KNOT COBORDISM IN CODIMENSION TWO

Michel A, Kervaire

A knot will be a smooth oriented submanifold Zn'of Sn+2, where

Z8 is required to have the homotopy type of the n-sphere Sn; Two

knots Z::, Z? € s™2 are cobordant if there exists an oriented

smooth submanifold V € I x Sn+2 of dimension n+l such that

(1) v = VA (bI x s™%) - Z,U(-,), wnhere Z_, i = 0, 1,

n+2

is regarded as a submanifold of {i} x S , and —2:0 is Z:o with

reversed orientation;

(2) The inclusions 2:0———>UV, 2:1——a.v are homotopy equivalences;

(3) V meets BT x Sn+2 orthogonally, i.e, the intersection of V

n+2

with a neighbourhood of bl x S is [0,X) xZo U (1-«, 1] le for

some small o >0,
Cobordism is an equivalence relation between knots of the same

dimension., Transitivity is guaranteed by condition (3).

Let C_ be the set of cobordism classes of knots Z' & ™2 1y

is easy to see that the ambiant connected sum of knots induces an
addition of cobordism classes which turns Cn into an abelian group,

(For details, see [1], Chap,IIl.) The ambiant connected sum is

defined as follows: Given two knots Z’i‘ cs™? i -0, 1, let

n+2 n+2

h, : (p , D) —= (s ,ZE?) be two embeddings such that h_ is
orientation preserving and hl orientation reversing on both Dn+2

and D™, Form the disjoint union (Sn+2 - ho(O)) L’(Sn*z - hl(O))

and identify h_(tx) with hl((l-—t)x) for 0 <t <1 and x € s™! -
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bDn+2. This construction yields an embedding of the connected sum

ZO# Zl into Sn"'2 = SYH"’2 #Sn*z, whose cobordism class is by

definition the sum of the cobordism classes of Z; and 2:1. The

standard embedding st ¢ Sn+2 represents the zero element of the
resulting group Cn'
THEOREM 1. C2k = 0 for k 2 0, i.e, every even dimensional knot

is cobordant to the standardly embedded 82kc: 82k+2.

However, the groups C are not finitely generated. We shall

2k-1
give the purely algebraic description of CZk 1 due to J.Levine [3].
It turns out that for k g 3, C depends only on the parity of k,

2k=-1

so that C_ is periodic of period 4 for n Z 4. For k 2 3, the group

C2k 1 is contained in an infinite unrestricted direct sum of cyclic

groups 4, Z/2Z and Z/4Z, There are elements of each of these orders
(e©, 4 and elements of order 2 not divisible by 2) occuring in
Cox-1°

§ 1. Seifert surfaces

It is well known that a smooth closed curve Z} C:s3

3

orientable surface embedded in $8°, called a Seifert surface of the

2
knot. This fact generalizes to all dimensions: Every an<: S is

the boundary of an oriented smooth submanifold Vn+l < Sn+2.

bounds an

The proof is easy. Observe first that Z:n has trivial normal

n+2 2

bundle in S . Then, take an embedding Eflx D -———>-Sn*2 extending

the given knot I x {O} =" CSn+2. Now, it suffices to show

that IO x {xoi, where x & st = sz, bounds a submanifold V in the

complement X = 5™*% _ int (Z™ x p°). Let ¢ : ™ x s’ 5 st be the

projection on the second factor. Then, L x {xo} (f-l(xo) and if
we can extend {¢ to a map @: X —sst regular at x then é-l(x )
o’ o
will be the desired submanifold. The extension @ exists by
. q+1 1 1
obstruction theory, since, at least for n>1, H (X, T xs ;na(s ))=

‘for all gq. In the sequel we only retain from qs—l(xo) the connected

component V containing the given knot as its boundary. Observe that
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V comes equipped with a normal vector-field v.

Using the Seifert surface, we first sketch the proof of theorem 1.

gRk+2 2k+1

Let ng < be a knot and V a Seifert surface for this knot,

i.e. Vos®¥? g o =3, By surgery theory (see [2], § 6.), we know

there exists a stably parallelizable (2k+2)-manifold W with corners,
so that bW = V U (I xZ) v V,» where V_ is contractible and (W, V)
has a handle decomposition with handles of types < k+1 only. (For

k = 1 see the argument in [1], p.265.) By a theorem of M,Hirsch (or

the direct argument in [1]), the embedding V < S?'k+Z extends to an

immersion W O4 D*¥*3, Now, since (k+1) + (k+l) < 2k+3, any possible

intersection of the handles of (W, V) can be removed by a (small)

regular homotopy. Thus we get an embedding W C D2k+3

¥ < 82k+2. Its restriction to the part (I xX) U v, of the boundary

2k+3

extending

bW yields a contractible submanifold of D with boundary the

given knot X?k. From this it easily follows that the cobordism class

of sz C'52k+2 is zerxo,
The attempt to carry the same proof idea for ZZk‘l < S£k+l fails

in two places. First, one may not be able to reach a contractible
manifold Vik by performing framed surgery (in dimensions < k) on a
Seifert surface \1'2k of the given knot. Secondly, even if one could,
one still runs into the more serious trouble that the (k+l)-handles
of the resulting manifold pair (W, V) will in general héve non-
removable intersections in D2k+2. To measure these obstructions one

introduces an algebraically defined cobordism group of bilinear forms,

§2. Cobordism of bilinear forms

Given £= % 1, we define algebraically (following [3]) a group

cg(z) depending on £. Eventually, it will turn out that C, . =
cf(z), with €= (-l)k for k 2 3. (For results in lower dimensions,

see [3].)
Consider integral valued bilinear forms on finitely generated

free Z-modules, If A is such a form on the free Z-module H, denote by
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A' the transpose of A defined by A'(x, y) = Aly, x) for all x, y € H.
We shall say that A is an £ -form if the form A + £ A' is unimodular.
(See the first few lines of § 4 below for the definition.)

DEFINITION. An £ -form A defined on H is null-cobordant if

there exists a Z-submodule Ho of H such that
(1) 2.rank (Ho) = rank (H);

(2) A vanishes on H o, i.e. A(x, y) = O for all x, y & H_.
Remarks., Observe that such an Ho can then be taken to be a
direct summand of H, Observe also that if A is an £ ~-form on H, then
the rank of H must be even, Indegd, the form S = A + £ A' induces a
symmetric, unimodular form s* on the ¥,

2
s*(x, x} = 0 for all x € H/2H. Take a maximal Fz-subspace U of H/2H

-space H/2H such that

such that $*(u, v) = O for all u, v € U. Let V be the orthogonal
complement of U, i.e. V = { v € H/2H | $®(u, v) = 0 for all u € U;.
Then, dim U + dim V = dim H/2H = rank (H), since Sx is unimodular.
On the other hand, the maximality of U implies U = V., Indeed, if

v € V, then $™(v, v) = O together with S (u, v) = O for all u€ U

imply that Sx(wl, w2) = 0 for all w w, € F_v + U, S8ince U is a

1’ "2 2
maximal subspace with this property, it follows that v € U, Thus
rank (H) = 2.dim U.

If A is an £ ~form on G and B an £-form on H, we denote by A ® B
the £ -form on G ® H given by

(A® B) (x®u, yov) = a(x, y) + Blu, v),
where x, v € G and u, v € H,

DEFINITION. Let A, B be two £ -forms defined on G and H
respectively. We say that A and B are cobordant if the £ -form
A ®{(-B) on ¢ ® H is null-cobordant.

Cobordism of £ -forms is an equivalence relation., Reflexivity
and symmetry are both trivial. Transitivity follows from a

cancellation lemma:
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LEMMA., If A and B are £ ~forms and both A ® B and B are null-

cobordant, then so is A,

Transitivity is then immediate. If A, ® (—Az) and A, © (-AB)

are nmall-cobordant, so is A, ® (-AB) ® A, & (-Az) and the lemma

1 2
applies with 4 = A, @ (—AB), B=a, @& (~A2) and yields that A, & (-AB)
is null-cobordant, i.e, Al and A3 are cobordant if Al’ A2 and A2, A3

are,

Proof of the lemma. Let A be defined on G and B on H. By

assumption there exists L € G & H so that 2.,rank L = rank G + rank H
and A ® B vanishes on L., Also, there is Ho < H with 2.rank H0 =
rank H and B vanishes on H_. Set L_ =1 N (¢ ® HQ) and let G_ be the
projection of Lo on G. If x, y & Go, there exist u, v € Ho such that
X®uw, ye v € L, Then,

A(x, ¥) = A(x, y) + B{u, v) = (A® B) (x® u, vy ® v) = 0.
It remains to prove that Go has the right rank. Take Ho to be a

direct summand of H and write H =Ia)$ Hl‘ Projecting L on H, gives

1

an exact sequence
O — Lo——bL—»Ll E—— Y
Observe that L N Ho and Ho & Ll are orthogonal under B +£&£ B!'. For

Ln Ho and Ho this is obvious, Let u g L N Ho and w e L There

1
exists x ® v € G @ H such that x ® (v + w) & L. Then,

{(B+£B' ) {u, w) (B+£B' ) {u, v + w)

{(A+€A' ) (0, x) + (B+£B' ) (u, v + w)

(A® B)(u, x+viw) + £ . (A ® B)(x+v+w, u) = 0,

since w is also in L, Therefore, since B + £B' is unimodular,
<
rank (L n Ho) + rank (Ho@ Ll) = rank H.

Now, L n Ho = L011 H and there is an exact sequence

O——L NH L G O.
o ] )

The two exact sequences give

rank G = rank L_ - rank (L_ N H),
o o o



88

rank L
[+

[}

rank L - rank Ll’ and so

rank G_ rank L - (rank (LAH_) + rank Ll)'
Pluging in the above inequality and using the hypotheses on rank L
and rank HO, one gets rank Go Z 4.rank G. Of course, equality must
hold since A+4f£A' which is unimodular vanishes on Go' This completes
the proof of the lemma.

It is clear that the direct sum of £ ~forms induces an addition
of the cobordism classes and turns the set C°(Z) of cobordism classes
of £ -forms into an abelian group, We have included reference to Z

in the notation because similarly defined groups over other

coefficient domains will be introduced later.

8§ 3. The transition theorem

Using a Seifert surface, we shall now associate with every knot

s2k-1 - g2kl . (c1)¥-form. Let VX be a Seifert surface for a

2kel 4 o, vPE o g®K*l L1 bV =3 . Let v be the

normal vector-field to V in 52k+1 and i+, i_ o VU——a»Szk+l - V the

given knot Z < S

maps defined by i+(P) = P +X.v(P) for small x>0, PE V.
Let H = Hk(VZk)/(;orsion). If x, y € H, the linking number
L(x, i,(y)) € Z in s?k+l 45 well defined. We set
AGx, ¥) = Llx, 4,(0)-
Observing that L(x, i+(y)) - L(x, i_(y)) = I(x, y), where I denotes
the intersection number in V, we have
L(i_(v), %) = (-1)*'i(x, i_(v))

(- (L(x, 1,(y)) - I(x, y)), and thus

L(y, 1,(x))

k
A(x, Y) + (‘l) A(Y, x) = I(x’ Y)'
By Pcincaré duality, the intersection form I on H is unimodular, and

so the form A is a (-1)k~form.

THEOREM 2, The above construction provides a well-defined map

£ . k
L : Cyp —>C (2), with €= (-1)".
For k z 3, L is an isomorphism.
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Sketch of proof. If Seifert surfaces V V., have been chosen

1’ 2

for 2 knots Zﬁj Z., their ambiant boundary connected sum V is a

Seifert surface for Zaf#Zé. Moreover, the (-l)k~form associated with
V- is clearly the direct sum of the (-l)k—forms associated with V,
and VZ‘ Thus, in order to show L well-defined, it suffices to
consider the case of a null-cobordant knotZ:Zk“l Cf52k+l and to
prove that the (-l)k-form A associated with any of its Seifert
surfaces is null-cobordant, Let ZS < D2k+2 be a 2k-disc with
boundary Z. The union M = AU V, where V is a Seifert surface for

2k+2

is a closed manifold (with corners alongz:) embedded in D An

obstruction theory argument similar to the one in § 1, shows that
M is the boundary of an oriented submanifold W < Dzk+2. Consider

H = Ker j_, where j_ : HM —>H W. If x, y € H_, and say 5,/}(

K
are representative cycles, then §‘¢7 bound (k+1)-chains «}F in W,
We can view L{x, i+(y)) as the intersection coefficient I{«, i+(ﬁ))
which is clearly zero since W and i+w are disjoint. (i+ is here the
extension to W of the map defined above on V using the normal
vector-field.) Thus A vanishes on Ho = Ker jx' It then follows that
A is nmull-cobordant by showing that rank Ho = %.rank HkM' ¥or this,
write the homology exact sequence of (W, M):

0 —>H, . (W, M) —>H2k(M)—»n2k(w)_>...

...—>Hk+l(w)—->Hk+l(W, M) 9, Ker i,—>0,
breaking it at HkM' It yields

rank Ker j_ = rank Hk+l(w, M) - rank Hk+l(w) + rank Hk+l(M)

- rank H_ (W, M) + ...
- (~l)k+l

where E denotes the Euler characteristic. Since the "double" of W

+E E(M) + f.rank H M + (—l)k.E(w),

k
is a closed odd-dimensional manifold, O = E(WU W) = 2,E(W) - E(M),
and so rank Ker j_ = 4.rank Hk{M) as desired. Hence, L is a well~

defined homomorphism.
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Proving the surjectivity of L is straightforward. Given A so
that A + (-l)kA' is unimodular, first take a matrix representative
which we denote again by A, Construct a 2k-dimensional stably
parallelizable manifold V with boundary whose intersection matrix
is A + (-l)kA' in dimension k. The manifold V is obtained by
attaching k-handles to D2k with linkings of the attaching (k-1}-
spheres dictated by the entries in A& + (—l)kA'. (See 1] , p.256 for
details.) Then, bV =% is a homotopy (2k-1)-~sphere as a consequence
of the assumption that A + (-1)kA' is unimodular,.(k z 3 is needed

here to quarantee n12:= 0.) Take a random embedding V < 52k+l.

Its
restriction to bV yields a knot for which V is a Seifert surface,
and thus to which there corresponds some (—l)k—form B of the same
rank as A, Actually, B + (-l}kB' = A + (-l)kA', since both are

equal to the intersection form on H, V. One can then change B to A

k
by readjusting the mutual linking of the handles of V.,

The proof of injectivity of L proceeds in two steps: (1) One

shows that every knot Z?k-l C782k+l is cobordant to a simple knot
.Zik-l‘: 82k+l, i.e. Z is the boundary of a (k-1)}-connected

manifoid Vo < 82k+1;

{2) It is then enough to show for a simple
knot that null-cobordism of the associated (~l)k—f0rm, constructed
using a (k-1l)~-connected Seifert surface, implies null-cobordism of
the knot.

To prove step (1), use surgery on a Seifert surface V2k for the

knot Z2k-l = S2k+l

to produce a manifold W with bW = V U (I xZ )V v,
(corners along bV = {0} xX and {1} xZ = bV ), where V_ is
{(k~l)-connected and (W, V) has a handle decomposition with all

handles of type < k. As in the proof of theorem 1, it is easy to

extend V < 82k+l to an embedding W < D£k+2. The problem is then to
embed a (2k+2)-disc D§k+2 in D*¥*? <5 that (int D )N W =g, in

S2k+1
o

such a way as to engulf Vo < bDo = . If this can be done, then
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D2k+2 2k+2 2k+1
o

nt D which is diffeomorphic to I x S contains a

2k+1

2k+l dZ =bV < S . Since V_ is
o o o o

cobordism between 7 < S

(k-1)~-connected, ZQ CZS§k+l is a simple knot, The existence of an
embedding D§k+2<: p?K*2 Lien V_ < bD_ follows from the engulfing

theorem of M.Hirsch., (Theorem 2 of "Embeddings and compression of
polyhedra and smooth manifolds". Topology, Vol.4 (1966), 361-369.,)

Remark. 1t was pointed out to me that the existence of a

PlL~embedding of Dik+2 with the desired properties is fairly obvious,

taking for granted the relative regular neighbourhood theorem,
Indeed, since Vo has k-dimensional spine, the cone over spine (Vo)

embeds disjointly form int (W), observing that (W, V) has only

h-handles with h = k. Thus D_ can be taken to be a regular

neighbourhood of such an embedded cone.

Z2k-l S2k+l

Step (2) is an application of surgery. We have <

a simple knot bounding Vzk:C SZk+l, where V is (k-1)~connected. The

problem is to perform ambiant surgery on V in D2k+2 so0 as to produce

2k+2 221(— 1

a contractible submanifold of D with boundary , We are

assuming that the associated (-l)k-form is null-cobordant, so by

hypothesis there exists a basis x., ..., X X ey X of Hkv

2r
with the property that L(x,, i+(xF)) = 0 for all «,f} £ r, Clearly

r' Trs+l?

then, I(x,, xﬁ) = 0 for all «,[I S r and since V is (k~1)-connected

{and k 3 3), we can take disjoint embeddings for Sk~—a-V

&= 1, ..., r representing xy. The conditions L(x, i+(xﬂ)) = 0

for « #{3 then mean that the f,'s can be extended to mutually

Dk+l D2k+2

disjoint embeddings F, : . Moreover, L(xy, i+(xx)) = 0

implies that Fy is extendible to an embedding F, : Dk+l X Dk—a-D2k+2

k

such that F&l s¥ x DX is a tubular neighbourhood of ﬁx(sk) in V.

It is well known then, and easy to check that surgery on
Xis eeey X_ € Hk(V) (as just shown possible) replaces V by a

contractible manifold with the same boundary.
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§ 4. Algebraic study of CS(Z)

Let A be a bilinear form on H. Then A defines a homomorphism
H —— Hom (H, Z) which to x € H associates the homomorphism H —m Z
defined by y——» A(x, y). We say A is non-singular if the associated
map H —Hom {H, Z) which we denote by A again is injective. (A is
unimodular iff A : H—» Hom (H, 4) is an isomorphism.)

Prop., 1. Every ¢ ~form is cobordant to a non-~singular one.
P

Proof, Let A be an £ ~form on the Z-module H, Suppose A is

singular, i.e. there exists e, € H, e, # 0, so that A(e x) = 0 for

1 1

all x € H., We may assume that e, is not divisible in H and thus Ze

1 1
is a direct summand in H. Then, since S = A 4+ £A' is unimodular,
there exists e, € H with S(e;, e,) =&, or Ae,, el) = 1. Let G be
the orthogonal complement of e,, e, under S, i.e, G = {xaH fs(el, x)
S(e2, x) = 0}. It is easy to check that H = Ze, @ Ze, ® G. Now, let

B be the restriction of A on G, Claim: B is an & -form on G which is
cobordant to A, The first statement is trivial. For the second, let
D be the diagonal in G ® G, i.e. D = {(x, x) € GoG | x ¢ G}. Then,

A®{(-B) vanishes on Ze, + D C H ® G, and rank (Zel + D) = $(rank H +

1
rank G). The proposition follows by induction on rank H.

As above, let A : H——» Hom (H, 2), and similarly, S = A + £A':
H—> Hom (H, Z). Since S is an isomorphism, we have a Z-map

s = s™YA : H——=H. Note that s is characterized by

A(x: v} = S(sx, Y)
for all x, y € H,

Prop, 2. If L is a non-zero Z-submodule of H on which the £~form

A vanishes and such that s{(L) € L, then A is cobordant to an £-form

of strictly smaller rank.

Proof. We may assume that L is pure and hence a direct summand
in H, Set M = {x € H | $(x, y) = 0 for all y e L}, where as before

S =A +£A', Then, A(x, y) = O and A'(x, y) = O for all x € M, v € L.
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Indeed, A'(x, y) = Ay, x)} = S(sy, x) = O since sy € L. Then,
A(x, y) = 0 for x € M, vy € L follows from S = A + £ A"'.

Therefore, A induces a form B on M/L. Since M is a pure sub-
module, and hence a direct summand in H, it follows that T = B + £ B!
is unimodular., Thus B is an & -form. Consider A &{(-B) on H & (M/L).
It vanishes on the submodule D of all (x, x"), where x € M and
x* = class of x mod L, Now, rank D = rank M = rank H - rank L since
M is the orthogonal complement of L under the non-singular form S.
Thus rank (H + (M/L)) = rank H - rank L + rank M = 2,rank D. Hence,
A is cobordant to B of strictly smaller rank,

Exercise. Define A to be reduced if A is non-singular and there
is no nomn-zero submodule invariant by s on which A vanishes. Prove
that if A and B are reduced £-forms on G and H respectively and are
cobordant, then there exists an isometry f : GQ———a—HQ,
a Q-isomorphism N = G @zQ) such that B{(fx, fy) = A(x, ¥). On the

i.e.

other hand, the example

11 2 -1

A = B =
o 6 -2 b
shows that cobordism of reduced forms does not imply isomorphism

over Z. {In this example, A @ (-B) vanishes on Zx, ® 1x,, where

2
X, = (3, 1, 3, 0) and x, = (-6, 1, 0, 3). However, A and B are mnot
isomorphic over Z since B(el, el) = 2, where e, = (1, 0), but
A(x, x) # 2 for all x.) Conclude that the determinant of a reduced
representative of a cobordism class is an invariant of the class,
I do not know whether this can be exploited to clarify the
structure of cf(z).

In order to state the mext proposition we have to define

auxiliary cobordism groups Cf {42) and Cf {Q). A polynomial f will

be said to be reciprocal if f(X) = an(x°l), where n = deg f, For
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example, if A is an &-form, then AA(X) = det (A.X +EA') is a

{well-defined) reciprocal polynomial in Z[X] called the Alexander

polynomial of A. Let A be defined on H say, and set s = S'lA, where

as above S = A + £2A', i.e, s is defined by A(x, y) = S(sx, y) for

all x, y € H, Suppose that A is non-singular, Then t = 1 - s—l

»

H® Q— H & Q is an automorphism. (It is easily verified that

1

t -EA"

A',) Moreover, t is an isometry for A and S extended to
H & Q, The polynomial ZSA(X) = det (A.X + £A') is the characteristic
polynomial of t (up to the non-zero factor det A).
Now, let &= + 1 be given together with an irreducible,
. . - A m
reciprocal polynomial of even degree \g Z[X] such that A(1l) = (-¢8)",
where 2m = deg) .

Define an isometric structure over Z or Q associated with & ,A

to be an f-symmetric unimodular bilinear form S on a Z-space (resp.
Q-space) V together with an injection s : V —a= V satisfying

(1) s(sx, y} + s(x, sy) = S(x, y),

(2) (p(x) = xzm}\(l-x'l) is the minimal polynomial of s.
Note. Condition (1) is equivalent with S(tx, ty) = 8(x, y) for
t = 1 - s"!, we have stated it in the more complicated form of
condition (1) because t is in general only defined over Q. Also,
condition {(2) simply says X is minimal polynomial of t.

There are obvious definitions of cobordism: An isometric
structure (S, s) on V is null-cobordant if there exists an s-invariant
subspave Vo < V of half the rank of V on which S8 vanishes. Further,
(S8;, s,) and (S,, s,) are cobordant if (S, @ (-S,), s

1 1@ 52) is
null-cobordant. Trivial modifications in the proof of the lemma in
§ 2 show that cobordism of isometric structures (associated with
the same £ .A } is an equivalence relation. The set of equivalence

classes Cf(Z), resp. Cf(Q) is a group under direct sum.

Prop. 3. There are injections
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Z, ¢f(z)—E>cf(z) ——y.cf(a),

where the extreme terms are restricted direct sums over all

irreducible, reciprocal Ae Z[X] of even degree 2m satisfying
m
M1) = (-9)".

Proof. Let (S, s} be an isometric structure on a free Z-module H

representing an element o- in some Cf(Z). Define A by A(x, y) = S(sx, y)
for all x, y € H, Condition (1} on 8 and s implies that A + £ A' = S,

Thus A is an ¢-form on H. Set i{0) cobordism class of A. It is

it

immediate that we get a well-defined map i :EZA Ci(Z)--» CS(Z).
Next we show that i is injective. Let (S, s ) € cik(z), k=1, ..., n,
be such that A = A, & .., ® A is null-cobordant, where Ak(x’ y) =

Sk(skx, y) on H Thus we assume that H = H, & ... @ Hn contains a

K*
Z-subspace N ¢ H with A(x, y) = O for all x, vy € N and rank H =

2,rank N, We can assume that N is pure, Observe first that sN ¢ N,

where s = s, @ ... @ s_. Indeed, since A(x, ¥) = 0 and thus A'(x, y)= O

for all x, y € N, we have S(x, y) = 0 for all x, y € N, If now x is
a fixed element of N, then S(sx, N) = A(x, N) = 0. Therefore, N + Zsx
is S-orthogonal to N. Since $ is unimodular, rank (N + Zsx) < rank H -
rank N = rank N. Thus sx € N, since N is pure, It follows next that

the projection N, of N into H, is contained in N, (k = 1, ..., n.)

k k

To see this, 1let TP = ]; V7 where % is the minimal polynomial
k(#k{ K

of s There exist polynomials u

K* x € z2[X] such that Z? uk‘yk = ¢,

a non-zero integer, Using'y%(s{) = 0 for k # {, we have, with

X = X T oeee + X,
n

cx, = Z{ u{(s} S(;,,(s}xk = Z{ u{(sk) ”gl/( (Sk)xk = uk(sk} g//k(sk}xk

]

Zy uk“\s,()’ff/k(sf)xé = Zy¢ uk(s)lf/k(s)xz = uk(s) Z,Vk(s)x:

showing that if x € N, then cx, = uk(s)1yk(s)x € N, and since N is

pure this implies X, & N,

k

From this it follows that each Ak is nmall-cobordant. Since
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A, = A|H_ and N

= e . N < N.
N Nl & N2 & ® Nn We have just proved that N1 D QNn N

< N, we have AklNk = 0, It is trivial that

So, N = NlG) ...@Nn, and then

i4rank H = rank N =X, rank N < 2. rank H, = {rank H,
k k

k k

<
where rank Nk = 4rank H_ for every k because A, is non-singular and

k k

vanishes on Nk. Thus, rank N, = %.rank Hk for every k.

k

- i = 1 :
Now, Nk is clearly Sy invariant, and Sk Ak + é‘Ak vanishes on
it, so {Sk, sk) is null-cobordant, This completes the proof of
. . g £

injectivity of 1 : X, c,(z2) —c¢ (z).

The map j : ¢5(Z) —» ZAci(Q) is defined as follows: Let A be
a reduced &~-form on H, and consider A as defined on V = H @ Q. The
Alexander polynomial AA(X) = det (A.,X + £A') splits over Z[X] as
a product AA = X;l. e e >\ir, with )\QEZ[X] irreducible, Then, as
it turns out, each )\“ must be reciprocal., Its sign can be fixed so
that >\ (1) = (-£)™ , where 2m, = de A Further S = A + £A' and

4 = ’ o¢ = & o =

the isometry t = —ea~tar split as direct sums of isometric
structures (S“, s,() on the eigenspaces V. (In particular the
minimal polynomial of t, = t|V, is >‘o(') The class of Zo( (SN, s,) is
then by definition the j-image of A,

In order to prove these statements, let = A / >\e,( We have

’ /"o( A » .

v, = /‘o( (t)V #£ 0. One proves that if }\x was not reciprocal then A
would vanisk on the t-invariant subspace V,, whereas A was assumed
to be reduced. Indeed, letting T denote F(X) = Xn.f(x'l), where
n = deg £, we have >\«= i)\pfor some /3. if ﬂ £0(, then /Z“-/“d

is divisible by A and so for all xg, Y € Vys we have

A
Alxyes Yy) = A(pylt), M (t)y) = a(x, ¥, /Z;(t)./b(«(t)y) = 0.
where ¥ = -deg /40( . This proves that each A“ is reciprocal.
The statement about the sign follows from AA(I) = (-¢)",
where 2m = degAA. [This in turn, because if £= -1, AA(l) is the

determinant of the skew-symmetric matrix A - A', Thus it must be a
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square, If £= +1, then Z&A(l) = det (A + A') = (nl)%(rank—51gnature).

Now since A + A' is unimodular and even, the signature is divisible
by 8.]
It remains to verify that %“is the minimal polynomial of

ty = t|V . But if not, there is an integer e, 1<e £ e,, such that

e-1 e R .
W, = A« (tq)ﬁx # 0 and }w(tx)gx = 0. Then, for arbitrary X,, ¥, €W,
one has
e-~-1 e-1
A(x‘x, Yx) = A(/\X (tb()uo(, )\o< (tx)vo,()

A(u,, t;. )\ie_z("o()vx) = 0,
since 2e-2 z e, Hence, again, A would not be reduced,

It is clear that the map j is well-~defined since the cobordism
class of a reduced £-form A determines its isomorphism class over Q.
To see that j is a homomorphism, observe that there is an obvious
definition of a reduced isometric structure, i.e. (S, s} defined on
H is reduced if s is dinjective and there is no non-zero subspace
H0 € H such that S|Ho = 0 and s\Ho) < H . The reduction processes
for an £-form described in Prop.l and Prop.2 yield reduction
processes for isometric structures., Hence, first reducing Al & A2
and then applying j yields the same as gotten by reduction of
j(Al} ® J(A,). We leave the details to the reader.

It is easily seen that none of the maps i nor j is surjective,

So,

Zyci(z) < c¥(z) < =, ¢5(@Q)

holds with proper inclusions. (Of course, the maps Cf(Z) < Cf(Q)
are merely the ones gotten by extension of scalars from Z to Q.)

Very little is known about these groups and even less is known
orn the cokernels of i and j.

We conclude with a few remarks on CE(Q) due to J. Levine [h] and
J. Milnor [57.

Recall that an element of Ci(Q) is represented by an £-symmetric
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non-degenerate bilinear form S on a finite dimensional Q-space V
together with an isometry t : V—» V, i.e, S(fx, ty) = S(x, y),
such that A is the minimal polynomial of t. (The polynomial
Ae Z[X] is given as irreducible, reciprocal and satisfying
A(l) = * 1, This implies that the degree of A is even., The sign

can then be fixed so that A(l) = (-£)™, where 2m = degl .)

Prop.4. The group C:(Q) is independent of £, i.e. C;}(Q) and

- )
[ l(Q) are isomorphic, where A= (~l)mk.

X

Suppose (SO, t) is an isometric structure on a Q~-space V with

S, symmetric. We associate with (S _, t) the structure (Sl, t),

where S, is defined by Sl(x, y) = so(x, (t - g1

check that Sl
t - t—l is an isomorphism, and so Sl is non~degenerate, Clearly,

It is immediate that the map

)y). It is easy to

is skew-symmetric, The conditions on X imply that

t is an isometry for Sl'
(So, t}-——-»(Sl, t) is compatible with cobordism and induces an
isomorphism CXI(Q)-——> C;l(Q). For the balance of the paragraph

we let CA(Q) stand for C:l(Q). The study of this group can be
attacked in the following way: Let K = Q[X]/{)(X)) and let 7T € K
be the element corresponding to X. Since A is rec:::i.procal,'z"'l £ K
is also a rToot of A and there is a Q-automorphism of K sending T
into =~1, We denote it with a bar: a »——» 3. Let F be its fixed
field: x € F iff X = x. Now, suppose V is a (finite dimensional)
Q-space with an isometric structure (S, t) associated with

(€ = +1,A € 2[X]) as above. Following J.Milnor [5] , we can equip
V with a K-space structure and a hermitian form ( . ) with
respect to the involution on K. To give V a K-space structure it
is enough to define T.x = t(x). (Recall we are assuming that A

is minimal polynomial of t.) To define the hermitian form ( N ),

fix a pair x, y € V. Then S defines a Q-linear map K —»Q via

a—>S(ax, y). Since K/4 is separable, there exists a unique



99

element, {x, y) by definition, of K such that

tracerQ{a.(x, y)} = s{ax, ¥),

for all a € K. It is easy to verify that (x, y) is linear in the
first variable and (y, x) = (x, yv). {(For details, see J.Milnor {5}.)

Conversely, given a (non-singular) hermitian K-space V, the
formulae t{(x) = T.x and S(x, y) = traceK/Q(x, y) define an isometric
structure (S, t) on V, viewed as a Q-space now, where t has minimal
polynomial A. Thus, if we define a hermitian K-space V to be null-
cobordant if it contains a K-subspace U such that dim U = %.dim v
on which the hermitian form vanishes, we get a one-to-one
correspondence between the elements of Cl(Q} and the cobordism
classes of (non-singular) hermitian K-spaces,

Hence, we can derive some information on CA(Q} from the

classification of hermitian spaces, Let V f € F, be the

f’
l-dimensional hermitian K-space defined by (x, y) = x,y¥.f. If f' = fkk
for some k € K, then Vf, Q'Vf. Now, every hermitian K-space is the

direct sum of l-dimensional spaces V Thus, there is a surjection

£
Z[F'/NK/FK°]—~—C)\(Q) ,

where N is the norm from XK to F and the dot means that we remove

K/F

the O-element. (Z[F°/N K°] is the integral group ring of the

X/F
multiplicative group F’/NK/FK'. The map is the linear extension of
f-———»Vf.) Actually, if we define a product in C,(Q) by the tensor
product over K of the associated hermitian K-spaces, the above map
is a ring homomorphism, Its kernel can probably be described in
terms of symbols. We do not pursue here and, following J.Levine [4],
shall only describe invariants for the elements of C)(Q) obtained
by embedding CX(Q) into a direct sum of cobordism groups for
isometric structures over the real and p-adic completions of Q.

More precisely, let V be a hermitian space over K = Q[X]/(A(X)},

where k € z[xX] is irreducible, reciprocal of degree 2m, and
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A1) = (-1)™. Denote again by F the fixed field of the involution
on K determined by T— =T = z_ 1, where T is the image of X in K.
We can view V as an F-space with symmetric, non-singular, F-valued

bilinear form defined by X, y) = trace x, y) and an
’

K/F
isometry t defined by t(x) = T.x. Set ¢ = T + T & F, Then, t (or 7)
satisfies the eqguation t2 - c.t + 1 = 0, We shall denote by/L the
polynomial /L(X) = X2 - ¢cX + 1, Now, for every prime jg in F, we can
extend the coefficients from ¥ to the ??-adic completion F , We get
a map

¢, (Q) ——— Zy, C/L(*fy)'
where Q”(if) = 0 if the polynomial H is reducible over %? , and
otherwise q”(ﬁﬁ) is the cobordism group of hermitian fp-spaces
(sy being the completion of K at a prime extendingjp, or equivalently
K?, = %?[X]/(F{X)).) Equivalently, %P(%?) can be viewed as the
cobordism group of symmetric bilinear forms on éy—spaces with an
isometry t satisfying /u(t) = 0,

Prop.5. The map

CA(Q) m— Z?C/u(f\y)
is injective.

Proof., Let V be an F-space with isometric structure (/3, t)
such that the isometry t satisfies t2 - ¢c,t + 1 = O, We can assume
that V is reduced, i.e, there is no non-zero t-invariant subspace
of V on which /.5 vanishes. If (ﬂ, t) maps to O in Zt?)cﬂ(F},), then
the form/Q represents 0 locally at every primegp, i.é. there exists
ﬁy # 0 in V ® %? such that ﬂ(x , é?) = 0. By a well-known theorem
on quadratic forms over global fields the form/3 represents O over
F, i,e. there exists an x € V, x # 0, such that/ﬁ{x, x) = 0. (See
O'Mearaféj, p.187.) But then, it follows that[3 vanishes on
Fx + Ftx, which is t-invariant, contradicting the assumption that
V was reduced, Indeed,/G(x, tx) =/}(t_lx, x), and thus

ﬂ(x, tx) = %.ﬂ(x, (t+t-l)x) = % .ﬂ (x, x) = 0, since t+t™t = ¢,
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Of course, p(tx, tx) = p(x, x) = 0. This proves proposition 5.
It remains to calculate Cﬂ(Fy)) There are 3 cases apart from

the trivial case where /u is reducible in Fy[X].

Prop.6. Suppose /cis irreducible in the completion.%?. Then,

(1) lgﬁ{ is a real prime, Q#(R) T 2y

(11) l{jﬂ is a finite prime and -1 is norm from ﬁ? = gy[x]/gu(x))

to 1;‘?, then %(Fy T Z/22 & 2/22;

(III)LQ?Q is a finite prime and -1 is not a norm from Sy t %Z,
then Cﬂ(Fy) CI LY

Observe first that given an isometric structure (P, t) on an
gg-space V, where t2 - ¢t + 1 =0, the cobordism class of the fonnﬂ
alone determines the cobordism class of the isometric structure.
Indeed, 1if QG, t) is reduced and ﬁ is null-cobordant, then V must
be 0, Otherwise, there exists x € V, x # 0 such that ﬁ3(x, x) = 0,
and the argument at the end of the proof of Prop.5 shows that x
and tx span a t-invariant non-zeéro subspace of V on which ﬁ
vanishes, contradicting the assumption that (p, t) was reduced.

Now, in case I, i.e, %? = R, the cobordism class of a symmetric
bilinear form is determined by its signature, It follows.that
qﬂ(R) = Z generated by Vl in the above notation, i,e., C viewed as
R-space with ﬂ(x, Y) = xy + Xy and t{(x) =T .x, where T is a root
of/ﬂ&X) = X2~-cx + 1. (Observe that the involution defined above
does coincide with complex conjugation in this case, What else
could it be?)

Next, suppose thatjg is a finite prime and -1 is a norm from
%g;to 5?. Since %?/%? is a finite extension of local fields,

[%? : N%é}: [K?,: E?}

from %? to %;. Let 1, g be representatives of the 2 classes in

2, where for simplicity N denote the norm

i

Z/2Z ® Z/2. generated by Vl and Vg, where

as above Vf denotes the %?-s;mce of dimension 2, which we identify

I%‘/NK% . Then, C/‘(I%)

with sf, together with the isometric structure given by
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p(x, y} = trace (x.¥.f) and t{x) = Tx, where the trace is from

%? to %g.

It is clear that for every f & F_ , Vf @ V,_. is null-cobordant.

f
Proof: Choose k € K so that -1 = k.k. Then U = {(x, xk) € Vg x fo

has half the dimension of Vf D Vf and ﬁ 9!3 vanishes on U. It is

also obvious that Vl and Vg are reduced and thus neither one is

mull-cobordant. Finally, Vl and Vg are not cobordant, otherwise,

being reduced, they would be isomorphic. It is easy to check that

1 £

It remains to handle the case wherejgis a finite prime and

V, and V_ are isomorphic if and only if f € N(Kjg).

-1 i8 not a norm from K, to E,. We still have |F’ : NK’ = 2, and
p oy [+ mp] -2

in this case we can take +1 and -~} as representatives of the two

elements in Eé/N%? . Obviously, Vl @® V_. is null-cobordant, Thus

1

in this case V., suffices to generate %“(%9)' Claim: V. is precisely

1 1
of order 4., Observe first that Vl.ﬁivl is not null-cobordant, If it

was, then V., and V would be cobordant, hence isomorphic, since

1 1
they are reduced, But V

’:v_

1 1 implies that -1 is a norm. It

remains to show that Vl 2 Vl &avl &9Vl is null-cobordant., This
relies on the fact that -1 is a sum of norms from %%;to %?. Assume
for a moment that -1 = kl'il + kz‘E2' An easy calculation shows
that the form (J@ﬂ@(l@/l vanishes on the subspace of

v, & V,® V, &V, consisting of all (x, v, k.x + k,¥, sz - Rly),

1

implies that V., is of

where x, v € %?. Hence, -1 = k., .k, + kz.k 1

1°71 2

order 4 in %ﬂ(%?). In order to show that -1 = kl'Ei + k,.k, we can
either appeal to a general theorem stating that a regular quaternary
space over a local field is universal, (See ('Meara, [6], § 63C.

In particular Remark 63:18.) Or, we can see this directly in the
case of interest to us as follows: Let Qp be the completion of the
rationals contained in F, Assume first p # 2. Then, -1 is a sum of

squares in Qp and so a fortiori a sum of norms in every quadratic



extension Eg/%?. Sketch of proof: First, an easy counting argument
shows that -1 is a sum of squares in Fp, the field with p elements,

Indeed, let S be the set of non-zero squares in Fp. If o€ -1 - S,

then -1 is a square and we are trough., Otherwise, ~1 -~ 8 < Fé =

S U (~8). We have ~ S £ -1 - S because -1 ¢ -1 - §, It follows that
-1 -8 g: -5 because the inclusion would imply eguality since the
two sets have the same cardinality ${(p-1}. Thus, -1 - S intersects

the complement S of -5, i.e. (=«1-8) N S # @, Thus there exist

=2, ﬂz € S so that -1-P2 = %,

Now it is easy to solve -1 = x2 + yz in Qp. Choose X0 Yo € Z

so that -1 = xi + yj mod p. We can actually take O ﬁ X,< P,

<
0 = yo < p+. Assuming by induction that we can find sn =

n < n

xo + xlp + ea. + xnp {0 = xi4< p) and tn =Y, * ylp + ese + ynp
({0 £ ¥, < p)} such that

-1 = 52 + tz mod pn+l,

n n

set s = 8+ X n+l t = t n+l with unknown X

n+l  n n+1P " Ynel T 'n Y YniaP n+l’ Yn+1*
Writing 1 + s> + t> = k p™*!, we find that 1 + s> . + t> . = 0 mod p™*?

n n n n+1 n+1

if (and only if) x satisfy the congruence

n+l’ Yn+1

k o+ 2(x°xn+l + yo¥n+l) = 0 mod p.
Solving this congruence in xn+l’ Ype1 8 clearly possible since p # 2
and X ¥, cannot both be O mod p since xi + yi = «1 mod p. The

sequences {snl , {tnf clearly converge in Qp to x, resp. ¥y, satisfying
x2 + y2 = -1,

The case p = 2 would be more difficult. However, it does not
arise here. Recall that (l—f)‘l has to be integral. (7" is a root of
the polynomial X% - ex +1 defining the extension fg/gp.) This
implies that Z—i‘g and hence ¢” % must be integral in ll)e. (Hereflz
of course.) but then, using the fact that the multiplicative group

of the residue class field of F has odd order (finite field of
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characteristic 2), one can find an integral element oK of F such

that « + 2 = 0 modj?. Setting d = 02 - 4 (the discriminant of

x? - cX + 1), we then have

(2¢)% = d.¢™® = -1 mod up.

From there it is easy to find x, y € ?? such that x2 - d.y2 = =1

using the successive approximations as in the case p # 2. This

last equation however means that -1 is a norm from %7,to %?.
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