triangulation of M, and hence of f(0M). By
[5] 10.14, the latter extends to a smooth triangulation of 0Q, and by [5] 10.6 the
triangulations of 0M, 0Q extend to smooth triangulations of M, Q. Now f is a
continuous map which is PL on M, and by the simplicial approximation theorem
is homotopic rel M to a proper PL map. Since a homotopy between two PL maps
can be approximated by a PL homotopy, and since by [5] 10.13 the triangulations
are unique up to PL homeomorphism, the matrix 4 is well-defined up to
equivalence by the homotopy class of frel M. Moreover, if A=0, then f can be
homotoped rel dM to a PL embedding. Now apply [6] Lemma 7 to homotop f
rel UM to a smooth embedding.

The statement and proof of Proposition 4.1 in the smooth case are similar,
except that one must appeal to [7] Theorem 2.3 for “concordance implies
1sotopy”.
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