A Manifold which does not admit any Differentiable Structure

by MicHEL A. KERVAIRE, New York (USA)

An example of a triangulable closed manifold M, of dimension 10 will be
constructed. It will be shown that M, does not admit any differentiable struc-
ture. Actually, M, does not have the homotopy type of any differentiable
manifold.

Also, a 9-dimensional differentiable manifold X*® is obtained. X* is homeo-
morphic but not diffeomorphic to the standard 9-sphere S?.

Use is made of a procedure for killing the homotopy groups of differentiable
manifolds studied by J. MiILNoOR in [6]. I am indebted to J. MILNOR for sending
me a copy of the manuscript of his paper.

Although much of the constructions (in particular the construction of M)
generalizes to higher dimensions, I did not succeed disproving the existence
of a differentiable structure on the higher dimensional analogues of M,. A
more general case of some of the constructions below will be published in a
subsequent paper, with other applications.?)

§ 1. Construction of an invariant

Let M0 be a closed triangulable manifold. Assume that M0 is 4-connected.
(M0 i connected, and m;(M) = 0 for 1 <7 < 4.) It follows from PoINCcARE
duality and the universal coefficient theorem that H?(M;G) =0 for
5 < q¢< 10, and HS5(M) is free abelian of even rank 2s, say. (If no coef-
ficients are mentionned, integer coefficients are understood.)

Let Q = Q8% be the loop-space on the 6-sphere. It is well known that
HQ)=2Z, H°(Q)= Z, and if n: Q X Q2 — 2 is the map given by the
product of loops, then

n*(e) =¢,®1+1Re, and
nte) =01 +1Qe +6,Qe,,
where e,, ¢, are the generators of H®(2) and H2(Q) respectively, and

H*(Q x Q) is identified with H*(Q) @ H*(2) by the KtnNETH formula.
(Compare R. Borr and H. SaMELSON [1], Theorem 3.1.B.)

Lemma 1.1. Let X ¢ H5(M) be given. There exists a map f: M — Q such
that f*(e,) = X.

1) This paper was presented at the International Colloquium on Differential Geometry and
Topology, Zurich, June 1960.
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Proof. Let K be a triangulation of M. Define f by stepwise extension on
the skeletons K'? using obstruction theory. f| K® is taken to be the con-
stant map into a base point on £. Let X, be a representative cocycle of X.
For every 5-dimensional simplex s; of K, define f|ss to be a representative
of X,[s;]-times the generator of my(22) L 75(S%) « Z. The obstruction co-
cycle to extend f| K® in dimension 6 is zero. The next obstruction is in
dimension 10 with values in 7,(2) L 7,,(S¢) = 0. (See [9], § 41.) Thus the
lemma is proven.

Define a function ¢,: H5(M) - Z, by the following device. For every
X e H (M), take a map f: M — 2 such that f¥(e,) = X. Then, ¢,(X) =
= f*(u,) [M], where u, ¢ H*(2; Z,) is the reduction modulo 2 of e, e H*(),
and f*(u,)[M] is the value of the cohomology class f*(u,) on the generator
of Hyo(M*; Z,).

Lemma 1.2. The function ¢o: H3(M) — Z, is well defined, i.e., @q(X)
does nmot depend on the choice of the map f: M — Q such that f*(e,) = X.

Proof. Let f,g: M — Q be two maps such that f*(e,) = g*(e,). We
have to show that f*(u,) = g*(u,). Let K again be a triangulation of M.
Since f*(e;) —g*(e;) = 0, it follows that f and g are 5-homotopic. (See
S. T. Hu [2], Chap. VI.) Since H2(M ; =, (2)) = 0 for 5 < g < 10, it follows
that f and g are 9-homotopic. Hence, we may assume that f| K® =g | K®.
Let w'(f, g) e C1°(K ; 7,0(£2)) be the difference cochain. Then,

(F* (wg) — g*(up) [810] = uy[h ™ (f, 9) [810]]

for every 10-simplex s8,,, where h: 7,,(Q2) - H,((2) is the HurEWICZ homo-
morphism. According to J. P. SERRE, u,[hx] is the mod. 2 Hopr invariant
of the element in 7,,(8%) represented by o € 7,,(£28¢). (Compare [8], Lemme
2.) Since no element of odd HorF invariant occurs in s, (S¢), it follows that
f*(uy) = g*(u,), and the proof is complete.

Lemma 1.3. Let X, Y e H*(M) be two integer cohomology classes of M.
Then,

Po(X + ¥) = @o(X) + @o(Y) + 2y,

where x-y 18 the value on the generator of H,,(M*?®; Z,) of the cup-product
Zzvy. (x,y are the mod. 2 reductions of X and Y respectively.)

Proof. Let f,g: M — 2 be maps such that f*(e;) = X and g*(e,) = Y.
By definition, o(X) = f*(ug)[M], and go(¥) = g* (us) [M].

Let fxg: MxM —Q2x2 be the product of f and g. (L.e., f xg(u,v) =
= (f(u),g()).) Let D: M - M x M be the diagonal map. Define F: M —»Q
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by F=mo(f X g)oD, where m: 2 x 2 - is given by the multiplica-
tion of loops. Since D* maps the tensor product of cohomology classes into
their cup-product, we have F*(¢;) = D¥*(X ® 1+ 1Q® ¥Y) = X + Y. There-
fore,

@o(X + Y) = F*(u,) [M] .
On the other hand,

F*(uy) = D* (f*(up) ® 1 + 1 @ g*(uy) + f*(u;) ® g*(u,))
= *(ug) + g% (us) + *(u,) v g*(u,)
= f*(us) + g*(u) + T y.

(u, is the reduction modulo 2 of e,.) This proves Lemma 1.3.

The function ¢,: H®(M) — Z, induces a function ¢: HS(M; Z,) - Z,
satisfying ¢(z + y) = ¢(2) + ¢(y) + «-y. Indeed, if X is an integer class
whose reduction modulo 2 yields z ¢ H3(M; Z,), we define ¢(z) = ¢o(X).
It follows from

Po(2Y) = @o(Y) + @o(Y) + yy=y-y =0,

that ¢(x) e Z, depends only on z e H5(M ; Z,).

The function ¢: H*(M; Z,) - Z, is then used to construct the number
d(M) as follows. A basis 2,,...,2,,¥%,,...,y, of H5(M; Z,) as a vector
space over Z, will be called symplectic if z;-z; = y,-y; =0, and z;-y; = 3,
for all ¢, j =1,...,s. Clearly, symplectic bases always exist. Moreover, it
is well known that since the function ¢: HS(M ; Z,) — Z, satisfies the equa-
tion

o+ y) =) + ol + 2y,
the remainder modulo 2
D(M) = Zig(x) 9(y:)

is independent of the symplectic basis %, ..., Z,, ¥1,.. ., Y-

The rest of the paper is devoted to investigating the properties of the
invariant @.

Clearly, & is an invariant of the homotopy type of 4-connected closed
manifolds of dimension 10.

Our objective is the proof of the following theorems.

Theorem 1. If M1 has the homotopy type of a C'-differentiable 4-connected
closed manifold, then @ (M) = 0.

(It can be shown that the converse of this theorem would follow from the
conjecture that the cohomology ring H*(M) and @ (M) are a complete set
of invariants of the homotopy type of the triangulable 4-connected closed
manifold M of dimension 10.)
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Theorem 2. There exists a closed 4-connected combinatorial manifold M, of
dimenston 10 for which ®(M,) = 1.

(In fact a specific example will be constructed.)

In § 2, the proof of Theorem 1 will be carried out taking Lemmas 4.2 and
5.1 for granted. (Lemma 4.2 is used in the proof of Lemma 2.2, and Lemma
5.1 is used to deduce Theorem 1 from Lemma 2.4.) The Lemmas 4.2 and
5.1 are proved at the end of the paper, in §4 and § 5. Theorem 2 will be
proved in § 3.

§ 2. Proof of Theorem 1
Let M1 be a closed C!'-differentiable manifold which is 4-connected.
Lemma 2.1. M1° s a n-manifold.

Proof. Let M c R*t10 be an imbedding with » large. We have to
show that the normal bundle » is trivial. This is done by constructing
a field of normal n-frames f,. Let K be a triangulation of M°. Since
7,(S0,) = 0, and M is 4-connected, it follows that H« (M ;xn,(S0,)) =0
for 0 <¢<9. Thus, there is only one possibly non-vanishing obstruction
o(v, f,) e HO(M; 7y(SO,)) L 7y(SO,) to the construction of the field f, of
normal n-frames. By Lemma 1 of [7], o(», f,) is in the kernel of the Hopr-
WHITEHEAD homomorphism Jy: 74(S0,) - 7,,,(8"). But J, is a mono-
morphism. (Compare proof of Lemma 1.2 of [4].) Hence, o(v, f,) = 0, and
the lemma is proved. (Recall that the proof of the assertion: J, is a mono-
morphism, was based on Corollary 2.6 of J. F. Apams paper On the structure
and applications of the Sreenrop algebra, Comm. Math. Helv. 32 (1958),
180-214. This statement also follows from the portion of the PosTNirov de-
composition mod. 2 of 8" given below in § 5.)

The THOM construction associates with every framed manifold (M; f,),
where M c R* ™M an element o(M; f,) € Ty qim 2 (S*). We say that
(M10; f,) is homotopic to zero if the corresponding element o (M ; f,) is the
neutral element of 7,,,o(S").

Lemma 2.2. If (M'9; f,) is homotopic to zero, where M is 4-connected,
then @ (M) = 0.

Proof. The assumption that (M ; f,) is homotopic to zero implies the
existence of a framed manifold (V;F,) with boundary M?. (Compare
R. TrOM [10].) We may assume that V is connected, and hence has a trivial
tangent bundle. We can therefore apply to ¥V — M the procedure for killing
the homotopy groups of a differentiable manifold studied by J. MILNOR.
Specifically, using Theorem 3 of [6], we obtain a new 11-dimensional differen-
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tiable manifold with boundary M which is also 4-connected. This new 4-
connected manifold will again be denoted by V1. We can now forget about
the fields of normal frames.

We proceed to compute ®(M). Consider the cohomology exact sequence
of the pair (V, M) with coefficients in Z,,

> HYV) S HS (M) S HO(V, M) > - -+ .
Using relative PoINCARE-LEFSCHETZ duality (over Z,), and the formula
uv o[V, M] =1i*(u) v z[M],

where ueH®(V), x e« H3(M) and [V,M], [M] are the generators of
H\,(V,M;Z,) and H,,(M; Z,) respectively, it follows that HS5(M; Z,)
has a symplectic basis z,,...,%,,¥;,...,¥, say, such that =z,,...,z, is
a vector basis of Ker . Consequently, in order to prove @®(M) = 0, it is
sufficient to show that @(x) = 0 for every z e Ker 4.

Let X ¢ H%(M) be an integer class whose reduction modulo 2 is z, and let
f: M1 - Q = Q8¢ be a map such that f*(e;) = X. We have to show that
f*(u,) = 0, where u, generates H°(2; Z,). Let Q* be the space obtained
from Q by attaching a cell of dimension 6 by a map S5 -2 of degree 2.
By Lemma 4.2 in § 4, below, for every map g: S° — Q*, one has g*(u,) = 0,
where we denote by wu, e H°(Q2*; Z,) again the class corresponding to the
old u,eH'(Q; Z,) under the canonical isomorphism H?(Q; Z,) © H(Q*; Z,).

We attempt to extend f: M — Q* to a map of V into Q*. Let (K, L)
be a triangulation of (¥, M). The stepwise extension of f on the skeletons
K@ o L leads to obstructions in the groups H%'(K,L; n,(2*). For
4 <5, m, (2%) = 0. We meet a first obstruction for ¢ = 5 in H%(K, L; Z,).
By the HopF theorem, this obstruction is éz. (See S. T. Hu [2].) Since déx = 0,
it is possible to extend f on K'® v L. Using HY(K,L;G)=0 for
5<qg<10 (since V is 4-connected), it follows that there exists a map
F: K — v - 0%, where 7 is some 11-dimensional simplex in K — L, such
that F|L = f. Let S'° denote the boundary of v, and let g: S — Q* be
the restriction of F on S, Since 9(K — 1) =L — 8, and g¢*(u,) = 0,
it follows that f*(u,) = 0. The proof of Lemma 2.2 is complete.

Corollary 2.3. If two 4-connected framed manifolds (M ;f,) and (M'; f.)
of dimension 10 define the same element « = (M ; f,) = o(M'; fi) by the
Trom construction, then @ (M) = ®(M').

This is obtained by observing that @ is additive with respect to the connected
sum of manifolds.

It follows that @ provides a homomorphism from a subgroup of =,,,,(S")
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into Z,. We denote this homomorphism by @ again. Actually, @ is defined
on every element of x,,,,(S"). Indeed, using spherical modifications [6], it
is easy to see that every element « e, ,,(S®) is obtainable from a 4-con-
nected framed manifold by the THoM construction. This remark will not be
used in the present paper.

It follows from Corollary 2.3 that Theorem 1 is equivalent to the statement
that @(x) = 0 for every « em,,,,(S*), provided P(x) is defined.

Since @(x) is obviously zero for every element « of odd order, and by
J. P. SERRE’s results z,,,,(S") contains no element of infinite order, it is
sufficient to show that @ annihilates the 2-component of the group =, ,,(S").
By Lemma 5.1 in § 5 below, every element « in the 2-component of =z, _,,(S")
is representable in the form

a=fon,
where 7 e 7, 1,(8™?) is the generator of the stable 1-stem, and B ez, 4(S").
Hence, Theorem 1 will follow from the

Lemma 2.4. Every element « em,,,o(S") of the form o« = Bon, with
N €Tpp10(S™?), and B em, o(S") is obtainable by the T'HoM construction from
a framed manifold (X'9; f,), where X' has the homotopy type of the 10-sphere
S,

Proof. We first show that f e, 4(S") is obtainable by the THOM construc-
tion from a framed manifold (X?; f,), where X*® has the homotopy type of
the 9-sphere.

It is well known that g8 is obtainable by the THOM construction from some
framed manifold (M?®; f,). We have to show that (M?®;f,) is homotopic
to a framed manifold (2?; f,), where 2? is a homotopy sphere. This is done
by simplifying M?® by a series of spherical modifications. (See J. MILNOR [6].)

Assuming by induction that M? is (p — 1)-connected (0 < p < 4), we
have to prove that (M ; f,) is homotopic to a p-connected framed manifold
(M'; f1). Recall that a spherical modification of type (p + 1, ¢ + 1) applied
to a class Aem,(M® consists of the following construction. Represent A by
an imbedding

f: 8% x Datt — M? |

with p + ¢ + 1 = 9. (This is possible for p < 4 since M? is a z-manifold
and the normal bundle of any imbedding S? — M? is stable in this range of
dimensions.) The manifold M is then replaced by

M = (M —[(8 x Datt)) v (D™ x 89,

under identification of f(8? x 89 regarded as the boundary of f(S? x De+1)
with 8? x 8¢ regarded as the boundary of D?+! x 8¢. By Theorem 2 of
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[6], the manifolds M and M’ bound a 10-dimensional differentiable manifold
o=w(M,f), and f:8? x D1 - M? can be chosen such that the field f,
(over M) is extendable over w as a field of normal n-frames. (We can think
of w as imbedded in R"*° with M c R"t®x (0) and M' c R*® x (1)
since n can be taken as large as we please.) Hence spherical modifications of
type (p+1,¢+ 1) with 0 <p <4 can be performed so as to carry
(M f,) into a homotopic framed manifold. It is known (Theorem 3 of [6])
that for p < 4, spherical modifications simplify the manifold. More precisely
n,(M') is isomorphic to the quotient of x,(M) by the subgroup generated
by 4, and =;(M) Qn;(M') =0 for ¢ <p. Hence, it is easy, using [6], to
obtain a 3-connected framed manifold homotopic to (M?; f,). The case
p = 4 requires special care. If 1 en,(M?) is the class we want to kill, there
exists an imbedding f:S%x D% — M?® such that f|S%x (0) represents 4.
Let M' = y(M,f) be the 9-dimensional manifold obtained from M and f
by spherical modification. (f is supposed to be chosen so that (M'; fi) with
some f, is homotopic to (M ; f,).) In general, however, f|z,x (bdry D")
represents a non-zero element of 7z,(M’). Thus, it is not clear a priori that a
series of spherical modifications of type (5, 5) will carry M into a 4-connected
manifold, and hence a homotopy sphere.

If 2 is a generator of the free part of =,(M) ¥ H,(M), there exists by
PoincarE duality a class p e Hg(M) whose intersection coefficient with 4
(or kA rather, where b is the HurEWIcz homomorphism) is 1. It follows that
in this case the cycle given by f| z, X (bdry D®) is homologous to zero in
M —f(S*x D5, and hence in M'. Thus H,(M') L n,(M') has strictly
smaller rank than H,(M) L@ n,(M), and the torsion subgroup is unchanged.

I claim that if A en,(M) is a torsion element, the homology class of the
oycle f|zyx (bdry D% 1s of infinite order for any f representing A. Hence,
one more spherical modification will lead to a manifold with 4-dimensional
homology group of not bigger rank than H,(M) and with a strictly smaller
torsion subgroup. (I.e., a series of spherical modifications will lead to a 4-
connected framed manifold homotopic to (M?; f,). By PoINCARE duality,
a closed 4-connected manifold of dimension 9 has the homotopy type of $°.)

Since the BETTI numbers p,, p; of M and M’ (in dimension 4) differ at most
by 1, and differ indeed by 1 if and only if A’ (represented by f | 2, X (bdry D5))
in M’ is of infinite order, it is sufficient to show that p; + p, = 1 mod. 2.
Since p; = p, for 0 <4 <3, this is equivalent to showing that the semi-
characteristics E*(M) and E*(M') of M and M’ (over the rationals, say)
satisfy E*(M') 4+ E*(M) =1 mod. 2. We use the formula

Ex(M') + EX(M) = E(w) +r mod. 2,
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where E(w) is the EULER characteristic of the manifold w with boundary @& =
M' — M, andristherank of the bilinear form on H%(w,d; Q) defined by the
cup-product. (Compare M. A. KERVAIRE [3], § 8, formula (8.9).) It is easily
seen that E(w)=1, uptosign, andsince u-u =0 forevery u e H*(w, @; Q),
the rank » must be even: r =0 (mod. 2). Hence, E*(M') + E*(M) =1
mod. 2.

Summarizing, we have proved so far that every fen,,,(8") is obtainable
by the THoM construction from a framed manifold (X?; f,), where the
manifold X® has the homotopy type of S?.

Taking a representative f: Snt10 — §nt9 of 5 such that f-1(S»+® — z)
is diffeomorphic to 8* x (S8"+? — z,), we obtain that &« = f 0% is obtainable
by the THOM construction from (S x X%; f,).

It remains to show that (8! x Z°; f,) is homotopic to a framed manifold
(Z19; f/), where X0 is a homotopy sphere.

Apply once more the spherical modification theorems (Theorems 2 and 3
of [6]), this time to the class 1 e, (8! x X® represented by S! X (2,). The
resulting framed manifold is homotopic to (S* x 2?; f,) and has the homo-
topy type of the 10-sphere. This completes the proof of Lemma 2.4.

To complete the proof of Theorem 1 it remains to prove the Lemmas 4.2,
and 5.1. This is done in § 4 and § 5.

§ 3. Construction of M,

This section relies on J. MILNOR’s paper [5]. Let f,: S* —> SO, be a
differentiable map whose homotopy class (f,) satisfies

'i* (fo) = 3’55 ’

where 9: m;(S%) — n,(SO;) is taken from the homotopy exact sequence of
S04/S0s, and i: SO, - SO; is the usual inclusion. Define f, = f, = i 0 f,.
Using f,, f,: 8* - S0;, a diffeomorphism f: 8% x S4— 84 x §* is given
by f(z,y) = (2, y'), where y' = f,(¢)-y, and & = fo(y/)-='. Let M(f,, )
be the MiLxor manifold obtained from the disjoint union of D% x S* and
8% x D% by identifying each point (x,y) in the boundary of D5 x §4 with
f(x,y), considered as a point on the boundary of S¢ x D%. By Lemma 1 of
[5], together with the remark at the bottom of page 963 in the proof of Lemma 1
in [5], it follows that the differentiable manifold M (f,, f,) is homeomorphic
to the 9-sphere. It will follow from Theorem 1 in this paper, that M (f,, f,)
is not diffeomorphic to the standard S°®. Let W1° be the differentiable mani-
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fold with boundary M(f,, f,) obtained using the construction on page 964 of
[6]. W can alternately be described as follows. Let U be a tubular neighbor-
hood of the diagonal 4 in 8% x 85. It is well known that U is the space of
the fibre bundle p: U — 8% with fibre D5 associated with the tangent bundle
of 8%. The differentiable manifold W is obtained by straightening the angles
of the quotient space of the disjoint union of two copies U’ and U” of U
under an identification of p'-1(V) with »"-1(¥) such that the images of
4" and A" in W have intersection number 1. (V is an imbedded 5-disc on
8%, and p'-1(V) @ D5 x D5 is identified with p"~1(V) @ D5 x D5 under
(u, v) <> (v, u), u, veD")

Since W is a 10-dimensional manifold whose boundary M (f,, f,) is homeo-
morphic to §?, the union of W with the cone over the boundary is a 10-dimen-
sional closed manifold M,. Since M (f,, f,) is combinatorially equivalent to S°,
it follows that M, possesses a combinatorial structure. (Compare J. MILNOR, On
the relationship between differentiable manifolds and combinatorial manifolds,
mimeographed notes 1956, §4.)

It is easily seen that M| is 4-connected.

We proceed to compute @(M,). Let x, y e H*(M,; Z,) be the cohomology
classes dual to the homology classes of the imbedded spheres j§', j”: 85 — M,
given by the images in W of the diagonals A" and 4" in U’ and U” respec-
tively. Clearly, , y is a symplectic basis of H%(M,; Z,). (I.e., z-2 =y-y =0,
and z-y =1.) To show that ¢(x) = ¢(y) = 1, observe that the normal
bundles of j' and ;" (regarded as imbeddings of 8% in the differentiable mani-
fold W) are non-trivial. These bundles are isomorphic to p: U — 85. Let
K be the THOM complex of this bundle. (I.e., the space obtained by collapsing
the boundary of U to a point.) It is well known that K admits a cell decompo-
sition S5 v e!?, where the attaching map S® — 8% is a representative of the
WHITEHEAD product [4;, 35]. On the other hand, the THoM construction pro-
vides a map f,: My, — K suchthat fg(e,) = X, the dual class of j': 85— M,,
and fy(u,)[M,] =1, where e, generates H%(K;Z) and u, generates
HY(K;Z,). Amap f: M,—> Q8¢ is obtained by composition of f, with the
usual inclusion 85 v el® — Q8¢ (Recall that 28 has a cell decomposition
Q8% =85 ueldueld ue0y ..., where the attaching map of e!° represents
[4s,%]).) Then, f: My, — 28° has the properties f*(e,) = X, f*(u,) =1,
showing that ¢(x) = 1. The same construction applied to Y, the dual class
of j7: 85 — M, yields ¢(y) = 1. Hence @(M,) = ¢(x)-¢(y) = 1.

If M(f,,f,), with the differentiable structure induced by W (of which
M (f,,f,) is the boundary) were diffeomorphic to S? with the standard diffe-
rentiable structure, the differentiable structure on W could be extended to
a differentiable structure over the cone CM (f,, f,), providing a differentiable

19 CMH vol. 84
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structure on M,. However, @®(M,) = 1 and Theorem 1 show that a differ-
entiable structure on M, does not exist. Hence, M (f,,f,), homeomorphic
to S?, is not diffeomorphic to S°.

§ 4. The auxiliary space 02*

Let Y = 8%v,; e® be the space obtained by attaching a 6-cell to S® by
a map 8% — S5 of degree 2.

Lemma 4.1. Let o eny(Y) L Z, be the generator, then [x,n] # 0 emy(Y).

Proof. We identify Y with the STIEFEL manifold ¥V, ;. Consider the exact
sequence

c > 7030 (8%) = 4 (85) S g (Vyg) = -+

Since 7,0(8¢) = 0, and [¢5,79] is non-zero in my(S%), it follows that
ix [15, 15] = [ix (5) , 04 (35)] = [, &] # 0.

Let Y* = Y vel® be the space obtained from Y by attaching a 10-cell
€% using a representative f: 8® - Y of [x,«]. Since Y is 4-connected, the

characteristic map ?: (D, 8% — (Y*, Y) of el induces an isomorphism

;:< : 7y (D10, 8%) =m0 (Y*, Y) .

(Compare J.H.C. WHITEHEAD [12], Theorem 1.) Thus the relative HURE-
wicz homomorphism hg: m,(Y*, Y) > H, (Y*, Y) & Z is an isomorphism.
Consider the homotopy-homology ladder of (Y*, Y):

e o g (F) > g (PR B g (V¥ ) > g (¥) > - -

y Vh Yhe y
c >0 > Hy(Y*) 3 Hyu(Y5Y)>0—> -

Since 0 sends the generator of @, (Y*, Y) into [&,«] # 0, and 2[x,x] = 0,
it follows that every element in Im {h: 7z (Y*) - Hy((Y*)} can be halved.

It follows that for every map g,:8% — Y *, the induced homomorphism
g HO(Y*; Z,) — H®(8%; Z,) is zero.

Let Q be the space of loops over S¢. Up to homotopy type
Q=8vel®velby ., with €1° attached by a map of class [i5,45]. Let
Q% = Q v eb, where e® is attached by a map of degree 2 on 8% ¢ 2. There
is a natural inclusion Y* — Q* which induces an isomorphism on cohomology
groups in dimension 10. Hence, we have the

Lemma 4.2. Let g: 8 —Q* be a map, and let u, be the generator of
HW(Q*; Z,) © Z,. Then, g*(u,) = 0.
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§ 6. A lemma on homotopy groups of spheres

Lemma 5.1. The map =n,,4(S") = #,,10(8"), for n =12, defined by com-
position with the generator n of m,,,o(8"®) s surjective on the 2-component.

This lemma was communicated to me without proof by H. TopA who has
also proved that the 2-component of x,.,,(S*) is Z,. (See H.Topa [11],
Corollary to Proposition 4.10.)

We give a sketch of proof by computation of the PostNIROV decomposition
modulo 2 of S* for large n, up to dimension n + 10.

We begin with a remark which will yield Lemma 5.1 whenever a long
enough portion of the PosTNiKOV decomposition of S is obtained. Let X =
K(Zy,,n+9) X (K(Z,,n + 10) be the space of the fibration over K(Z,,n -+ 9)
associated with the k-invariant ke H**'Y(Z,,n 4+ 9; Z,). Let f: S»+® > X
be a map representing the generator of =, ,(X) L Z,. Then, the composition

fon: 8?10 —» X where #: Snt10 —» Snt9o

represents the generator of x,,,,(S"*?), is essential if and only if k = S¢q?(¢),
where ¢ is the fundamental class of H*?(Z,,n + 9; Z,).

Since S¢2(¢) generates H"(Z,,n + 9; Z,), it follows that k = Sq¢%(e)
implies k = 0. Hence, fon is inessential if k 7% S¢?(¢).

If k= S8q(¢), let ;\: Sr+o v entll » X v, el be the map induced
by f. Let s e H™?(8n+® v entll; 7)) be the generator. We identify
Hnt9(X vertll; 7,) and H™®(X; Z,) with H**%(Z,,n + 9; Z,). Since
f*(e) = s, and Sq?(s) #~ 0, it follows that S¢?(e) 5 0 in HrH11 (X entll; 7.,
To show that fo# is essential, it is therefore sufficient to show that S¢?(e) =
=0 in H"1(X; Z,). This follows from the commutativity of the diagram

0« H"9(X; Z,) < H"(Zy,n +9;2,) < 0
V8¢ N 8¢
Hr (X5 Z,) < HY(Z,, n + 9; Zy) < H™(Z,, 0 + 105 Z,),

where the rows are taken from the exact sequence of the fibration defining X
(in the stable range), and v is the transgression.

Let Y,p>Yy—> .- >Y,»>Y, ;,—>--->Y,=K(Z,n) be the mo-
dulo 2 PostNikov decomposition of S*. (L.e., p;: Y, — Y, , is a fibration
with fibre F; = K(n;,n + 1), where x; is the 2-component of the stable
group =,,,(S*), and H*(Y,; Z,) contains Z, in dimension 0 and =,
HQY,;Z,) =0 for 0<qg<mn, and H**¥(Y,; Z,) =0 for 0 <k <i 4+ 2))
By the G-theory with € = the class of finite groups whose order is prime to
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2, a map 8" - Y, inducing an isomorphism H*(Y,; Z,) & H*(S"; Z,) in-
duces an isomorphism of the 2-component of =,,,(S") with =, (Y, for
k <i. (Compare J.P.SERrE[8]) We have my¥ Z,+ Z,+ Z, and
70 L2 Z, as will be seen below, thus

Fy=K(Z,,n+ 9) X K(Z;,n+ 9) X K(Z,,n + 9),

and Lemma 5.1 follows by showing that the restriction of the fibration
Y,o = Y, over one of the factors of Fy is K(Z,,n + 9) x ,K(Z,,n + 10)
with k= 8¢?. This is equivalent to showing that H"+11(Y,; Z,) @ Z, is ge-
nerated by a class w, such that ig(u,) = S¢?(e,), Wwhere &, is one of the
fundamental classes of H®(F,; Z,), and %4: Fy — Y, is the inclusion.

In a similar way, it can be read off from the tables below that com-
position with % provides injective maps =x,,,(8") ® Z, >, 4(S") and
Ry s(S™) = 7,,4(8™) in the stable range. Using #,(S0,) L Z, 74(S0,) L Z,,
and 7,(S0,) L Z,, this implies that Jy: #y(S0,) - 7m,,4(8") is a mono-
morphism.

We proceed to a partial description of the modulo 2 cohomology of the
spaces Y.

H*(Y,) is given by J. P, SERRE in [9]. This result of J. P. SERRE and the
ADEM relations between the STEENROD squares are the essential tools in com-
puting H*(Y,; Z,) for k> 0. Since we stay in the stable range, the spectral
sequences of p,: Y, — Y,_, reduce to exact sequences

i* *
< Hror(Y, ) < Heo(F,) < Hva(Y,) < B4 (Y, ) < -

It is therefore sufficient to determine at each step the kernel and the image
of the transgression z. Since the cohomology of Y, is independent of & up to
dimension n, we omit to mention the non-vanishing cohomology groups in
dimension < n. The direct sum of the subgroups of H*(Y,; Z,) in dimen-
sions > 7 is denoted H*(Y,).

The symbol ¢, stands for the composition p,op,o---op,, and ¢, de-
notes the fundamental class of H™"*(G,n + k; G).

I omit ¥, and Y, whose cohomology is straightforward, but has to be
computed up to dimension » + 17 and =z -+ 16 respectively. H"4(Y,; Z,)
is generated by ¢;(Sq*e,), and H"+5(Y,; Z,) by a class u, such that
iz (4g) = S¢3(ey).

Fy= K(Zs,n + 3), with ©(e}) = ¢f (S¢*e,) and 7(Be;) = u,, where f
is the BOOKSTEIN operator associated with the sequence of coefficients
02,2,y —>Zs >0, and & is the mod. 2 reduction of &;.
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H+(Y,) has a basis consisting of

g in dimension 7 + 7, such that 4; (u;) = Sqtel;

Sqt(us), g5 (SqBeo); Sq2(uy), vy such that iF (v,) = Sqsfey; Sq®(us);
8t (ug); 8g°(us), Sg*Sq* (us), g5 (S¢™e0) 5 Sq°(us), S8 (us), St (v5);
8q°8¢* (uy), Sg58¢?(us), g5 (Sqte,) ;

8¢®(us), 8789 (ug), 8g°Sq?(uy), Sqt(vy), g5 (Sq%%e,); - . .

Y,=Yy=7Y, (m,—m—0.)

Fo=K(Z,,n + 6) with 7(eq) = P51} (u5).
H+(Yq) has a basis constisting of
05 (Sq°eo); o s i (vs), ug such that if(ug) = Sq2Sq ey
Sq'(ue); nothing in dimension n -+ 11; ¢¥(Sq*2e,), Sq28q* (u,);
Py Pa (84405), Sq*(us), vy such that i (vg) = Sq7es;
s (89%e0), Sq°(uq) ; g5 (Sq"°80), P P5 P4 (S°05), -
(and possibly other classes of dimension n + 15).

Fr = K(Zy, n+7) with (&) = g5 (Sq%,) and T(B' £7) = P4 15 Pa(v5),
where f’ is the BOCKSTEIN operator of 0 - Z, - Z;, - Z,4 >0, and &
is the reduction modulo 2 of ¢,.

H+(Y,) has a basts consisting of

%, in dimension 7 + 9, such that iy (u,) = Sq?(e}), pr (us);

8¢ (us), p; (Sq*ug), v, such that ":(%) = 8q*f'es;

8¢ (vs); SPSG* (u), P1 (SESF us), ... (8q%(v;) = 0.)

Fo=K(Zy+ Z,, n + 8) with v(e}) = u,, 7(e5) = p; (ug), where & and
¢ are the two fundamental classes in H"+8(Fg; Z,).

H+(Y,) has a basis consisting of

s (v7), ug, vg, Where ig(ug) = Sq3(eg) and ig(vg) = Sq?(s5);
8q* (ug), Sq*(ve), P5 (S¢*7);

qu(us), Sq2(v8)’ e

Fy=K(Z,+ Z, + Z,, n + 9) with fundamental classes ¢, &, &f which
are send by transgression on pj (v,), %g, vg Tespectively.

H™1Y (Y5 Z,) L Zy(ug), Where g (ug) = Sq?(s) -

We have seen that this statement implies Lemma 5.1, hence the proof is
complete.

Institute of Mathematical Sciences, New York University
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