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DEFORMATIONS OF SEMI-EULER CHARACTERISTICS 

By George R. Kempf 

Let / : X -> S be a proper smooth morphism of pure relative 

dimension n with connected fibers between Noetherian schemes. Let ? 
be a locally free coherent sheaf on X. If s is a point of S, we have the 

sheaf ?5 =?>\xs on the fiber Xs of / over s. 

If G is a coherent sheaf on a proper variety Y, the semi-Euler 

characteristic v|/(G) = 2/eVen dim H'(Y, G). 
If n is odd say 1 + 2m, we will assume that we are given a non- 

degenerate pairing 5 : ? ? ? -> <aX/s such that 2? is symmetric if n = 

1(4) or skew-symmetric if ? = 3(4). In this situation we have 

Theorem 1. The parity of ty(?s) is locally constant on S if 2 is a 

unit in ?s. 

In characteristic zero this result appears in [1]. If n = 1, the result 

appears in [2]. My proof uses that the rank of a skew-symmetric matrix 

is even and it yields deeper results on the variation of dim Hl(Xs, ?5). 

1. The statement of the main results. A Grothendieck complex 
a? a1 

for ? is a complex AT* : 0 ?? K? -> K1 -> Kn -> 0 of free coherent sheaves 

on S such that the / cohomology of X*|5 is isomorphic to Hl(Xs, %s) for 

all point s in S. Grothendieck has shown that such complexes always 
exist locally on S. 

We say that the complex K* is special if it has the form 

n _. 1(0 J\ js\ _. . , . _. TSm _JL J^m (-1) am-\ r^m_i _ 

?> k1 
?? 

k? -* o 

where p is skew-symmetric. 

Manuscript received 14 February 1991; revised November 1991. 
American Journal of Mathematics 114 (1992), 973-978. 

973 



974 GEORGE R. KEMPF 

We will prove 

Theorem 2. Locally on S,^has a special Grothendieck complex. 

Proof that Theorem 2^> Theorem 1. We have 

*(&) = 2 rank Kl - 
rank(p(s)) 

- 2 rank(a^)) + rank(a'(s)). / even / = 0 

As p is skew-symmetric the parity of i|i(y the same as that of 2,- even 
rank X' which is (locally) constant. 

2. Special complexes. Let L* be a complex. Then L* ? L* is the 

complex 

(L* ? L*)" = ? Lw< ? Ln* 

with differential 

d(fl ? 6) = da ? b + (-l)'fl 0 dfr 

if a E V and b 6 ZA 

This complex has an involution t : L* -> L* given by t(# ? fc) = 

(- l)a3ft ? a where a 6 La and b E ZA 

Let L* be a complex of free coherent sheaves on S. We will assume 

L* : 0 -? L? -> -* Lw -? 0. 

Assume that we have a pairing 

7:L*?L*-^0s(-?) 

such that 7 ? t =(-l)m7 and such that y(s) : L*\s ? L*|s -? h(s)(-n) 
defines an isomorphism 

L*|,-^Hom(L*|? *(j)(-n)). 

Lemma 3. L* is a special complex in a neighborhood of s. 
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Proof. Let y(a ? b) = R(a ? b)l(-n) where a E LP and fo 

L""'. Then R \ U ? Ln~p -* ?s satisfies 

R(bp(a) 0 p) + (-l)^(a 0 8n-p-1(p))= 0 

for aGL^andpe Ln~p+1. 

Thus we have a commutative diagram 

Lp+1 

Rp+i 

Ln Ln" 

UR* are isomorphisms at s, they are isomorphisms in a neighbor? 
hood of s. Hence the high differentials in L* are isomorphic to the dual 

of the low differential upto sign. 
We want to check that Rm+X ? am : LT-> LT is skew-symmetric. 

This will follow if ~Rm = Rm+l(-l)m. Now Rm+l(k)(c) = R(k ? c) and 

Rm(c)(k) = R(c ? k). 
Thus our symmetry condition implies that Rm = 

(-l)m(m+1)+mRm+i( = (-l)mRm+l). Q.E.D. 

4. The first step. We fix a point s of S and freely replace S by an 

open neighborhood of s. So we may assume that S is affine. We have 

the Cech resolution 

of ? with respect to some open affine cover of X. Then AT* = f*^* has 

homology sheaves Rlf*i;. 
Now we have a resolution of L ? L and a commutative diagram 

?? ? ?^^* ?<?* 

<*>A7S 
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where 7* : 0 ?> 1? -?-> I2n+1 -? 0 where V is an injective 0^-module 

ifi<2n + 1 which is a resolution of co^/s. 

So we have an induced mapping 

a : K*?K* -?/*/*. 

We want to replace a :K* ? i?* -? /*/* by a finite approximation. 

By Grothendieck's approximation theorem we can find a complex 
0 ?? L0-^ ? ? ? ?? L" -? 0 of free 05-module of finite type together with 

a homomorphism a : L* ^> K* such o- is a quasi-isomorphism. 
Thus we get p = a(a ? a) : L* ? L* -> /*/*. 

Using Grothendieck's proof we can find a complex M* of the same 

kind such that we have a commutative diagram 

L* <8> L* ?^ M* 

p 

0 /*/ 

where p is a quasi-isomorphism. 
Leti' = (i + (-l)wi(T))/2. 
We need another kind of approximation. 

5. The second step. Let 0 ?? L? ??-> Z/ ?? 0 be a complex of 

free coherent sheaves on 5. Then replace 5 by a neighbor of s we may 
find normalized such complexes M* and N* together with quasi- 

isomorphisms M* ?? L* -? A* where normalized means that the dif? 

ferential of the complex vanishes at s. 

Once we do this we'll do the following. 
We can consider the composition 

R* 0 #* _? L* ? L* _^ M* -> A* A 05(-/t) 

where /?* and A* are normalized and a is the isomorphism w-homology 
of A* same of M ~ same of /*/ ~ /?/,/*(<oJC|S) ~ ?s which works on Np 
= 0 if p > n by similar reasoning. 

The proof of this step is easy. Let fu, . . . , fu be elements of V 

such that their reduce in V(s) are a basis of a maximal space which is 
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mapped isomorphically into L'+l(s). Then we have a complex 5* such 

that 5' has basis /*,, and df*d-x where ?/(/*,/) = df*j and ac+\(df*,l) = 

0. Thus we have an obvious homomorphism 5* -> L*. 

Let M* = L*AS* is so far quotient. For M* = AT where L* -> Af* 

is constructed as before. 

6. The third step. Now take a h : R* ??jf * be a quasi-isomorphism 
where /?* is normalized and /:: M* ?> 5* be a quasi-isomorphism where 

S* is normalized. Then /' = k ? /' o /, : /?* ? r* -> s*. Let m : S* -* 

6S( ??) be projection on the rc-th component. Then we have m?j' : /?* 

?/?*->G5(-/i). 
We want to check that this pairing satisfies the condition of Sec? 

tion 2. 

Clearly m ?/'(T) = (~l)mm ?/' by construction of /'. We need to 

check that 

vl : R'(s) ? /?"+,(s) -> k 

is a perfect pairing. 
Now by construction u' is isomorphic Pl: Hl(Xs, &) ? HnX(Xs, ?5) 

-> k. 

To check that this is a perfect pairing by Serre duality it will be 

enough to check that it is the usual mapping induced by m ? k ? i ? h\s. 
This is just that 

p(a ? P) = (-1),(A,,)+W(p(p ? a)) 

but this follows from the assumption on the symmetry of the pairing 

g ? g -> fW 

This finishes the proof. 

THE JOHNS HOPKINS UNIVERSITY 

UNIVERSITY OF CALIFORNIA, RIVERSIDE 
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