Presentations of $n$-Knots

C. Kearton

Transactions of the American Mathematical Society, Volume 202 (Feb., 1975), 123-140.

Your use of the JSTOR database indicates your acceptance of JISTOR’s Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at http://www.jstor.ac.uk/about/terms.html, by contacting
JSTOR at jstor@mimas.ac.uk, or by calling JSTOR at 0161 275 7919 or (FAX) 0161 275 6040. No part of a JSTOR
transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or

otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article
solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of
the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Transactions of the American Mathematical Society is published by American Mathematical Society. Please
contact the publisher for further permissions regarding the use of this work. Publisher contact information may be
obtained at http://www jstor.ac.uk/journals/ams.html.

Transactions of the American Mathematical Society
©1975 American Mathematical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor @mimas.ac.uk.

©2001 JSTOR

http://www .jstor.ac.uk/
Fri May 11 20:09:50 2001



TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 202, 1975

PRESENTATIONS OF »-KNOTS
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C. KEARTON

ABSTRACT. The method of critical level embeddings is used to generalize
the technique of knot presentations from the classical case to the case of n-knots.
For n > 3, it is shown that an n-knot with algebraically simple complement has
a correspondingly simple presentation.

0. Introduction. There are two main approaches to classical knot theory:
the method of presentations and the use of the Seifert surface. The latter has-
been employed by several authors (cf. Kervaire [7], Levine [8], [9], [10]) to
study knots of higher dimensions, i.e., n-knots.

Working in the piecewise linear category throughout, we shall develop a
theory of presentations for n-knots. If we consider an n-knot as a locally flat
embedding of S™ in S"*! x I, then a presentation of the knot is a critical
level embedding; i.e., one which, regarding S" as S" = handle + collar + handle
+ collar + - - -, embeds each handle in a level of S®*! x I and each collar
productwise along the I direction.

For the case n = 1, we obtain what is essentially a classical presentation:
the main difference is that we allow vertical collars. For n = 2, we obtain the
description of 2-knots given by Fox [2].

We call an n-knot r-simple if its complement has the homotopy r-type of
a circle, and we call a presentation rsimple if it has only one handle of S" of
index less than r (there must always be at lease one O0-handle).

Generalizing the techniques of Fox for 2-knots [2], we may use a presenta-
tion of an n-knot to obtain presentations of its group and of the homology mod-
ules associated with the infinite cyclic cover of the complement. By this means
it is not hard to see that a knot with an r-simple presentation is r-simple. Con-
versely, Theorem 5.1 shows that any r-simple n-knot, n >3, 2r <n, has an
r-simple presentation: this is proved by eliminating handles of S™ in order of
increasing index from a given presentation, as in the proof of the s-cobordism

theorem. At each stage there is an obstruction measured by elements in a group
ring.
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124 C. KEARTON

This theorem has a parallel in a result of Levine [8], who shows that the
S" above bounds an r-connected locally flat submanifold of S™*2.

The dual of a presentation is obtained by reversing the orientations of
S"*1 and I in S"*! x I; i.e., by turning the given presentation upside down.
This is a generalization of the dual presentation of Fox and Torres [12] in the
classical case. Applying the theorem above to the dual presentation, we see that
the knot has a presentation with only handles of index i, r <i<n-—7, in the
middle dimensions.

In a subsequent paper, we shall apply the techniques and results of this
paper to obtain a classification of (g — 1)-simple (2g — 1)-knots for g > 3;
these are the simple knots of Levine [10]. These results, together with those of
the present paper, were announced in [S].

1. Preliminaries. We shall work throughout in the piecewise linear category,
and we shall assume that all submanifolds are locally flat. Let S” denote an r-
sphere. An n-knot is an oriented pair (S"*?2, s"), where S" is a submanifold
of S"*2. Two knots are equivalent if there is an isomorphism of pairs between
them which preserves orientations.

By removing the interiors of two disjoint (n + 2)-balls from the comple-
ment of a regular neighborhood of S”, we obtain S” C int(S"*! x 1), where
I denotes the unit interval [0, 1]. A presentation of the n-knot is a critical
level embedding. This is an embedding which, regarding S” as S” = handle +
collar + handle + collar + - - -, embeds each handle in a level of S"*! x I
and each collar productwise along the I direction. Further details may be found
in the papers of Rourke [11] or Kearton and Lickorish [6].

Henceforth, K will denote the complement in S"*2 of the interior of a
regular neighborhood of S”. By Alexander-Poincaré duality, H,(K) is the in-
finite cyclic group, which we write multiplicatively as (¢: ). Having chosen
orientations for S” and S"*2, we are provided with a natural choice for the
generator of H,(K), by the duality theorems, and we choose ¢ to be this gen-
erator.

K will denote the cover of K corresponding to the kernel of the Hurewicz
map w,(K) — H,(K), so that K is an infinite cyclic cover of K.

We shall always use the integers as coefficients for homology, and we shall
denote the integral group ring of the group (¢#: ) by Z[t].

The group presentation with generators x,,- * -, x, and relations ry,-- -,
r, will be written as (x,,- -, x,:ry," ", 7 and the Z[t]-module presenta-
tionas [x,, -, X7, 0,1l

2. Critical levels. Let Q be a closed (g — 1)-manifold, and M a com-
pact proper submanifold of Q x I, of dimension m <gq. Assume further that
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M is in critical level position with just one critical level, of index r, at level %.
Thus we have

My x [0,%] CQx [0,%], M, x[%1]CQx [%1],

the inclusion maps having the form (inclusion x identity), and an r-handle B" x
B™7" of M with B" x B"~"CQ x %.
We take the opportunity to introduce some notation.

A = int 4 = interior of A.

A= cl A = closure of A.

N(R; T) = regular neighborhood of R in T.

N(R, S; T) = regular neighborhood of R mod S in T.
Hyy=HN(Q x [0, 1]).
H=HN(@Q x 9.

BB° =[-8, B for B> 0.
H, x r = projection of H, into Q x r = shadow of H, in level r.

»

We remark that in the situation above we may assume that N(M; Q x I) is
the union of the following spaces.

NMy; Qo) x [0, %], NMy; Qy) x [%, %1, NM,;Q,) x [%,1].

Henceforth when dealing with critical level embeddings, and in particular
with presentations of n-knots, we shall always make this assumption when con-
sidering regular neighborhoods.

LEMMA 2.1. In the situation above, cl(Q x I — N(M; Q x I)) is isomorphic
to (Q, —ﬁ(MO; Qo)) x I withan (r+q —m — 1)handle added to  [Q,
NMy; Q] x 1.

PROOF. Suppose that we triangulate Q x I so that it collapses simplicially
to Q x 1, with M triangulated as a subcomplex. Each elementary collapse of
a simplex a from one of its faces B falls into one of three categories: both «
and B arein M, neither arein M, or B isin M but a is not. We may
arrange for the third case to occur just once, with an (m — r)simplex. The work
of Kearton and Lickorish [6] shows that Q x I has a handle decomposition on
Q x 1 with just two handles: an (7 — r)-handle which is a regular neighborhood
of the barycentre of §, and an (m —r + 1)-handle which does not meet M.
Dualizing to the handle decomposition on Q x 0, we obtain the desired result. O

Suppose that we are given an ambient isotopy of Q x % which keeps
M, x % setwise invariant. We may extend this to an ambient isotopy of Q x
[%, 1] by (isotopy x identity). By a collaring argument, we may extend to
Q x [0, %] keeping Q x O fixed and M, x [0, %] setwise invariant. We thus
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keep M in critical level position, except for the fact that M, x [0, %] may no
longer be embedded by (inclusion x identity). But we shall be concerned with
the submanifold rather than the embedding, and so this may be dealt with by re-
parametrizing the collar M, x [0, ].

LEMMA 22. Given an ambient isotopy of 9B" x B"~" in My x %, we
may extend this to an ambient isotopy of B" x B™~" in Q x I, keeping Q x
0 fixed.

ProorF. First recall that an ambient isotopy may be realized as an isotopy
by moves [3, Theorem 6.2]. If B™~! CM, x % is the support of a move,
extend this move to

N@B™1,0B™" 1 0 x %) =BT x B

by (identity x move). Extend to N(M, x %; Q x %) by the identity (the move
is fixed on dB™~ 1), and use a collar of N(M, x %; Q x %) to extend this
isotopy to Q x %. The remarks above apply to complete the proof. [J

By a result of Rourke [11], we may isotop a critical level embedding of a
manifold M in Q@ x I until the handles are added in order of increasing index,
handles of the same index being added at the same level, provided g —m > 1.
In particular, we may do this for n-knots, and henceforth we shall consider only
presentations which have this form.

REMARK 2.3. Suppose that M is embedded in Q x I, in critical level
position, and that two handles which in the abstract handle decomposition of M
form a cancelling pair may be isotoped into the same level of Q x I. Then by a
result of Rourke [11] we may cancel this pair in the embedded situation, leaving
M in critical level position. An alternative proof may be given via the collapsing
procedure of [6].

Recall that 7 = [0, 1], so that we have standard inclusions

ICB!' =B x0CB! x B! =B2.
Similarly for a manifold M we have standard inclusions
Ix0xMCB! x0xMCB? x M,

each map being (inclusion x identity).

We now consider a presentation of an n-knot. Recall that an n-knot has
trivial normal bundle, and assume that after all the handles of index at most
(r — 1) have been added, we are left with a manifold M C S"*+ 1 for some level
Ss"t1 where M has a trivial normal bundle inherited from that of S”".

Let B' x B""7C S"*! be an rhandle of the knot. By taking second-
derived neighborhoods in some triangulation, we may assume that
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B xB* YN B2 xM)=1x dB" x B"~",

where B? x M is the normal bundle of M and I x B" x B"~" is a regular
neighborhood of 9B” x B"~", mod dB" x dB"~", in B" x B"~".

We shall say that the r-handle (or its core) is in normal position if, in
addition,

Ix3dB"xB" "TCIx0OxMCB?xM
(or Ix3B"x0CIx0xMCB? xM)

by (identity x inclusion) and (inclusion x identity).

We wish to show that in the circumstances outlined above, the r-handle may
always be moved into normal position. By the results of [4], we may assume that
the presentation has come about by means of a collapse of S”*! x I to S"+! x
0. If a*Aisthe (r+ 1)-simplex which gives rise to the r-handle, so that A is
an rsimplex of S"*! and & is a vertex not in S”, we may arrange for a to
liein 1 x 0 xMCB? x M Following the proof of [4, Lemma 1], we may
arrange for I x B” x B"~" C I x B! x M, and finally we apply the theorems on
compatible collars [3] to achieve the desired result.

We shall assume henceforth that, where appropriate, handles are in normal
position.

3. Presentation of the knot group. Consider a presentation of an n-knot,
n=>3, andlet ¢ be alevel between the 0 and 1-handles of the knot (i.e., of
S™) and 7 alevel between the 1 and 2-handles.

LEMMA 4.1. iy 7, (K,) — m,(K) is an isomorphism.

Proor. By Lemma 2.1, K(T) is obtained from K, x I by adding n and
(n + 1)-handles, corresponding to the duals of the 0 and 1-handles of the knot.
Thus iy: m,(K,) — m,(K(7)) is an isomorphism. Similarly, K(qy is obtained
from K(;y by adding handles of index greater than 2, and so i,: Ky —
m,(K(;)) is an isomorphism. K is obtained by adding two (n + 2)-handles to
K(1y, and so iy: 7 (K(1y) — m(K) is an isomorphism. O

Let h denote the ith g-handle of the knot. By the shadow of k! we
shall mean its shadow in the level of the O-handles. By general position, we may
assume that the shadows of the cores of the 1-handles meet the interiors of the
O-handles transversely in interior points and nowhere else.

We may compute m,(K,) in the following way. Let p be the level at
which the 1-handles are added, and let X be the closed complement in level p
of N(S7;S"*1 x p). Suppose that there are p O-handles and 7 1-handles.

We denote the ith 1-handle by (B' x B"~1),, and it has a regular neighborhood
inlevel p of the form B! x (1 + €)(B' x B"~!),, where e is small and
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positive. The intersection of S” with the level o is a set of (n — 1)-spheres
S}"‘ 1 1 <j<p, unknotted and unlinked. We may assume that the shadow of

1% (1+e)B' x B"™!); meets a regular neighborhood of these spheres in the
shadow of

Ly ([(1 + )B' = (1 - ©B'] x B"™ 1),

We have the following homotopy equivalences, proved by deformation re-
tracting B! x (1 + €)(B' x B"™!), onto appropriate subspaces.

m
K,~XU UB'x(1+¢e)0xB" 1),
i=1

K, ~XU 6 B' x (1 +€)B' x 0);.
i=1
Now 7,(K,) = (xy," ", Xt ), the free group on p generators. Apply-
ing Van Kampen’s theorem, we see that m,(X) = 7,(K,), as n > 3. Another
application of the theorem shows that  (K,) = (x;, ", Xp 7" "7, ')
where the relation r; is given by the 2-cell B! x (1 +¢)B' x 0),.
Recalling I_emma 4.1 above, we define ¢ to be the composite of the quo-

tient and Hurewicz maps
@ (xp, Xyt )T (X, X TPyt ) ().

Choose a point « € int K, whose shadow does not lie in any O-handle;
for each i, choose a little loop in K, which links S}"“ once in the positive
direction, and whose shadow meets the jth O-handle in a single point if i =,
but misses it otherwise. Choose a path in K, from & to the ith loop, whose
shadow misses all the O-handles; then the ith path and loop represent an element
x; of m (K, a), and the elements X3, X, form a basis for this group.
We write m,(K,;) for m,(K,, a).

Note that ¢(x;) =t forall i.

Suppose that k) joins kY and hy: orient the core of R} so that travers-
ing the core in the posmve direction means we pass from h° to h° Then the
intersections that the shadow of the core of hll makes with the interiors of the
O-handles defines a word w in x;,* ", X,. Let li denote the shadow in level
o of 3(B' x (1 +€)B' x 0),), the boundary of the 2-cell mentioned above.
If we are careful in choosing an orientation for ;, and a point b; from which
to start, then the intersections which the shadow of lj makes with the 0-handles

defines the word wx,w™'x;!. Choose a path from a to b; whose shadow

misses the 0-handles. Then this path and I; define the element wx, w” 1x !
of m(K,). Thisis the relation r;, which we also write as x; = wx,w™'. Call

w the conjugate part of the relation.
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Aswords in x,,* -, Xy these relations describe the intersections that the
shadows of the cores of the 1-handles make with the O-handles. As elements of
m,(K,), we could reduce these words, i.e. replace uxx~'v by wuv. We shall
keep the relations as they are obtained from the intersections, but we shall show
that by means of isotopy those intersections may be altered so as to effect a re-
duction. In these circumstances we shall say that reduction is permitted.

LeEMMA 3.2. Reduction is permitted in the conjugate parts of relations.

PROOF. Suppose that r; has the form x; = kaw'l, and that w =
ux,x; 'v. We have to show that h! may be isotoped to give the relation X, =
uvx,w”'u~'. The 1-dimensional core of h! cannot link with itself, or with the
core of any other 1-handle, as n = 3, so there is no obstruction to isotoping
hj1 so that the relevant intersections are described by uv. Moreover, none of the
other relations are affected. [

LEMMA 33. If r; has the form x;=wx;w™', and w = ux, then h}
may be isotoped to yield x; = ux,u~'. A similar result is true for w = uxy".

PrOOF. Consider how /] meets the unknotted sphere S"~! whose
shadow is Sg~'. If B"~! =h! NS"~1, a regular neighborhood of B"~! mod
3B"~! in its level is of the form B? x B"~1. Let g,: B2 — B? be an isotopy
which rotates B2 once around itself and keeps the origin fixed. Then we apply
(g, x identity) to B? x B"~!, using collars to extend to the rest of the regular
neighborhood of $”~!, and then to the rest of the level. This has the effect of
rotating the end of the core of 4] once around §"~!, to give the relation
x; = uxu™", using Lemma 3.2. O

LEMMA 34. If r has the form x; = x,, i #k, then we may cancel
h and h}.

ProoF. There is no obstruction to sliding hjl down to the level of the
0O-handles, and so cancelling, by Remark 2.3. O

In the situation of the last lemma, we obtain a new presentation of the knot,
with one O-handle and one 1-handle fewer. The new presentation of 7,(K) is
obtained by striking out x; and r;, and substituting x, for x; wherever it
occurs in the remaining relations.

LEMMA 3.5. Suppose that two 1-handles yield the relations y = wxw™},

x =uzu~'. Then we may move one of the bundles over the other to obtain
1,,—1 1

the relations y = wuzu™"w™ ', X =uzu” .

ProOOF. This is an application of Lemma 2.2. O
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4. Elimination of O-handles. A knot will be called 1-simple if n,(K) =
@ ).

THEOREM 4.1. If n> 3, a 1-simple n-knot has a presentation with just
one 0-handle.

PrROOF. Take an arbitrary presentation, with 7 defined as in §3, and con-
sider the presentation of m,(K) that this defines. If there is more than one O-
handle, there must be a relation y = v~ !xv with x #y. Recall that o(x) =¢,
and define m by () =t ™. Then vx™ is null-homotopic in K, and so in
K., by Lemma 3.1.

Adjoin a 1-handle to the 0O-handle corresponding to x, using the word
ux™ to describe the path of the core. Because uvx™ is null-homotopic in K,
and n > 3, this extra 1-handle may be trivially cancelled by a 2-handle. The
relation yielded by this extra 1-handle is x = vx™xx~™v™!, which by the re-
sults of §3 we may write as x = vxv™ !,

Applying Lemma 3.5 to the relations y = v~
y = v 'uxv™ v, which by the results of §3 we may simplify to y = x.

Now the O-handle corresponding to x may be cancelled, by Lemma 3.4,
and iteration completes the proof. O

1 1

xv, X =uxv_ = we obtain

5. Statement of the presentation theorem. An n-knot will be called 7
simple if m(K) = n(S') for 0<i<r

A presentation of an n-knot will be called r-simple if it has just one handle
of S" of index less than r (this being a 0-handle).

Thus Theorem 4.1 shows that for n >3 any 1-simple n-knot hasa 1-
simple presentation.

THEOREM 5.1. Consider an (r — 1)-simple presentation of an r-simple n-
knot. If 2<2r<n, then we may ambient isotop the presentation to be r-
simple.

The proof of this theorem will occupy the next few sections. First we ex-
amine some of the algebra involved.

From the theory of covering spaces, m,(K) = 1r,-(1?), i > 1. Thus by the
Hurewicz theorem, H,(I?) = ni(k') =0 for 0<i<r

The knot group ,(K) = (¢: ) acts on K by covering transformations,
and this action may be extended linearly to make H*(I?) a Z[t]-module in each
dimension. In particular, H,(I?) is the zero module over Z[¢].

If the matrix A, with entries in Z[¢], presents H,(I?) as a Z[t]-module,
then A is equivalent under the following moves to a matrix with no columns.

(i) Addition of a multiple of one row (column) to another row (column).
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(ii) Bordering the matrix: 4 > (‘g ‘l’).

(iii) The inverse of (ii).

(iv) Addition of a row of zeros to the matrix.
(v) Permutation of rows (columns).

The reader is referred to Zassenhaus [13, pp. 117—120] for details; see also
Fox [2].

We shall obtain such a presentation matrix, with each column corresponding
to an (r — 1)-handle of the knot and each row to an r-handle. Further, we shall
show that the matrix 4 determines the positions of the (r— 1) and r-handles
up to isotopy in their levels, and that the matrix moves above may be realized by
embedded handle moves.

Before we embark on the geometry, note that in (i) it is sufficient that the
multiple referred to should be of the form *#™.

6. A geometric construction. Throughout this section we shall assume
2<2r<n+ 1. Consider a handle decomposition of S” with one 0-handle
B", k (r—1)-handles #}~! (1 <i<k),k rhandles h! (1 <i<k), and one
n-handle. Suppose that A} cancels #}~!, and that the set of n-balls h}~1 U
h; (1 <i<k) are mutually disjoint.

Let P=B"UUn;~!, and M =0P. Then M has a regular neighbor-
hood in S" of the form B! x M, and from the handle decomposition described
above we obtain a handle decomposition of S” on B! x M with % r-handles,
k (n—r + 1)-handles, and two n-handles.

Embed S” in S"*! as the equatorial n-sphere. Then S” has a regular
neighborhood of the form B! x S”, and so M has a regular neighborhood N
in S"*! of the form B! x B! x M = B2 x M. Moreover, we obtain a handle
decomposition of B! x S* on B? x M with k rhandles, & (n—r + 1)-
handles, and two n-handles: each handle is of the form B! x (handle of S” on
B! x M).

If Q=cl[s"*! -B% x M], then by adding two (1 + 1)-handles to
B! x §" we obtain a handle decomposition of @ on B? x M.

In this situation we shall say that P and M are unknotted in S"*!.

The circle factor in 3Q = dN = S' x M gives a subgroup m,(S') of
m,00) = m, (1) ® (M) and of m,(Q). Let ™ denote the covering corre-
sponding to this subgroup; then 30 = 30. If m,(SY) = (#: ), then H(0)
and Hy(0, 90) are Z[t]-modules in each dimension. In the sequel we shall
assume S"*1 and S” to be oriented, and that ¢ is chosen to correspond with
the negative normal of P in S"*1!,

LemMMA 6.1. (Q, Q) is (r — 1)-connected.
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LEMMA 62. If 2r<n + 1, then H/O, 30) = @D%Z[t], with basis [x;]*
given by the cores of the r-handles, and H,_,, l@, aZj) = GB’{Z[I] with basis
[y,-]'l‘ given by the cores of the (n —r + 1)-handles.

If 2r=n+1, then H(Q, 30) = D3*Z[1], with basis [x;]1% U [y;]%
given by the cores of the r and (n—r + 1)-handles.

PrOOFS. In each case by the handle decomposition. [

LEMMA 6.3. The following sequence is exact:
0— 1,Q) 2> 1,0, 30 > H,_,00) — 0.
Proor. By the long exact sequence of @, 65),
16D 25 1@ 2 1,0, 00 2 1,00 £ 1@

is exact. Im B, =0, for H,(00) is generated by the boundaries of the attach-
ing spheres of handles of (Q, 0Q). O

Now we must digress a little in order to define an intersection S on é
regarded as a manifold with operators. Let T denote the ordinary intersection
of chains in a manifold; in the case of 5 we may regard T as an intersection
on the homology classes as H*@, ba) is a free Z[t]-module and so, by the
handle decomposition, is H(0).

If xeH,, 1@, 8@) and vE Hn—s@)’ define

Se,vy= 2. T(x, tfoyk € Z[1].
—so< k<o

Define ¢ = ¢~!, and extend this to an automorphism of Z[t] by linearity.
Then S enjoys the following properties.

L SGx +y, v) = S, v) +S@, v),

2. S(x, w +v) = S(x, w) + S(x, v),

3. S(ax, Pv) = afS(x, v),

4. S, v) = (- D DE=I5G 0 ),
where x, y GHHI(@, 30), v, wE Hn_s@), u€EH,, 1@), a,BE Z[t], and
Iy : H*(é) - H*(Q a@)

This intersection is used by Blanchfield [1].

LEMMA 64. (i) If 2r<n+ 1, then H/(Q)= D Z[t], with a basis
[u1% such that, for 1<i,j<k,

l'*u‘, = (1 - t)xi, S(yi' lll) = 8,-]-.

(i) If r=n+1=2q, then H Q)= D*Z[t], witha basis [u]* U
[v,.]llc which has the following properties for 1 <1i,j<k:
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iy = (1 = 1), fw; = (1 =171,
S(xi, ui) =0, S(Y,'p uj) =(- l)qsij’
S(Xi, U]) = 5,‘1', S(y]’ Uj) = 0.

ProOF. (i) We shall examine the case k = 1; the general case is similar.
Recall the original handle decomposition of S” on B", and let B" x B"~" be
the r-handle. Note that the generator ¢ of m,(Q) corresponds to the positive
normal of B" x B"', as it corresponds to the negative normal of P.

B" x B"~7" has a regular neighborhood in $"*1, mod B" x daB"~", of
the form B! x (1 + €)B" x B"~" where € is small and positive. B! is orient-
ed as the positive normal. By choosing N (= N(M; S"*1')) and e carefully,
we may arrange for

NN [B' x (1 +€)B" x B" "|=B! xcl[(1 +€B"—(1-¢)B] xB"".

We have already chosen x,, i.e., we have chosen an orientation and lift of
the ball Q N (B"*! x 0). Now we claim that 9[B! x (1 + €)B" x 0] repre-
sents (1 —#)x, in Hr@, 30). For 1 x (1 +€)B" x 0 contributes x,, and
-1 x (1 +€)B" x 0 contributes —tx,, because to get from one part to the
other it is necessary to go once around the S! factor of dQ =S! x M in the
positive direction. The part B! x (1 + €)B" x 0 lies in 8Q, and so contributes
nothing. Thus if we take u, to be represented by d[B' x (1 + €)B” x 0], we
have i, =(1 - ox,.

From the handlebody structure of Q, it follows that H,(a) is a free
Z[t]-module with basis element u,.

Recall the handle decomposition of S on B", and let B"~! x B"~r+!
be the (r — 1)-handle. Q@ N (0 x B"~"*1) is the core of the (n —7 + 1)-handle
in the handle decomposition of Q on B? x M, and so », is represented by
an orientation and lift of Q N (0 x B"~"*1). Because h} cancels h]~!,

B" x 0 and 0 x B"~"*! intersect in a single point on their boundaries, in M.
Therefore B! x 8(1 + €)B” x 0 meets 0x B"~"*! in a single point, in 3Q,
and so 3[B' x (1 + €)B" x 0] meets Q N (0 x B"~"*1) in a single point.
By choosing a suitable orientation and lift of Q N (0 x B"~"*1), we obtain
Sy u))=1.

(i) We use the same argument to construct u, with i, = (1 = f)x,.

A similar argument enables us to construct v, with iw, = (1 - t~1)y,, noting
that #~! occurs instead of ¢ because ¢ corresponds to the negative normal

of P. Let B? be the core corresponding to x,, BY that corresponding to y,:
thus x, is determined by an orientation and lift of BY N @, y, by an orienta-
tion and lift of BY N Q. Orient B? so that T(dB?,0B?) = -1, this intersec-
tion being in M.
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Now in the construction of v,, we choose N and € so that B! x
3(1 + €)B? liesin 3Q. Thus the sphere d[B' x (1 + €)BY] representing v,
meets BY N Q in a single point. We need a change of sign because (1 — 1)
occurs in the construction of v,, instead of (1 — ), and so for a suitable lift
¥y, of BN Q we have S(x,,v,)=1.

From the constructions, it is clear that S(x,, ;) =0 and S(y,,v,) =0,
and it only remains to calculate S(y,, u,).

A=ty uy) =S — 7"y, uy) = Slawy, uy)
= (= )Gy, v;) = - DS = 1)y, 9)
=-1D7A -1,
Therefore S(y, u)=(-1)7. O

LEMMA 65. If 2r=n+1=2q, then H,_,(30) = ®?*Z, witha
basis [34x,]% U [3,,1% given by the boundaries of the cores of the r and
(n — r + 1)-handles.

There is an isomorphism Hq_,(aa) —H,_ (M), and if 3x;, dy; are the
images under this map of 0.X;, 04y, then the bilinear form

T: Hq_l(M) xH, ,0)—Z
defined by intersections is given by the formula T(0x;, dy;) = —5y-

PROOF. The first part follows from the handle structure. As 9Q = S! x
M, we have a@‘ =R x M; thus there is an obvious isomorphism Hq_,(aé)
—> H,_,(M). The proof of Lemma 6.4(ii) shows that T' has the desired form. O

7. Handle lemmas.

LEMMA 7.1. Let (B" x B""); be proper submanifolds of B"*1, for
i=1,2. Assume that (0B" x B"~"), = 3B" x B"""), and that (B"*!,

(B" x B"™T),) is isomorphic to the standard ball pair for each i. If 0<2r<n
and n—r=3, then (B" x B"™"), is ambient isotopic to (B" x B""), keep-
ing (0B" x B"™"), fixed.

ProoF. Let h;: (B"*1, (B" x B"~")) — (B" x B!, B" x 0) be an
isomorphism of the given ball pair to the standard ball pair, taking (B" x B"~"),
productwise onto B" x B"~" x 0 =B" x 0, for i = 1,2. We may assume
that hy'h, is orientation preserving.

Let C; denote h; '[(@B" x [0, 1]) U (B" x 1)], and let D; denote
the closed complement in 39B"*! of h;7'(dB" x B"~" x [-1, 0]).

As h;7'(B" x B"™" x B') is a regular neighborhood in 9B"*! of
(@B" x B"~"); mod (3B" x 9B"""),, and hy'h, is orientation preserving, we
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may by regular neighborhood theory ambient isotop D, to coincide with D,,
keeping (3B” x B"~"), fixed. Extend this to an ambient isotopy of B"*! by
coning.

Consider B} = h; '[(3B" x 0 x [0, 1]) U (B" x 0 x 1)]. B} is a proper
submanifold of C; and of D,. The homotopy classes of B C D,, keeping
0B; fixed, correspond to elements of

7(S" x ") =n,(S) ®m(S"""), for D, =B" x §"7".

The part which concerns us is 7,(S"~"), for we always get *1 € m,(S") accord-
ing to orientation. As 2r<n, m(S"”") =0, and so B] is homotopic to B}
keeping the boundary fixed. By [3, Theorem 10.1], B} is isotopic to B, keep-
ing the boundary fixed. As n—r >3, this may be covered by an ambient isot-
opy. Now C; is a regular neighborhood of Bj U (dB” x B"~"),) mod
(@B" x 9B"~"), in 3B"*!, and so by the uniqueness of relative regular neigh-
borhoods we may ambient isotop C; to C, keeping (3B" x B"~"), fixed.
Again, these extend to ambient isotopies of B"*! by coning.

Define E; to be hy'(B" x [0, 1]): E; is a regular neighborhood of C;
mod 3C; in B"*!, and so E; may be ambient isotoped to E, keeping C,
fixed. As (B" x B"~"), = h; }(B" x 0), this completes the proof. [

Consider and (r — 1)-simple presentation of an n-knot, so that M is un-
knotted in S"*!,

LEMMA 7.2. Suppose that the cores of two r-handles in normal position
coincide. If 0<2r<nm, n—r =3, then we may ambient isotop one r-handle
onto the other.

PrOOF. By the theory of regular neighborhoods, there is an ambient isot-
opy of M which throws the attaching tube of one handle onto that of the
other handle, keeping the attaching sphere fixed. As the handles are in normal
position, this extends by the method of Lemma 2.2 to an ambient isotopy of
S"*2 Keeping the core fixed.

Let Q be defined as in §6, and let (B" x B"~"); be the intersection of
the ith r-handle with Q, for i =1,2. Let N; be a regular neighborhood of
(B" x B"""); mod (B" x dB"""); in @ which meets the boundary regularly.
As the two attaching tubes coincide, we may assume that N, N 3Q = N, N 3Q.
Now N; is also a regular neighborhood of (B" x 0); U (8B" x B"~"); mod
(@B" x 9B™~"); which meets the boundary regularly. As the iwo cores and the
two attaching tubes coincide, we may ambient isotop N, onto N, keeping
0Q fixed. Now we may apply Lemma 7.1 to isotop one handle onto the other,
keeping (9B x B"~"), fixed. Extend the ambient isotopy to S"*! keeping
M fixed. O
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LEMMA 7.3. Let Q be defined as in §6, the closed complement of a
regular neighborhood of M unknotted in S"*!. Suppose that f,g: B" — Q
are two proper embeddings representing the same element of m,(Q, 0Q), and that

8™ 1), 8" 1) C M, = point x M C S* x M = 3Q.

Then, if 2<2r<n, f is ambient isotopic through embeddings (B", '~ 1)
—(Q, M) to f; where f~grel S 1!,

ProOOF. From the exact sequence of (3Q, M,) = (S' x M, M) we obtain
100, M,) =0, for i> 1. Then the exact sequence of (M,, 90, Q) gives

™0, M) — m,(Q, M) — m,(Q, 3Q) — m,_,(3Q, M,)

and so 7,(Q, M,) — w(Q, 9Q) is an injection. Thus f and g represent the
same element of m,(Q, M,). Let F be a homotopy between them,

F: (B, S Y)YxI—(Q M) xI.

Consider Flg,_yy, :8"™! x I— M x I. By general position, as 2r —
n <0, this may be homotoped to an embedding keeping Flg,_,,, fixed. The
codimension is n —r=r + 1 >3, and as concordance implies isotopy is codi-..
mension 3, we may homotop Flg,_ 1, to be an isotopy, keeping Flg,_
fixed.

Using collars of S$"~! in B" and 9Q in Q, with the observation above,
we see that f is isotopic to the required £ As we are in codimension 3, this
isotopy may be covered by an ambient isotopy. O

Ixar

8. Presentation of homology. Let ¢ be a level between the (r— 1) and
r-handles of S" in a presentation of an n-knot, and 7 a level between the r
and (r + 1)-handles. The following result is proved in the same way as Lemma
4.1.

LEMMA 8.1. The map induced by inclusion, iy : H,(E,.) — H,(k), is an
isomorphism if 2r <n.

Suppose that the presentation is (r — 1)-simple, and that after the k& (r — 1)-
handles have been added we are left with a manifold M unknotted in S"*! as
in §6. Let Q be the closed complement in S"*! of a regular neighborhood
N of M; thus Q =K. Assume that M is in a level above o0, and that we
slide the m r-handles of S"” down into this level.

Let (B" x B"™"), denote the ith r-handle: by §2 we may arrange for
them to be in normal position; in particular we may assume that Q N (B" x 0);
is a ball for each i Choosing an orientation for (B" x 0);, and a representative
liftin 0 of QN (B" x 0);, we obtain an element of H,@, 86).
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LEMMA 82. Suppose that 2 <2r <n, and that H,Q), H,(O, 30) are
based as in §6. If QN (B" x 0); represents oyx; EH,@, 30), then

HE)=[u;, ", ugogu; =0, 1 <i<m]
asa Z[t]-module.

PROOF. Being in normal position, the ith r-handle has a regular neighbor-
hood of the form B! x (1 + €)(B" x B"~");, where e is small and positive,
and which meets N in

B! x (cl[(1 + e)B" — (1 — €)B"] x (1 +€)B"™"),.

Let X be the closure of the space obtained from S"*! by excising both
N and the regular neighborhoods of the r-handles described above. We have the
following homotopy equivalences, proved by deformation retracting the balls
B' x (1 + €)(B" x B"™"); onto appropriate subspaces:

g~XU CJB‘ x (1 +€)(0 x B*™"),
: .

m
K, =XUUB! x (1 +¢e)B" x 0),.
1

Therefore up to homotopy equivalence, Q is obtained from X by adding
some (n—r+ 1)-cells: as 2r<n implies n—r+1>r+1, Hr(f) =3 Hr@) =
[ug, - o ug s 1. - .

To compute H,(K,), we argue just as in the proof of Lemma 6.4, obtaining
the desired presentation from the second homotopy equivalence above. O

REMARK. If we consider the projection from the level of the r-handles to
the level of the (r — 1)-handles, we may assume by transversality that the shadows
C; of the cores of the r-handles meet the cocores D; of the (r — 1)-handles in
a finite set of points. By the argument in the proof of Lemma 6.4, we may take
the matrix 4 = (e;;) above to be this intersection matrix:

= T(dC;, 3D;) + (1 = )S(int C;, int D)) = S(C;, 3B x (1 + €)D)).

REMARK. Let M, = 4 x M C d0B? x M = 0N, where = is a point of
dB%. As the handles are in normal position, we may make a canonical choice of
the representative lift of Q N (B" x 0); by requiring that the boundary of this
representative shall lie in some fixed lift 3, of M,, for each i.

9. Proof of the presentation theorem. Recall that we have an (r — 1)-
simple presentation of an r-simple n-knot. We shall show that if there are k
(r — 1)-handles and m r-handles of S”, then these determine a matrix A over
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Z[t] with k columns and m rows. Each column will correspond to an (r — 1)-
handle, each row to an r-handle. Further, we shall show that the matrix A4 de-
termines the positions of the r-handles up to ambient isotopy in their level. We
assume inductively that the (r — 1)-handles are unknotted in their level, in the
sense that we may move them down to the level of the 0-handle, to obtain a
manifold P unknotted in the sense of §6. Note that this is a special case of what
we are trying to prove, but one dimension lower, for when there are no (r— 1)-
handles of S™, the matrix A has no columns, and so we shall be proving that
the r-handles are unknotted in their level.

Granted this inductive hypothesis, we see that the r-handles are attached to
a submanifold M of S"*!, where M = 3P is unknotted in the sense of §6.
If N=B? x M is a regular neighborhood of M, and Q= cl[S"*! - N], then
we use P to obtain a handle decomposition of Q, as in §6, and hence to de-
fine bases for homology as in that section.

By §8 we obtain a presentation for H,(I’Z). A is defined to be the matrix
(o) of Lemma 8.2.

By the Hurewicz and covering space theorems,

H,0, 90) = ., 30) = 7,(Q, 3Q).

Thus A, which describes the elements of H,(a, aa) represented by the cores
of the r-handles, also describes the elements of 7,(Q, dQ) represented by the
cores of these handles.

Suppose that we have two sets of r-handles, &; and h;, 1<i<m, with
cores C; and C;. Assume that after being moved into normal position, they de-
termine the same matrix A. We may ambient isotop 3C; to coincide with 8C;
in M, for they are homologous and hence homotopic by the Hurewicz theorem
and, by general position, as 2r <n implies 2(r— 1) —(n — 1) <-1, we may
realize this homotopy by an isotopy. As 2<2r<n implies n—1)—-(—1)=
r + 123, this may be covered by an ambient isotopy in M, and this may be
extended to an ambient isotopy of the knot by Lemma 2.2.

This means that 3(Q N C;) = 3(Q N C}), and by the remark above (Q N
C;) and (QNC) represent the same element of ,(Q, 3Q). By Lemma 7.3,
we may assume that they are homotopic rel boundary, and by general position,
as 2r<n implies 2r—(n + 1) <-1, this homotopy may be realized by an
isotopy keeping the boundary fixed. As we are in codimension 3, this may be
covered by an ambient isotopy of @, keeping 90 fixed.

Thus we may ambient isotop C; to coincide with C,f, 1<i<n By
Lemma 7.2, we may isotop k; to coincide with h; as desired.

Now we must show that the matrix moves of §5 can be realized by handle
moves.
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(i) is easy: we add a pair of cancelling handles of index (r—1), r to S™.
The effect of this on H,(a, a'é) is to add a direct summand Z[t], and the
effect on A4 is to border the matrix.

(iif) is also easy, for after an isotopy we may assume that we have a config-
uration such as we have just described, so that by cancelling the pair of handles
we effect the matrix move.

(iv) consists of the same move as (ii), except that we introduce a cancelling
pair of r, (r + 1)-handles.

Now for (i). Consider two r-handles #,, h; of S". Move h; down toa
level between the (r— 1) and r-handles, and consider #; to be the first r-handle
added after h;. Let M’ be the boundary of the manifold to which ; is added.
The proof of the handle addition theorem [3, Theorem 3.1] shows that we may
move h; over h; by considering a ball B"~! C M' which meets the attaching
sphere of A; inaball B"~!. (B"~!, B"~1) forms an unknotted ball pair, and
there is an ambient isotopy of B"~!, fixed on the boundary, which moves B"~!
over h;. Before applying this isotopy, consider a regular neighborhood B? x T
of Tmod T, where T is the attaching tube.of h;: we assume T to be dis-
joint from h;. Let g, B2 — B® be an isotopy which moves 3B% p times
around itself and keeps the origin fixed. Apply g, x id to B? x T, and extend
to the rest of S"*! by taking collars. If the cores of A, h; initially represented
£, %€ (Q aQ), they now represent ¢~ P§,, & this may be seen by consider-
ing the connection between homology and the intersection of cores and cocores in
the handle decomposition of Q (recall the remarks at the end of §8).

Now apply the handle addition isotopy, using Lemma 2.2: the cores now
represent ¢~ P§; + %’,-, Ei' Next apply gt‘l x id to B? x T: now the cores rep-
resent &; + %’ » §;. Move hj back up to the level of the other r-handles.

Similarly we may move an (7 — 1)-handle over another (* — 1)-handle to
obtain column addition.

(v) is merely relabelling.

After the remarks of §5, the proof is complete. [J

10. Corollary.

COROLLARY 10.1. Any presentation of an r-simple n-knot, where n > 3,
2r <n, may be ambient isotoped to an r-simple presentation of which the dual
presentation is also r-simple.

PrOOF. Theorem 4.1 enables us to get rid of all but one of the 0-handles
and, by considering the dual presentation, to eliminate all but one of the n-
handles. Note that in the proof of the theorem only the 0,1 and 2-handles of
the knot were moved. Theorem 5.1 then enables us to cancel all the other handles
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of index less than r, without disturbing any handles of index greater than r + 1.
Now 2r <n implies #n —r >r which implies n —( + 1) >r— 1, and so by
taking the dual presentation we may cancel all the other handles of index greater
than n —r, ie., we obtain an r-simple presentation of which the dual presenta-
tion is also r-simple. 0O
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