
KNOT COBORDISM IN CODIMENSION TWO 

Michel A. Kervaire 

A k n o t  w i l l  b e  a s m o o t h  o r i e n t e d  s u b m a n i f o l d  ~ n  o f  S n + 2 ,  w h e r e  

n i s  r e q u i r e d  t o  h a v e  t h e  h o m o t o p y  t y p e  o f  t h e  n - s p h e r e  s n .  Two 

knots ~n n sn+2 o,~i C are cobordant if there exists an oriented 

smooth submanifold V C I x S n+2 of dimension n+l such that 

(i) bV = V ~ (bl x S n+2) = 7- 1 U (-[o) , where }-i' i = O, i, 

is regarded as a submanifold of {i} X S n+2, and -Z 0 is Z 0 with 

reversed orientation; 

(2) The inclusions ~o ~ ¥' ~i ~ V are homotopy equivalences; 

(3) V meets bI x S n+2 orthogonally, i.e. the intersection of V 

with a neighbourhood of bl x S n+2 is [0,~) x~ ° U (l-G, 1] x~ 1 for 

some small ~ > 0. 

Cobordism is an equivalence relation between knots of the same 

dimension. Transitivity is guaranteed by condition (3). 

Let C be the set of cobordism classes of knots 7 -n c S n+2. It 
n 

is easy to see that the ambiant connected sum of knots induces an 

addition of cobordism classes which turns C into an abelian group. 
n 

(For details, see [i], Chap. Ill.) The ambiant connected sum is 

defined as follows: Given two knots ~n c S n+2, i i = 0, i, let 

h I. : (D n+2, D n) > (S n+2' X~) be two embeddings such that ho is 

orientation preserving and h I orientation reversing on both D n+2 

and D n Form the disjoint union (S n+2 S n+2 • - %(0)) U ( - hl(0)) 

and identify ho(tX ) with hl((l-t)x ) for 0 ~ t < 1 and x 6 S n+l = 
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bD n+2. This construction yields an embedding of the connected sum 

ZO~ ~i into S n+2 = sn+2 ::~S n+2, whose cobordism class is by 

definition the sum of the cobordism classes of ~o and ~-i" The 

standard embedding S n ~ S n+2 represents the zero element of the 

resulting group C . 
n 

THEOREM i. C2k = 0 for k ~ 0, i.e. eyeEy even dimensional knot 

is cobordant to the standardly embedded S 2kC S 2k+2. 

However, the groups C2k_l are not finitely generated. We shall 

give the purely algebraic description of C2k_l due to J.Levine [3]. 

It turns out that for k ~ 3, C2k_l depends only on the parity of k, 

> = so that C n is periodic of period 4 for n = 4. For k > 3, the group 

C2k_l is contained in an infinite unrestricted direct sum of cyclic 

groups Z, Z/2Z and Z/4Z. There are elements of each of these orders 

(~ , 4 and elements of order 2 not divisible by 2) occuring in 

C2k_ 1 • 

i. Seifert surfaces 

It is well known that a smooth closed curve ~ -I C S 3 bounds an 

orientable surface embedded in S 3, called a Seifert surface of the 

knot. This fact generalizes to all dimensions: Ever Z ~n C S n+2 i__~s 

the boundary of an oriented smooth submanifold ¥n+l C S n+2 . 

The proof is easy. Observe first that ~n has trivial normal 

bundle in S n+2. Then, take an embedding ~n D 2 sn+2 x ~ extending 

the given knot ~n x [ 0} = ~-n C Sn+2o Now, it suffices to show 

that ~n x {Xo} , where x O ~ S 1 = bD 2, bounds a submanifold V in the 

_ ~n S 1 S 1 complement X = S n+2 int [ ~n x D2). Let ~ : x ~ be the 

projection on the second factor. Then, In x ~Xo} = ~-l(xo) and if 

we can extend ~ to a map ~ : X )S 1 regular at Xo, then ~-l(xo) 

will be the desired submanifold. The extension ~ exists by 

obstruction theory, since, at least for n >I, Hq+I(x, ZxSI;~q(SI))= 0 

'for all q. In the sequel we only retain from ~-l(xo) the connected 

component V containing the given knot as its boundary. Observe that 
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V comes equipped with a normal vector-field v. 

Using the Seifert surface, we first sketch the proof of theorem i. 

Let ~2k ~ 82k+2 be a knot and V 2k+l a Seifert surface for this knot, 

i.e. V C S 2k+2 and bV = X. By surgery theory (see [2], § 6.), we know 

there exists a stably parallelizable (2k+2)-manifold W with corners, 

so that bW = V U (I xZ) U V o, where V ° is contractible and (W, V) 

has a handle decomposition with handles of types ~ k+l only. (For 

k = 1 see the argument in [i], p.265. ) By a theorem of M.Hirsch (or 

the direct argument in [i]), the embedding V c S 2k+2 extends to an 

immersion W C~ D 2k+3. Now, since [k+l) + (k+l) < 2k+3, any possible 

intersection of the handles of (W, V) can be removed by a (small) 

regular homotopy. Thus we get an embedding W C D 2k+3 extending 

V C S 2k+2. Its restriction to the part [I x~) U V of the boundary 
o 

bW yields a contractible submanifold of D 2k+3 with boundary the 

given knot ~2k. From this it easily follows that the cobordism class 

of ~2k C S 2k+2 is zero. 

The attempt to carry the same proof idea for ~2k-1 C s2k+l fails 

in two places. First, one may not be able to reach a contractible 

manifold V 2k by performing framed surgery [in dimensions ~ k) on a 
O 

Seifert surface V 2k of the given knot. Secondly, even if one could, 

one still runs into the more serious trouble that the (k+l)-handles 

of the resulting manifold pair [W, V) will in general have non- 

removable intersections in D 2k+2 To measure these obstructions one 

introduces an algebraically defined cobordism group of bilinear forms. 

~2. Cobordism of bilinear forms 

Given S = ~ i, we define algebraically (following [3]) a group 

C£(Z) depending on S . Eventually, it will turn out that C2k_l -- 

CZ(Z), with ~ = (-i) k for k ~ 3. (For results in lower dimensions, 

see [31 

Gonsider integral valued bilinear forms on finitely generated 

free Z-modules. If A is such a form on the free Z-module H, denote by 
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A'  t h e  t r a n s p o s e  o f  A d e f i n e d  b y  A ' ( x ,  y )  = A ( y ,  x )  f o r  a l l  x ,  y ~ H .  

We s h a l l  s a y  t h a t  A i s  a n  £ - f o r m  i f  t h e  f o r m  A + ~ A '  i s  u n i m o d u l a r .  

( S e e  t h e  f i r s t  f e w  l i n e s  o f  ~ 4 b e l o w  f o r  t h e  d e f i n i t i o n . )  

DEFINITION. An ~ -form A defined on H is null-cobordant if 

there exists a Z-submodule H of H such that 
o 

( 1 )  2 . r a n k  ( H o )  = r a n k  ( H ) ;  

(2) A vanishes on Ho, i.e. A(x, y) = 0 for all x, y ~ H o. 

Remarks. Observe that such an H can then be taken to be a 
o 

direct summand of H. Observe also that if A is an ~ -form on H, then 

the rank of H must be even. Indeed, the form S = A + E A' induces a 

symmetric, unimodular form S m on the F2-space H/2H such that 

St(x, x) : 0 for all x e H/2H. Take a maximal F2-subspace U of H/2H 

such that ~(u, v) = 0 for all u, v e U. Let V be the orthogonal 

complement of U, i.e. V = { v E H/2H I S'(u, v) = 0 for all u ~ U I. 

Then, dim U + dim V = dim H/2H = rank (H), since S ~ is unimodular. 

On the other hand, the maximality of U implies U = V. Indeed, if 

v g V, then S~(v, v) = 0 together with Sm(u, v) = 0 for all u ~ U 

that Sm(Wl, w2) = 0 for all Wl, w 2 ~ F2v + U. Since U is imply a 

maximal subspace with this property, it follows that v E U. Thus 

rank (H) = 2.dim U. 

If A is an ~-form on G and B an Z-form on H, we denote by A ~ B 

the ~ -form on G • H given by 

(A • B) (x • u, y • v) = A(x, y) + B(u, v), 

where x, y ~ G and u, v ~ H. 

DEFINITION. Let A, B be two E -forms defined on G and H 

respectively. We say that A and B are cobordant if the E-form 

A ~ (-B) on G ~ ~ is null-cobordant. 

Cobordism of E-forms is an equivalence relation. Reflexivity 

and symmetry are both trivial. Transitivity follows from a 

cancellation lemma: 
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LEMMA. I__ff A and B are ~-forms and both A ~ B and B are null- 

cobordant t then so is A. 

Transitivity is then immediate• If A 1 ~ (-A2) and A 2 ~ (-A3) 

are null-cobordant, so is A 1 • (-A3) • A 2 ~ (-A2) and the leli~a 

applies with A = A 1 ~ (-A3) , B = A 2 • (-A2) and yields that Al~ (-A3) 

is null-cobordant, i.e. A 1 and A 3 are cobordant if A1, A 2 and A2, A 3 

are. 

Proof of the lemma. Let A be defined on G and B on H. By 

assumption there exists L ~ G @ H so that 2.rank L = rank G + rank H 

and A ~ B vanishes on L. Also, there is H C H with 2.rank H = 
o o 

rank H and B vanishes on H O. Set L ° = L ~ (G ~ Ho) and let G O be the 

projection of L ° on G. If x, y ~ Go, there exist u, v g H ° such that 

x ~ U, y ~ v ~ L. Then, 

A(x, y) = A(x, y) + B(u, v) = (AS B) (x~ u ,  y ~ v) = o. 

It remains to prove that G has the right rank. Take H to be a 
o o 

direct summand of H and write H = H ° ~ H I. Projecting L on H i gives 

an exact sequence 

0 • L ° ~ L ~ L 1 *0. 

Observe that L ~ H ° and ~o ~ L1 are orthogonal under B +~ B'. For 

• and w ~ L I. There L ~ H O and H ° this is obvious Let u 6 L ~ H ° 

exists x ~ v 6 G ~ H ° such that x ~ [v + w) ~ L. Then, 

(m~m)(u, w~ = (B+~B,)(u, v + w) 

= (A+EA')(0, x) + (B+EB')(u, v + w) 

= CA @ B)Cu, x+v+w) + Z.(A e B) Cx+v+w, u) = 0 

since ~ is also in L. Therefore, since B + £B' is unimodular, 

rank (L ~ Ho) + rank (H O ~ LI) ~ rank H. 

Now, L ~ H = L ~ H and there is an exact sequence 
o o 

0 ~ Lo~ H ~ L ° ~ G O ~ 0. 

The two exact sequences give 

rank G = rank L - rank ~L ~ H), 
o o o 
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rank L ° = rank L - rank LI, and so 

rank G = rank L - (rank (L~Ho) + rank L1). 
O 

Pluging in the above inequality and using the hypotheses on rank L 

½.rank G. Of course, equality must and rank Ho, one gets rank G o = 

hold since A+ZA' which is unimodular vanishes on G . This completes 
O 

the proof of the lemma. 

It is clear that the direct sum of E-forms induces an addition 

of the cobordism classes and turns the set CZ(Z) of cobordism classes 

of E -forms into an abelian group. We have included reference to Z 

in the notation because similarly defined groups over other 

coefficient domains will be introduced later. 

3. The transition theorem 

Using a Seifert surface, we shall now associate with every knot 

~-2k-1 C S 2k+l an (-1)k-form. Let ¥2k be a Seifert surface for a 

given knot Z C S 2k+l, i.e. V 2k C S 2k+l and bV =~ . Let v be the 

_ S 2k+l normal vector-field to Y in S 2k+l and i+, i : V ~ - V the 

m a p s  d e f i n e d  b y  i + ( P )  = P ~ . v ( P )  f o r  s m a l l  ~ > O, P e V .  

Let H = Hk(V2k)/(torsion ). If x, y g H, the linking number 

L(x, i (y)) ~ Z in S 2k+l is well defined. We set 
+ 

A(X, y )  = L ( X ,  i ( y ) ) .  + 

O b s e r v i n g  t h a t  L ( x  i + ( y ) )  - L ( x ,  i _ ( y ) )  = I ( x ,  y ) ,  w h e r e  I d e n o t e s  

the intersection number in V, we have 

L(y, i+(x)) = L(i_(y), x) = (-1)k+iL(x, i_(y)) 

= ( - l ) k + l . t L ( x ,  i ( y ) )  - I ( x ,  y ) ) ,  a n d  t h u s  
+ 

A ( x ,  y )  . ( - 1 ) k A ( y ,  x )  = I ( x ,  y ) .  

By Poincar4 duality, the intersection form I on H is unimodular, and 

so the form A is a (-l)k-form. 

THEOREM 2. The above construction provides a well-defined map 

L : C 2 k _ l  ~ C E ( Z ) ,  w i t h  E = ( - i )  k .  

F o r  k >= 3 ,  L i s  a n  i s o m o r p h i s m .  
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Sketch of proof. If Seifert surfaces Yl' V 2 have been chosen 

for 2 knots ~l' ~2' their ambiant boundary connected sum V is a 

Seifert surface for ZI~- 2. Moreover, the (-l)k-form associated with 

Y is clearly the direct sum of the [-1)k-forms associated with V 1 

and V 2. Thus, in order to show L well-defined, it suffices to 

consider the case of a null-cobordant knot ~ 2k-1 C S 2k+l and to 

prove that the (-1)k-form A associated with any of its Seifert 

surfaces is null-cobordant. Let ~ ~ D 2k+2 be a 2k-disc with 

boundary T-. The union M = /k U V, where V is a Seifert surface for 

is a closed manifold (with corners along ~) embedded in D 2k+2. An 

obstruction theory argument similar to the one in § l, shows that 

M is the boundary of an oriented submanifold W C D 2k+2. Consider 

H O = Ker Ji' where j~ : HkM ~ HkW. If x, y ~ Ho, and say ~, 

are representative cycles, then ~ ,~ bound (k+l)-chains ~,~ in W. 

We can view L(x, i+(y)) as the intersection coefficient I(~, i+(~)) 

which is clearly zero since W and i+W are disjoint. [i+ is here the 

extension to W of the map defined above on V using the normal 

vector-field.) Thus A vanishes on H ° = Ker j . It then follows that 

A is null-cobordant by showing that rank H ° = ½°rank HkM. For this, 

write the homology exact sequence of (W, M): 

0 ~H2k+l~W, M)--~H2k(M) ~ H2k(W) .... 

.... Hk+I(W ) ~Hk+I(W, M) d Ker Ja ~ 0, 

breaking it at HkM. It yields 

rank Ker jm = rank Hk+l(W, M) - rank Hk+l(W ) + rank Hk+l[M ) 

- rank Hk+2(W , M) + ... 

= (-1)k+l.½E(M) + ½.rank HkM + (-1)k.E(W), 

where E denotes the Euler characteristic. Since the "double" of W 

is a closed odd-~e~ional manifold, O = E(W U W) = 2.E(W) - E(M), 

and so rank Ker jm = ½.rank Hk(M ) as desired. Hence, L is a well- 

defined homomorphism. 
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Proving the surjectivity of L is straightforward. Given A so 

that A + (-1)kA ' is unimodular, first take a matrix representative 

which we denote again by A. Construct a 2k-dimensional stably 

parallelizahle manifold V with boundary whose intersection matrix 

is A + (-1)kA ' in dimension k. The manifold ¥ is obtained by 

attaching k-handles to D 2k with linkings of the attaching (k-1)- 

spheres dictated by the entries in A + (-l)kA ' . (See [~ , p.256 for 

details.) Then, bY =~ is a homotopy (2k-1)-sphere as a consequence 

of the assumption that A + (-l)kA ' is unimodular.(k > = 3 is needed 

here to quarantee ~l ~ = 0.) Take a random embedding V C S 2k+l. Its 

restriction to bY yields a knot for which ¥ is a 5eifert surface, 

and thus to which there corresponds some (-1)k-form B of the same 

rank as A. Actually, B + (-l)kB ' = A + (-l)kA ' , since both are 

equal to the intersection form on Hk¥. One can then change B to A 

by readjusting the mutual linking of the handles of V. 

The proof of injectivity of L proceeds in two steps: (1) One 

shows that every knot ~ k-I ~ S 2k+l is cobordant to a simple knot 

_2k-1 s2k+l, 
~0 C i0e. ~o is the boundary of a (k-l)-connected 

manifold V C s2k+l; (2) It is then enough to show for a simple 
o 

knot that null-cobordism of the associated (-l)k-form, constructed 

using a (k-1)-connected Seifert surface, implies null-cobordism of 

the knot. 

To prove step (1), use surgery on a Seifert surface V 2k for the 

knot [2k-l c s2k+l to produce a manifold W with bW = ¥ U (I x( )U V 
o 

(corners along hV = {0 } x Z and Ill x 2 = bVo) , where V O is 

(k-1)-connected and ~W, V) has a handle decomposition with all 

handles of type = k. As in the proof of theorem l, it is easy to 

extend V ~ S 2k+l to an embedding W C D 2k+2. The problem is then to 

embed a (2k+2)-disc D2k+2o in D 2k+2 so that (int Do) ~ W = @, in 

such a way as to engulf V ° c bD ° = S~ k+l. I1" this can be done, then 
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D 2k+2 - int D 2k+2 which is diffeomorphic to I x S 2k+l contains a 
o 

cobordism between [ ~ S 2k+l and Z = bV C S 2k+l. Since V is 
o o o o 

(k-l)-connected, Z C S 2k+l is a simple knot. The existence of an 
o o 

embedding D 2k+2 ~ D 2k+2 with V ~ bD follows from the engulfing 
o o o 

theorem of M.Hirsch. (Theorem 2 of "Embeddings and compression of 

polyhedra and smooth manifolds". Topology, Vol.4 (1966), 361-369.) 

Remark. It was pointed out to me that the existence of a 

PL-embedding of D 2k+2 with the desired properties is fairly obvious, 
o 

taking for granted the relative regular neighbourhood theorem. 

Indeed, since V ° has k-dimensional spine, the cone over spine (Vo) 

embeds disjointly form int (W), observing that (W, V) has only 

< 
h-handles with h = k. Thus D can be taken to be a regular 

o 

neighbourhood of such an embedded cone. 

Step (2) is an application of surgery. We have Z 2k-I ~ S 2k+l 

a simple knot bounding V 2k C S 2k+l, where V is (k-l)-connected. The 

problem is to perform ambiant surgery on V in D 2k+2 so as to produce 

a contractible submanifold of D 2k+2 with boundary ~2k-l. We are 

assuming that the associated (-l)k-form is null-cobordant, so by 

hypothesis there exists a basis Xl, ..., Xr, Xr+l, ..., X2r of HkV 

with the property that L(x~, i+(x~)) = 0 for all ~,~ ~ r. Clearly 

then, I(x~, xfl) = 0 for all ~,~ ~ r and since V is (k-l)-connected 

(and k > 3), we can take disjoint embeddings f~ : S k 

= 1 ..... r representing x~. The conditions L(x~, i+(xfl)) = 0 

for ~ ~ ~ then mean that the ~ 's can be extended to mutually 

disjoint embeddings F~ : D k+l ~ D 2k+2. Moreover, L(x~, i+(x~)) = 0 

implies that F~ is extendible to an embedding F~ : D k+l x Dk---~D 2k+2 

such that F~ I S k x D k is a tubular neighbourhood of f~(S k) in V. 

It is well known then, and easy to check that surgery on 

x , ..., x g Hk(V ) (as just shown possible) replaces V by a i r 

contractible manifold with the same boundary. 
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4 .  A l g e b r a i c  s t u d y  o f  C Z ( Z )  

L e t  A b e  a b i l i n e a r  f o r m  o n  H .  T h e n  A d e f i n e s  a h o m o m o r p h i s m  

H ~ Hom (H, Z) which to x e H associates the homomorphism H ,,. Z 

defined by y, . A(x, y). We say A is non-singular if the associated 

map H-----~Hom (H, Z) which we denote by A again is injective. (A is 

unimodular iff A : B ~Mom (H, Z) is an isomorphism.) 

Prop. i. Every Z-form is cobordant to a non-singular one. 

Proof. Let A be an E-form on the Z-module H. Suppose A is 

singular, i.e. there exists e I 6 H, e I ~ O, so that A(el, x) = 0 for 

all x 6 H. We may assume that e I is not divisible in H and thus Ze 1 

is a direct summand in H. Then, since S = A + ZA' is unimodular, 

there exists e 2 g H with S(el, e2) = ~ , or A(e2, el) = i. Let G be 

the orthogonal complement of el, e 2 under S, i.e. G = ~ xeH I S(e I, x) = 

S(e 2 , x) = 0}. It is easy to check that H = Ze I ~ Ze 2 • G. Now, let 

B be the restriction of A on G. Claim: B is an ~ -form on G which is 

cohordant to A. The first statement is trivial. For the second, let 

D be the diagonal in G @ G, i.e. D = { (x, x) E G • G 1 x 6 G I. Then, 

A ~ (-B) vanishes on Ze I + D C H e G, and rank (Ze I + D) = ½(rank H + 

rank G). The proposition follows by induction on rank H. 

As above, let A : H ~ Hom (H, Z), and similarly, S = A + g A' : 

H > Hom (H, Z). Since S is an isomorphism, we have a Z-map 

s = S-IA : H ~H. Note that s is characterized by 

A ( x ,  y )  = S ( s x ,  y )  

f o r  a l l  x ,  y ~ H .  

P r o p .  2 .  I f  L i s  a n o n - z e r o  Z - s u b m o d u l e  o f  H o n  w h i c h  t h e  E - f o r m  

A v a n i s h e s  a n d  s u c h  t h a t  s ( L )  ~ L ,  t h e n  A i s  c o b o r d a n t  t o  a n  g - f o r m  

of strictly smaller rank. 

Proof. We may assume that L is pure and hence a direct summand 

in H. Set M = {x 6 H I S(x, y) = 0 for all y ~ L}, where as before 

S = A + E A'. Then, A(x, y) = 0 and A'(x, y) = 0 for all x ~ M, y e L. 
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Indeed, A'(x, y) = A(y, x) = S(sy, x) = 0 since sy g L. Then, 

A(x, y) = 0 for x ~ M, y E L follows from S = A + E A'. 

Therefore, A induces a form B on M/L. Since M is a pure sub- 

module, and hence a direct summand in H, it follows that T = B + E B' 

is unimodular. Thus B is an Z -form. Consider A @(-B) on H e(M/L). 

It vanishes on the submodule D of all (x, xa), where x ~ M and 

x = class of x mod L. Now, rank D = rank M = rank H - rank L since 

M is the orthogonal complement of L ~nder the non-singular form S. 

Thus rank (H + (M/L)) = rank H - rank L + rank M = 2.rank D. Hence, 

A is cobordant to B of strictly smaller rank. 

Exercise. Define A to be reduced if A is non-singular and there 

is no non-zero submodule invariant by s on which A vanishes. Prove 

that if A and B are reduced £-forms on G and H respectively and are 

cobordant, then there exists an isometry f : GQ------~HQ, i.e. 

a Q-isomorphism tGQ = G ezQ ) such that B(fx, fy) = A(x, y). On the 

other hand, the example 

A = , B = 

0 6 

shows that cobordism of reduced forms does not imply isomorphism 

over Z. (In this example, A • (-B) vanishes on Zx I • Zx2, where 

x I = (3, i, 3, 0) and x 2 = (-6, i, O, 3). However, A and B are not 

isomorphic over Z since B(el, el) = 2, where e I = (i, 0), but 

A(x, x) ~ 2 for all x.) Conclude that the determinant of a reduced 

representative of a cobordism class is an invariant of the class. 

I do not know whether this can be exploited to clarify the 

structure of C~(Z). 

In order to state the next proposition we have to define 

(Z) and ~ (~) A polynomial f will auxiliary cobordism groups C A C A . 

be said to be reciprocal if f(X) = xnf(x-l), where n = deg f. For 
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e x a m p l e ,  i f  A i s  a n  E - f o r m ,  t h e n  ~ A ( X )  = d e t  ( A . X  + E A ' )  i s  a 

(well-defined) reciprocal polynomial in Z[X] called the Alexander 

polynomial of A. Let A be defined on H say, and set s = S-IA, where 

as ab,ove S = A + ~ A', i.e. s is defined by A(x, y) = S(sx, Y7 for 

-i 
all x, y ~ ~. Suppose that A is non-singular. Then t = 1 - s : 

H $ Q - H • Q is an automorphism. (It is easily verified that 

t = -ZA-IA'.) Moreover, t is an isometry for A and S extended to 

H • Q. The polynomial ~A(X) = act (A.X + ~A') is the characteristic 

polynomial of t (up to the non-zero factor det A). 

Now, let ~ = + 1 be given together with an irreducible, 

reciprocal polynomial of even degree ~ 6 Z[X] such that ~(i) = (_~)m 

where 2m = deg~. 

Define an isometric structure over Z or Q associated with ~ , 

to be an £-sy~m~etric unimodular hilinear form S on a Z-space (resp. 

Q-space 7 V together with an injection s : V ~ V satisfying 

(i) S(sx, y) + S(x, sy) = S(x, y), 

(27 ~(X) = X 2m I(I-X -I) is the minimal polynomial of s. 

Note. Condition (i) is equivalent with S(tx, ty 7 = S(x, Y7 for 

-i 
t = i - s . We have stated it in the more complicated form of 

condition (17 because t is in general only defined over Q. Also, 

condition (2) simply says ~ is minimal polynomial of t. 

There are obvious definitions of cobordism: An isometric 

structure IS, s) on V is null-cobordant if there exists an s-invariant 

subspave V ~ V of half the rank of V on which S vanishes. Further, 
o 

(Sl, s17 and ($2, s27 are cobordant if (S 1 @ (-$27 , s I • s2) is 

null-cobordant. Trivial modifications in the proof of the lenmla in 

2 show that cobordism of isometric structures (associated with 

the saune £ , ~ ) is an equivalence relation. The set of equivalence 

Z(Z), resp. C~(Q) is a group under direct sum. classes C 1 

Prop. 3. There are injections 
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~ ( z )  i c e ( z )  J Z~ c~ , ,Z~c x(e ) ,  

where the extreme terms are restricted direct sums over all 

irreducible, reciprocal ~ £ Z[X] of even degree 2m satisfying 

~(1 )  : (_~)m.  

Proof. Let (S, s) be an isometric structure on a free Z-module H 

representing an element o- in some C[(Z). Define A by A(x, y) = S(sx, y) 

for all x, y ~ H. Condition [i) on S and s implies that A + Z A' = S. 

Thus A is an E-form on H. Set i(0-) = cobordism class of A. It is 

immediate that we get a well-defined map i : ZA C~(Z) , CZ(Z). 

Next we show that i is injective. Let (Sk, Sk) 6 C~k[Z ), k = 1 ..... n, 

be such that A = A 1 @ ... @ A n is null-cobordant, where Ak(X , y) = 

Sk(SkX, y) on H k. Thus we assume that H = H 1 @ ... $ H n contains a 

Z-subspace N c H with A(x, y) = 0 for all x, y ~ N and rank H = 

2.rank N. We can assume that N is pure. Observe first that sN ~ N, 

where s = s I @ ... ~ s . Indeed, since A(x, y) = 0 and thus A' (x, y)= 0 
n 

for all x, y g N, we have S(x, y) = 0 for all x, y g N. If now x is 

a fixed element of N, then S(sx, N) = A(x, N) = 0. Therefore, N + Zsx 

is S-orthogonal to N. Since S is unimodular, rank (N + Zsx) <= rank H - 

rank N = rank N. Thus sx ~ N, since N is pure. It follows next that 

the projection N k of N into H k is contained in N. (k = 1 .... , n.) 

To see this, let ~k = ~ ~ where ~k is the minimal polynomial 

of s k. There exist polynomials u k ~ Z[X~ such that Z k u k ~k = c, 

a non-zero integer. Using ~k[S~) = 0 for k ~ ~, we have, with 

x = E 1 + ... + Xn, 

cx k = Z~ u~ts) ~(s)x k = Z~ ~l(Sk) ~l (Sk)Xk : Uk~Sk) ~'k(Sk)Xk 

= Zl Uk(S4) ~k(S{)xz : Xt# Uk(S)l/Zk(S)X£ : ukis ) ~/~k(S)X, 

showing that if x e N, then cx k = Uk(S ) ~k(S)X e N, and since N is 

pure this implies x k ~ N. 

From this it follows that each A k is null-cobordant. Since 
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A k = AIH k and N k ~ N, we have AkIN k = O. It is trivial that 

.. CN. N ~ N I ~ N 2 • . ~ N n. We have just proved that N 1 • ...~ N n 

So, N = N 1 ~ ... @ Nn, and then 

½rank H = rank N = Z k rank N k ~ ½Z k rank H k = ½rank H, 

where rank N k ~ ½rank H k for every k because A k is non-singular and 

vanishes on N k. Thus, rank N k = ½.rank H k for every k. 

Now, N k is clearly sk-invariant , and S k = A k + EA~ vanishes on 

it, so (Sk, Sk) is null-cobordant. This completes the proof of 

~ C  g injectivity of i : ~A CA(Z ) (Z). 

E 
The map j : CZ(Z) ~ ~ACI(Q) is defined as follows: Let A be 

a reduced ~-form on H, and consider A as defined on V = H @ Q. The 

Alexander polynomial ~A(X) = det (A,X + EA') splits over Z[X] as 

a product ~A ~e ~ er k~Z . = i I ..... r ' with IX] irreducible Then, as 

it turns out, each ~ must be reciprocal. Its sign can be fixed so 

that ~(i) = (_$)m , where 2m~ = deg ~ . Further S = A + ~A' and 

the isometry t = -EA-1A ' split as direct sums of isometric 

structures (S~, s~) on the eigenspaces V~. (In particular the 

m i n i m a l  p o l y n o m i a l  o f  t ~  = t]Yw i s  ~ . )  The c l a s s  o f  ~ (Sw, s~)  i s  

t h e n  hy d e f i n i t i o n  t h e  j - i m a g e  o f  A. 

In order to prove these statements, let ~ =  ~A/ ~e~.~ We have 

V~ = ~ (t)V ~ 0. One proves that if ~K was not reciprocal then A 

would vanish on the t-invariant subspace V~, whereas A was assumed 

to be reduced. Indeed, letting f denote f(~) = xn.f(X-1), where 

+ for some If ~ , then n = deg f, we have ~ = -- . 

is divisible by ~A and so for all x~, ~ 6 V~, we have 

A(x~, yK) = A(/L&d(t), /4~( t )y )  = A(x, t ~. / ~ ( t ) .  /~C.(t)y) = O. 

where m = -deg ~W . This proves that each ~K is reciprocal. 

The statement about the sign follows from ~A(1) = (_£)m, 

where 2m = degA A [This in tur. because if l  A(1) is the 

determinant of the skew-symmetric matrix A - A' . Thus it must be a 
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square. If g = +i, then ~A(i) = det [A + A') = (_l)~rank_signature ] 2 1 ~  

Now since A + A' is unimodular and even, the signature is divisible 

by 8.] 

It remains to verify that ~is the minimal polynomial of 

t~ = t]Y~. But if not, there is an integer e, i< e ~ e~, such that 

= e-I e t = . W~ ~ (tq)¥g ~ 0 and X~( W)V~ 0 Then, for arbitrary x~, yw 6W~ 

one has 

e-i e-i A(~ ,  y~) = A(A~ t t ~ ) ~ ,  A~ tt~)v~) 

= A{u  X2e  - K  ~tY)~K ) = o ,  

since 2e-2 ~ e. Hence, again, A would not be reduced. 

It is clear that the map j is well-defined since the cobordism 

class of a reduced E-form A determines its isomorphism class over Q. 

To see that j is a homomorphism, observe that there is an obvious 

definition of a reduced isometric structure, i.e. (S, s) defined on 

H is reduced if s is injective and there is no non-zero subspace 

H O ~ H such that SIH O = 0 and S[Ho) ~ Ho. The reduction processes 

for an ~-form described in Prop.l and Prop.2 yield reduction 

processes for isometric structures. Hence, first reducing A 1 • A 2 

and then applying j yields the same as gotten by reduction of 

J(AI) ~ J[A2). We leave the details to the reader. 

It is easily seen that none of the maps i nor j is surjective. 

So, 

E ( z )  ~ ~(~) h o l d s  w i t h  p r o p e r  i n c l u s i o n s .  ( O f  c o u r s e ,  t h e  m a p s  C A C~ 

a r e  m e r e l y  t h e  o n e s  g o t t e n  b y  e x t e n s i o n  o f  s c a l a r s  f r o m  Z t o  Q . )  

V e r y  l i t t l e  i s  k n o w n  a b o u t  t h e s e  g r o u p s  a n d  e v e n  l e s s  i s  k n o w n  

o n  t h e  c o k e r n e i s  o f  i a n d  j .  

We c o n c l u d e  w i t h  a f e w  r e m a r k s  o n  C Z ( ~ )  d u e  t o  J .  L e v i n e  [ 4 ]  a n d  

J. Miinor [5]. 

Recall that an element of Cx(Q) is represented by an g-syrmnetric 
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non-degenerate bilinear form S on a finite dimensional Q-space V 

together with an isometry t : V , V, i.e. S(~x, ty) = S(x, y), 

such that ~ is the minimal polynomial of t. (The polynomial 

E Z[X] is given as irreducible, reciprocal and satisfying 

(i) = ~ i. This implies that the degree of ~ is even. The sign 

can then be fixed so that ~(i) = (-E) m, where 2m = deg~ .) 

+I(Q) and e(Q) is independent of ~ i.e C A Prop.4. The group C k , . 

X= C~(Q) are isomorphic, where (-l)m~. 

Suppose QSo, t) is an isometric structure on a Q-space V with 

S symmetric. We associate with (So, t) the structure (SI, t) 
o 

where S 1 is defined by Sl(X, y) = So(X , (t - t-l)y). I t  is easy to 

check that S 1 is skew-symmetric. The conditions on ~ imply that 

t - t -I is an isomorphism, and so S 1 is non-degenerate. Clearly, 

t is an isometry for S I. It is immediate that the map 

(So,  t) ~ (SI, t )  is compatible with cobordism and induces an 

isomorphism C~I(Q) - C~I(Q). For the balance of the paragraph 

we let CA(Q ) stand for C~I<Q). The study of this group can be 

attacked in the following way: Let K = Q[X]/(~(X)) and let T E K 

be the element corresponding to X. Since ~ is reciprocal, ~-i 6 K 

is also a root of ~ and there is a Q-automorphism of K sending 

into ~-i. We denote it with a bar: a : ~ a. Let F he its fixed 

field: x ~ F iff x = x. Now, suppose V is a (finite dimensional) 

Q-space with an isometric structure ~S, t) associated with 

(~ = +i, ~ 6 Z[X]) as above. Following J.Milnor [5] , we can equip 

V with a K-space structure and a hermitian form ( , ) with 

respect to the involution on K. To give V a K-space structure it 

is enough to define ~.x = t(x). (Recall we are assuming that 

is minimal polynomial of t.) To define the hermitian form ( , ), 

fix a pair x, y g V. Then S defines a Q-linear map K m Q via 

& ~S(ax, y). Since K/Q is separable, there exists a unique 
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element, (x, y) by definition, of K such that 

tracexl la-( ' Y) I = S(a , y) ,  

for all a ~ K. It is easy to verify that (x, y) is linear in the 

first variable and (y, x) = [~-,~-~. (For details, see J.Milnor [SJ.) 

Conversely, given a (non-singular) hermitian K-space V, the 

formulae t(x) = ~.x and S(x, y) = traceK/Q(X , y) define an isometric 

structure (S, t) on V, viewed as a Q-space now, where t has minimal 

polynomial ~. Thus, if we define a hermitian K-space ¥ to be null- 

cobordant if it contains a K-subspace U such that dim U = ½.dim V 

on which the hermitian form vanishes, we get a one-to-one 

correspondence between the elements of CI(Q} and the cobordism 

classes of (non-singular) hermitian K-spaces. 

Hence, we can derive some information on CA(Q ) from the 

classification of hermitian spaces. Let Vf, f £ F, be the 

1-dimensional hermitian K-space defined by (x, y) = x,y.f. If f' = fkk 

for some k E K, then Vf, ~ Vf. Now, every hermitian K-space is the 

direct sum of 1-dimensional spaces Yr. Thus, there is a surjection 

Z[F'/NK/FK" ] 
where NK/F is the norm from K to F and the dot means that we remove 

the 0-element. ~[F'/NK/FK" ] is the integral group ring of the 

multiplicative group F'/NK/FK'. The map is the linear extension of 

f ,Vf.) Actually, if we define a product in CA(Q ) by the tensor 

product over K of the associated hermitian K-spaces, the above map 

is a ring homomorphism. Its kernel can probably be described in 

terms of symbols. We do not pursue here and, following J.Levine [42 , 

shall only describe invariants for the elements of CA(Q ) obtained 

by embedding C~(Q) into a direct sum of cobordism groups for 

isometric structures over the real and p-adic completions of Q. 

More precisely, let V be a hermitian space over K = Q[X]/(~(X)), 

where ~ E Z[X] is irreducible, reciprocal of degree 2m, and 
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~(i) = (-i) m. Denote again by F the fixed field of the involution 

on K determined by ~ ~ ~ = ~-l, where ~ is the image of X in K. 

We can view V as an F-space with symmetric, non-singular, F-valued 

bilinear form F defined by ~ (x, y) = traceK/F(x , y) and an 

isometry t defined by t(x) = ~.x. Set c = T + ~ ~ F. Then, t (or T) 

satisfies the equation t 2 - c.t + 1 = 0. We shall denote by ff the 

polynomial #(X) = cX + i .ow every prime in F, we 

extend the coefficients from F to the ~-adic comple%ion F . We get 

a map 

where C~(F~) = 0 if the polynomial ~ is reducible over ~, and 

otherwise C~(F~) is the eobordism group of hermitian K~-spaces 

(K~ being the completion of K at a prime extending~, or equivalently 

K~ = F~[X]/(~(X)).) Equivalently, Cr(~) can be viewed as the 

cobordism group of symmetric hilinear forms on F~-spaces with an 

isometry t satisfying/~(t) = O. 

Prop.5. The map 

is injective. 

Proof. Let ¥ be an F-space with isometric structure (~ , t) 

such that the isometry t satisfies t 2 - c.t + 1 = O. We can assume 

that V is reduced, i.e. there is no non-zero t-invariant subspace 

of V on which /~ vanishes. If (~, t) maps to O in ~ C~(F~), then 

the form~ represents 0 locally at every primey, i.e. there exists 

x~ ~ 0 in V ~ ~ such that ~(x~, x~) = O. By a well-known theorem 

on quadratic forms over global fields the form~ represents 0 over 

F, i.e. there exists an x E V, x ~ O, such that F(x, x) = O. (See 

0'Meara/6], p.187.) But then, it follows that ~ vanishes on 

Fx + Fix, which is t-invariant, contradicting the assumption that 

V was reduced. Indeed, ~ (x, tx) =~ (t-lx, x), and thus 

p c (x, tx) = ½. (X, (t+t-l)x) = ~ . (X, X) = 0, since t+t -I = c. 
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Of c o u r s e ,  p ( t x ,  t x~  = ~ ( x ,  x )  = O. T h i s  p r o v e s  p r o p o s i t i o n  j .  

It remains t o  calculate C~(F~). There are 3 cases apart from 

tBe trivial case where ~ is reducible in F~[XJ. 

Prop.6. Suppose ~ is irreduclble in the completion ~. Then, 

(l) If~ is a real prime, C~(R) ~ Z; 

(II) If~ is a finite prime and -i is norm from K~ = ~[XJ/(~(x)) 

t_oo ~, then ~(F~) ~ Z/2Z ~ Z/2Z; 

(III)lf~ is a finite prime and -1 is not a norm from K~ t~o ~, 

then = Z/4Z. 

Observe first that given an isometric structure (p, t) on an 

~ -space V, where t 2 - ct + 1 = 0, the cobordism class of the form 

alone determines the cobordism class of the isometric structure. 

II~deed, if W' t) is reduced and ~ is null-cobordant, then V must 

be 0, Otherwise, there exists x E V, x ~ 0 such that ~ (x, x) = 0, 

and the argument at the end of the proof of Prop.5 shows that x 

and tx span a t-lnvariant non-zero subspace of V on which 

vanishes, contradicting the assumption that (p, t) was reduced. 

Now, in case I, i.e. F~ = R, the cobordism class of.a symmetric 

bilinear form is determined by its signature. It follows that 

C~(R) = Z generated By Y1 in the above notation, i.e. C viewed as 

R-space with ~x, y) = x~ + xy and t(x) = ~.x, where ~ is a root 

of~(X) = X2 -cX + i. (Observe that the involution defined above 

does coincide with complex conjugation in this case. What else 

could it be?) 

Next, suppose that~ is a finite prime and -1 is a norm from 

K~ to ~. Since K~/~ is a finite extension of local fields, 

[F~ : NK~= EK~ : ~] = 2, where for simplicity N denote the norm 

from Kf to ~. Let I, g be representatives of the 2 classes in 

/NK~ . Then, C~(~) = Z/2Z ~ Z/2Z generated by V 1 and Vg, where 

as above Yf denotes the ~-space of dimension 2, which we identify 

with K~, together with the isometric structure given by 
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~(X, y) = trace (x.y.f) and t(x) = Tx, where the trace is from 

It is clear that for every f 6 F~ , Vf ~ Vf is null-cobordant. 

Proof: Choose k d K so that -1 = k.k. Then U = ~(x, xk) ~ Vf x Vfl 

has half the dimension of Vf ~ Vf and ~ ~ vanishes on U. It is 

also obvious that V 1 and Vg are reduced and thus neither one is 

~ull-cobordant. Finally, V 1 and Vg are not cobordant, otherwise, 

being reduced, they would be isomorphic. It is easy to check that 

V 1 and Vf are isomorphic if and only if f ~ N(K~). 

It remains to handle the case where ~is a finite prime and 

-1 is not a norm from K~ to ~. We still have [F~ : NK~J = 2, and 
@ 

in this case we can take +I and -1 as representatives of the two 

F elements in ~/N . Obviously, V 1 ~ V_l is null-cobordant. Thus 

in this case V 1 suffices to generate C~(F~). Claim: Vl is precisely 

of order 4. Observe first that V 1 ~ V 1 is not null-cobordant. If it 

was, then V 1 and V 1 would be cobordant, hence isomorphic, since 

they are reduced. But V 1 = V_l implies that -1 is a norm. It 

remains to show that V 1 @ V 1 ~ V 1 ~ V 1 is null-cobordant. This 

relies on the fact that -I is a sum of norms from K~to ~. Assume 

for a moment that -1 = kl.k I + k2.k 2. An easy calculation shows 

that the form ~ ~ ~@~ vanishes on the subspace of 

V 1 • V 1 @ V 1 ~ V 1 consisting of all (x, y, klX + k2Y , k2 x - klY), 

where x, y ~ K~. Hence, -1 = kl.k I + k2.k 2 implies that V 1 is of 

order 4 in C~(~). In order to show that -l = kl.k I + k2.k 2 we can 

either appeal to a general theorem stating that a regular quaternary 

space over a local field is universal. (See 0'Meara, [6], ~ 63C. 

In particular Remark 63:18.) Or, we can see this directly in the 

case of interest to us as follows: Let Qp be the completion of the 

rationals contained in F. Assume first p ~ 2. Then, -1 is a sum of 

squares in Qp and so afortiori a sum of norms in every quadratic 
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extension K~/~. Sketch of proof: First, an easy counting argument 

shows that -1 is a sum of squares in Fp, the field with p elements. 

Indeed, let S be the set of non-zero squares in F . Xf 0 ~ -1 - S, 
P 

then -1 is a square and we are trough. Otherwise, -1 - S ~ F" = 
P 

S U (-S). We have - S ~ -1 - S because -1 ~ -1 - S. It follows that 

-i - S ~ -S because the inclusion would imply equality since the 

two sets have the same cardinality ½(p-l). Thus, -i - S intersects 

the complement S of -S, i.e. (-l-S) ~ S ~ ~. Thus there exist 

2 2 =~2 
, ~ 6 ~ so that -l-p 2 

2 2 
Now it is easy to solve -1 = x + y in Qp. Choose Xo' Yo ~ Z 

2 2 < 
so that -1 = Xo + Yo mod p. We can actually take 0 = Xo < P' 

< 
0 = Yo < p" Assuming by induction that we can find s n = 

n tO < n Xo + xlP + ... + x p = x.1 < p) and tn = Yo + Yl p + "'" + Yn p 

(0 ~ Yi ~ p) such that 

-i = s 2 t 2 n+l + nod p , 
n n 

n+l n+l 
set sn+ 1 = s + = t + n xn+iP ' tn+l n Yn+l p 

Writing 1 + S2n + t2n = kn pn+l 

with unknown Xn+l, Yn+l" 

2 t 2 n+2 
, we find that 1 + Sn+ 1 + n+l = 0 mod p 

if (and only if) Xn+l, Yn+l satisfy the congruence 

k n + 2(XoXn+ 1 + YoYn+l ) = 0 mod p. 

Solving this congruence in Xn+l, Yn+l is clearly possible since p ~ 2 

2 2 
and Xo, YO cannot both be 0 mod p since Xo + Yo = -i mod p. The 

_ I Snl , I tnl clearly converge in Qp to x, resp. y, sequences satisfying, 

2 2 
x + y = -i. 

The case p = 2 would be more difficult. However, it does not 

arise here. Recall that [l-r) -I has to be integral. (~ is a root of 

the polynomial X 2 - cX +i defining the extension K~/~.) This 

1 -i 
implies that ~ and hence c must be integral in ~. (Herefl2 

of course.) ~ut then, using the fact that the multiplicative group 

of the residue class field of F has odd order (finite field of 
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characteristic 2), one can find an integral element ~ of F such 

that ~2 + c-2 2 = 0 mode. Setting d = c - 4 (the discriminant of 

X 2 - CX + i), we then have 

(2~}  2 - d . c  -2  = - 1  m o d  4~. 

2 2 
From there it is easy to find x, y E F~ such that x - d.y = -i 

using the successive approximations as in the case p ~ 2. This 

last equation however means that -i is a norm from Kfto ~. 
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