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Abstract 

Keizo Ushio is a leading international stone sculptor whose work has introduced split tori and Möbius bands to the world on a grand 
scale. Starting with a simple circular torus or with more elaborate twisting bands, he drills a large number of closely spaced holes to 
form two strands, which may or may not be connected, depending on the overall rotation of the cutting void. In the case of a torus 
with a 360-degree rotation of the cut, he obtains two twisted, tangled loops, which can be re-arranged in an ingenious way to form a 
dramatic figure-8 configuration. Keizo’s split loop sculptures are reviewed and classified by the topological and geometrical rules 
that govern how toroidal structures can be split in a regular way. The basic concepts related to these shapes are clarified and 
explained with computer generated renderings and through stylized plastic maquettes built on a rapid prototyping machine. These 
models are also used to explore possible generalizations of the underlying splitting paradigm and to realize configurations that could 
not easily be carved from stone. 
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1.  Oushi Zokei by Keizo Ushio  

Keizo Ushio is a leading international stone sculptor with a large body of work that is of special interest to 
mathematicians. He was born in Fukusaki Town, Hyogo Perfecture, Japan, in 1951. He completed his study at 
Kyoto City University of Arts in 1976. Since then he has received numerous prizes and has participated in 
stone sculpture symposia throughout the world. His works are in public and private collections in many 
countries such as Australia, Denmark, Germany, Israel, Japan, Spain, and the United States [1]. His sculptures 
of split tori and Möbius bands invite mathematical minds to ponder the underlying geometrical and 
topological paradigms, without reducing the enjoyment that these sculptures create at a purely intuitive, 
emotional level. 
 
Artwork can be analyzed from many different perspectives: based on its message, based on the materials or 
tools employed, based on its execution style and craftsmanship, or based on its historical and cultural context. 
In this paper we discuss a large part of Keizo Ushio's work from a mathematical perspective. We classify and 
analyze his sculptures that are topologically and/or geometrically equivalent to split tori or Möbius bands. We 
distill out the elementary structures that allow us to compare and contrast many of his sculptures with one 
another, and we investigate how the extracted paradigms might be extended to other forms not yet comprised 
in Keizo's portfolio, or which may even lie beyond what can be carved from stone. 
 
The inspiration for this study originated from the participation of Keizo Ushio at the first conference of the 
International Society of the Arts, Mathematics, and Architecture in 1999 (ISAMA’99) [2] held in San 
Sebastian, Spain, at the University of the Basque Country. During that conference, Ushio finished carving an 
intriguing sculpture consisting of two intertwined loops chiselled from a single solid block of granite (Fig.1). 



He started out by carving a massive circular torus with a hole equal in size to the circular cross-section of the 
ring. He then split that torus into two parts with a cut consisting of many drill holes that stepped around the 
whole ring, and while doing so, twisted through 360º (Fig.1a). This divided the torus into two identical linked 
loops, each having a twisting cross section in the form of a half-circle. Once the two pieces had been 
separated, the configuration was rearranged to make a dramatic figure-8 shape composed of the two loops 
placed into a position so that portions of their original toroidal surfaces became near-coincident over a 
significant area (Fig.1b). It is an ingenious sculpture created from a very simple geometrical starting shape. 
The actual execution, however, was anything but simple. The stone provided was Indian red granite. Keizo 
said it was the hardest granite he had ever carved. He wore out several carving tools in the process. The 
sculpture is now in its permanent location on the university campus. 
 
This intriguing sculpture carries the name Oushi Zokei. Keizo Ushio refers to many of his other pieces also by 
the same name. Here we summarize his explanations: Oushi Zokei is obviously a cyclic permutation of the 
letters in his name; it was assigned as an overall name for Keizo’s work by his main teacher, who was himself 
a pioneer in geometrical sculpture in Japan. The name has many different interpretations – just like Keizo’s 
work itself. One translation of Oushi is “deep truth” , another one is “bull”  or “steer” . Ushi-o also refers to the 
shape of a bulls back or tail; the latter thus relates to the twisted forms often found in Keizo’s work. Zo means 
“creating”  or “ forming” , while Kei refers to “shape” or “ form”. Thus overall Oushi Zokei alludes to the 
creation of twisted forms. 
 
[ INSERT FIGURE 1 ABOUT HERE ] 
 

                       
                                 (a)                                                             (b)                                                   (c)              
Figure 1:  (a) Keizo Ushio carving Oushi Zokei during ISAMA’99; (Photo: John Sullivan, 1999).  
(b) Oushi Zokei, Indian red granite, 125 �  100 �  100 cm, by Keizo Ushio, San Sebastian, Spain,1999; (Photo: John Sullivan, 1999).  
(c) Oushi Zokei, Japanese blue granite, 270 �  270 �  170 cm, by Keizo Ushio, Vesolund, Denmark, 2005. 
(All photos not otherwise labeled are courtesy of Keizo Ushio). 
 
Most people who see the manoeuvre of re-arranging the two stone loops for the first time are amazed and 
delighted. But few people can fully understand how this transformation works without the help of a small 
model that they can manipulate themselves. Thus, inspired by Keizo's work, many small plastic maquettes of 
the prototypical forms underlying Keizo's geometrical sculptures have been created by the second author. 
Today it is easy to create such tangible models. One starts by describing the desired shapes as simple sweeps 
in a computer-aided design (CAD) program and then sends the boundary representation of these shapes in the 
form of a collection of some ten thousand triangles to a rapid prototyping machine. Most of the models 
depicted in this paper were made on a small Fused Deposition Modelling (FDM) machine from Stratasys [3]. 
This machine deposits under computer control thin beads of semi-liquid ABS (acrylonitrile-butadiene-styrene) 



plastic in consecutive layers, one hundredth of an inch thick. This machine can easily build convoluted forms 
with narrow gaps that would be difficult to create in a subtractive process, where the carving tool needs to 
reach every single point on the surface. The ABS models are also robust enough for further refinement, for 
sanding and painting, and for extensive manipulation by many people. The models can even be made 
attractive enough to serve as little desktop sculptures. 
 
These interlocking split half-tori have become one of the signature pieces of Keizo Ushio. During the last 
several years he has carved that shape in many different types of stone. While the two halves of the torus 
remain linked, they retain enough mobility so that they can be placed in different relations to one another and 
installed in different positions as a final sculpture. A different, more vertical configuration of the final piece is 
shown in Figure 1c, yielding a very dramatic look. In this sculpture, the drill marks have been enhanced and 
refined to become an important feature of the sculpture, strongly contrasting with the texture of the original 
torus surface. Sunlight dramatically interacts with the emphasized drill marks and further enhances the appeal 
of the sculpture. Yet another configuration is shown in Figure 3b, where the two halves have been moved 
apart by only a small amount from their original positions in the torus. As the scale of the sculpture is 
enhanced, e.g., as for his 2005 sculpture Dream Dance (not pictured) [4], which has a maximal extent of 3.2 
meters, the fabrication process presents an even bigger challenge. Not only must the drill holes be very 
carefully aligned, so that they properly join when drilled from opposite sides, but moving the two halves into 
their final position requires sturdy cranes and has to be done with utmost prudence, so as not to damage the 
carefully finished surfaces.  
 
These sculptures are based on an ingenious original idea by Keizo Ushio. A circular torus is cut into two equal 
parts with a helically twisting sweep surface. When using this motif for his sculptures, the results are 
astonishingly varied, depending on the stone used, the texturing and finishes of the surfaces, and the final 
positioning of the two pieces. Keizo Ushio has split tori and Möbius bands in several other ways, creating a 
wide variety of visual effects. His sculptures are not only aesthetically pleasing, they also invite conscious 
analysis. Looking at one of Keizo's looping sculptures, one is compelled to trace along one of the edges or 
faces, trying to find out how many passes it takes before one arrives back at the same location. Other 
questions one might ask are: Does the sculpture form a truly knotted structure, or is it just some kind of 
twisted loop? How many different colours would it take, if one were to paint in a different colour every one of 
the apparent “ faces”  between the sharp edges of the individual strands? 
 
While such questions may appear confusing and difficult to answer at first glance, one can gain a lot of insight 
with just a little bit of mathematical analysis. Such an analysis can also provide a conceptual framework by 
which Keizo's work can be ordered into some distinct families and thereby be understood at a deeper 
intellectual level. This does not detract from their intuitively sensed beauty; on the contrary: through this 
understanding of their structure, one becomes more intimately familiar with them, and on revisiting them, one 
starts to see them as old friends. In this paper we review some of the signature sculptures of Keizo Ushio that 
emerge from longitudinal cuts in tori and in twisted bands and analyze the underlying geometrical structures. 

2.  Spliting a Torus  

Keizo Ushio's sculpture shown in Figure 1 was created in painstaking hard labour by first carving a torus from 
hard granite, and then drilling about one hundred holes into it. But conceptually this operation amounts to 
sweeping a ‘knife’  once around a torus, and in doing so, letting it execute one full twist around the curved 
toroidal axis. This cuts the torus into two identical parts, which however remain interlocked. If the two radii of 
the torus are suitably chosen, then the two rings can be re-arranged so that the outer curvature of one fits 



snugly into the inner curvature of the toroidal swept loop. In this arrangement, the two rings seem to form a 
new symbiotic structure. A model of this configuration (Fig.2a) can easily be made on a rapid-prototyping 
(RP) machine. The two loops were created simultaneously in a single run on a Fused Deposition Modelling 
(FDM) machine [3]. A narrow twisting gap was left in the part description of the torus, which was then filled 
in by the FDM machine with some scaffolding consisting of filler material. This material, being differently 
colored and more brittle than the material that forms the actual part, can easily be removed with a scalpel after 
the two halves of the split torus have been pried apart. 
 
[ INSERT FIGURE 2 ABOUT HERE ] 
 

             
                                 (a)                                                             (b)                                                   (c)              
Figure 2:  Maquettes of interlocking congruent rings cut from a single toroid by Carlo Séquin, 1999:  
(a) Two loops with the same basic geometry as Oushi Zokei 1999 (Figure 1b), FDM maquette 7 �  10 �  8 cm; 
(b) Three mutually interlocking loops that assemble into a similar torus, FDM maquette 7 �  11 �  8 cm;  
(c) Four loops mutually interlocking loops that assemble into a twisted square toroid, FDM maquette 8 �  12 �  9 cm; 
(Photos: Carlo Séquin, 2002). 

2.1  The Basic Splitting Paradigm 

This fascinating way of splitting a torus into two parts naturally invites inquisitive minds to ponder whether a 
torus could also be split into three or more identical loops, and what interesting configurations these 
interlocking rings might assume. Since it is very difficult to do this investigation in one’s head, the second 
author started to build small plastic maquettes of these alternative configurations and to explore possible 
extensions of the original splitting paradigm [5][6]. If we want to split the torus into three identical parts, the 
cutting ‘knife’  must have the shape of a three-spoked star, where three straight blades join together at angles 
of 120º at the toroidal axis. This 3-blade knife is then rotated through 360º as it is swept once around the 
toroidal ring. The result can be seen in Figure 2b. The three mutually interlocking rings form a physical 
maquette that is very satisfying to manipulate and to play with. However, they are less suitable to yield a good 
sculptural configuration that matches the dramatic harmony of Oushi Zokei (Fig.1b,c). 
 
Similarly, if the cutting ‘knife’  has four ‘spokes’  (equivalent to two cuts at right angles), then four 
interlocking loops will result (Fig.2c). It is quite clear how this paradigm can be extended to more than four 
parts. N interlocking rings can be generated by a knife with N blades joining together at angles of 360º/N at 
the toroidal axis. Partitioning the torus into 4 and into 6 parts is particularly attractive. In the first case, the 
cross sections of the individual rings can be made square, which then leads to a toroid that also has a twisting 
square cross section (Fig.2c). In the second case, if the individual rings have cross sections equal to an 
equilateral triangle, then the assembled toroid will have a hexagonal profile [6]. The symmetry of the cross 
sections of the individual rings makes these puzzles particularly intriguing – and for some people quite 



challenging to put back together again, since it is not immediately obvious what faces need to be joined 
against one another and what faces are part of the original torus surface. These bundles of mutually 
interlocking rings are less suitable to configure as permanent large-scale sculptures. 

2.2  Torus Knots and Interlocking Rings 

The torus can also be cut by twisting a single straight ‘knife’  through angles other than 360º. Keizo Ushio has 
explored some of the possibilities in his work. Figure 3 shows sculptures where the cut is rotated through 
180º, 360º, and 540º, respectively. The second option represents the case discussed above and shown in 
Figure 1. But for the other two twisting angles a new configuration arises: The torus is no longer cut into two 
parts, but remains connected as a single strand with a semi-circular cross section that loops twice around the 
central hole, and while doing so executes either a single twist of 360º (Fig.3a) or three full twists (Fig.3c). 
Figure 4a gives a schematic computer rendering of the geometry of the sculpture depicted in Figure 3a. 
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                     (a)                                                      (b)                                                           (c)              
Figure 3:  Split tori by Keizo Ushio:  
(a) 180º twist: Möbius in Space, white granite, 220 �  220 �  63 cm, Kitaki Okayama 1989.  
(b) 360º twist: Samsara, white granite, 165 �  170 �  80 cm, Narita 1992. 
(c) 540º twist: Oushi Zokei Ikiru (Life), Japanese white granite, 150 �  170 �  50 cm, Ikuno Ginzan Mineral Park 1996.  
 
Again we can generalize this cutting action by using a ‘knife’  that has three or more blades joining on the 
toroidal axis, and which executes twists of various amounts as it sweeps around the toroidal loop. Figure 4b 
and 4c show the results for a 3-blade knife executing twists of 120º and 240º, respectively. In both cases the 
result is a single connected strand looping around the central hole three times. If we use a 4-blade knife, we 
can generate a quadruple loop for twist amounts of ±90º or ±270º. But if we use ±180º of twist, then the torus 
is actually divided into two double loops (Fig.4d). These two loops, however, are tightly nested and, unlike 
the case of Figure 2a, cannot be separated and put into a different sculptural configuration. Of course, in all 
those cases, in order to make the individual branches quite visibly distinct, one should use a ‘ thick knife’  that 
produces sizeable gaps between the individual branches of the multi-loop. 
 
In summary, we use a knife with n blades and apply a total twist angle of t* (360º/n), where t is an integer that 
indicates through how many “sectors”  the knife is twisted in its journey around the toroidal loop. Under these 
conditions, the cut line on the surface forms a (t, n)-torus link, and the solid parts after the cut has been 
executed also form a (t, n)-torus link. It can be shown that the solid parts form g connected components, 
where g is the greatest common divisor of (t, n), and each link component is a (t/g, n/g)-torus knot. When t 
and n are relatively prime, there is only a single connected component. 
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                        (a)                                               (b)                                                (c)                                                (d)                                       
Figure 4:  Computer generated examples of connected multi-loops cut from a toroid to form (t, n)-torus links: (a) t=1, n=2;  (b) t=1, 
n=3; (c) t=2, n=3; (d) t=2, n=4, resulting in two linked, inseparable double loops. (Carlo Séquin 2004).  

2.3 Keizo’s Torus Knot Sculptures 

Keizo Ushio has carved a variety of sculptures (Fig.5) that result from dividing a solid three-dimensional torus 
with a simple straight rotating cutting line (n=2). Actually, at every longitudinal location Keizo will drill half-
way through the torus from both sides to prevent breakout of the stone where the drill would emerge from the 
torus, if the hole were drilled in a single pass. Each sculpture obtains its own personality from the treatment of 
this cutting surface and the texturing of the original torus surface. In Ikiru (Fig.3c) the very rough surface 
contrasts with the more precisely defined space curve winding around the torus, formed by the intersection 
with the splitting surface.  
 
A particularly intriguing example is Dream Lens (Fig.5b). It seems to consist of three intertwined pieces with 
different textures. Why do the three pieces not fall out of position? What holds them together? Actually, this 
is just a single strand forming a torus knot (t=3, n=2). Then, how can this strand be textured in three different 
ways? The answer is that the texture gradually transitions from one type to the next as the strand winds 
through the inner hole of the torus!  
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                             (a)                                                                 (b)              
Figure 5: Torus Knot Sculptures by Keizo Ushio: 



(a) Mugen (Dream Field), Chinese white granite, 360 �  320 �  180 cm, Yachiyo Hyogo, 1999. 
(b) Yume Lenz (Dream Lens), Japanese blue granite, 320 �  300 �  200 cm, Maiko Park, Kobe, 2004. 
 
While mathematicians refer to the topology of the sculpture in Figure 5a as the (1,2) torus knot, the result is 
not really a knot in the traditional sense. If it were made from soft material, it could readily be opened up into 
an un-tangled loop. However, if the cutting surface is rotated through 540° as it sweeps around the torus 
(Fig.5b), then a true knot results. The resulting (3,2) torus knot is equivalent to a clover leaf knot or trefoil 
knot. Ushio has carved several versions of this knot (Fig.3c). 

2.4  Möbius Spaces 

When examining these single-strand rigid sculptures emerging from splitting a torus with a ‘ thick knife’ , it 
becomes clear that the twisting void is a defining feature of the resulting art work. As many sculptors realize, 
and as the first author has pointed out on several occasions, the spaces where material is missing may be even 
more important visually than the remaining material itself. We note that if the space in a torus is split with a 
180° rotation of the cutting tool, then the resulting cutting surface has the shape of a Möbius band. Therefore 
the resulting gap is a ‘Möbius space’  into which one could snuggly fit a Möbius band. We investigated ways 
to enhance the visual impact of this space. At the Bridges 2000 conference [5] the sculpture maquette Möbius 
Space (Fig.6a) was shown. Following a suggestion by the first author, its interior space had been hollowed out 
dramatically. Its visual impact was further enhanced by giving it a shining, silvery, almost mirror-like surface, 
while the outer torus surface was left dark and more textured. Clearly, in a large-scale sculpture of that kind, 
the viewer would be drawn primarily to this inside space. In one of his more recent split-torus sculptures, 
Keizo Ushio also dramatically enhanced the visibility of the inner space by coloring it orange and by strongly 
emphasizing the drill marks (Fig.6b). This paradigm opens a whole new way of creating additional interesting 
variations of sculptures based on the idea of splitting a torus or a twisted band. The maquette displayed in 
Figure 6c shows what happens when this space is equivalent to a Möbius band with three half-twists [6].  
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                        (a)                                                    (b)                                                       (c)              
Figure 6:  Möbius Spaces:  
(a) FDM maquette 12 �  10 �  5 cm,  by Carlo Séquin, Berkeley, 2000; (Photo: Carlo Séquin 2000); 
(b) Möbius in Space , granite and paint, 320 �  300 �  200 cm, by Keizo Ushio, Cottesloe, 2005;  
(c) FDM maquette of a triply twisted  space, 12 �  10 �  5 cm, by Carlo Séquin, Berkeley, 2005; (Photo: Carlo Séquin 2005). 



3.  Splitting Twisted Bands 

If the original toroidal loop does not have a simple circular cross section, but has distinct edges and faces, as 
in the case of a twisted band, the interactions between the cutting surface and the possibly twisted features on 
the toroid can become more complicated. In the simplest case, though, the cutting surface twists in the same 
way that the overall prismatic structure twists as it follows the toroidal loop. The basic paradigm is then one 
of a prismatic band split into two halves, which twist around each other by varying amounts. If that twist is an 
odd multiple of 180°, then one strand merges into the other after one lap around the toroidal loop, and overall 
we obtain just one single strand. For even multiples of 180°, the split creates two separate loops. If the starting 
shape has a built-in twist of exactly ±180°, we obtain a Möbius band. This split Möbius band is another one of 
Keizo Ushio’s signature shapes (Fig.7). Over the last two decades he has sculpted dozens of variations. In the 
following we analyze the geometrical principles behind these sculptures. 
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                                 (a)                                                             (b)                                                    (c)              
Figure 7:  Split Möbius bands by Keizo Ushio: 
(a) Oushi Zokei, Chinese granite, 180 �  90 �  50 cm, Fukuyama Hiroshima, 2000.  
(b) Oushi Zokei, Japanese white granite, 220 �  210 �  100 cm, Sanda Hyogo, 1991.  
(c) Möbius in Space, African black granite, 200 �  200 �  100 cm, Mihama Fukui, 1990. 

3.1 Simple Möbius Loops 

A quick way to obtain a Möbius band is to start with a narrow strip of paper, giving one end a half-twist, and 
then joining the two ends together. The resulting Möbius band is one-sided and has only a single edge in the 
shape of a warped figure-8. If this paper band is again cut apart along its centre line, it will then open into a 
single two-sided band with a full 360° twist in it. We note that it takes a great deal of technical ability to 
divide a stone Möbius band without breaking it. Keizo Ushio has developed the required technical ability to a 
high degree, and he has carved an impressive variety of granite sculptures based on this concept (Figs.7,8). He 
normally drills holes halfway from ‘both sides’  of the band along its centre line, as for his toroidal sculptures. 
The emerging form is a single rigid shape. The volume of stone removed in this splitting process also has 
form of a Möbius band and thus leaves behind a Möbius space, as discussed in the previous section. The 
resulting sculpture thus can be understood in two ways. Firstly, it can be seen as a split granite Möbius band 
with a cut that follows the twisting of the band. Secondly, it can be seen as a double-length curled prism that 
loops back along itself, and in doing so defines a Möbius space. The treatment of the drill marks and of the 
original band surface may emphasize one way of viewing or the other. 
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                            (a)                                                                     (b)                                                       (c)              
Figure 8: Split Möbius bands by Keizo Ushio:  
(a) Oushi Zokei, African black granite, 230 �  250 �  60 cm, Bondi Beach, Sidney, Australia, 2003. 
(b) Kakehashi (Bridge), Japanese pink granite, 200 �  300 �  100 cm, Takino Hyogo, 2000.  
(c) Möbius in Space ORC, African black granite, 180 �  80 �  60 cm, Osaka, 1993. 
 
While the sculptures shown in Figure 7 start from a circular, regularly twisting Möbius band, much more 
variety can be achieved if that starting shape is altered. In Figure 8a the original Möbius loop has been 
stretched into a vertically oriented oval. The upper half of the sculpture has highly polished surfaces, while the 
lower parts are kept in the rough, as if they were just emerging from the earth. In Kakehashi (Fig.8b) half the 
Möbius band is kept straight and flat, forming a bridge, and all the necessary twist is accommodated in the 
loop above that bridge. Again, this sculpture is partly polished and mostly rough in the lower portion with a 
smooth transition of the texture from one part to the other – as was employed in Dream Lens (Fig.5b). Finally, 
in the sculpture shown in Figure 8c all the twist of a Möbius band is concentrated in a short section of the 
overall loop, while the rest of the loop is kept untwisted. 
 
3.2 Full-Twist Bands 
 
If the paper strip used in Section 3.1 is given a full 360° twist before its ends are joined, we obtained a two-
sided surface with two edges. If this loop is cut along its centre line, two interlocking fully twisted double-
sided loops will result. Even if the original band was made form a rigid material, the two resulting loops can 
now be moved apart some limited distance, since they are no longer connected to each other. Keizo Ushio has 
exploited this idea in several granite sculptures. In Oushi Zokei (Fig.9a) he uses a form already seen in 
Kakehashi (Fig.8b) where all the twist is accommodated in the return loop above a straight planar base. The 
two separated segments are then moved apart by a significant amount. His 1996 Oushi Zokei (Fig.9b) consists 
of two rather ‘ free-form’  loops, and it is not immediately obvious that they are the two halves of one and the 
same initial band. In the vertical form of Kyousei (Fig.9c) the two half-twists are distinctly separated and 
concentrated in two short stretches in otherwise straight segments of the toroidal loop.  
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                                (a)                                                                        (b)                                                         (c)              
Figure 9: Interlocking loops by Keizo Ushio: 
(a) Oushi Zokei, black granite, 200 �  300 �  110 cm, Kobe Suma-Rikyu Park, 1992.  
(b) Oushi Zokei Kyousei, black granite, 260 �  300 �  110 cm, Kakogawa City Hall, Hyogo, 1996.  
(c) Kyousei  (Symbiosis), blue granite, 320 �  150 �  80 cm, Vesolund, Denmark, 2006. 

3.3 Triple-Twist Möbius Loops 

If our paper strip is given three half-twists before its ends are joined, we obtain a triple-twist Möbius loop, 
which can be configured to have 3-fold symmetry, as exhibited in one form of the international symbol for 
recycling. (One often also sees a version where one arrow is flipped, thus corresponding to an ordinary 
Möbius loop with just one flip). The 3-fold symmetric version is the basis for M. C. Escher’s drawing of a 
split twisted band, called Möbius I [7]. This sketch inspired the maquette shown in Figure 10a. This particular 
geometry would be too thin and too fragile to be carved from stone. Keizo Ushio uses much thicker bands in 
his sculptures (Fig.11). For completeness it should be pointed out, that the Möbius band cannot only be split 
‘sideways’ , but can also be split into two thin layers (Fig.10b); this configuration is most suitable for a 
realization in metal. A related puzzle is available from Conrad Valett in Germany [8]. It springs open into a 
twisted, knotted double-size loop, and the challenge is then to put it back together into its double-layered form 
(Fig.10c). 
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                        (a)                                                                (b)                                               (c)              
Figure 10:  Split triply-twisted Möbius bands:  
(a) Painted FDM maquette,  10 �  8 �  3 cm, by Carlo Séquin, 1999; (Photo: Carlo Séquin 2004). 
(b) A different way to split a Möbius band: computer generated rendering by Carlo Séquin, 2004. 
(c) Related metal puzzle, 30 �  9 �  6 cm, by Conrad Valett; (Photo: Carlo Séquin 2006). 



 
A triple-twist Möbius loop is among one of the earliest large stone sculptures by Keizo Ushio (Fig.11a). In 
later versions he has placed the resulting shape vertically on end (Fig.11b) and has also experimented with 
different texture combinations for the surface and for the cut. Note, that in all cases the resulting strand forms 
a true knot – the trefoil or clover leaf knot. 
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                                      (a)                                                                       (b)        
Figure 11:  Split triply-twisted Möbius bands by Keizo Ushio: 
(a) Oushi Zokei 540° Twist, African black granite , 110 �  270 �  270 cm, Tokiwa Park, Ube, Yamaguchi, 1993.    
(b) Oushi Zokei 540° Twist, blue granite, 200 �  120 �  50 cm, Bondi Beach, Sidney, Australia, 2001. 

4.  Splitting Knots 

In Section 2.2 we have seen that when the torus is cut with properly chosen values of t and n, one obtains a 
single torus knot. The simplest such torus knot is the trefoil knot. If the sweep along this knot curve does not 
use a circular cross section but rather forms a ‘band’  with distinctly different ‘width’  and ‘ thickness’  values, 
then two other degrees of freedom appear in the definition of this shape: twist and azimuth. Changing them 
can dramatically alter the look and feel of a sculpture. In particular, there are only some twist values that 
maintain the three-fold symmetry of the trefoil knot, and only very few choices will allow the ribbon to curve 
around itself smoothly and organically.  
 
If we try to form a trefoil knot from a flat ribbon, we find that the tightest configuration forms a one-sided 
loop; but it does not maintain 3-fold symmetry! In order to obtain a 3-fold symmetrical shape, we may give 
the ribbon either zero twist (seen in a projection along the symmetry axis) or impose three half-twists, as 
depicted in Figure 12a. Now we can split this ribbon into two ‘ fibres’  by letting the ‘knife’  follow the curving 
and twisting of the band. Because of the built-in one-sidedness, the cut will not result in two separate 
components, but will produce a more complicated knot formed by a half-ribbon with twice the band’s original 
length. The second author has experimented with ways to turn this geometric form into an aesthetically 
pleasing sculpture [6]; one result is Infinite Duality (Fig. 12b). In 2005 this basic form was used in the entry 
Knot Divided to the annual snow sculpting competition in Breckenridge, Colorado [9]. In this case, the 3-fold 
symmetry was abandoned in order to obtain a more dramatic looking sculpture (Fig.12c) and to make the best 
possible use of the 12 feet tall snow blocks made available to the participants. For the mathematically 
inclined, this sculpture also presents an interesting puzzle. While the original ribbon forms the simplest 
possible knot, the 3-crossing trefoil knot, the final structure forms a much more complicated knot. The reader 
is invited to figure out its crossing number [10]. 
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                       (a)                                                         (b)                                                          (c)              
Figure 12:  Split Möbius bands in trefoil knot configuration: 
(a) FDM maquette, 5 �  11 �  10 cm, by Carlo Séquin 1999; (Photo: Carlo Séquin 2004). 
(b) Infinite Duality , bronze cast, 6 �  12 �  11 cm, by Carlo Séquin 2004; (Photo: Carlo Séquin 2004). 
(c) Knot Divided, snow sculpture, 350 �  300 �  300 cm, by Team Minnesota, Breckenridge, USA, 2005. (Photo: Carlo Séquin 
2005). 
 
Many artists have been fascinated by knots and tangles, and they deserve their own future review article. In 
this paper we have focused on the geometries that result when simple loops or knots are split lengthwise. That 
process results in objects of a related kind, but of higher complexity. In principle, the splitting process could 
then be repeated. For sculptures that have to be created by manual labour, this recursion very quickly reaches 
a practical limit. On the other hand, objects designed procedurally on a computer can go much further, and the 
results may even be fabricated with a layered manufacturing technology. Here we want to conclude with the 
discussion of some shapes that are a natural extension of the paradigms discussed in this paper, and which 
should be realizable as large scale sculptures – some in stone, others in metal.  
 
All shapes are based on a prismatic ribbon wound into a trefoil knot (Fig.13). If the ribbon executes three half-
twists, then the configurations shown in Figure 12 result. If the ribbon has an even number of half-twists, the 
split will separate it into two interlocking trefoils. A challenge is to carefully adjust the twist along the ribbon 
in such a way that that the two trefoils can be moved away from each other by an appreciable distance. Figure 
13a shows a solution based on a ribbon with three full twists that allows both trefoils to stay in contact with 
the ground plane as they are rotated apart by about 30 degrees around the central vertical axis. To make this 
possible the original ribbon lays flat against the ground in the lower bends and assumes a vertical orientation 
at the top bends, allowing the separated trefoils to cross over one another at these locations. In this orientation, 
the ribbon could even be cut into three side-by side strands so that three independently movable trefoils result 
(Fig.13b).  
 
If we try to form a tight and compact trefoil knot from an n-sided prism, we find that for n = 4 we can join the 
ends of the prismatic strand with almost no apparent twisting (Fig.13c). However, it turns out that where one 
lobe transitions into the next one, the Frenet frame that defines the osculating plane at each curve point 
exhibits a quick 90º torsional twist. Thus when we follow one of the prism edges, we find that it will jog to an 
adjacent position as we travel once around the whole knot, and we only return to the starting point after four 
passes around the knot. Splitting the 4-sided prismatic strand into four square fibres will thus lead to a single 
knotted loop of four times the length of the original strand. Since this lengthy loop has to carry its weight 



through four passes around the trefoil knot, this is not a candidate for a stone sculpture, but might be realized 
in COR-TEN steel in the style of the giant knot sculptures by  Greg Johns [11]. 
 
[ INSERT FIGURE 13 ABOUT HERE ] 
 

                   
                                 (a)                                                                        (b)                                                                  (c)              
Figure 13:  Split trefoil knots: 
(a) Split into two separate movable trefoils, FDM maquette, 6 �  9 �  9 cm, by Carlo Séquin, Berkeley, 2006;     
(b) Split into three separate movable trefoils, FDM maquette, 9 �  13 �  13 cm, by Carlo Séquin, Berkeley, 2006; 
(c) Split into 4-strand continuous loop, FDM maquette   4 �  7 �  6 cm, by Carlo Séquin, Berkeley, 2004;  
(Photos: Carlo Séquin 2006). 

5.  Conclusions 

We have discussed a representative selection of sculptures by Keizo Ushio that emerge from splitting toroidal 
or other closed-loop structures, including ribbons exhibiting twists ranging from 180° to 540°. In the latter 
case, the resulting forms are topologically knotted. In Ushio’s hands, a simple mathematical paradigm has 
blossomed into a plethora of fascinating stone sculptures. We find these sculptures very satisfying at various 
emotional and intellectual levels. One may marvel at the overall symmetry and balance of the final shape or 
the skill and courage needed to chisel the raw granite into these elegant forms. Then again one may be 
intrigued by the topological issues brought forth by these twisted ribbons or by the enclosed single- or double-
sided spaces. Ushio’s work is a wonderful demonstration that a gifted artist can use a simple mathematical 
paradigm and enhance it in many different ways to create a rich body of artistic work. 
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