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Quadratic Forms in Knot Theory

C. Kearton

Abstract. The purpose of this survey article is to show how quadratic
and hermitian forms can give us geometric results in knot theory. In par-
ticular, we shall look at the knot cobordism groups, at questions of fac-
torisation and cancellation of high-dimensional knots, and at branched
cyclic covers.
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1. The Seifert Matrix

By an n-knot k we mean a smooth or locally-flat PL pair
(
Sn+2, Sn

)
, both

spheres being oriented. In the smooth case the embedded sphere Sn may
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136 C. KEARTON

have an exotic smooth structure. Two such pairs are to be regarded as equiv-
alent if there is an orientation preserving (smooth or PL) homeomorphism
between them.

As shown in [33, 48], a regular neighbourhood of Sn has the form Sn×B2;
we set K = Sn+2 − int

(
Sn ×B2

)
. Then K is the exterior of the knot k,

and since a regular neighbourhood of Sn is unique up to ambient isotopy it
follows that K is essentially unique.

Proposition 1.1. Sn is the boundary of an orientable (n + 1)-manifold in
Sn+2.

This is proved in [31, 33, 48], but in the case n = 1 there is a construction
due to Seifert [41] which we now give.

Proposition 1.2. Every classical knot k is the boundary of some compact
orientable surface embedded in S3.

Proof. Consider a diagram of k. Starting at any point of k, move
along the knot in the positive direction. At each crossing point, jump to the
other piece of the knot and follow that in the positive direction. Eventually

........... ...........

...................... ....

...
.

Figure 1.1

we return to the starting point, having traced out a Seifert circuit. Now
start somewhere else, and continue until the knot is exhausted. The Seifert
circuits are disjoint circles, which can be capped off by disjoint discs, and
joined by half-twists at the crossing points. Hence we get a surface V with

........... ...........

......................




Figure 1.2
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Figure 1.3

∂V = k. To see that V is orientable, attach a normal to each disc using
a right hand screw along the knot. Note that in passing from one disc to
another the normal is preserved. Thus there are no closed paths on V which
reverse the sense of the normal: hence V is orientable. ¤
Corollary 1.3. If there are c crossing points and s Seifert circuits, then
the genus of V is 1

2 (c− s + 1).

Proof. The genus of V is g where H1(V ) =
⊕2g

1 Z. We have a handle
decomposition of V with s 0-handles and c 1-handles, which is equivalent to
one with a single 0-handle and c−(s−1) 1-handles (by cancelling 0-handles).
Thus 2g = c− s + 1. ¤
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Figure 1.4. Trefoil knot

As an example we have a genus one Seifert surface of the trefoil knot in
Figure 1.4.

Definition 1.4. Let u, v be two oriented disjoint copies of S1 in S3 and
assign a linking number as follows. Span v by a Seifert surface V and move
u slightly so that it intersects V transversely. To each point of intersection
we assign +1 or −1 according as u is crossing in the positive or negative
direction, and taking the sum of these integers gives us L(u, v). Two simple
examples are indicated in Figure 1.5.
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L(u, v) = +1

................

................

u

v

...............................................................................................................................................
...........
.........
........
........
........
.........
..........................

...........
.........
........
........
........
.........
..........

..............
...............................................................................................

L(u, v) = −1

................

................

u

v

...............................................................................................................................................
...........

.........
........
........
........
.........
. .........................
...........

.........
........
........
........
.........
..........
..............
...............................................................................................

Figure 1.5. The linking number

The two copies of S1 do not have to be embedded: the general definition is
in terms of cycles and bounding chains.

Definition 1.5. Let u, v ∈ H1(V ) for some Seifert surface V . Let i+u be
the result of pushing u a small distance along the positive normal to V .
Then set θ(u, v) = L (i+u, v).

Lemma 1.6. θ : H1(V )×H1(V ) → Z is bilinear.

Definition 1.7. Let x1, . . . , x2g be a basis for H1(V ) =
⊕2g

1 Z, and set
aij = θ(xi, xj). The matrix A = (aij) is a Seifert matrix of k.

Note that if we choose another basis for H1(V ), then A is replaced by PAP ′,
where detP = ±1, since P is a matrix over Z which is invertible over Z.

............................................................................................ ............................................................................................ ............................................................................................

........................................
................................................................................
................................................................................
........................................

.............. ..............

..............

..............

x2

x1

+ve-ve
.................................................................................

......
....
....
....
.....

.......
...............

..................
......

....
....
....
.....

.......
..............................................................................

(i)

................

................

x1

i+x1

......................................................................................................................................
...........

.........
........
........
........
...... ..........
.....

....
....
....
....
.....
......................................

(ii)

..............

..............

x2

i+x1

.............................................................................................................................
...........

.........
........
........
.........
..........
.................

........
..........

....
....
....
....
....
......

..............................................

(iii)

................

................

i+x2

x1

.........................................................
.....
....
....
....
....
..........................

...........
.........
........
........
........
.........
..........

..............
...............................................................................................

(iv)

..............

..............

x2

i+x2

.............................................................................................................................
...........

.........
........
........
.........
. ..........
....

....
....
....
....
......

.................................

Figure 1.6

(i) a11 = θ (x1, x1) = L (i+x1, x1) −1
(ii) a12 = θ (x1, x2) = L (i+x1, x2) 0
(iii) a21 = θ (x2, x1) = L (i+x2, x1) 1
(iv) a22 = θ (x2, x2) = L (i+x2, x2) −1

Table 1.1

Example 1.8. We see from Table 1.1 that the Seifert matrix of the trefoil
knot in Figure 1.6 is

A =
(−1 0

1 −1

)
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Given a knot k, there will be infinitely many Seifert surfaces of k; for exam-
ple, we can excise the interiors of two disjoint closed discs from any given
Seifert surface V and glue a tube S1 × B1 to what remains of V by the
boundary circles, as illustrated in Figure 1.7

Definition 1.9. A Seifert surface U is obtained from a Seifert surface V
by ambient surgery if U and V are related as in Figure 1.7 or Figure 1.8.
In the first case, the interiors of two disjoint closed discs in the interior of
V are excised and a tube S1 × B1 is attached, the two attachments being
made on the same side of V . In symbols, S0 × B2 is replaced by S1 × B1.
In the second case, the procedure is reversed.

V

−→ ........
........
........
.........
.........
..........
...........

.............
..................

.............................................................................................................................................. ........
........
........
........
........
.........
.........
.........
..........

...........
............

..............
.................

...........................
.................................................................................................................................................................................................... ..........................................

..........................................
....

.........
.....

U

Figure 1.7. Ambient surgery (i)
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...........

.............
..................

.............................................................................................................................................. ........
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........
........
.........
.........
.........
.........
..........

...........
............

..............
.................

.............................
................................................................................................................................................................................................. ..........................................

..........................................

...........................................................

....
.........

.....

............

V

−→ ........
........
........
.........
.........
..........
...........

.............
..................

........................

........

........
........
.........
.........
..........
...........
.............
..................

........................

........

........

........
........
.........
.........
.........
.........
..........

...........
............

..............
.................

.............................
................

........

........

........
........
.........
.........
.........
.........
..........
...........
............
..............
.................

.............................
................

..........................................
..........................................

...........................................................

.............................................................................
.........
........
.........
...............

....
.........

.....

............
..
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..
..
..
..
..

..

..

..

..

..

..

.
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..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

..

..

.
..
.... .

.

.

.
.
.
.

.

.

.

.

.

.

.
.
..

U

Figure 1.8. Ambient surgery (ii)

Note that the “hollow handle” may be knotted, and that these are inverse
operations.

Proposition 1.10. For a given knot k, any two Seifert surfaces are related
by a sequence of ambient surgeries.

Definition 1.11. Let A be a Seifert matrix. An elementary S-equivalence
on A is one of the following, or its inverse.

(i) A 7→ PAP ′ for P a unimodular integer matrix.
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(ii)

A 7→



A 0 0
α 0 0
0 1 0




(iii)

A 7→



A β 0
0 0 1
0 0 0




where α is a row vector of integers and β is a column vector of integers.

Two matrices are S-equivalent if they are related by a finite sequence of such
moves.

Theorem 1.12. Any two Seifert matrices of a given knot k are S-equivalent.

Proof. Let A be the matrix obtained from a Seifert surface U , B from
V . After Proposition 1.10, it is enough to assume that V is obtained by an
ambient surgery on U . Consider the diagram in Figure 1.9, and choose gen-

U

−→ ........
........
........
.........
.........
..........
...........

.............
..................

.............................................................................................................................................. ........
........
........
........
.........
.........
.........
.........
..........

...........
............

..............
.................

.............................
................................................................................................................................................................................................. ..........................................

..........................................
....

.........
............

............................................................................
....... .....

.....

.....
.....
.....
.....
.....
......

......
.......

.........
........................................................................................................ ........

........
........
........

x2g+1x2g+2

V

Figure 1.9

erators x1, . . . , x2g of H1(U), and x1, . . . , x2g, x2g+1, x2g+2 of H1(V ). Then

θ (x2g+1, x2g+1) = 0 if we choose the right number of twists around the

handle (see Figure 1.10 for a different choice)

θ (x2g+1, x2g+2) = 0

θ (x2g+2, x2g+1) = 1

θ (x2g+2, x2g+2) = 0

θ (xi, x2g+2) = 0

θ (x2g+2, xi) = 0 for 1 ≤ i ≤ 2g.

Thus

B =




A γ 0
α 0 0
0 1 0



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Figure 1.10

By a change of basis we can subtract multiples of the last row from the first
2g rows to eliminate γ; and the same multiples of the last column from the
first 2g columns. Whence

P ′BP =




A 0 0
α 0 0
0 1 0




Adding the handle on the other side of U gives the other kind of S-equivalence.
¤

Lemma 1.13. If A is a Seifert matrix and A′ is its transpose, then A − A′
is unimodular.

Proof. Recall that if x1, . . . , x2g is a basis for H1(V ) =
⊕2g

1 Z, and
aij = θ(xi, xj), then the matrix A = (aij) is a Seifert matrix of k. Let i−u
be the result of pushing u a small distance along the negative normal to V .
Then

aij = θ(xi, xj)

= L (i+xi, xj)

= L (xi, i−xj)

= L (i−xj , xi)

and so

aij − aji = L (i+xi, xj)− L (i−xi, xj) = L (i+xi − i−xi, xj)

Now i+xi− i−xi is the boundary of a chain S1× I normal to V which meets
V in xi, and so L (i+xi − i−xi, xj) is the algebraic intersection of this chain
with xj , i.e. the algebraic intersection of xi and xj in V . Hence A − A′
represents the intersection pairing on H1(V ), whence the result. ¤

Now let us state what happens in higher dimensions.
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Definition 1.14. A (2q − 1)-knot k is simple if its exterior K satisfies
πi (K) ∼= πi

(
S1

)
for 1 ≤ i < q.

The following result is proved in [33, Theorem 2].

Theorem 1.15. A (2q−1)-knot k is simple if and only if it bounds a (q−1)-
connected Seifert submanifold.

Now suppose that k is a simple (2q−1)-knot bounding an (q−1)-connected
submanifold V . We can repeat the construction above, using Hq(V ), to
obtain a Seifert matrix A of k satisfying the following.

Theorem 1.16. If A is a Seifert matrix of a simple (2q − 1)-knot k and A′
is its transpose, then A + (−1)qA′ is unimodular. Moreover, if q = 2, then
the signature of A + A′ is a multiple of 16.

Theorem 1.12 remains true for simple knots. The following result is proved
in [41] for q = 1, in [36, Theorem 2] for q = 2, and in [31, Théorème II.3]
for q > 2.

Theorem 1.17. Let q be a positive integer and A a square integral matrix
such that A + (−1)qA′ is unimodular and, if q = 2, A + A′ has signature a
multiple of 16. If q 6= 2, there is a simple (2q−1)-knot k with Seifert matrix
A. If q = 2, there is a simple 3-knot k with Seifert matrix S-equivalent to
A.

In [36, Theorem 3] the classification of simple knots is completed.

Theorem 1.18. A simple (2q−1)-knot k, q > 1, is determined up to ambient
isotopy by the S-equivalence class of its Seifert matrix.

2. Blanchfield Duality

Let us set Λ = Z
[
t, t−1

]
, the ring of Laurent polynomials in a variable t

with integer coefficients.

Theorem 2.1. If A is a Seifert matrix of a simple (2q − 1)-knot k, then
the Λ-module MA presented by the matrix tA+(−1)qA′ depends only on the
S-equivalence class of A, and so is an invariant of k. Moreover, there is a
non-singular (−1)q+1-hermitian pairing

〈 , 〉A : MA ×MA → Λ0/Λ

given by the matrix (1− t) (tA + (−1)qA′)−1 which is also an invariant of k.
Conjugation is the linear extension of t 7→ t−1, Λ0 is the field of fractions of
Λ, and non-singular means that the adjoint map MA → Hom(MA, Λ0/Λ) is
an isomorphism.



QUADRATIC FORMS IN KNOT THEORY 143

Definition 2.2. The Λ-module in Theorem 2.1 is called the knot module of
k, and has a geometric significance which is explained in §6. The determi-
nant of tA + (−1)qA′ is the Alexander polynomial of k, and is defined up to
multiplication by a unit of Λ. The hermitian pairing is due to R.C. Blanch-
field [9]. The formula given here was discovered independently in [22, 44].

The following two results are proved in [22, 23, 44, 45].

Theorem 2.3. If A is a Seifert matrix of a simple (2q− 1)-knot k, then the
module and pairing (MA, 〈 , 〉A) satisfy:

(i) MA is a finitely-generated Λ-torsion-module;
(ii) (t− 1) : MA → MA is an isomorphism;
(iii) 〈 , 〉A : MA ×MA → Λ0/Λ is a non-singular (−1)q+1-hermitian pair-

ing.

For q = 2 the signature is divisible by 16. Moreover, for q > 1, the module
and pairing determine the knot k up to ambient isotopy.

Theorem 2.4. Suppose that (M, 〈 , 〉) satisfies

(i) M is a finitely-generated Λ-torsion-module;
(ii) (t− 1) : M → M is an isomorphism;
(iii) 〈 , 〉 : M ×M → Λ0/Λ is a non-singular (−1)q+1-hermitian pairing.

and that, for q = 2, the signature is divisible by 16. Then for q ≥ 1,
(M, 〈 , 〉) arises from some simple (2q − 1)-knot as (MA, 〈 , 〉A).

In [43, pp 485-489] Trotter proves the following.

Proposition 2.5. If A is a Seifert matrix, then A is S-equivalent to a matrix
which is non-degenerate; that is, to a matrix with non-zero determinant.

Proposition 2.6. If A and B are non-degenerate Seifert matrices of a
simple (2q − 1)-knot k, then A and B are congruent over any subring of Q
in which detA is a unit. (Of course, det A is the leading coefficient of the
Alexander polynomial of k.)

Definition 2.7. Let ε = (−1)q and let A be a non-degenerate Seifert matrix
of a simple (2q − 1)-knot k. Set S = (A + εA′)−1 and T = −εA′A−1.

Proposition 2.8. The pair (S, T ) have the following properties:

(i) S is integral, unimodular, ε-symmetric;
(ii) (I − T )−1 exists and is integral;
(iii) T ′ST = S;
(iv) A = (I − T )−1S−1.

The following result is proved in [44, p179]

Theorem 2.9. The matrix S gives a (−1)q-symmetric bilinear pairing ( , )
on MA on which T (i.e. t) acts as an isometry. The pair (MA, ( , ))
determines and is determined by the S-equivalence class of A.
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3. Factorisation of Knots

If we have two classical knots, there is a natural way to take their sum:
just tie one after another in the same piece of string. Alternatively, we can
think of each knot as a knotted ball-pair and identify the boundaries so
that the orientations match up. The latter procedure generalises to higher
dimensions.

Definition 3.1. Let k1, k2 be two n-knots, say ki =
(
Sn+2

i , Sn
i

)
. Choose

a point on each Sn
i and excise a tubular neighbourhood, i.e. an unknotted

ball-pair, leaving a knotted ball-pair
(
Bn+2

i , Bn
i

)
. Identify the boundaries

so that the orientations match up, giving a sphere-pair k1 + k2.

If k1, k2 are simple knots with Seifert matrices A1, A2, then clearly k1 + k2

is also simple and has a Seifert matrix(
A1 0
0 A2

)

and the pairings in §2 are given by the orthogonal direct sum.

For the case n = 1, H. Schubert showed in [40] that every knot factorises
uniquely as a sum of irreducible knots. In [25] it is shown that unique
factorisation fails for n = 3, and in [1] E. Bayer showed that it fails for
n = 5 and for n ≥ 7. The following example is contained in [1], although
presented here in a slightly different way.

Let Φ15(t) denote the 15th cyclotomic polynomial, which we normalise so
that Φ15(t) = Φ15

(
t−1

)
, and let ζ = e

2πi
15 . Then Z[ζ] ∼= Z

[
t, t−1

]
/ (Φ15(t))

is the ring of integers, and conjugation in Z
[
t, t−1

]
corresponds to complex

conjugation in Z[ζ]. Moreover, ζ − 1 is a unit in Z[ζ], and so we can think
of Z[ζ] as a Λ-module satisfying properties (i) and (ii) of Theorem 2.3. If
u ∈ U0, the set of units of Z[ζ + ζ], then we can define a hermitian pairing
on Z[ζ] by (x, y) = uxy. This corresponds to a hermitian pairing as in
Theorem 2.3(iii) by

〈x(t), y(t)〉 =
u(t)x(t)y

(
t−1

)

Φ15(t)
←→ (x(ζ), y(ζ)) = ux(ζ)y(ζ).

The case of skew-hermitian pairings is dealt with by using
(
ζ − ζ

)
u in place

of u. Note that ζ − ζ is a unit:

(3.1)
(
ζ − ζ

)2 (
ζ + ζ

) (
1− ζ − ζ

)
= 1.

Lemma 3.2. Let ur = ζr + ζ−r − 1 for r = 0, 1, 2, 7. Then ur ∈ U0 and(
ur 0
0 −ur

)
and

(
1 0
0 −1

)

represent isometric pairings on Z[ζ]× Z[ζ].
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Proof. Since ζ2, ζ7 are also primitive 15th roots of unity, (3.1) shows
that ur ∈ U0 for r = 1, 2, 7. Of course, u0 = 1. Now consider

(
a b
b a

)(
1 0
0 −1

) (
a b
b a

)
=

(
aa− bb 0

0 bb− aa

)
=

(
ur 0
0 −ur

)

For each r, we can write

ur = ζr + ζ−r − 1 = 1− (ζr − 1)
(
ζ−r − 1

)

and so we can take a = 1, b = (ζr − 1). ¤

Lemma 3.3. The hermitian forms on Z[ζ] given by ±ur for r = 0, 1, 2, 7 are
distinct.

Proof. Two such forms represented by u, v ∈ U0 are equivalent if and
only if uv−1 ∈ N(U), where N(c) = cc; write u ∼ v to denote this equiv-
alence. Then u1 > 0 but u1 is conjugate to u7 < 0, so ±u1 /∈ N(U) and
hence the forms represented by ±1,±u1 are distinct. Similarly u2/u1 > 0
but u2/u1 is conjugate to u4/u2 < 0, so ±u2/u1 /∈ N(U). Similar arguments
apply in the other cases. ¤

Corollary 3.4. For each q > 2 there exist eight distinct irreducible simple
(2q − 1)-knots kr, k

−
r , r = 0, 1, 2, 7, such that kr + k−r = ks + k−s for all

r, s ∈ {0, 1, 2, 7}.

Proof. By Theorem 2.3 there exist unique simple (2q−1)-knots kr, k
−
r

corresponding to ur,−ur respectively. These are irreducible because in each
case the Alexander polynomial is Φ15(t). ¤

Remark 3.5. It is shown in [1] that U0/N(U) has exactly eight elements,
so that these are all the forms there are in this case.

There is another method, due to J.A. Hillman, depending upon the module
structure, and this can be used to show that unique factorisation fails for
n ≥ 3 (see [5]). There are further results on this topic in [18, 17, 19]. It
is known from [10] that every n-knot, n ≥ 3, factorises into finitely many
irreducibles, and that a large class of knots factorise into irreducibles in at
most finitely many different ways (see [6, 8]).

I should mention that the method of [25] relies on the signature of a smooth
3-knot being divisible by 16, and hence does not generalise to higher dimen-
sions. The work of Hillman in [20] shows that the classification theorems
1.16, 1.17, 1.18, and 2.3 hold for locally-flat topological 3-knots without any
restriction on the signature.
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4. Cancellation of Knots

In [3] Eva Bayer proves a stronger result, that cancellation fails for simple
(2q − 1)-knots, q > 1.

Example 4.1. Let A be the ring of integers associated with Φ12, and define
Γ4n to be the following lattice given in [39]. We take R4n to denote the
euclidean space, and let e1, . . . , e4n be an orthonormal basis with respect
to the usual innerproduct. Then Γ4n is the lattice spanned by the vectors
ei + ej and 1

2 (e1 + · · ·+ e4n). Let AΓ4n be the corresponding hermitian
lattice. It is shown in [3] that the hermitian form AΓ4n is irreducible if
n > 1. Moreover

(4.1) AΓ8 ⊥ AΓ8 ⊥< −1 >∼= AΓ16 ⊥< −1 >;

indeed, this holds already over Z by [39, Chap. II, Proposition 6.5]. But
AΓ8 ⊥ AΓ8 6∼= AΓ16 because the latter is irreducible. By Theorem 2.1 this
shows that cancellation fails for q odd, q 6= 1. For q even, just multiply 4.1
by the unit τ − τ−1 where τ is a root of Φ12.

In [4], examples are given where the failure of cancellation depends on the
structure of the knot module, and by the device known as spinning this
result is extended to even dimensional knots. (See §7 for the definition of
spinning.)

5. Knot Cobordism

There is an equivalence relation defined on the set of n-knots as follows.

Definition 5.1. Two n-knots ki =
(
Sn+2

i , Sn
i

)
are cobordant if there is a

manifold pair
(
Sn+2 × I, V

)
such that

V ∩ (
Sn+2 × {i}) = ∂V ∩ (

Sn+2 × {i}) = Sn
i

(with the orientations reversed for i = 0) and Sn
i ↪→ V is a homotopy

equivalence for i = 0, 1.

Remark 5.2. For n ≥ 6 the manifold V is a product, i.e. it is homeomorphic
to Sn × I, by the h-cobordism theorem.

This equivalence relation respects the operation of knot sum, and the equiva-
lence classes form an abelian group Cn under this operation, with the trivial
knot as the zero. In [31] M.A. Kervaire shows that C2q = 0 for all q.

To tackle the odd-dimensional case, we begin by quoting a result of Levine:
[35, Lemma 4].

Lemma 5.3. Every (2q − 1)-knot is cobordant to a simple knot.
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Definition 5.4. Let A0, A1 be two Seifert matrices of simple (2q−1)-knots.

If
(−A0 0

0 A1

)
is congruent to one of the form

(
0 N1

N2 N3

)
where each of the

Ni are square of the same size then A0, A1 are said to be cobordant. This
is an equivalence relation for Seifert matrices, and the set of equivalence
classes forms a group under the operation induced by taking the block sum:

(A0, A1) 7→
(

A0 0
0 A1

)
.

Lemma 5.5. Let k0, k1 be simple (2q − 1)-knots which are cobordant, with
Seifert matrices A0, A1 respectively. Then A0, A1 are cobordant.

From Proposition 2.5 we deduce:

Corollary 5.6. Every Seifert matrix is cobordant to a non-degenerate ma-
trix.

Definition 5.7. Setting εq = sign (−1)q, the group obtained from the
Seifert matrices of simple (2q − 1)-knots is denoted by Gεq . The subgroup
of G+ given by matrices A such that the signature of A + A′ is divisible by
16 is denoted G0

+. The map ϕq : C2q−1 → Gεq is induced by taking a simple
knot to one of its Seifert matrices, and is a homomorphism.

The definition above appears in [35], where the following result is proved.

Theorem 5.8. The map ϕq is

(a) an isomorphism onto Gεq for q ≥ 3;
(b) an isomorphism onto G0

+ for q = 2;
(c) an epimorphism onto G− for q = 1.

The proof of [34, Lemma 8] shows that two Seifert matrices are cobordant
if and only if they are cobordant over the rationals. This leads to the idea of
Witt classes for the (−1)q-symmetric forms and isometries in Theorem 2.9,
and this is the strategy that Levine uses to investigate Gε, and to prove
Theorem 5.9 below (see [35, p 108]).

Theorem 5.9. Gε is the direct sum of cyclic groups of orders 2, 4 and ∞,
and there are an infinite number of summands of each of these orders.

Both Levine’s treatment and that of Kervaire in [32] rely on Milnor’s clas-
sification of isometries of innerproduct spaces in terms of hermitian forms
in [38].

I shall not attempt to prove any of these results, but it is easy to give
Milnor’s proof in [37] of infinitely many summands of infinite order for q
odd, and at the same time to suggest an alternative way of looking at Gεq .
First make the following definition, taken from [24].
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Definition 5.10. A module and pairing (MA, < , >A) as in Theorem 2.1
is null-cobordant if there is a submodule of half the dimension of MA which
is self-annihilating under < , >A. And (MA, < , >A), (MB, < , >B) are
cobordant if the orthogonal direct sum A ⊥ (−B) is null-cobordant. The
dimension of MA is the dimension over Q of MA after passing to rational
coefficients.

It is shown in [24] that (MA, < , >A) is null-cobordant if and only if A is
null-cobordant. If we use rational coefficients, which we may as well do in
light of [34, Lemma 8], the proof is even easier. We shall treat (MA, < , >A)
in this way for the rest of this section, and set Γ = Q

[
t, t−1

]
.

Definition 5.11. Given p(t) ∈ Λ, define p∗(t) = tdeg(p(t))p
(
t−1

)
. And for

an irreducible p(t) ∈ Λ define MA(p(t)) to be the p-primary component of
MA, i.e. the submodule annihilated by powers of p(t).

The following result is essentially Cases 1 and 3 of [38, p93, Theorem 3.2]:
note that Case 2 does not arise here since we are dealing with knot modules,
i.e. p(t) 6= t± 1.

Proposition 5.12. (MA, < , >A) splits as the orthogonal direct sum of
MA(p(t)) where p(t) = p∗(t), and of MA(p(t)) ⊕ MA(p∗(t)) where p(t) 6=
p∗(t). Furthermore, for p(t) = p∗(t) the space MA(p(t)) splits as an orthog-
onal direct sum M1 ⊕M2 ⊕ . . . where M i is annihilated by p(t)i but is free
over the quotient ring Γ/p(t)iΓ.

It is slightly easier to prove [38, Theorem 3.3] here.

Theorem 5.13. When p(t) = p∗(t), for each i, the vector space

H i = M i/p(t)M i

over the field E = Γ/p(t)Γ admits one and only one hermitian inner product
((x), (y)) such that

(5.1)
〈
p(t)i−1x, y

〉
=

a(t)
p(t)

←→ ((x), (y)) = a(ζ)

where (x) denotes the image of x ∈ M i in H i. The sequence of these her-
mitian inner product spaces determines (MA(p(t)), < , >) up to isometry.

The following is easy to prove, where we think of the hermitian form on H i

as taking values in Γ0/Γ.

Lemma 5.14. For i even, M i is null-cobordant. For i odd, M i is cobordant
to H i.

This enables us to make the following definition of the Milnor signatures
(compare [38]).
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Definition 5.15. For each p(t) = p∗(t), define

σp =
∑

i odd

σi,

where σi is the signature of H i.

Lemma 5.16. The signature σp is additive over knot composition and zero
when k is null-cobordant, and so is a cobordism invariant.

Example 5.17 (Milnor, [37]). For each positive integer m, let pm(x) =
mt+(1−2m)+mt−1. Then pm is irreducible and is the Alexander polynomial

of a simple (4q + 1)-knot km for each q ≥ 1 having
(

m 1
0 1

)
as a Seifert

matrix. Then σpm = ±2 for each m, and so for each q ≥ 1 we have infinitely
many independent knots of infinite order in C4q+1.

6. Branched Cyclic Covers

Recall that if k is an n-knot
(
Sn+2, Sn

)
, then a regular neighbourhood of Sn

has the form Sn ×B2, and the exterior of k is K = Sn+2 − int
(
Sn ×B2

)
.

Choose a base-point ∗ ∈ K. By Alexander-Poincaré duality, K has the
homology of a circle, and so the Hurewicz theorem gives a map π1(K, ∗) ³
H1(K) whose kernel is the commutator subgroup [π1(K, ∗), π1(K, ∗)] of the
group π1(K, ∗). We write the infinite cyclic group H1(K) multiplicatively,
as (t : ); the generator t is represented by {a}×S1 ⊂ Sn×S1 = ∂K for some
point a ∈ Sn, and is chosen so that the oriented circle has linking number
+1 with Sn.

Let K̃ → K be the infinite cyclic cover corresponding to the kernel of the
Hurewicz map. A triangulation of K lifts to a triangulation of K̃ on which
(t : ) acts as the group of covering transformations. This induces an action
of (t : ) on the chain complex C∗(K̃), which extends by linearity to make
C∗(K̃) a Λ = Z[t, t−1]-module. The Λ-module C∗(K̃) is finitely-generated
because the original triangulation of K is finite. Passing to homology we
obtain H∗(K̃) as a finitely-generated, indeed finitely-presented, Λ-module.
For a simple (2q−1)-knot, the only non-trivial module is Hq(K̃), and this is
in fact the same as the Λ-module MA presented by the matrix tA+(−1)qA′
in Theorem 2.1.

To recover K from K̃ all we do is identify x with tx, for each x ∈ K̃.

Compose the Hurewicz map with the map sending (t : ) onto the finite
cyclic group of order r, and denote the r-fold cover of K corresponding to
the kernel of this map by K̃r. Since ∂K̃r ∼= Sn × S1, being an r-fold cover
of Sn × S1, we may set Kr = K̃r ∪∂

(
Sn ×B2

)
to obtain the r-fold cover

of Sn+2 branched over Sn. It may happen that Kr ∼= Sn+2, in which case
we have another n-knot kr, which we refer to as the r-fold branched cyclic
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cover of k. In this case H∗(K̃) is a Z [tr, t−r]-module when K̃ is regarded as
the infinite cyclic cover of K̃r. Note that kr is the fixed point set of the Zr

action on Sn+2 = Kr given by the covering transformations.

Let k be a simple (2q− 1)-knot giving rise to a pair of matrices (S, T ) as in
Proposition 2.8, and define U, V by

U =




0 . . . 0 T

I
. . . 0
. . . . . .

...
0 I 0


 V =




S 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 S




there being r × r blocks in each case. It is not hard to show that the pair
(V, U) satisfies the conditions of Proposition 2.8, and so corresponds to a
unique simple (2q − 1)-knot kr if q ≥ 2 (see Theorem 2.9). Moreover,

U r =




T 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 T




from which it follows without much difficulty that the r-fold branched cyclic
cover of kr is #r

1k, the sum of r copies of k.

The topological construction of kr may be described as follows. Take a
Seifert surface W of k which meets a tubular neighbourhood N of k in a
collar neighbourhood of k = ∂W . Take r close parallel copies W1, . . . , Wr of
W , so that the space between Wi and Wi+1 is diffeomorphic to W × [0, 1]
for i = 1, . . . , r − 1, and that between Wr and W1 is diffeomorphic to the
exterior of k split open along W . We can join ∂Wi to ∂Wi+1 for 1 ≤ i ≤ r−1
by bands within N to get the the boundary connected sum of the Wi. Then
it is not hard to see that the Seifert surface we have constructed has V, U
as above. Moreover, for q > 1, the resulting knot kr is independent of the
bands used, since the bands unknot in these dimensions.

In [29] examples are given of simple (2q − 1)-knots k, l, q ≥ 2, for which
#r

1k = #r
1l but kr 6= lr. It is known that there are examples for any odd r.

The argument runs as follows.

Let Φm(t) denote the mth cyclotomic polynomial, where m is divisible by
at least two distinct odd primes, and let ζ be a primitive mth root of unity.
We write K = Q(ζ) and F = Q

(
ζ + ζ−1

)
. Let hK denote the class number

of K, hF that of F, and h− = hK/hF. According to the work of Eva Bayer
in [2], the number of distinct simple (2q − 1)-knots, q ≥ 3, with Alexander
polynomial Φm(t) is h−2d−1 where 2d = ϕ(m) = [K : Q]. The factor h−
represents the number of isomorphism classes of Λ-modules supporting a
Blanchfield pairing [2, Corollary 1.3], and the factor 2d−1 represents the
number of pairings (up to isometry) which a given module supports. The
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latter is in one-one correspondence with U0/N(U) where U is the group of
units in (the ring of integers of) K, U0 the group of units of F, and N : K→ F
is the norm.

If h− has an odd factor r > 1 coprime to m, then there exists an ideal a
of Q(ζ) which has order r in the class group and supports a unimodular
hermitian pairing h, i.e. as a Λ-module it supports a Blanchfield pairing.
Then ⊥r

1 (a, h) has determinant (I, u) for some u ∈ U0/N(U), where I
denotes a principal ideal. Since r is odd and |U0/N(U)| = 2d−1, there exists
v ∈ U0/N(U) such that vr = u.

Let k, l be the simple (2q − 1)-knots, q ≥ 2, corresponding to κ = (a, h) ⊥
(a,−h), λ = (I, v) ⊥ (I,−v) respectively. Then ⊥r

1 κ, ⊥r
1 λ are indefinite

and have the same rank, signatures and determinant. Hence by [2, Corollary
4.10] they are isometric, and so #r

1k = #r
1l. But κ is not isometric to λ,

for the determinant of κ is
(
a2, α

)
for some α, and a2 is non-zero in the

ideal class group since r is odd. Hence k 6= l. A similar, but more involved,
argument shows that kr 6= lr.

Many examples may be obtained from the tables in [46] or [47].

7. Spinning and Branched Cyclic Covers

First we recall a definition of spinning. Let k be the n-knot
(
Sn+2, Sn

)
and

let B be a regular neighbourhood of a point on Sn such that (B,B ∩ Sn) is
an unknotted ball pair. Then the closure of the complement of B in Sn+2 is
a knotted ball pair

(
Bn+2, Bn

)
, and σ(k) is the pair ∂

[(
Bn+2, Bn

)×B2
]
.

The following is proved in [28, Theorem 3].

Theorem 7.1. Let k, l be simple (2q − 1)-knots, q ≥ 3; then σ(k) = σ(l) if
and only if Hq(K̃) ∼= Hq(L̃).

Note that [28] only covers the case q ≥ 5; the theorem is extended to q ≥ 3
by the results of [21].

In [7] it is shown that the following holds.

Proposition 7.2. If q ≥ 4, then the map σ acting on simple (2q− 1)-knots
is finite-to-one.

The following is easy to prove (see [30, Lemma 3.1]).

Lemma 7.3. Let k be an n-knot and r an integer such that the r-fold cyclic
cover of Sn+2 branched over k is a sphere. Then the r-fold cyclic cover of
Sn+3 branched over σ(k) is also a sphere, and σ (kr) = σ(k)r.

In [42], Strickland proves the following result.
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Theorem 7.4. Let k be a simple (2q − 1)-knot, q ≥ 2. Then k is the r-fold
branched cyclic cover of a knot if and only if there exists an isometry u of(
Hq(K̃), < , >

)
such that ur = t.

A careful reading of [42] shows that the same proofs apply, almost verbatim,
to yield the following result (see [30, Theorem 2.5]).

Theorem 7.5. Let k be a simple (2q − 1)-knot, q ≥ 5. Then σ(k) is the
r-fold branched cyclic cover of a knot if and only if there is a Λ-module
isomorphism u : Hq(K̃) → Hq(K̃) such that ur = t.

Thus if we can find a simple (2q − 1)-knot k, q ≥ 5, such that there is a Λ-
module isomorphism u : Hq(K̃) → Hq(K̃) with ur = t, but no such isometry
of Hq(K̃), then σ(k) will be the r-fold branched cyclic cover of a knot but k
will not. Examples of such knots are given in [30] for all q ≥ 5 and all even
r. Here is an example, due to S.M.J. Wilson, much simpler than the ones
in [30] but not capable of generalising to the 2r-fold case.

Example 7.6. Let f(t) = t2 − 3t + 1, which has roots 3±√5
2 . Set τ = 3+

√
5

2 ,
ξ = 1+

√
5

2 , and note that ξ2 = τ . Put R = Z [ξ] = Z
[
τ, τ−1

]
and define

conjugation in the obvious way by ξ̃ = 1−√5
2 . Think of R as an R-module,

and put a hermitian form on it by setting (x, y) = xỹ. Since ξξ̃ = −1, ξ is an
isomorphism on R but not an isometry. Since τ only has two square roots,
±ξ, there are no isometries whose square is τ . In the usual way, (R, ( , ))
corresponds to a knot module and pairing for a simple (4q + 1)-knot, q > 1.

8. Concluding Remarks

So far we have only dealt with odd dimensional knots, but much of what has
been said can be extended to even dimensions. By Proposition 1.1, every 2q-
knot k bounds an orientable (2q+1)-manifold V in S2q+2. A simple 2q-knot
k is one for which there is a (q−1)-connected V , so that Hq(V ) and Hq+1(V )

are the only non-trivial homology groups. Then Hq

(
K̃

)
, Hq+1

(
K̃

)
are the

only non-trivial homology modules. There is a sesquilinear duality pairing
on Hq

(
K̃

)
×Hq+1

(
K̃

)
, and this, together with some more algebraic struc-

ture connecting them, can be used to classify the simple 2q-knots in high
dimensions. See [13, 14, 15, 26, 27] for details.

Classification results have also been obtained for more general classes of
knots; see [11, 12, 16].
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