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0. Introduction

THE free differential calculus was invented by Fox in order to calculate
the Alexander polynomials and ideals of a classical knot, starting from the
knot diagram. We show here that with a little extra effort the method can
be adapted to write down the Blanchfield duality pairing of the knot
From this it is possible to define a signature for each irreducible factor of
the Alexander polynomial (regarded as a polynomial with real coeffi-
cients), and we show that these signatures coincide with certain signatures
defined by Mflnor in [6].

1. Notation

Given a presentation of a knot k, S1 <=• S3, divide the knot into overpas-
ses a0,au...,c^ and underpasses b0,bu...,bn so that in progressing
round S1 in the positive direction they lie in the order
a0, b0, au b 1 ? . . . , On, bn. Around each b, draw a rectangular neighbour-
hood B,, oriented as shown in Fig. 1, and let e, be the corner of B,
indicated.

Let * be a point of S2 not lying on the projection of the knot, or on
any of the B(. For each i, join * to e, by an arc ft c S2 which crosses the

n

knot only on the overpasses, and meets U B( only in e,. A small circle
/-o

centred at * should cross the ft in order of increasing i when traversed
anti-clockwise.

Define a homomorphism e from the free group on generators
x0, * ! , . . . , Xn to the free group on one generator t by e(x,) = t, 0«s i s£ n.

In order to read an arc y which crosses the knot transversely, on its
overpasses, we write x, when y crosses 4 from left to right, and xf1 when
y crosses a, from right to left. In Fig. 2, 7 is read as x1xJ1X21.

For orientation, we adopt a left-hand convention. Thus if T(A, x)
denotes the intersection number of a 2-cell A and a 1-cell x, and L(y, x)
the Unking number of two 1-cycles, Fig. 3 illustrates the convention.

Let A=Z[t, t"1], the integral group ring of (t : ), regarded as the ring
of Laurent polynomials in f with integer coefficients.
Quit. 1. Math. Oxford (2), 30 (1579), 157-182
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T(A,x) = L(y,x)=+\
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2. The Blandifield duality pairing

K N i s a regular neighbourhood of k, set K = d [S 3 -N] . Let K be the
covering of K corresponding to the kernel of the Hurewicz homomorph-
ism ir1(JO-^H1(K) = (t : )• Then Hx(K,dK), H^K) are finitely-
generated modules over A. Blanchfield [1] shows that there is an Hermi-
tian pairing

( , >: dK) x Ht(K) -* AJA

where Ao denotes the field of fractions of A, and conjugation in A is the
linear extensions of t •-* t"1, denoted by ~. This pairing is non-singular in
the strong sense, that the induced map H^K, dK) —*• Horn (H^K), Ao/A)
is an isomorphism; Horn ( , ) denotes the module of conjugate linear
maps.

Since the usual map H^K) -* H^K, dK) is an isomorphism, the Blan-
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chfield pairing induces another pairing

< , >: >Ao/A,

and it is this one that we shall study.
Further details of the Blanchfield pairing may be found in [5].

3. Overpasses, underpasses and handles

A presentation of the knot may be regarded as a handle decomposition
of S1, the underpasses being O-handles and the overpasses being 1-
handles. By a trivial isotopy we may regard S1 as embedded in S2~xl,
with each 0-handle in S2xf, and vertical collars in S2 x Q, £]. If N is a
regular neighbourhood of S1, then S2xl—int JV has a handle decomposi-
tion on S 2x0 with one 1-handle h,1 for each O-handle of S \ and one
2-handle hf for each 1-handle of S1. Figure 4 illustrates this: for a fuller
discussion see [3], [4].

Fio. 4

The knot has a dual presentation obtained by turning it over, so that
the overpasses become underpasses and vice-versa. The dual presentation
corresponds to the dual handle decomposition of S \ in which 1-handles
dualise to O-handles, O-handles to 1-handles, yielding a handle decompos-
ition of S2xJ—intN on S 2 x l . Figure 5 illustrates the relationship

—i?—v

Fio. 5
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between the two handle decompositions of S2 x I—int N, only the cores of
the handles being shown.

For an underpass bt, let d, denote the core of the corresponding
1-handle, and D, the core of the corresponding 2-handle in the dual
presentation (where b, is regarded as an overpass). For an overpass Oj, let
C, denote the core of the corresponding 2-handle, and q the core of the
corresponding 1-handle in the dual presentation. We take 3D, =dBt, and
B, is the projection of D, onto S2:=S2x \.

When dealing with intersection theory on a PL manifold M"\ one
normally considers a triangulation of M and a dual triangulation of
(M, dM). In terms of handle-body theory, this is dealt with by taking a
handle decomposition of M, and considering the dual handle decomposi-
tion of M on dM. The cores of the r-handles play the role of r-chains, and
the cocores of the r-handles play the role of (m —r)-chains in the dual
triangulation. Here the c, will play the role of 1-chains, the D, the role of
2-chains in one decomposition; and the d, will be the 1-chains, the C, the
2-chains in the "dual" decomposition.

Let x, denote the following composite arc: from * x 1 e S2 x 1 to the
point of S2 x 1 vertically above the tail end of c,, from this point straight
down to c,, along c, in the positive direction, straight up again to S2x 1,
and back to * x 1. Clearly the x,, 0 «s i ss n, generate TTX{K, * x 1).

Let pf denote the following arc: from * x l straight down to * = *x£;
from * along ft, around dB, in the positive direction, back along ft, and
from * up to * x 1. The arc p, starts from * x 1, and follows the projection
of pf into S2 x 1 except when pf crosses the knot. If pf crosses the knot at
Of say, then pi leaves S2 x 1 to pass along c, in the appropriate direction,
and then back to S2x 1.

Let y, denote the following arc: from * x 0 follow the projection of ft in
S2 x 0 to e, x 0, from there straight to the tail end of d,, along d,, straight
back to c, x 0, and back along ft to * x 0.

Let Si denote an arc in S2 x 1 from • x 1 to the point vertically above e,,
and straight down from this point to e,.

4. Presentation of the knot group

Corresponding to each overpass a,, we have a loop x, based at *x 1.
For each underpass bt, read the word in the x, defined by the arc p\ as in
§1; call this rt. Then (XQ, XX, . . . , ^:), the free group on n + 1

n

generators, is <n-1((S
2x[3,1])U U c,,*xl), and the word r, represents the

i-o

element killed off by the 2-cell Dt. From the theory of handle-
bodies, or CW-complexes, ?TI(KI *xl)ss-Jr1(S2xZ-intN, *xl)s=
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n

Note that the 0, have been so chosen that Yl ri ~ 1- This is the
over-presentation of ir^K). '"°

The under-presentation is obtained in a similar way from the dual
presentation of the knot, using d, in place of Q, Q in place of D,.

5. Presentation of the knot module

Let * be a lift of * to K, and let x, be the lift of x, which starts at * x 1.
Thus XQ, . . . , %„ forms a basis for the free A-module of 1-chains CX(K).
Let 8, be the lift of Sj which starts at * x 1 and ends at c,: this defines the
lift D, of D,.

Using the free differential calculus of Fox [2], we can lift the loop p, to

K; the lift is represented by £ e(—T± Jx,. Setting Aj = e ( r ^ ) , we obtain
j -o \dXf/ \oXjJ

an Alexander matrix A; this matrix presents the A-module HX(K)©A,
with generators XQ, . . . , £„.

n

Because n rj = 1. the sum of the rows of A is zero, and so is the sum
J-o

of the columns. So we can delete the Oth row of A and still have a
presentation matrix for HX(K)©A. If we change basis in Cj(X) to XQ,
XJ — x0,..., x̂  — XQ, we obtain a matrix with Oth column zero but whose
other columns are the same as those of A. Thus the Alexander matrix A
with its Oth row and column deleted gives a presentation matrix B for
HX{K) as a A-module.

Let s, be the word in the x, read from the arc ft. Then the ith row of B
represents the boundary of e(%)£>, with respect to the chains xx-
x 0 , . . . , in — XQ. The chains xx — XQ, ..., x^ — XQ form a basis for Z1(K), the
module of 1-cycles.

Let y, be the lift of y, which starts at *x0; then y 0 , . . . , yn forms a
basis for the dual module of 1-chains Ct(K).

After Blanchfield [1], define

S(D»y,)= Z T(Dh tky,)tk

-oXfc-O.

where T denotes the ordinary intersection of chains. Clearly
T(D,, e ^ r ' y , ) = -5, , , T(Dt, eCs,)"1!"1^) = 5,,, and zero otherwise. Thus

Define the matrix S by S,, = S(Dh y, - y0) = S(D,, y,) for 1 =e i =s n, 1 «

If x is a 1-cycle in K, y a dual 1-cyde, and ax = du for some non-zero

3
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a e A, and 2-cyde u, then Blanchneld [1] defines V by

V(x,y) = -S(u ,y) .
a

Setting V,, = V(x, - X Q , y, - y0) for 1 as i as n, 1 =sj as n, we obtain

n n

I BtfVjk = I ByV(x, -Xo, yk - y 0 )

= S(e(si)D(, 5fk-

Now S is a diagonal matrix, and the ith diagonal entry is e(s,) 1(t 1

1). Thus

To express y, in terms of the x,, we use the free differential calculus
again. First, let y, denote the loop illustrated in Fig. 6. By changing base
point from *xO to * x l , we obtain from y, a loop based at * x l .
Reading the arc fayST1 gives the word ^^sj"1 corresponding to this loop.
The free differential calculus applied to SjXiSf1 gives y, in terms of the x,.
Strictly speaking we should distinguish between the chain y, based at
* x 0, and that based * x 1; but there will be no difference when we pass
to Hj(K), and so we avoid introducing the extra notation.

Defining Q, = e — (s^si"1), we obtain
ax,

/-o
n n

y« = X Q*o+ I QiiXf-Xo) 0=s i«n.
1-0 /-I

n n

y. -y 0 = I (Q-Co,)xo+ X (Q -Co,)(x,-xj l « i =sn.
1-0 l-l

es

6; j o i + ,

Fro. 6
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But for each i, £ Q, = 1, and so defining D,, = Q, — C^ we obtain

Thus D is obtained from C by subtracting the Oth row from every other
row, and then deleting the Oth row and column.

Let U be the linking matrix with respect to the basis £j - Xo,..., x^ —
XQ; so Utl = V(x, -Xo, x, -XQ). Then

n n

I U,Ai= I V(x,-Xo,x,-xo)Dkj
i - l J - l

= V ^ - X o , yk-y0)

So UD* = V, where D* = D', and hence

Nowlet <p: <Xj-Xo,..., J ^ - X Q O - ^ J y i y 0 y y
Hi(K) be the quotient maps, and define the matrix W over Ao/A by

VV,f = <<p(x, - Xo), <p(x, - Xo)).

Of course, W is just the image of the matrix U under the map AQ-
Ao/A.

For each i, 1 =£ i ^ n, we have
n

•Myi - y"o) = Z

But since

for each k, 1 =s k =£ n, we deduce that

for any a € A. Thus we may add a multiple of any row of B to any row of
D without affecting the matrix W.
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6. Matrix moves

Let Ey denote the identity matrix added to the matrix whose only
non-zero entry is a in the i/th place, i^j. Then Ej)B is obtained by
adding a times the /th row of B to the ith row, and BE^ is obtained by
adding a times the ith column of B to the /th column. Furthermore, note
that (Eft-^ETr.

Recall that the matrix B is a presentation matrix for the A-module
H^K). As such, it may be altered by certain row and column operations,
and we now analyse the effect of such operations on the matrices B, D,
and U.

Premultiplying B by EJ) corresponds to a change in basis from
D , , . . . , D ( , . . . , Dn to D , , . . . , Dt+aD,, . . ,£>„. U is unchanged, and D
becomes PD where (E^^P*'1 = I, i.e. P = EJ&.

Postmultiplying B by E,, corresponds to a change in basis from Xj —
x0,..., xt-x0,...,xn-x0to Xi-Xo,. . . . x^ -Xo-a^ -Xo) , ....Xn-Xo.
This alters U to ET,"UEja, and so D is changed to DE%.

The third move we shall consider is enlargement of B by an extra row
[B 01 [D 0 "I

and column to ; this requires an enlargement of D to ,

for then U is enlarged to .In view of the final remark in the last

n [D 01 . J [D *~\
section, we can enlarge D to I, or mdeed to

Let Ey denote the matrix with 1 in the i/th and /ith places, 1 on the
diagonal except for the ith and /th places, and zeros elsewhere. Premul-
tiplication by E,, corresponds to swopping the ith and /th rows, postmul-
tiplication corresponds to swopping the ith and /th columns.

So if B is replaced by E,jB, D must be replaced by PD where
E - i p * - i = J . i e p = E-1* = E j = E((. U is unchanged.

If B is replaced by BE^, corresponding to a swop of basis elements
x, — Xo and x, —XQ, then U is altered to E^UE^, and so D is altered to
DE,,

Let E" denote the identity matrix with the ith diagonal entry replaced
by the unit a e A . Premultiplying by E° multiplies the ith row by a,
postmultiplying by Ef multiplies the ith column by a. Premultiplying B
by E° corresponds to a change in basis of the D,, so does not affect U.
Thus D is replaced by PD where (EJT'P*-1 = /, and hence p = Es~1 =
E". Postmultiplying B by E" corresponds to changing base in the x, — XQ,
replacing iq-Xo by o T ^ - i o ) - U is altered to E°~1L7Ea~1, and D to
DE?.

To sum up, the moves we allow are as follows.

(i) Add a times the /th row of B to the ith.
Subtract a times the ith row of D from the /th.
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(ii) Add a times the ith column of B to the jth.
Add a times the ith column of D to the jth.

[B 01 [D *1
(iii) Enlarge B to ; enlarge D to
(iv) The inverse of (iii).
(v) Swap the ith and jth rows of B.

Swap the ith and jth rows of D.
(vi) Swap the ith and jth columns of B.

Swap the ith and jth columns of D.
(vii) Multiply the ith row of B by a unit a e A.

Multiply the ith row of D by D by a.
(viii) Multiply the ith column of B by a unit a e A.

Multiply the ith column of D by a.
(ix) Add a multiple of any row of B to any row of D.

7. Economy

So far we have given each overpass and each underpass its own label.
In practice, it is often convenient to label some of the overpasses in terms
of the others, using the relations given by the underpasses. This is
justified by passing to a new knot diagram; the example in Fig. 7
illustrates the principle involved.

r v =

rx=x
rY=yxyx-1y-1x-1

FIG. 7
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8. Examples

The first example is the trefoil knot, illustrated in Fig. 7. As subscripts
are rather tedious in practice, the overpasses are labelled x, y, yxy"1, and
the B, are labelled X, Y. The third underpass has already been used to
label yxy~\ and plays no further part in the computation.

The relations rx, TY are given by

= xyxy~1x~1y"1

= yx(yxy""1)~1x~1

Choosing x to play the role of XQ, the matrix B is obtained by

calculating e(—J = l + t2-r . Thus B = (l-t + t2).

In this case SQXQSO1 = x and SiX^ 1 = y, so that C is given by

o I
/r'-n

and so D = (1). It follows that W= (— j j .

X

Fio. 8

In the second example, the reef knot shown in Fig. 8, three labels x, y,
z are necessary. Note that rx is not used, and so it is not necessary to
compute it.

rY = 2xz~1y~12~1y2y(2~1yz)~1z~ lz~1y^(z~1y2)~1U1)1

= zxz~1y~1z~1yzyz~1y~1zz~1yzx~1z~1

= zxz~1y~1z~1yzyx~1z~1

rz = zxCzxz"1)"^"1

= zxzx~1z~1x~1
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drYY
e e

3

drz drz
e £
_ dy dz_

r1 + t l-t-t^+i-ii
0 i+t2-t J
1 + t -r ' + i-n

i-t+t2 J

SQXQSQ — X

'yz)-1)

= zxz~1y~1z~1yzyz~1y~1zyzx~1z~1

^

c=\ t-t

L o

0

0

0

1

r 1 , , ° ° 2i
= 1 t-t2 t -2 + 2t -t +3-3t + t\

L O O 1 J
l "r1-2+2r —t~x + 3 —3t + t2"j

~L 0 1 J
Multiplying the first row of B by t gives

ri-2t + 2f2

" L 0
Adding the second row of B to the first gives

n-t + r2 0 I
B " L 0 l - t + r2J

- l + 3t-3t2+t:

- l + 2r-2r2 2-3f + 3t2-t:

The form of B allows us to add any multiple of 1 — t + t2 to any entry of
D: thus we easily obtain

»•["! 0]
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From the equation WD* = (f~1-l)B~1 it follows that

(r 1-!) [i-t+t2 o iro n
(1-t + r2)2 L 0 l-t + t2Rl lJ

r1-! ro i"

0 n
1 l J '

9. Signatures

Let T=R[f, t"1]; then F is a PZD, and so H^KjR) is a direct sum of
cyclic r-modules of the form F/(a), a^O (since dimKH1(K;U)<oo).
The Blanchfield pairing yields a non-singular Hermitian pairing

Let A be the Alexander polynomial of the knot, so that A annihilates
Hx(K; R). Let v be a prime in F dividing A, and let Vv be the -n-primary
summand of Hi(K; R). As in [7], Vv is orthogonal to Va unless (-n-(O) =
((r(t~1)). Arguing as in [7]; pp. 95-96, the following facts can be estab-
lished. Assuming -jr(f) = iKf"1), Vv splits as an orthogonal direct sum
Vi • • • V£" for some integer m, where Vl

v is free over F/(ir'). Setting
H^ = V'J-nVi, let (x) denote the image in Hi of xeV^. Setting

~ ^ ) » ( y ) ) l = ('"''~1^, y) for x, yeV\, defines a non-singular Hermitian
IT

pairing on H\,. In fact, Hi is a finite dimensional vector space over the
complex numbers C=R(T)2EF/(IT), where T is a root of ir, and conjuga-
tion in R(T) is given by r >-* T"1. This of course is just complex conjuga-
tion since tr is quadratic, and T"1 = f lies on the complex unit circle. The
pairs (Hj,, ( , )i) are independent of the choices made.

Furthermore, the pairs (Hi, < , )i) determine (Vm < , > | Vw). To see
this, consider an orthogonal basis ( t^ ) , . . . , (ur) of H£\ Then if
<(t>i), (i»i)>T = b € R, we have

{•7rm-lv1,v1) = b/'ir (modF)-

Write «i = u1 + a(0in>1, where a(()eT will be denned shortly. As in
[7]; p. 96,

Since Wrn~1lvl,v1) = b/'7T2+c/iT (modF), we can make
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b/?r2 (mod F) if we can solve the equation

a(rl))b/ir (modi1)-

But ceR, and so we only need to set a(t)= —cJ2b.
Continuing in this way, we arrive at an element Xj e V£" with (xt) = (t^)

and <x1,x1)^b/-jrm (modr)-
Now V£" splits as the direct sum of the submodule (x^) and its

orthogonal complement. Choosing a representative for (uj in this or-
thogonal complement, an inductive argument shows that (H^,( , )£)
determines (V£*, < , > | V£"). A similar argument applies to V™~\ and so
on.

The trace function R(T) -* R makes H\, into a quadratic space over R,
with signature a'^. Define &„ to be the sum over odd i of the a'v.

Writing ir(t) = r1-2oos 6 + t, O < 0 < T T , Mflnor [6] has defined signa-
tures a6 for a certain quadratic form on Ht(K; R).

THEOREM, a^ = ae.

The proof will be given in the following sections.
In the discussion above, it was assumed that (ir(t)) = (ir^"1)). The other

cases are not of interest here, as the quadratic spaces obtained are
hyperbolic and so make no contribution to the signature. Compare [7];
pp. 93,94.

10. The Mlliior signatures
Cut K open along a connected Seifert surface V, and let X be a lift of

the resulting manifold to K, so that K is covered by the sets . . . , t~lX, X,
tX, f?X, . . . . Note that X is connected and that XntXssV. Further-

oo

more, Np - U t'X is a neighbourhood of one end <o of K, and the sets
I-P

N0^N1^>N2^- • • form a cofinal sequence of neighbourhoods of a>.
—oo

Similarly the sets N'q = \J t'X form a cofinal sequence of neighbourhoods

of the other end a' of K.
For p > p', there is a homomorphism

induced by inclusion. Define H+(K, <o; R) = lim H*(K, Np; R).

By a result of Mflnor ([6]; p. 125), there exists an integer s > 0 such
that for all p, H*(K, Np+,; R) - • H*(X, Np; R) is the zero map. It follows
that H*(K, a>; R) = 0, and similarly for 'w'.

For p^p',q&q', let i&"': H«(K,Np UN*;R) — H*(K, Np-UN».;R) be
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induced by inclusion. Define H*(K, a)Ua>';R) = limH*(K, NPUN;;R).
The Mayer-Vietoris sequence yields

for large p, q. Since we are working with real coefficients, these are vector
spaces over R, and taking inverse limits yields an exact sequence

0 - • H2(K, a Ua)'; R) -=*-> H t(X; R) - • 0©0.

p-i

Let Fp>q = U t'X, and doFM = diC n Fp-<,. Then for
1— q + l

there is a homomorphism

& p p^.; R) -> H+(F^, doFM; R)

induced by inclusion. Taking the direct limit,

lim H^FPJV BoF^; R) ss H*(K, 3K; R).

Here is a technical result we need.

LEMMA. Let M be a 3-manifold, A and B 2-manifolds with dM =
AUfl, A n B = dA = 3B. [/sing real coefficients, the intersection pairing
H^M, A) x H2(M, B) -> R is non-singular.

Proof. There is a ladder of exact sequences and intersection pairings
which is commutative up to sign.

H2(M, 3M) -»• Ht(aAi A) -»> HX{M, A) -»• H^M, dM) -^ H0(3Ai A)

X X X X X

) ^ H2(M) «- H2(B)

The first and fourth pairings are non-singular by Lefschetz duality. By
excision, H+(dM, A)szH+(B, dB), and so the second and fifth pairings are
also non-singular.

If U, V are finite-dimensional vector spaces over R, then a bilinear
pairing U x V —» R defines a map U -* V*, where V* is the dual space of
V. Hence the ladder above gives rise to a diagram, commutative up to
sign:

H2(M, dM) -»•

4
HAM)* -*•

HABM,

4
H^B)

A)->

i* - » .

HAM,
4

H2(Ai

A)

B)*
4

W H2(A4)» -»

HoOA^A)

4
H(B)*
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The bottom row is exact because we are using real coefficients, and the
four outer vertical maps are isomorphisms because the corresponding
pairings are non-singular. By the five lemma, so is the middle map.

Now apply the lemma with M = FM, A = aoF[M,, B = F M n (Np U N'J,
to obtain (after excision) a non-singular intersection pairing

Taking the direct and inverse limits yields a pairing

as follows. Let

i M : H2{K,

/ M : H^F^, doFM; R) -> H^K, dK; R) be the maps corresponding to the
inverse and direct limits. Let xeHr(K,dK;U), yeH2(K,(oUoi';R). For
some p', q'>0, there is an element xp W eW^F,,.^-, doFp.^.jR) such that
JPWXPW = X-

 F o r all p ^ p ' , <j2*q', set Xp̂  =jfc*'xpV\ then for all
', we have /p̂ Xp̂ , =x. Furthermore, for pssp', q^q ' ,

p^»yjp^ up^j ^p'^'> 'p^jyiprfi i^p'^i'> 'p^i 'p^yjp'^i' i*p'^i'> 'p '^ '

So we can define {x, y} = {xp w , ip ^y}p^ for large p, q. This is independent
of the choice of xp-q., for if ipWxpW = jpWx'pW, consider the direct
system obtained by restricting /„_„ to the subspace spanned by Xp̂  —x^.
The direct limit of this system is zero, and so /[^(Xp.^. — Xp-̂ -) must be
zero for sufficiently large p,q. Whence {x, y} is independent of the choice

Suppose that {x,y} = 0 for all xeH^^dKiU). Let z€
H^Fp^doFp^jR); then {z, ip^y}p^ ={j^z, y} = 0,_so since { , }Piq is non-
singular, ip^y=0 and hence y=0. Since H^K, 3X;R) has the same
dimension as H 1 ( K ; M ) S H 2 ( K , ( D U ( D ' ; R ) , it follows that { , } is non-
singular.

Let /*: HX(K; R) - • Ht(K, dK; R) be the usual isomorphism, and define
the non-singular skew-symmetric bilinear pairing

Define a symmetric pairing

by (x,y) = [tx,y]+[ry,x]. _
The action of t on H^K; R) is easily seen to be an isometry of [ , 1

and hence also of ( , ). As in [6]; Assertion 10, ( , ) is non-singular.
The characteristic polynomial of the isometry t is A, the Alexander
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polynomial of the knot. Let A be a symmetric quadratic factor of A,
irreducible over R: we may take k(t) = t2-2t cos 0 + 1, O < 0 < T T In [6],
Milnor defines ag to be the signature of ( , ) restricted to the A-primary
component of H^KjR) regarded as a r-module. If A is not symmetric,
then the A-primary component makes no contribution to the signature, as
the corresponding quadratic form is hyperbolic.

Finally, note that since the cup product pairing is dual to the intersec-
tion pairing, our <re is the same as Milnor's.

11. Equality of signatures

In this section we show how the quadratic form ( , ) can be obtained
from the Blanchfield pairing < , ). Let A be a factor of A, irreducible over
R, of the form A(f) = 1 -2at +12; and let Vx be the A-primary component
of HJCKJR). AS in §9, Vx splits as an orthogonal direct sum Vx©- • •©
V™, with VX free over F/(Ar): note that the direct sum is orthogonal with
respect to < , ).

Let u e VX, v e VJ, r^ s, and let x be a cycle representing u, y a dual
cycle representing v. There is a 2-chain c such that Arx = dc. Because
<u, u> = 0, we know that V(x, y )^0 (modF), and so V(x, y) = / e l \ Thus
S(c, y) = f.kr. Suppose that we choose a disc d which meets t"y just once,
and meets no other translate of y; thus S(d, y) = t". Let z=dd, and set
x' = x + az for some real number a. Note that x' is a cycle representing u.
Moreover, Arx' = Arx+Araz =3(c + aArd), and S(c + aXrd,y) =
fX.r + a\rt". It follows that by choosing the representative cycle x care-
fully, we can arrange that S(c, y) = 0. A similar argument holds for y in
place of x.

Suppose now that x is a cycle representing u e VX, y is a cycle
representing ueVJ, r^s, that A"y=dd, and that S(x,d) = 0. We can
expand as formal power series

1 V - i
TTTT- L -o_2,_,r
(*•) 1-0

S e t c = X Oft'd, where Oj=0 for -2s<i<0.
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Then I claim that the homology class w e H2(K, a> U co'; R) represented
by c is such that d+w = v; this follows by considering the Mayer-Vietoris
sequence and inverse limit of the preceding section. Furthermore,
{u, w} = 0, and so (u, u) = 0. Thus VI is orthogonal to VJ with respect to
( , ).

Now let us restrict our attention to VI; in order to compute the two
signatures of this subspace, it is enough to examine H*k = VI/A VJ (see
[7]). Choose an orthogonal basis (uj) , . . . , (U,,) of HI with respect to
( , )I; as above, this is also an orthogonal basis of HI with respect to the
quadratic form inducedby ( , ). To avoid subscripts, write u = u1. If
<("), (")>I = b, then <u, (tA)1"1") = *>/0 ~* - 2a + r) = b«/A mod T. Arguing as
above, there are cycles x, y representing u, and a 2-chain d such that
A(tA)r~xy=ad and S(x,d) = bt.

We write

(£A )'"1y = 3 - j - d = d{r2l + r\2a - r x ) + C\2a - r 1 ) 2

A

x(2a -1"1) + t~2(2a - r 1 ) 2 + • • • }d.

Let w e H2(K, <o U a>'; R) be the homology class represented by c. Then
since S(x, d) = bt, we have T(x, td) = b and T(x, t'd) = 0 for iV 1. Thus

{u,w}=-2ab, {fu, w} = {u, t"xw} = b;

[u, ( tAr 1u]=-2ab,

(tu, (tArJu) = [t2u, ( ^ - ^ l + CtCtATV tu]

Thus regarding ¥TX as a vector space over R(T) the subspace spanned by
\2b 2ab~\

(u) yields a real quadratic space with basic u, TU and matrix ;
this is the quadratic space determined by ( , ).

But the pairing ( , )r, restricted to the subspace spanned by (u) and
regarded as an Hermitian pairing over R(T) has as its matrix b. Using the
trace R(T) —> R, this yields a quadratic space whose matrix with respect to

the real basis u, TU is I , „ . •
L2ab 25 J
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In the case r even, V̂  contributes nothing to the Milnor signature [7];
p. 94, remark, and nothing to ay by definition. If r is odd, then the
contributions coincide, again by [7]; p. 94. This proves the theorem.

Note that the sign of <xe depends on the sign of d+ in the Mayer Vietoris
sequence: by redefining the homomorphisms in the Mayer-Vietoris sequ-
ence we could change the sign of d+ and hence the sign of ag.

12. Examples

Recall that for the trefoil knot we obtained

i-t+t2) Kt^-i+t) xr'-i+t

In this case H^K^R) is a 1-dimensional vector space over R(T), where
T 2 - T + 1 = 0, and the Hermitian form has matrix (-1) with respect to
some basis v say. Over R, take v, TU as a basis; since tr(—T)= —1, the

f-2 -11
corresponding quadratic form has matrix , which is congruent

to , . Hence the signature is —2.

With the reef knot, there is a self-annihilating subspace with dimension
equal to half the dimension of H^KjR); hence the signature is 0.

Fig. 9 illustrates the knot 62 in Reidemeister's table. The computation
is as follows.

\dy
t l -

Lo
D=(2 t - t 2 )

\

L

B—>
(vH)

D >(f3-2t2)
(viO

t2-3t+3-3r1+t-2=(t-(3+75)/2+r1)(r-(3-75)/2+r1).

Set X = t-(3+75)/2+r1, p. = t-(3-V5)/2+r1; note that A=Ĵ
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~xxy~xx~x y x y~xxyx~xyxy~x

Fio. 9

ji, and that aA +&!*. = 1 where —a = 0 = 1/V5.

x 01 [ku v.~\ T 0

yz~1y-1xyx-1yxy-1

-A 1

(U)

Set v = (3-2r2:

T-A 1-aA
L0 VL (x J ~ L O /

r o]
(H) L 1 a J (0 Ll-Ppt a -aPf i J L-/3A a -

r-n on ^ rx-,1 o i = r-^5 o I
(w *! 0 aJ (w 1 0 oJ 1 0 -1/V5J'

The polynomial A is reducible over R, and so contributes nothing to the
signature. As an exercise, the reader may care to check directly that this
is so. On the other hand, fi is irreducible, and we proceed as follows.

w' o-ir-Vsv o ] _ r-i/A o i
o wJL 0 -v/V5j~U 1}L 0 1/nJ
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Let T be a root of m so that T - ( 3 - N / 5 ) / 2 + T ~ 1 =0. Passing to the
Hermitian form over R(T), we obtain

W T X — 1 T 2 — T 3

2 T - 1 4 - 2 ( T + T"

2 T - T 2 - 2 T 2 + T3

2+75

T

/3+75\f/3-V5

3+V5

Thus ov, = 2.

13. Torus knots
Finally we adapt the methods developed above to find the signatures of

the (p,q)-torus knot. We regard S3 as the union of S1x.B2 and B2xS1

identified along their common boundary S^^xS1, oriented so that
L(S1x0,0xS1) = l. For positive coprime integers p and q, the (p, q)-
torus knot k is an embedded circle in Sl*S1 representing the element
(p, q) in H1(S1xS1) = Z©Z. Thus k winds p times around the first factor
of S1xS1 and q times around the second. Figure 7 illustrates the case
P = 2 , q = 3.

The Alexander polynomial of the (p, q)-torus knot is A(t) =
( l - i M ) ( l - t ) / ( l - l p ) ( l - t q ) , and so its roots are the pqth roots of unity,
excluding the pth and qth roots of unity. These can be obtained in the
form exp 2m(ajp + blq), where a runs over a complete set of non-zero
residue classes mod p, and b runs over a complete set of non-zero residue
classes modq. In particular, we can take 0 < a < p , 0<b<q . The complex
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conjugate of exp 2m(ajp + blq) is exp 2m((p — a)/p + (q — b)/q), and so we
run through the real quadratic factors 1 -2t cos 2ir(a/p + blq) + t2 of A(0
by restricting attention to the set X = {(a,b): 0<a<p, 0<b<q,
ajp + b/q<l}. Denote the Mihior signature corresponding to
exp27ri(a/p + b/q) by a(a, b); then with the notation above we can state
the following result

THEOREM. cr(a,b)= 2 if

- 2 if

This result has previously been obtained by T. Matumoto [8].
I should like to thank D. Zagier for showing me how to handle the

number theory involved in the proof.
Pick • e S1 x S1 - k, and let x be the loop which goes from • along a

radius of B2 to S ' x O c S ' x B 2 , once around S1*0 in the positive
direction, and back along the radius to *. Similarly let y go from * along
a radius to OxS 1 cB 2 xS 1 , once around OxS1 in the positive direction,
and back to *. Because L(x, k) = q and L(y, k) = p, we define e(x) = fq,
e(y) = t".

Let I be a path in S1 x S1, containing *, which is parallel to k: that is,
represents (p, q) in H^S1 x S1) and does not meet k. Join each point of I
by the radius of B2cS1xB2 on which it lies to S1x0cS1xB2, and
similarly join I to OxS 1 cB 2 xS 1 . Call the resulting 2-complex A. Then
dA consists of p copies of S1 x 0 and q copies of 0 x S1. We can regard A
as a singular 2-cell whose boundary gives a loop rA based at *, such that
JA = y"x~"; then by Van Kampen's theorem the knot group has a
presentation (x, y: yqx~p).

Choosing lifts x, y, A based at * in the infinite cyclic cover K, it is a
standard exercise in the free differential calculus to establish that

Setting A(r) = (1 - t«)(l - 0/(1 - fP)(l - **),

a(t) = (1 -1p)/(l - 0, Ht) = (1 - t")/(l - 0,

this becomes

Because p and q are coprime, there exist integers r and s such
that.pr + q*=l . Setting f(t) = ( l - r V d - t " ) , g(0 = ( 1 - t * ) / ( l - f ) , it is
easily checked that a(0/(0 + b(0g(0 = l- Thus Ht(K) is cyclic of order
A(0, with f = - a ( 0 x + ft(0y as a generator.

Now let • ' be a new base point, and x', y' be paths as indicated in Fig.
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FIG. 10

10. Then x', y' play the role of a dual basis for Ci(K). We must now
compute S(A,x'). Recall that

The ordinary intersection of x' with A is obtained by starting at * and
tracing along I until one circuit of S1xS1 in the x direction has been
made. The number of whole revolutions in the y direction (plus one) is
the number of times that A meets x', and this is the number of multiples
of p in the interval [0, q). Similarly the intersection of A with t"*x' is
equal to the number of multiples of p in the interval \rq, (r + l)q), for
0 =s r < p.

Define A(r) to be the number of multiples of p in the interval [rq, (r +
1)<J), and pi(s) to be the number of multiples of q in (sp, (s + l)p]. Then
arguing as above it can be seen that

S(A, * ')=
r - 0

Setting £'= -a(t)x' + b(t)y', we have

A(r)V(£,£') = S(A )£')

, y')

Call the Laurent polynomial on the right — F(t).
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Let c denote the integral part of the real number c, and define ((c)) by

-w-i if en
if C E Z .

Then we can write

RecaU that V(f, f ) is only defined mod A, and so we are only in-
terested in F(t) mod A(f).

r_o \ \p

To see the last step, set t equal to any root T of A(t); thus T " = 1 but
T P ;*1 and T " # 1 . Then

p-i p-i

I T^=X(T")r=0
r-0 r-0

p - 1

and so A(f) divides X '""•
r-0

Noting that (r"" -t(r~1)q) = r"(l-1~"), we obtain

1-1

Define p*, q* by q*q = l (modp) and p*p = l (modq); we shall be
dealing with periodic functions and shall only be interested in the value of
p*(modq) and q* (modp). Set £ = exp(2iriniq*/p), T = exp(2mmjpq),
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where T is a root of A(r), and note that T" = £*, £" = 1, C* 1- W e have

But (i-o I rr=^+2^2+---+(p-i)r"1-^-2i:3 (p-ir
r - l

Whence

U - £ ) 2 2

Setting £ = exp (2m'mp*lq), we have

/ 2irim\ /m m m\
Flexp =expTnl

\ pq I \pq p q)

sin (rnn/q) sin (irm/p) f irmq*
icot 1- cot

sin (irm/pq) I p q

Working mod A, we have

F(t)^F(exp(27rim/pq)) 1

A(0 = ~ A'(exp (2mm/pq)) t -exp (2mm/pq)

where the sum runs over a complete set of residues mod pq, excluding
multiples of p and multiples of q. Here A'(0 denotes the derivative of
A(r). An easy calculation gives

• w < _ . . n PQ / m m n x \
A'(exp (27nm/pq)) = ̂ r exp ml • -

2i \ a p pq) st
sin (imi/pq)

q p pq/ sin (irm/p) sin (irni/q)'
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and so

v 2i /-o • / \ sin2 (7rm/p) sin2 (irmjq)
mPq sin2

lcotI^L_ + c o t
m n P

*l 1
\ . . .
J f-exp(2inp q J t - exp (2irim/pq)

i r* sin2 (irm/p) sin2 (irm/q) f irniq* irmp*
= — A r~2~, ;—: {cot l-cot

pq m sin (irmjpq) I p q

where

exp(2irim/pq) exp( —2irim/pq)

t-exp(2irim/pq) t— exp( — 2-irim/pq)

_ 4if sin (irm/pq) cos (irmjpq)

i2 - 2t cos (2imi/pq) +1
Thus

V(z, z ' ) s — \ sin2 — sin2 cot \cot —- !-+cot —-1—}
pq m p q pq i p q J

t

i1 - 2t cos (2irmjpq) +1

lr2-2tcos(2irm/pq) + l

where

4 - TTTTi . , tm\ irm f i7?nq* imp*}
Cn, = sin2 sin2 cot — {cot ——+cot — \.

pq p q pq I p q J

If we set m = aq + bp, and allow a to run through a complete set of
non-zero residue classes mod p, and b to run through a similar set mod q,
then m runs through the required set of residue classes mod pq. So

4 . , iraq . , irbp la b\ f ira irb]
c-^c-t = — sin --^sin2— !-cotir l-+-Hcot—+cot — \.

pq p q Vp qJl p qi

Now cot x+cot y = 0 O cot x = cot (-y)

O x = ntr — y

O x + y = nir.

a b la b\
But 0<—I—<1^0<irl—I—)<ir, and so for a and b in this ranee

p q Vp q)

the sign of Caj, is equal to that of cot in—I—J.
\p q/
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Recall the set X defined at the beginning of this section: we see that

The theorem will follow if we can show that the sign of c^b is the same
as that of the corresponding Milnor signature, since for (a, b) e X,

(a b\ .„ a b 1
cotir{-+- >0 iff - + - < - .

\p q) p q 2

Set Va,b(t) = t -2cos2Tr/^+-) + r 1 , let V(t) = A(t).rn where n =

(p - l ) (q - l ) / 2 , and let Va-b(f) = V(t)/VaJ)(r). Let V = Hl(K;R) and let a
be the image of z(andz') in V. Then Va-b(t)V is the subspace of V
annihilated by V^b(t). Referring to Section 9, it is easy to see that this is a
1-dimensional vector space over C, with basis given by V^OV, and that
the signature of the corresponding Hermitian form is sign c^.
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