S-EQUIVALENCE OF KNOTS

C. KEARTON

ABSTRACT. S-equivalence of classical knots is investigated, as well as its rela-
tionship with mutation and the unknotting number. Furthermore, we identify
the kernel of Bredon’s double suspension map, and give a geometric relation
between slice and algebraically slice knots. Finally, we show that every knot
is S-equivalent to a prime knot.

1. INTRODUCTION

An oriented knot k is a smooth (or PL) oriented pair (S?’,S’l); two knots are
regarded as the same if there is an orientation preserving diffeomorphism sending
one onto the other. An unoriented knot k is defined in the same way, but without
regard to the orientation of S'. Every oriented knot is spanned by an oriented
surface, a Seifert surface, and this gives rise to a matrix of linking numbers called
a Seifert matrix. Any two Seifert matrices of the same knot are S-equivalent: the
definition of S-equivalence is given in, for example, [14} 21} IT]. It is the equivalence
relation generated by ambient surgery on a Seifert surface of the knot. In [I9],
two oriented knots are defined to be S-equivalent if their Seifert matrices are S-
equivalent, and the following result is proved.

Theorem 1. Two oriented knots are S-equivalent if and only if they are related by
a sequence of doubled-delta moves shown in Figure [1}.
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FIGURE 1. The doubled-delta move

It is, of course, from this result that the concept of S-equivalence of knots derives
its interest. Note that, as pointed out in [19], a knot is S-equivalent to the trivial
knot if and only if it has Alexander polynomial one.
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It has long been known that mutation of a knot preserves the Alexander, Jones,
Homfly and Kauffman polynomials (see [7, [I7, 18, [16]), and it was shown in [10]
that it does not preserve the knot module. Here we investigate some properties of S-
equivalence of knots and its relationship with mutation. We show that cancellation
does not hold for S-equivalence, that S-equivalence does not imply mutation, and
that mutation does not imply S-equivalence.

For a knot k S-equivalent to the trivial knot we define §(k) to be the least number
of doubled-delta moves needed to unknot k, and by relating this to the unknotting
number we show that d(k) can be arbitrarily large.

We also show that two knots are sent to the same image under Bredon’s double
suspension map (see [2]) if and only if they are S-equivalent. Moreover we show
that a knot is algebraically slice if and only if it is S-equivalent to a slice knot, with
a corresponding result for doubly-slice knots.

Finally we use results of Lickorish [I5] to show that every knot is S-equivalent to a
prime knot.

2. S-EQUIVALENCE

Theorem 2. There exist oriented knots k,l, m such that k 4+ m is S-equivalent to
I +m but k is not S-equivalent to .

Proof. Examples are given in [I] of simple (4 g+1)-knots K, L, M such that K+M =
L+ M but K # L, for each ¢ > 1. Since simple knots in higher dimensions are
in one-one correspondence with the S-equivalence classes of Seifert matrices, we
can let U, V,W be Seifert matrices of K, L, M respectively, and then U & W is
S-equivalent to V' @ W but U is not S-equivalent to V. Now as pointed out in [§],
the Seifert matrices of classical knots are the same as those that occur with simple
(4q + 1)-knots, so there exist classical knots k, I, m with Seifert matrices U, V, W
respectively: this establishes the result. [l

Suppose that k is S-equivalent to the trivial knot: we define §(k) to be the least
number of doubled-delta moves needed to change k to the trivial knot.

Theorem 3. For any k S-equivalent to the trivial knot, u(k) < 8(k) where u(k)
is the unknotting number of k. In particular, §(k) can be arbitrarily large.

Proof. Clearly a doubled-delta move can be accomplished by eight unknotting
moves: in Figure [I] simply change the four crossings in the top left-hand part,
slide the horizontal band down and then change the four crossings in the bottom
right-hand part. This shows that u(k) < 84§(k). By [6, p 354] there are knots with
Alexander polynomial one and arbitrarily large unknotting number. The result
follows. O

In [2] Bredon defines a semigroup homomorphism w? : K; — K5, where K,, denotes
the semigroup of isotopy classes of smooth simple n-knots. Bredon’s definition and
results are more general, but this is all we shall need here. Bredon shows that
w? preserves the Seifert matrix; since the simple 5-knots are classified by the S-
equivalence class of the Seifert matrix, we have the following.

Theorem 4. w?(k) = w?(l) if and only if k and | are S-equivalent.
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3. S-EQUIVALENCE AND MUTATION

If the oriented knots k, [ are positive mutants, i.e. if they are related by a mutation
which does not require any changes in orientation, then by [I2l Theorem 2.1], they
have the same Seifert matrix and so they are S-equivalent. The converse fails, as
the following result shows.

Theorem 5. There exist oriented knots k,l such that k is S-equivalent to | but k
and 1 are not equivalent by any sequence of mutations even as unoriented knots.

Proof. Take k to be the trivial knot and [ to be the Kinoshita-Terasaka knot.
Both have trivial Alexander polynomial and are therefore S-equivalent, but [ has
non-trivial Jones polynomial and so cannot be equivalent by mutation to k. Alter-
natively one can take [ to be the Conway knot. These knots appear as 11ny4o and
11n3, respectively in the Knotscape table, available from the website of Morwen
Thistlethwaite: www.math.utk.edu/ morwen/ . O

Theorem 6. There exist unoriented knots k,l such that k is a mutant of | but k
is not S-equivalent to | however the orientations are chosen.

Proof. In [I0] it is shown that if " denotes the reverse of h, i.e. with the orientation
of S' reversed, then h+ h and h + ' are mutants as unoriented knots. If we take h
to be the pretzel knot (25, —3,13), it is shown in [J] that h has Steinitz-Fox-Smythe
row ideal class p which does not satisfy p? = 1. (The arguments used are those of
[B].) Furthermore, the row ideal class of A’ is 7, the column ideal class of h, so that
the row ideal class of h+h is p? # 1, whereas the row ideal class of h+ /' is p7 = 1.
Thus k = h+ h and [ = h + h’ have non-isomorphic knot modules. If we give k
the opposite orientation, then its row ideal class is 72 # 1, so that ¥’ = b’/ + h/ and
I = h+ A/ have non-isomorphic knot modules. Thus neither k nor &’ is S-equivalent
to [ however the orientations are chosen. O

4. S-EQUIVALENCE AND ALGEBRAICALLY SLICE KNOTS

Recall that a knot k = (53, Sl) is slice if it is the boundary of a smooth ball-pair
(B4, BQ). Every Seifert matrix of a slice knot is unimodularly congruent to one of
the form

(4.1) A= (2 :)

all the blocks being g x g for some g (see [I3] Lemma 2]). This is a necesssary but
not a sufficient condition for & to be slice, so we say that k is algebraically slice if
it has a Seifert matrix S-equivalent to one of the form in (4.1)).

Theorem 7. A knot k is algebraically slice if and only if it is S-equivalent to a
slice knot.
Proof. Clearly if k is S-equivalent to a slice knot then k is algebraically slice.

Conversely, suppose that k is algebraically slice, and let A be a Seifert matrix of
the form (4.1]) which is in the S-equivalence class given by k; then

, (0 B
A_A_<_B/ D)’
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where |[A — A’| = |B|?, so |B| = £1. Thus there exist square unimodular integer
matrices X,Y such that X'BY = I, the identity matrix. Then we have

X 0 0 B (X 0\ 0 X'BY (0 I
0 Y')\-B D 0 Y) \-Y'BX Y'DYy) \-I' C)°
where C = Y'DY. So we may assume that A satisfies

(4.2) A A = (_OI, é)

whilst retaining the form in . Taking transposes in we find that C' = —C,
so the diagonal entries of C are all zero. By (integer) row moves on A, i.e. by adding
appropriate integer multiples of the first g rows to the last g rows, we can kill off
the entries of C' above the diagonal and by the corresponding column moves we kill
off the entries of C' below the diagonal. This gives a unimodular congruence of A
which allows us to assume that

(4.3) A-A = (_OI, é) ;

A still having the form in (4.1)). Let the corresponding basis of H1(V') be
f17f3a s 7f29*17f27f4> B f2g-

Then we can construct a knot [ having A as its Seifert matrix by modifying the

******** O

f2 f29

FIGURE 2. A standard circle basis

trivial knot shown in Figure[2] We do not alter the f,q4, but change the embeddings
of the feyen to fit the entries in A. We can now do ambient surgery on the f,qq in
B* to show that [ is a slice knot: take a product V x [0,1] € dB* x [0,1] ¢ B*,
where V' x {0} C dB* Then attaching a 2-handle to V x [0,1] along each of
fix {1}, fsx {1},..., fag—1 x {1} gives a 3-manifold W embedded in B such that
OW =V UB? and 9 (B* B?) = (53,8') = I. (We have performed g surgeries
which would reduce a closed orientable surface of genus g to S2, and hence reduce
V to a disc.) Thus k is S-equivalent to [ which is slice. O

A knot k = (53, Sl) is doubly-slice if it is the intersection of an unknotted 2-knot
(5’47 5’2) with the equatorial S® C S*. Every Seifert matrix of a doubly-slice knot
is S-equivalent to one of the form

(4.4) A= (2 3) ,

all the blocks being square (see [20, Theorem 2.3]). Again, this is a necesssary but
not a sufficient condition for k£ to be doubly-slice, so we say that k is algebraically
doubly-slice if k has a Seifert matrix S-equivalent to one of the form (4.4]).

Theorem 8. A knot is algebraically doubly-slice if and only if it is S-equivalent to
a doubly-slice knot.
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Proof. Clearly if k is S-equivalent to a doubly-slice knot then k is algebraically
doubly-slice.

Conversely, suppose that k is algebraically doubly-slice; then the proof above
yields a Seifert matrix A of the form which is in the S-equivalence class
given by k and such that A — A’ has the form ) Let B} /B be the north-
ern/southern hemispheres of 5%, and construct Wy /W_ as above in B} /B* using

{1 f3s-- o fog—1}/{f2, fas- .-, f24} respectively. Then W,y UW_ = B3 and [ is
doubly-slice. O

The reef knot is cobordant to the trivial knot, indeed it is doubly-slice, but is not
S-equivalent to the trivial knot, for it has Alexander polynomial (1 —t+ t2)2. On
the other hand, if a knot is S-equivalent to the trivial knot then its Alexander
polynomial is 1, so by [4] or [B, Theorem 11.7B] it is topologically slice. But by
[6] we know that there are infinitely many such knots which are not slice in the
smooth category.

5. S-EQUIVALENCE AND PRIME KNOTS

In this section we use results due to Lickorish in order to show that every S-
equivalence class contains a prime knot.
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FI1GURE 3. Prime tangle plus trivial tangle

Theorem 9. FEvery knot k is S-equivalent to a prime knot.

Proof. First note that by the results of [22], every untwisted double of a non-
trivial knot has genus 1, hence is prime, and has Alexander polynomial one, so is
S-equivalent to the trivial knot. Thus we can assume that k is non-trivial.

By the proof of [I5, Theorem 4], k is the sum of a prime (two-string) tangle with
the trivial tangle (see [15] for definitions). We can redraw [15], Figure 4] as Figure
above. Here A1, Ao are 3-balls, (A1,kN A1) is a prime tangle and (As, kN Asg) is
the trivial tangle. Strictly speaking As should be the closure of S? — A;, but it is
more convenient to draw A; and Ay with a product neighbourhood between them.
The tangle in Figure [4]is shown to be prime in [I5] §2]; let us call it (As, t3).

Let I be the knot formed by replacing (Aa, kN As) by (As,t3) in Figure |3} put
another way, let | be formed by adding the prime tangle (A1, kN A1) to the prime
tangle (As, ts3). By [15, Theorem 1], [ is a prime knot (it is easily checked that it
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FIGURE 4. The prime tangle (As, t3)

has only one component). As explained in [I5], there are many ways of adding two
given tangles; we shall specify below which way to choose.

We need a Seifert surface for [. First note that applying Seifert’s algorithm to k
shows that there is a Seifert surface V for k contained in A; except for the two
outlying discs. The first part of our surface is shown in Figure [f] and is formed
by attaching a disc to V along two arcs in its boundary (of course, V' N A; is not
shown). We are looking at the positive side of the surface. The second part is
shown in Figure [6} here we are looking at the negative side. These parts are joined
along the arcs ab and cd to form U, which is a Seifert surface of [. The disc in the
first part of the surface is lying in the plane and the second part is above the plane
(except for the edges ab and cd). The genus of U is one greater than that of V', and
the diagrams show two extra generators needed for H; (U), i.e. f,g.

FIGURE 6. Second part of the Seifert surface U

Let iy denote the map which pushes a cycle off U for a small distance in the
positive normal direction. By putting the appropriate number of twists in the
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bands of U we may arrange for L (i1 f,f) = 0 and L (iy+g,g) = 0, where L(u,v)
denotes the linking number in S® of the two disjoint cycles u,v. Note that although
this changes [, we are simply taking a different sum of the two tangles, achieved by
using a different homeomorphism between their boundaries (see [15] for details).
Moreover L (iyg, f) = 0, and we can orient the cycles so that L (iy f,g) = +1.

Then if V' gives rise to a Seifert matrix A, U yields a Seifert matrix of the form

A o 0
B=\|p 0 1],
0 0 O

where « () is a column (row) vector over Z. The obvious column and corresponding
row operations show that B is congruent by a unimodular matrix to

A a 0
0 0 1
0 0 O
which is S-equivalent to A. Thus [ is S-equivalent to k, and by [15, Theorem 1] [ is
prime. (]
REFERENCES

1. E. Bayer, Definite hermitian forms and the cancellation of simple knots, Archiv der Math.
40 (1983), 182-185.

2. G.E. Bredon, Regular O(n)-manifolds, suspension of knots, and knot periodicity, Bull. Amer.
Math. Soc. 79 (1973), 87-91.

3. R.H. Fox and N. Smythe, An ideal class invariant of knots, Proc. Amer. Math. Soc. 15 (1964),
707-709. B

4. M.H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982), 357—
453. @

5. M.H. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Mathematical Series, no. 39,
Princeton University Press, Princeton, 1990. E|

6. R.E. Gompf, Smooth concordance of topologically slice knots, Topology 25 (1986), 353-373.

7. %.@Kawauchi, A survey of knot theory, Birkhduser Verlag, Basel-Boston-Berlin, 1996.

8. C. Kearton, Classification of simple knots by Blanchfield duality, Bull. Amer. Math. Soc. 79
(1973), 952-955.

9. , Non-invertible knots of codimension two, Proc. Amer. Math. Soc. 40 (1973), 274-276.
B

10. — | Mutation of knots, Proc. Amer. Math. Soc. 105 (1989), 206—208.

11. , Quadratic forms in knot theory, Quadratic Forms 1999 (E. Bayer-Fluckiger et al.,

ed.), Contemporary Mathematics, vol. 272, AMS, 2000, pp. 135-154.

12. P. Kirk and C. Livingston, Concordance and mutation, Geometry & Topology 5 (2001), 831—
883. [

13. J. Levine, Knot cobordism groups in codimension two, Comm. Math. Helv. 44 (1969), 229
244. @

14.

, An algebraic classification of some knots of codimension two, Comm. Math. Helv.
45 (1970), 185-198.

15. W.B.R. Lickorish, Prime knots and tangles, Trans. Amer. Math. Soc. 267 (1981), 321-332.
[ Bl B B

, Polynomials of links, Bull. London Math. Soc. 20 (1988), 558-588.

, An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer-
Verlag, New York, 1997. [I]

18. W.B.R. Lickorish and K.C. Millett, A polynomial invariant of oriented links, Topology 26
(1987), 107-141.

16.
17.




19.

20.
21.
22.

C. KEARTON

Swatee Naik and Theodore Stanford, A move on diagrams that generates S-equivalence of
knots, arXiv:math.GT /9911005 (2nd Nov 1999).

D.W. Sumners, Invertible knot cobordisms, Comm. Math. Helv. 46 (1971), 240-256.

H.F. Trotter, On S-equivalence of Seifert matrices, Invent. math. 20 (1973), 173-207.
J.H.C. Whitehead, On doubled knots, Jour. London Math. Soc. 12 (1937), 63-71.

MATHEMATICS DEPARTMENT, UNIVERSITY OF DURHAM, SOUTH RoAD, DurHAM DH1 3LE, ENG-
LAND.

E-mail address: Cherry.Kearton@durham.ac.uk



	1. Introduction
	2. S-equivalence
	3. S-equivalence and Mutation
	4. S-equivalence and Algebraically Slice Knots
	5. S-equivalence and Prime Knots
	References

