KNOT COBORDISM IN CODIMENSION TWO

Michel A. Kervaire

A knot will be a smooth oriented submanifold Σ^n of S^{n+2} , where Σ^n is required to have the homotopy type of the n-sphere S^n . Two knots $\Sigma_0^n, \Sigma_1^n \subset S^{n+2}$ are <u>cobordant</u> if there exists an oriented smooth submanifold $V \subset I \times S^{n+2}$ of dimension n+l such that

(1) $\mathbf{bV} = \mathbf{V} \cap (\mathbf{bI} \times \mathbf{S}^{\mathbf{n+2}}) = \sum_{1} \cup (-\sum_{0})$, where \sum_{i} , i = 0, 1, is regarded as a submanifold of $\{i\} \times \mathbf{S}^{\mathbf{n+2}}$, and $-\sum_{0} \mathbf{is} \sum_{0}$ with reversed orientation;

(2) The inclusions $\sum_{0} \longrightarrow V$, $\sum_{1} \longrightarrow V$ are homotopy equivalences; (3) V meets bI x Sⁿ⁺² orthogonally, i.e. the intersection of V

with a neighbourhood of bI x S^{n+2} is $[0, \propto) \times \sum_{0} \cup (1-\alpha, 1] \times \sum_{1}$ for some small $\alpha > 0$.

Cobordism is an equivalence relation between knots of the same dimension. Transitivity is guaranteed by condition (3).

Let C_n be the set of cobordism classes of knots $\sum^n \in S^{n+2}$. It is easy to see that the ambiant connected sum of knots induces an addition of cobordism classes which turns C_n into an abelian group. (For details, see [1], Chap.III.) The ambiant connected sum is defined as follows: Given two knots $\sum_i^n \in S^{n+2}$, i = 0, 1, let $h_i : (D^{n+2}, D^n) \longrightarrow (S^{n+2}, \sum_i^n)$ be two embeddings such that h_0 is orientation preserving and h_1 orientation reversing on both D^{n+2} and D^n . Form the disjoint union $(S^{n+2} - h_0(0)) \cup (S^{n+2} - h_1(0))$ and identify $h_0(tx)$ with $h_1((1-t)x)$ for 0 < t < 1 and $x \in S^{n+1} =$ bD^{n+2} . This construction yields an embedding of the connected sum $\sum_{0} \# \sum_{1}$ into $S^{n+2} = S^{n+2} \# S^{n+2}$, whose cobordism class is by definition the sum of the cobordism classes of \sum_{0} and \sum_{1} . The standard embedding $S^{n} \subset S^{n+2}$ represents the zero element of the resulting group C_{n} .

THEOREM 1. $C_{2k} = 0$ for $k \ge 0$, i.e. every even dimensional knot is cobordant to the standardly embedded $S^{2k} \subset S^{2k+2}$.

However, the groups C_{2k-1} are not finitely generated. We shall give the purely algebraic description of C_{2k-1} due to J.Levine [3]. It turns out that for $k \stackrel{\geq}{=} 3$, C_{2k-1} depends only on the parity of k, so that C_n is periodic of period 4 for $n \stackrel{\geq}{=} 4$. For $k \stackrel{\geq}{=} 3$, the group C_{2k-1} is contained in an infinite unrestricted direct sum of cyclic groups Z, Z/2Z and Z/4Z. There are elements of each of these orders (∞ , 4 and elements of order 2 not divisible by 2) occuring in C_{2k-1} .

§ 1. Seifert surfaces

It is well known that a smooth closed curve $\Sigma^1 \subset S^3$ bounds an orientable surface embedded in S^3 , called a Seifert surface of the knot. This fact generalizes to all dimensions: Every $\Sigma^n \subset S^{n+2}$ is the boundary of an oriented smooth submanifold $V^{n+1} \subset S^{n+2}$.

The proof is easy. Observe first that Σ^n has trivial normal bundle in S^{n+2} . Then, take an embedding $\Sigma^n \times D^2 \longrightarrow S^{n+2}$ extending the given knot $\Sigma^n \times \{0\} = \Sigma^n \subset S^{n+2}$. Now, it suffices to show that $\Sigma^n \times \{x_o\}$, where $x_o \in S^1 = bD^2$, bounds a submanifold V in the complement $X = S^{n+2}$ - int $(\Sigma^n \times D^2)$. Let $\varphi : \Sigma^n \times S^1 \longrightarrow S^1$ be the projection on the second factor. Then, $\Sigma^n \times \{x_o\} = \varphi^{-1}(x_o)$ and if we can extend φ to a map $\varphi : X \longrightarrow S^1$ regular at x_o , then $\varphi^{-1}(x_o)$ will be the desired submanifold. The extension φ exists by obstruction theory, since, at least for n > 1, $H^{q+1}(X, \Sigma \times S^1; \pi_q(S^1)) = 0$ for all q. In the sequel we only retain from $\varphi^{-1}(x_o)$ the connected component V containing the given knot as its boundary. Observe that V comes equipped with a normal vector-field v.

Using the Seifert surface, we first sketch the proof of theorem 1. Let $\Sigma^{2k} \in S^{2k+2}$ be a knot and V^{2k+1} a Seifert surface for this knot, i.e. $V \in S^{2k+2}$ and $bV = \Sigma$. By surgery theory (see [2], § 6.), we know there exists a stably parallelizable (2k+2)-manifold W with corners, so that $bW = V \cup (I \times \Sigma) \cup V_0$, where V_0 is contractible and (W, V)has a handle decomposition with handles of types $\leq k+1$ only. (For k = 1 see the argument in [1], p.265.) By a theorem of M.Hirsch (or the direct argument in [1]), the embedding $V \in S^{2k+2}$ extends to an immersion $W \propto D^{2k+3}$. Now, since (k+1) + (k+1) < 2k+3, any possible intersection of the handles of (W, V) can be removed by a (small) regular homotopy. Thus we get an embedding $W \in D^{2k+3}$ extending $V \in S^{2k+2}$. Its restriction to the part $(I \times \Sigma) \cup V_0$ of the boundary bW yields a contractible submanifold of D^{2k+3} with boundary the given knot Σ^{2k} . From this it easily follows that the cobordism class of $\Sigma^{2k} \in S^{2k+2}$ is zero.

The attempt to carry the same proof idea for $\Sigma^{2k-1} \subset S^{2k+1}$ fails in two places. First, one may not be able to reach a contractible manifold V_0^{2k} by performing framed surgery (in dimensions $\stackrel{\leq}{=} k$) on a Seifert surface V^{2k} of the given knot. Secondly, even if one could, one still runs into the more serious trouble that the (k+1)-handles of the resulting manifold pair (W, V) will in general have nonremovable intersections in D^{2k+2} . To measure these obstructions one introduces an algebraically defined cobordism group of bilinear forms.

§2. Cobordism of bilinear forms

Given $\mathcal{E} = \frac{1}{2}$ 1, we define algebraically (following [3]) a group $C^{\mathcal{E}}(Z)$ depending on \mathcal{E} . Eventually, it will turn out that $C_{2k-1} \cong C^{\mathcal{E}}(Z)$, with $\mathcal{E} = (-1)^{k}$ for $k \stackrel{\geq}{=} 3$. (For results in lower dimensions, see [3].)

Consider integral valued bilinear forms on finitely generated free Z-modules. If A is such a form on the free Z-module H, denote by

85

A' the transpose of A defined by A'(x, y) = A(y, x) for all x, $y \in H$. We shall say that A is an \mathcal{E} -<u>form</u> if the form A + \mathcal{E} A' is unimodular. (See the first few lines of § 4 below for the definition.)

DEFINITION. An \mathcal{E} -form A defined on H is <u>null-cobordant</u> if there exists a Z-submodule H_o of H such that

(1) 2.rank $(H_0) = rank (H);$

(2) A vanishes on H_0 , i.e. A(x, y) = 0 for all x, $y \in H_0$.

Remarks. Observe that such an H_0 can then be taken to be a direct summand of H. Observe also that if A is an \mathcal{E} -form on H, then the rank of H must be even. Indeed, the form $S = A + \mathcal{E} A'$ induces a symmetric, unimodular form S^{\bigstar} on the F_2 -space H/2H such that $S^{\bigstar}(x, x) = 0$ for all $x \in H/2H$. Take a maximal F_2 -subspace U of H/2H such that $S^{\bigstar}(u, v) = 0$ for all u, $v \in U$. Let V be the orthogonal complement of U, i.e. $V = \{ v \in H/2H \mid S^{\bigstar}(u, v) = 0$ for all $u \in U \}$. Then, dim U + dim V = dim H/2H = rank (H), since S^{\bigstar} is unimodular. On the other hand, the maximality of U implies U = V. Indeed, if $v \in V$, then $S^{\bigstar}(v, v) = 0$ for all $w_1, w_2 \in F_2v + U$. Since U is a maximal subspace with this property, it follows that $v \in U$. Thus rank (H) = 2.dim U.

If A is an \mathcal{E} -form on G and B an \mathcal{E} -form on H, we denote by A $\boldsymbol{\Theta}$ B the \mathcal{E} -form on G $\boldsymbol{\Theta}$ H given by

 $(A \oplus B)$ $(x \oplus u, y \oplus v) = A(x, y) + B(u, v)$, where x, y \in G and u, $v \in$ H.

DEFINITION. Let A, B be two \mathcal{E} -forms defined on G and H respectively. We say that A and B are <u>cobordant</u> if the \mathcal{E} -form A \oplus (-B) on G \oplus H is null-cobordant.

Cobordism of \mathcal{E} -forms is an equivalence relation. Reflexivity and symmetry are both trivial. Transitivity follows from a cancellation lemma: LEMMA. If A and B are \mathcal{E} -forms and both A \mathcal{P} B and B are nullcobordant, then so is A.

Transitivity is then immediate. If $A_1 \oplus (-A_2)$ and $A_2 \oplus (-A_3)$ are null-cobordant, so is $A_1 \oplus (-A_3) \oplus A_2 \oplus (-A_2)$ and the lemma applies with $A = A_1 \oplus (-A_3)$, $B = A_2 \oplus (-A_2)$ and yields that $A_1 \oplus (-A_3)$ is null-cobordant, i.e. A_1 and A_3 are cobordant if A_1 , A_2 and A_2 , A_3 are.

<u>Proof of the lemma</u>. Let A be defined on G and B on H. By assumption there exists $L \subset G \oplus H$ so that 2.rank L = rank G + rank H and A \oplus B vanishes on L. Also, there is $H_0 \subset H$ with 2.rank H_0 = rank H and B vanishes on H_0 . Set $L_0 = L \cap (G \oplus H_0)$ and let G_0 be the projection of L_0 on G. If x, $y \in G_0$, there exist u, $v \in H_0$ such that $x \oplus u, y \oplus v \in L$. Then,

 $A(x, y) = A(x, y) + B(u, v) = (A \oplus B) (x \oplus u, y \oplus v) = 0.$ It remains to prove that G_0 has the right rank. Take H_0 to be a direct summand of H and write $H = H_0 \oplus H_1$. Projecting L on H_1 gives an exact sequence

 $0 \longrightarrow L_{0} \longrightarrow L \longrightarrow L_{1} \longrightarrow 0.$

Observe that $L \cap H_0$ and $H_0 \oplus L_1$ are orthogonal under $B + \mathcal{E} B'$. For $L \cap H_0$ and H_0 this is obvious. Let $u \in L \cap H_0$ and $w \in L_1$. There exists $x \oplus v \in G \oplus H_0$ such that $x \oplus (v + w) \in L$. Then,

 $(\mathbf{B}+\mathcal{E}\mathbf{B}^{*})(\mathbf{u}, \mathbf{w}) = (\mathbf{B}+\mathcal{E}\mathbf{B}^{*})(\mathbf{u}, \mathbf{v} + \mathbf{w})$ = $(\mathbf{A}+\mathcal{E}\mathbf{A}^{*})(\mathbf{0}, \mathbf{x}) + (\mathbf{B}+\mathcal{E}\mathbf{B}^{*})(\mathbf{u}, \mathbf{v} + \mathbf{w})$ = $(\mathbf{A} \oplus \mathbf{B})(\mathbf{u}, \mathbf{x}+\mathbf{v}+\mathbf{w}) + \mathcal{E} \cdot (\mathbf{A} \oplus \mathbf{B})(\mathbf{x}+\mathbf{v}+\mathbf{w}, \mathbf{u}) = \mathbf{0},$

since u is also in L. Therefore, since $B + \mathcal{E}B'$ is unimodular,

rank $(L \cap H_0)$ + rank $(H_0 \oplus L_1) \stackrel{\leq}{=} rank H$.

Now, $L \cap H_0 = L_0 \cap H$ and there is an exact sequence

 $0 \longrightarrow L_{o} \land H \longrightarrow L_{o} \longrightarrow G_{o} \longrightarrow 0.$

The two exact sequences give

rank $G_0 = \operatorname{rank} L_0 - \operatorname{rank} (L_0 \cap H)$,

rank $L_0 = rank L - rank L_1$, and so

rank G_{0} = rank L - (rank (L \cap H₀) + rank L₁).

Pluging in the above inequality and using the hypotheses on rank L and rank H_0 , one gets rank $G_0 \stackrel{\geq}{=} \frac{1}{2}$ rank G. Of course, equality must hold since A+ \mathcal{E} A' which is unimodular vanishes on G_0 . This completes the proof of the lemma.

It is clear that the direct sum of \mathcal{E} -forms induces an addition of the cobordism classes and turns the set $C^{\mathcal{E}}(Z)$ of cobordism classes of \mathcal{E} -forms into an abelian group. We have included reference to Z in the notation because similarly defined groups over other coefficient domains will be introduced later.

§ 3. The transition theorem

Using a Seifert surface, we shall now associate with every knot $\sum^{2k-1} \subset S^{2k+1}$ an $(-1)^k$ -form. Let V^{2k} be a Seifert surface for a given knot $\sum C S^{2k+1}$, i.e. $V^{2k} \subset S^{2k+1}$ and $bV = \sum$. Let v be the normal vector-field to V in S^{2k+1} and i_+ , $i_- : V \longrightarrow S^{2k+1} - V$ the maps defined by $i_{\pm}(P) = P \pm \propto .v(P)$ for small $\propto > 0$, $P \in V$. Let $H = H_k(V^{2k})/(torsion)$. If x, $y \in H$, the linking number $L(x, i_{\pm}(y)) \in Z$ in S^{2k+1} is well defined. We set

A(x, y) = L(x, i, (y)).

Observing that $L(x, i_+(y)) - L(x, i_-(y)) = I(x, y)$, where I denotes the intersection number in V, we have

$$L(y, i_{+}(x)) = L(i_{-}(y), x) = (-1)^{k+1}L(x, i_{-}(y))$$
$$= (-1)^{k+1} \cdot (L(x, i_{+}(y)) - I(x, y)), \text{ and thus}$$
$$A(x, y) + (-1)^{k}A(y, x) = I(x, y).$$

By Poincaré duality, the intersection form I on H is unimodular, and so the form A is a $(-1)^k$ -form.

THEOREM 2. The above construction provides a well-defined map $L : C_{2k-1} \longrightarrow C^{\mathcal{E}}(Z), \text{ with } \mathcal{E} = (-1)^{k}.$

For $k \stackrel{>}{=} 3$, L is an isomorphism.

Sketch of proof. If Seifert surfaces V_1 , V_2 have been chosen for 2 knots ${oldsymbol{\Sigma}}_1$, ${oldsymbol{\mathcal{I}}}_2$, their ambiant boundary connected sum V is a Seifert surface for $\Sigma_1 \# Z_2$. Moreover, the $(-1)^k$ -form associated with V is clearly the direct sum of the $(-1)^k$ -forms associated with V and V_{2} . Thus, in order to show L well-defined, it suffices to consider the case of a null-cobordant knot $\sum^{2k-1} \subset S^{2k+1}$ and to prove that the $(-1)^k$ -form A associated with any of its Seifert surfaces is null-cobordant. Let $\Delta \subset D^{2k+2}$ be a 2k-disc with boundary \sum . The union M = Δ \cup V, where V is a Seifert surface for is a closed manifold (with corners along Σ) embedded in D^{2k+2} . An obstruction theory argument similar to the one in § 1, shows that M is the boundary of an oriented submanifold $W \subset D^{2k+2}$. Consider $H_0 = \text{Ker } j_x$, where $j_x : H_k M \longrightarrow H_k W$. If x, $y \in H_0$, and say ξ, η are representative cycles, then \mathcal{F}, \mathcal{N} bound (k+1)-chains $\boldsymbol{\propto}, \boldsymbol{\beta}$ in W. We can view $L(x, i_+(y))$ as the intersection coefficient $I(\alpha, i_+(\beta))$ which is clearly zero since W and i_{\downarrow} W are disjoint. (i_ is here the extension to W of the map defined above on V using the normal vector-field.) Thus A vanishes on $H_0 = \text{Ker } j_x$. It then follows that A is null-cobordant by showing that rank $H_0 = \frac{1}{2}$ rank $H_k M$. For this, write the homology exact sequence of (W, M):

$$0 \longrightarrow H_{2k+1}(W, M) \longrightarrow H_{2k}(M) \longrightarrow H_{2k}(W) \longrightarrow \cdots$$
$$\cdots \longrightarrow H_{k+1}(W) \longrightarrow H_{k+1}(W, M) \xrightarrow{d} \text{Ker } j_{\underline{*}} \longrightarrow 0$$

breaking it at H_bM. It yields

rank Ker
$$\mathbf{j}_{\mathbf{x}}$$
 = rank $\mathbf{H}_{k+1}(W, M)$ - rank $\mathbf{H}_{k+1}(W)$ + rank $\mathbf{H}_{k+1}(M)$
- rank $\mathbf{H}_{k+2}(W, M)$ + ...
= $(-1)^{k+1} \cdot \frac{1}{2} \mathbf{E}(M) + \frac{1}{2} \cdot \mathbf{rank} \mathbf{H}_{k}M + (-1)^{k} \cdot \mathbf{E}(W)$,

where E denotes the Euler characteristic. Since the "double" of W is a closed odd-dimensional manifold, $0 = E(W \cup W) = 2.E(W) - E(M)$, and so rank Ker $j_x = \frac{1}{2}$.rank $H_k(M)$ as desired. Hence, L is a well-defined homomorphism.

Proving the surjectivity of L is straightforward. Given A so that A + $(-1)^{k}$ A' is unimodular, first take a matrix representative which we denote again by A. Construct a 2k-dimensional stably parallelizable manifold V with boundary whose intersection matrix is A + $(-1)^{k}$ A' in dimension k. The manifold V is obtained by attaching k-handles to D^{2k} with linkings of the attaching (k-1)-spheres dictated by the entries in A + $(-1)^{k}$ A'. (See [1], p.256 for details.) Then, bV = Σ is a homotopy (2k-1)-sphere as a consequence of the assumption that A + $(-1)^{k}$ A' is unimodular. ($k \ge 3$ is needed here to quarantee $\Pi_1 \Sigma = 0$.) Take a random embedding $V \subset S^{2k+1}$. Its restriction to bV yields a knot for which V is a Seifert surface, and thus to which there corresponds some $(-1)^{k}$ -form B of the same rank as A. Actually, B + $(-1)^{k}$ B' = A + $(-1)^{k}$ A', since both are equal to the intersection form on $H_k V$. One can then change B to A by readjusting the mutual linking of the handles of V.

The proof of injectivity of L proceeds in two steps: (1) One shows that every knot $\Sigma^{2k-1} \subset S^{2k+1}$ is cobordant to a <u>simple</u> knot $\Sigma_{o}^{2k-1} \subset S^{2k+1}$, i.e. Σ_{o} is the boundary of a (k-1)-connected manifold $V_{o} \subset S^{2k+1}$; (2) It is then enough to show for a simple knot that null-cobordism of the associated $(-1)^{k}$ -form, constructed using a (k-1)-connected Seifert surface, implies null-cobordism of the knot.

To prove step (1), use surgery on a Seifert surface V^{2k} for the knot $\Sigma^{2k-1} \subset S^{2k+1}$ to produce a manifold W with $bW = V \cup (I \times \Sigma) \cup V_o$ (corners along $bV = \{0\} \times \Sigma$ and $\{1\} \times \Sigma = bV_o$), where V_o is (k-1)-connected and (W, V) has a handle decomposition with all handles of type $\leq k$. As in the proof of theorem 1, it is easy to extend $V \subset S^{2k+1}$ to an embedding $W \subset D^{2k+2}$. The problem is then to embed a (2k+2)-disc D_o^{2k+2} in D^{2k+2} so that (int D_o) $\cap W = \emptyset$, in such a way as to engulf $V_o \subset bD_o = S_o^{2k+1}$. It this can be done, then

 $D^{2k+2} - int D_0^{2k+2}$ which is diffeomorphic to I x S^{2k+1} contains a cobordism between $\Sigma < S^{2k+1}$ and $\Sigma_0 = bV_0 < S_0^{2k+1}$. Since V_0 is (k-1)-connected, $\Sigma_0 < S_0^{2k+1}$ is a simple knot. The existence of an embedding $D_0^{2k+2} < D^{2k+2}$ with $V_0 < bD_0$ follows from the engulfing theorem of M.Hirsch. (Theorem 2 of "Embeddings and compression of polyhedra and smooth manifolds". Topology, Vol.4 (1966), 361-369.)

Remark. It was pointed out to me that the existence of a PL-embedding of D_0^{2k+2} with the desired properties is fairly obvious, taking for granted the relative regular neighbourhood theorem. Indeed, since V_0 has k-dimensional spine, the cone over spine (V_0) embeds disjointly form int (W), observing that (W, V) has only h-handles with $h \leq k$. Thus D_0 can be taken to be a regular neighbourhood of such an embedded cone.

Step (2) is an application of surgery. We have $\Sigma^{2k-1} \subset S^{2k+1}$ a simple knot bounding $V^{2k} \subset S^{2k+1}$, where V is (k-1)-connected. The problem is to perform ambiant surgery on V in D^{2k+2} so as to produce a contractible submanifold of D^{2k+2} with boundary \sum^{2k-1} . We are assuming that the associated (-1)^k-form is null-cobordant, so by hypothesis there exists a basis $x_1, \ldots, x_r, x_{r+1}, \ldots, x_{2r}$ of $H_k V$ with the property that $L(x_{\alpha}, i_{+}(x_{\beta})) = 0$ for all $\alpha, \beta \leq r$. Clearly then, $I(x_{\alpha}, x_{\beta}) = 0$ for all $\alpha, \beta \leq r$ and since V is (k-1)-connected (and $k \stackrel{\geq}{=} 3$), we can take disjoint embeddings f_{α} : $s^k \longrightarrow V$ $\alpha = 1, \ldots, r$ representing x_{α} . The conditions $L(x_{\alpha}, i_{\perp}(x_{\beta})) = 0$ for $\alpha \neq \beta$ then mean that the f_{α} 's can be extended to mutually disjoint embeddings F_{α} : $D^{k+1} \longrightarrow D^{2k+2}$. Moreover, $L(x_{\alpha}, i_{+}(x_{\alpha})) = 0$ implies that F_{α} is extendible to an embedding F_{α} : $D^{k+1} \times D^{k} \longrightarrow D^{2k+2}$ such that $F_{\alpha} \mid S^k \times D^k$ is a tubular neighbourhood of $f_{\alpha}(S^k)$ in V. It is well known then, and easy to check that surgery on $x_{1}, \ldots, x_{r} \in H_{k}(V)$ (as just shown possible) replaces V by a contractible manifold with the same boundary.

§ 4. Algebraic study of $C^{\mathcal{E}}(Z)$

Let A be a bilinear form on H. Then A defines a homomorphism $H \longrightarrow Hom (H, Z)$ which to $x \in H$ associates the homomorphism $H \longrightarrow Z$ defined by $y \longrightarrow A(x, y)$. We say A is <u>non-singular</u> if the associated map $H \longrightarrow Hom (H, Z)$ which we denote by A again is injective. (A is <u>unimodular</u> iff A : $H \longrightarrow Hom (H, Z)$ is an isomorphism.)

Prop. 1. Every &-form is cobordant to a non-singular one.

Proof. Let A be an \mathcal{E} -form on the Z-module H. Suppose A is singular, i.e. there exists $e_1 \in H$, $e_1 \neq 0$, so that $A(e_1, x) = 0$ for all $x \in H$. We may assume that e_1 is not divisible in H and thus Ze_1 is a direct summand in H. Then, since $S = A + \mathcal{E}A'$ is unimodular, there exists $e_2 \in H$ with $S(e_1, e_2) = \mathcal{E}$, or $A(e_2, e_1) = 1$. Let G be the orthogonal complement of e_1 , e_2 under S, i.e. $G = \{x \in H \mid S(e_1, x) = S(e_2, x) = 0\}$. It is easy to check that $H = Ze_1 \oplus Ze_2 \oplus G$. Now, let B be the restriction of A on G. Claim: B is an \mathcal{E} -form on G which is cobordant to A. The first statement is trivial. For the second, let D be the diagonal in $G \oplus G$, i.e. $D = \{(x, x) \in G \oplus G \mid x \in G\}$. Then, $A \oplus (-B)$ vanishes on $Ze_1 + D \subset H \oplus G$, and rank $(Ze_1 + D) = \frac{1}{2}(rank H + rank G)$. The proposition follows by induction on rank H.

As above, let A : H \longrightarrow Hom (H, Z), and similarly, S = A + \mathcal{E} A': H \longrightarrow Hom (H, Z). Since S is an isomorphism, we have a Z-map s = S⁻¹A : H \longrightarrow H. Note that s is characterized by

A(x, y) = S(sx, y)

for all x, $y \in H$.

Prop. 2. If L is a non-zero Z-submodule of H on which the \mathcal{E} -form A vanishes and such that $s(L) \subseteq L$, then A is cobordant to an \mathcal{E} -form of strictly smaller rank.

Proof. We may assume that L is pure and hence a direct summand in H. Set M = $\{x \in H \mid S(x, y) = 0 \text{ for all } y \in L\}$, where as before S = A + \mathcal{E} A'. Then, A(x, y) = 0 and A'(x, y) = 0 for all $x \in M$, $y \in L$. Indeed, A'(x, y) = A(y, x) = S(sy, x) = 0 since $sy \in L$. Then, A(x, y) = 0 for $x \in M$, $y \in L$ follows from $S = A + \mathcal{E}A'$.

Therefore, A induces a form B on M/L. Since M is a pure submodule, and hence a direct summand in H, it follows that $T = B + \mathcal{E}B^{t}$ is unimodular. Thus B is an \mathcal{E} -form. Consider A \oplus (-B) on H \oplus (M/L). It vanishes on the submodule D of all (x, x^{\bigstar}), where $x \in M$ and x^{\bigstar} = class of x mod L. Now, rank D = rank M = rank H - rank L since M is the orthogonal complement of L under the non-singular form S. Thus rank (H + (M/L)) = rank H - rank L + rank M = 2.rank D. Hence, A is cobordant to B of strictly smaller rank.

<u>Exercise</u>. Define A to be <u>reduced</u> if A is non-singular and there is no non-zero submodule invariant by s on which A vanishes. Prove that if A and B are reduced \mathcal{E} -forms on G and H respectively and are cobordant, then there exists an isometry $f : G_Q \longrightarrow H_Q$, i.e. a Q-isomorphism ($G_Q = G \oplus_Z Q$) such that B(fx, fy) = A(x, y). On the other hand, the example

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 6 \end{pmatrix} , \qquad \mathbf{B} = \begin{pmatrix} 2 & -1 \\ -2 & 4 \end{pmatrix}$$

shows that cobordism of reduced forms does not imply isomorphism over Z. (In this example, A \oplus (-B) vanishes on $Zx_1 \oplus Zx_2$, where $x_1 = (3, 1, 3, 0)$ and $x_2 = (-6, 1, 0, 3)$. However, A and B are not isomorphic over Z since $B(e_1, e_1) = 2$, where $e_1 = (1, 0)$, but $A(x, x) \neq 2$ for all x.) Conclude that the determinant of a <u>reduced</u> representative of a cobordism class is an invariant of the class. I do not know whether this can be exploited to clarify the structure of $C^{\varepsilon}(Z)$.

In order to state the **n**ext proposition we have to define auxiliary cobordism groups $C_{\lambda}^{\mathcal{E}}(Z)$ and $C_{\lambda}^{\mathcal{E}}(Q)$. A polynomial f will be said to be <u>reciprocal</u> if $f(X) = X^{\mathbf{n}}f(X^{-1})$, where $n = \deg f$. For example, if A is an \mathcal{E} -form, then $\Delta_A(X) = \det (A.X + \mathcal{E}A')$ is a (well-defined) reciprocal polynomial in Z[X] called the <u>Alexander</u> <u>polynomial</u> of A. Let A be defined on H say, and set $s = S^{-1}A$, where as above $S = A + \mathcal{E}A'$, i.e. s is defined by A(x, y) = S(sx, y) for all x, y \in H. Suppose that A is non-singular. Then $t = 1 - s^{-1}$: $H \oplus Q \longrightarrow H \oplus Q$ is an automorphism. (It is easily verified that $t = -\mathcal{E}A^{-1}A'$.) Moreover, t is an isometry for A and S extended to $H \oplus Q$. The polynomial $\Delta_A(X) = \det (A.X + \mathcal{E}A')$ is the characteristic polynomial of t (up to the non-zero factor det A).

Now, let $\mathcal{E} = \pm 1$ be given together with an irreducible, reciprocal polynomial of even degree $\lambda \in \mathbb{Z}[X]$ such that $\lambda(1) = (-\mathcal{E})^m$, where $2m = \deg \lambda$.

Define an <u>isometric structure</u> over Z or Q <u>associated with</u> \mathcal{E} , λ to be an \mathcal{E} -symmetric unimodular bilinear form S on a Z-space (resp. Q-space) V together with an injection s : V ---- V satisfying

(1) S(sx, y) + S(x, sy) = S(x, y),

(2) $\varphi(x) = x^{2m} \lambda (1-x^{-1})$ is the minimal polynomial of s. Note. Condition (1) is equivalent with S(tx, ty) = S(x, y) for $t = 1 - s^{-1}$. We have stated it in the more complicated form of condition (1) because t is in general only defined over Q. Also, condition (2) simply says λ is minimal polynomial of t.

There are obvious definitions of cobordism: An isometric structure (S, s) on V is null-cobordant if there exists an s-invariant subspave $V_0 \subset V$ of half the rank of V on which S vanishes. Further, (S_1, s_1) and (S_2, s_2) are cobordant if $(S_1 \oplus (-S_2), s_1 \oplus s_2)$ is null-cobordant. Trivial modifications in the proof of the lemma in § 2 show that cobordism of isometric structures (associated with the same \mathcal{E}, λ) is an equivalence relation. The set of equivalence classes $C_{\lambda}^{\mathcal{E}}(Z)$, resp. $C_{\lambda}^{\mathcal{E}}(Q)$ is a group under direct sum.

Prop. 3. There are injections

$$\begin{split} & \Sigma_{\lambda} \quad C_{\lambda}^{\ell}(Z) \stackrel{i}{\longrightarrow} C^{\ell}(Z) \stackrel{j}{\longrightarrow} \Sigma_{\lambda} C_{\lambda}^{\ell}(Q), \\ & \text{where the extreme terms are restricted direct sums over all} \\ & \text{irreducible, reciprocal } \lambda \in Z[X] \quad \underline{\text{of even degree } 2m \text{ satisfying}} \\ & \lambda(1) = (-\ell)^{m}. \end{split}$$

Proof. Let (S, s) be an isometric structure on a free Z-module H representing an element σ in some $C_1^{\mathcal{E}}(Z)$. Define A by A(x, y) = S(sx, y)for all x, y ϵ H. Condition (1) on S and s implies that A + ϵ A' = S. Thus A is an ε -form on H. Set $i(\sigma)$ = cobordism class of A. It is immediate that we get a well-defined map i : $\sum_{\lambda} C_{\lambda}^{\varepsilon}(Z) \longrightarrow C^{\varepsilon}(Z)$. Next we show that i is injective. Let $(S_k, s_k) \in C^{\xi}_{\lambda_k}(Z)$, k = 1, ..., n, be such that $A = A_1 \oplus \ldots \oplus A_n$ is null-cobordant, where $A_k(x, y) =$ $S_k(s_k x, y)$ on H_k . Thus we assume that $H = H_1 \oplus \ldots \oplus H_n$ contains a Z-subspace N C H with A(x, y) = 0 for all x, y ϵ N and rank H = 2.rank N. We can assume that N is pure. Observe first that $sN \subseteq N$, where $s = s_1 \oplus \ldots \oplus s_n$. Indeed, since A(x, y) = 0 and thus A'(x, y) = 0for all x, $y \in N$, we have S(x, y) = 0 for all x, $y \in N$. If now x is a fixed element of N, then S(sx, N) = A(x, N) = 0. Therefore, N + Zsx is S-orthogonal to N. Since S is unimodular, rank $(N + Zsx) \stackrel{\leq}{=} rank H$ rank N = rank N. Thus sx \in N, since N is pure. It follows next that the projection N_k of N into H_k is contained in N. (k = 1, ..., n.) To see this, let $\Psi_k = \prod_{\ell \neq k} \varphi_\ell$ where φ_k is the minimal polynomial of s_k. There exist polynomials $u_k \in Z[X]$ such that $\sum_k u_k \psi_k = c$, a non-zero integer. Using $\psi_k(s_{\ell}) = 0$ for $k \neq \ell$, we have, with $\mathbf{x} = \mathbf{x}_1 + \dots + \mathbf{x}_n,$ $cx_{k} = \sum_{\ell} u_{\ell}(s) \ \psi_{\ell}(s)x_{k} = \sum_{\ell} u_{\ell}(s_{k}) \ \psi_{\ell}(s_{k})x_{k} = u_{k}(s_{k}) \ \psi_{k}(s_{k})x_{k}$ $= \sum_{\ell} u_{k}(s_{\ell}) \psi_{k}(s_{\ell}) x_{\ell} = \sum_{\ell} u_{k}(s) \psi_{k}(s) x_{\ell} = u_{k}(s) \psi_{k}(s) x_{\ell},$

showing that if $x \in N$, then $cx_k = u_k(s) \psi_k(s) x \in N$, and since N is pure this implies $x_k \in N$.

From this it follows that each A_k is null-cobordant. Since

 $A_k = A | H_k$ and $N_k \leq N$, we have $A_k | N_k = 0$. It is trivial that $N \leq N_1 \oplus N_2 \oplus \ldots \oplus N_n$. We have just proved that $N_1 \oplus \ldots \oplus N_n \leq N$. So, $N = N_1 \oplus \ldots \oplus N_n$, and then

 $\frac{1}{2}$ rank H = rank N = \sum_{k} rank N_k $\stackrel{\leq}{=} \frac{1}{2}\sum_{k}$ rank H_k = $\frac{1}{2}$ rank H, where rank N_k $\stackrel{\leq}{=} \frac{1}{2}$ rank H_k for every k because A_k is non-singular and vanishes on N_k. Thus, rank N_k = $\frac{1}{2}$.rank H_k for every k.

Now, N_k is clearly s_k -invariant, and $S_k = A_k + \mathcal{E}A_k^*$ vanishes on it, so (S_k, s_k) is null-cobordant. This completes the proof of injectivity of i : $\Sigma_{\lambda} C_{\lambda}^{\ell}(Z) \longrightarrow C^{\ell}(Z)$.

The map j : $C^{\mathcal{E}}(Z) \longrightarrow \Sigma_{\lambda} C_{\lambda}^{\mathcal{E}}(Q)$ is defined as follows: Let A be a <u>reduced</u> \mathcal{E} -form on H, and consider A as defined on V = H \otimes Q. The Alexander polynomial $\Delta_{A}(X) = \det (A.X + \mathcal{E}A^{\dagger})$ splits over Z[X] as a product $\Delta_{A} = \lambda_{1}^{e} 1 \dots \lambda_{r}^{e} r$, with $\lambda_{\alpha} \in Z[X]$ irreducible. Then, as it turns out, each λ_{α} must be reciprocal. Its sign can be fixed so that $\lambda_{\alpha}(1) = (-\mathcal{E})^{\mathbf{m}}$, where $2m_{\alpha} = \deg \lambda_{\alpha}$. Further S = A + $\mathcal{E}A^{\dagger}$ and the isometry t = $-\mathcal{E}A^{-1}A^{\dagger}$ split as direct sums of isometric structures (S_{α}, s_{α}) on the eigenspaces V_{α} . (In particular the minimal polynomial of $t_{\alpha} = t | V_{\alpha}$ is λ_{α} .) The class of $\Sigma_{\alpha}(S_{\alpha}, s_{\alpha})$ is then by definition the j-image of A.

In order to prove these statements, let $\mu_{\alpha} = \Delta_A / \lambda_{\alpha}^{e_{\alpha}}$. We have $V_{\alpha} = \mu_{\alpha}(t)V \neq 0$. One proves that if λ_{κ} was not reciprocal then A would vanish on the t-invariant subspace V_{α} , whereas A was assumed to be reduced. Indeed, letting \overline{f} denote $\overline{f}(x) = x^n \cdot f(x^{-1})$, where $n = \deg f$, we have $\overline{\lambda}_{\alpha} = \frac{\pm}{\lambda_{\beta}}$ for some β . If $\beta \neq \alpha'$, then $\overline{\mu}_{\alpha} \cdot \mu_{\alpha'}$ is divisible by Δ_A and so for all x_{α} , $y_{\alpha'} \in V_{\alpha'}$, we have

 $A(x_{\alpha}, y_{\alpha}) = A(\mu_{\alpha}(t), \mu_{\alpha}(t)y) = A(x, t^{*}, \overline{\mu_{\alpha}}(t), \mu_{\alpha}(t)y) = 0.$ where ${}^{*} = -\deg \mu_{\alpha}$. This proves that each λ_{α} is reciprocal.

The statement about the sign follows from $\Delta_A(1) = (-\varepsilon)^m$, where $2m = \deg \Delta_A$. [This in turn, because if $\varepsilon = -1$, $\Delta_A(1)$ is the determinant of the skew-symmetric matrix A - A'. Thus it must be a square. If $\mathcal{E} = +1$, then $\Delta_A(1) = \det(A + A^{\dagger}) = (-1)^{\frac{1}{2}(\operatorname{rank-signature})}$. Now since $A + A^{\dagger}$ is unimodular and even, the signature is divisible by 8.]

It remains to verify that λ_{α} is the minimal polynomial of $t_{\alpha} = t | V_{\alpha}$. But if not, there is an integer e, $1 < e \leq e_{\alpha}$, such that $W_{\alpha} = \lambda_{\alpha}^{e-1}(t_{\alpha})V_{\alpha} \neq 0$ and $\lambda_{\alpha}^{e}(t_{\alpha})V_{\alpha} = 0$. Then, for arbitrary x_{α} , $y_{\alpha} \in W_{\alpha}$ one has

$$A(\mathbf{x}_{\alpha}, \mathbf{y}_{\alpha}) = A(\lambda_{\alpha}^{e-1}(\mathbf{t}_{\alpha})\mathbf{u}_{\alpha}, \lambda_{\alpha}^{e-1}(\mathbf{t}_{\alpha})\mathbf{v}_{\alpha})$$
$$= A(\mathbf{u}_{\alpha}, \mathbf{t}_{\alpha}^{\mathbf{x}}, \lambda_{\alpha}^{2e-2}(\mathbf{t}_{\alpha})\mathbf{v}_{\alpha}) = 0,$$

since $2e-2 \ge e$. Hence, again, A would not be reduced.

It is clear that the map j is well-defined since the cobordism class of a reduced \mathcal{E} -form A determines its isomorphism class over Q. To see that j is a homomorphism, observe that there is an obvious definition of a <u>reduced</u> isometric structure, i.e. (S, s) defined on H is reduced if s is injective and there is no non-zero subspace $H_0 \subseteq H$ such that $S|H_0 = 0$ and $s(H_0) \subseteq H_0$. The reduction processes for an \mathcal{E} -form described in Prop.1 and Prop.2 yield reduction processes for isometric structures. Hence, first reducing $A_1 \oplus A_2$ and then applying j yields the same as gotten by reduction of $j(A_1) \oplus j(A_2)$. We leave the details to the reader.

It is easily seen that none of the maps i nor j is surjective. So,

 $\Sigma_{\lambda} c_{\lambda}^{\varepsilon}(z) \subset c^{\varepsilon}(z) \subset \Sigma_{\lambda} c_{\lambda}^{\varepsilon}(Q)$

holds with proper inclusions. (Of course, the maps $C_{\lambda}^{\mathcal{E}}(Z) \subset C_{\lambda}^{\mathcal{E}}(Q)$ are merely the ones gotten by extension of scalars from Z to Q.)

Very little is known about these groups and even less is known on the cokernels of i and j.

We conclude with a few remarks on $C^{\mathcal{E}}(Q)$ due to J. Levine [4] and J. Milnor [5].

Recall that an element of $C^{\boldsymbol{\epsilon}}_{\boldsymbol{\lambda}}(Q)$ is represented by an $\boldsymbol{\epsilon}\text{-symmetric}$

non-degenerate bilinear form S on a finite dimensional Q-space V together with an isometry t : V \longrightarrow V, i.e. S(tx, ty) = S(x, y), such that λ is the minimal polynomial of t. (The polynomial $\lambda \in \mathbb{Z}[X]$ is given as irreducible, reciprocal and satisfying $\lambda(1) = \frac{1}{2}$ 1. This implies that the degree of λ is even. The sign can then be fixed so that $\lambda(1) = (-\epsilon)^m$, where $2m = \text{deg} \lambda$.)

Prop.4. The group $C_{\lambda}^{\ell}(Q)$ is independent of \mathcal{E} , i.e. $C_{\lambda}^{+1}(Q)$ and $C_{\lambda}^{-1}(Q)$ are isomorphic, where $\lambda' = (-1)^m \lambda$.

Suppose (S_0, t) is an isometric structure on a Q-space V with S_0 symmetric. We associate with (S_0, t) the structure (S_1, t) , where S₁ is defined by S₁(x, y) = S₀(x, (t - t⁻¹)y). It is easy to check that S_1 is skew-symmetric. The conditions on λ imply that t - t⁻¹ is an isomorphism, and so S_1 is non-degenerate. Clearly, t is an isometry for S1. It is immediate that the map $(S_0, t) \longrightarrow (S_1, t)$ is compatible with cobordism and induces an isomorphism $C_{\lambda}^{+1}(Q) \longrightarrow C_{\lambda}^{-1}(Q)$. For the balance of the paragraph we let $C_{\lambda}(Q)$ stand for $C_{\lambda}^{+1}(Q)$. The study of this group can be attacked in the following way: Let $K = Q[X]/(\lambda(X))$ and let $T \in K$ be the element corresponding to X. Since λ is reciprocal, $\tau^{-1} \in K$ is also a root of λ and there is a Q-automorphism of K sending auinto τ^{-1} . We denote it with a bar: a $\longrightarrow \overline{a}$. Let F be its fixed field: $x \in F$ iff $\bar{x} = x$. Now, suppose V is a (finite dimensional) Q-space with an isometric structure (S, t) associated with $(\mathcal{E} = +1, \lambda \in Z[X])$ as above. Following J.Milnor [5], we can equip V with a K-space structure and a hermitian form (,) with respect to the involution on K. To give V a K-space structure it is enough to define $\tau \cdot x = t(x)$. (Recall we are assuming that λ is minimal polynomial of t.) To define the hermitian form (,), fix a pair x, y \in V. Then S defines a Q-linear map K \longrightarrow Q via $a \longrightarrow S(ax, y)$. Since K/Q is separable, there exists a unique

element, (x, y) by definition, of K such that

$$\operatorname{trace}_{K/Q}\left\{a.(x, y)\right\} = S(ax, y),$$

for all $a \in K$. It is easy to verify that (x, y) is linear in the first variable and $(y, x) = \overline{(x, y)}$. (For details, see J.Milnor [5].)

Conversely, given a (non-singular) hermitian K-space V, the formulae $t(x) = \tau \cdot x$ and $S(x, y) = trace_{K/Q}(x, y)$ define an isometric structure (S, t) on V, viewed as a Q-space now, where t has minimal polynomial λ . Thus, if we define a hermitian K-space V to be <u>null-</u> <u>cobordant</u> if it contains a K-subspace U such that dim U = $\frac{1}{2}$.dim V on which the hermitian form vanishes, we get a one-to-one correspondence between the elements of $C_{\lambda}(Q)$ and the cobordism classes of (non-singular) hermitian K-spaces.

Hence, we can derive some information on $C_{\lambda}(Q)$ from the classification of hermitian spaces. Let V_{f} , $f \in F$, be the 1-dimensional hermitian K-space defined by $(x, y) = x, \overline{y}.f$. If $f' = fk\overline{k}$ for some $k \in K$, then $V_{f'} \cong V_f$. Now, every hermitian K-space is the direct sum of 1-dimensional spaces V_f . Thus, there is a surjection

 $z[F'/N_{K/F}K'] \longrightarrow C_{\lambda}(Q),$

where $N_{K/F}$ is the norm from K to F and the dot means that we remove the O-element. ($Z[F^*/N_{K/F}K^*]$ is the integral group ring of the multiplicative group $F^*/N_{K/F}K^*$. The map is the linear extension of $f \longrightarrow V_{f^*}$) Actually, if we define a product in $C_{\lambda}(Q)$ by the tensor product <u>over K of the associated hermitian K-spaces</u>, the above map is a ring homomorphism. Its kernel can probably be described in terms of symbols. We do not pursue here and, following J.Levine [4], shall only describe invariants for the elements of $C_{\lambda}(Q)$ obtained by embedding $C_{\lambda}(Q)$ into a direct sum of cobordism groups for isometric structures over the real and p-adic completions of Q.

More precisely, let V be a hermitian space over $K = Q[X]/(\lambda(X))$, where $\lambda \in Z[X]$ is irreducible, reciprocal of degree 2m, and $\lambda(1) = (-1)^m$. Denote again by F the fixed field of the involution on K determined by $\tau \longrightarrow \overline{\tau} = \tau^{-1}$, where τ is the image of X in K. We can view V as an F-space with symmetric, non-singular, F-valued bilinear form β defined by $\beta(x, y) = \operatorname{trace}_{K/F}(x, y)$ and an isometry t defined by $t(x) = \tau \cdot x$. Set $c = \tau + \overline{\tau} \in F$. Then, t (or τ) satisfies the equation $t^2 - c \cdot t + 1 = 0$. We shall denote by μ the polynomial $\mu(X) = X^2 - cX + 1$. Now, for every prime χ in F, we can extend the coefficients from F to the χ -adic completion F. We get a map

 $c_{\lambda}(Q) \longrightarrow \Sigma_{\mu} c_{\mu}(F_{\mu}),$

where $C_{\mu}(F_{\mu}) = 0$ if the polynomial μ is reducible over F_{μ} , and otherwise $C_{\mu}(F_{\mu})$ is the cobordism group of hermitian K_{μ} -spaces $(K_{\mu}$ being the completion of K at a prime extending γ , or equivalently $K_{\mu} = F_{\mu}[X]/(\mu(X))$.) Equivalently, $C_{\mu}(F_{\mu})$ can be viewed as the cobordism group of symmetric bilinear forms on F_{μ} -spaces with an isometry t satisfying $\mu(t) = 0$.

Prop.5. The map

 $C_{\lambda}(Q) \longrightarrow \mathbb{Z}_{\mu}C_{\mu}(F_{\mu})$

is injective.

Proof. Let V be an F-space with isometric structure (β , t) such that the isometry t satisfies $t^2 - c.t + 1 = 0$. We can assume that V is reduced, i.e. there is no non-zero t-invariant subspace of V on which β vanishes. If (β , t) maps to 0 in $\sum_{\mu} c_{\mu}(\mathbf{F}_{\mu})$, then the form β represents 0 locally at every prime β , i.e. there exists $x_{\mu} \neq 0$ in V \otimes Fg such that $\beta(x_{\mu}, x_{\mu}) = 0$. By a well-known theorem on quadratic forms over global fields the form β represents 0 over F, i.e. there exists an $x \in V$, $x \neq 0$, such that $\beta(x_{\star}, x) = 0$. (See 0'Meara[6], p.187.) But then, it follows that β vanishes on Fx + Ftx, which is t-invariant, contradicting the assumption that V was reduced. Indeed, $\beta(x, tx) = \beta(t^{-1}x, x)$, and thus $\beta(x, tx) = \frac{1}{2} \cdot \beta(x, (t+t^{-1})x) = \frac{c}{2} \cdot \beta(x, x) = 0$, since $t+t^{-1} = c$. Of course, $\beta(tx, tx) = \beta(x, x) = 0$. This proves proposition 5.

It remains to calculate $C_{\mu}(F_{\mu})$. There are 3 cases apart from the trivial case where μ is reducible in $F_{\mu}[X]$.

Prop.6. Suppose μ is irreducible in the completion Fy. Then,

(1) If μ is a real prime, $C_{\mu}(R) \cong Z$;

(II) If \mathcal{G} is a finite prime and -1 is norm from $K_{\mathcal{F}} = F_{\mathcal{G}}[X]/(\mu(X))$ to $F_{\mathcal{G}}$, then $C_{\mu}(F_{\mathcal{G}}) \cong Z/2Z \oplus Z/2Z$;

(III) If χ is a finite prime and -1 is not a norm from K_{χ} to F_{χ} , then $C_{\mu}(F_{\chi}) \cong Z/4Z$.

Observe first that given an isometric structure (β, t) on an F_{φ} -space V, where $t^2 - ct + 1 = 0$, the cobordism class of the form β alone determines the cobordism class of the isometric structure. Indeed, if (β, t) is reduced and β is null-cobordant, then V must be 0. Otherwise, there exists $x \in V$, $x \neq 0$ such that $\beta(x, x) = 0$, and the argument at the end of the proof of Prop.5 shows that xand tx span a t-invariant non-zero subspace of V on which β vanishes, contradicting the assumption that (β, t) was reduced.

Now, in case I, i.e. $\mathbf{F}_{\mu} = \mathbf{R}$, the cobordism class of a symmetric bilinear form is determined by its signature. It follows that $C_{\mu}(\mathbf{R}) = \mathbf{Z}$ generated by \mathbf{V}_{1} in the above notation, i.e. C viewed as R-space with $\beta(\mathbf{x}, \mathbf{y}) = \mathbf{x}\overline{\mathbf{y}} + \overline{\mathbf{x}}\mathbf{y}$ and $\mathbf{t}(\mathbf{x}) = \tau \cdot \mathbf{x}$, where τ is a root of $\mu(\mathbf{X}) = \mathbf{X}^{2} - \mathbf{c}\mathbf{X} + 1$. (Observe that the involution defined above does coincide with complex conjugation in this case. What else could it be?)

Next, suppose that χ is a finite prime and -l is a norm from K_{φ} to F_{φ} . Since K_{φ}/F_{φ} is a finite extension of local fields, $[F_{\varphi}: NK_{\varphi}] = [K_{\varphi}: F_{\varphi}] = 2$, where for simplicity N denote the norm from K_{φ} to F_{φ} . Let l, g be representatives of the 2 classes in $F_{\varphi}^{*}/NK_{\varphi}^{*}$. Then, $C_{\mu}(F_{\varphi}) = Z/2Z \oplus Z/2Z$ generated by V_{1} and V_{g} , where as above V_{f} denotes the F_{φ} -space of dimension 2, which we identify with K_{φ} , together with the isometric structure given by $\beta(x, y) = \text{trace } (x, \overline{y}, f) \text{ and } t(x) = Tx, \text{ where the trace is from } K_{f}$ to F_{f} .

It is clear that for every $f \in F_{\mathcal{P}}$, $V_{\mathbf{f}} \oplus V_{\mathbf{f}}$ is null-cobordant. Proof: Choose $k \in K$ so that $-1 = k.\bar{k}$. Then $U = \left\{ (x, xk) \in V_{\mathbf{f}} \times V_{\mathbf{f}} \right\}$ has half the dimension of $V_{\mathbf{f}} \oplus V_{\mathbf{f}}$ and $\beta \oplus \beta$ vanishes on U. It is also obvious that V_1 and V_g are reduced and thus neither one is mull-cobordant. Finally, V_1 and V_g are not cobordant, otherwise, being reduced, they would be isomorphic. It is easy to check that V_1 and $V_{\mathbf{f}}$ are isomorphic if and only if $f \in N(K_{\mathcal{P}})$.

It remains to handle the case where p is a finite prime and -1 is not a norm from K_p to F_p. We still have $\begin{bmatrix} F_{p} \\ F_{p} \end{bmatrix}$: NK^{*}_p = 2, and in this case we can take +1 and -1 as representatives of the two elements in F_{μ}^{*}/NK_{μ}^{*} . Obviously, $V_{1} \oplus V_{-1}$ is null-cobordant. Thus in this case V suffices to generate $C_{\mu}(F_{\mu})$. Claim: V is precisely of order 4. Observe first that $V_1 \oplus V_1$ is not null-cobordant. If it was, then V_1 and V_1 would be cobordant, hence isomorphic, since they are reduced. But $V_1 \cong V_{-1}$ implies that -1 is a norm. It remains to show that $V_1 \oplus V_1 \oplus V_1 \oplus V_1$ is null-cobordant. This relies on the fact that -1 is a sum of norms from K_{ff} to F_{ff}. Assume for a moment that $-1 = k_1 \cdot k_1 + k_2 \cdot k_2$. An easy calculation shows that the form $\beta \oplus \beta \oplus \beta \oplus \beta$ vanishes on the subspace of $\mathbf{v}_1 \oplus \mathbf{v}_1 \oplus \mathbf{v}_1 \oplus \mathbf{v}_1$ consisting of all (x, y, $\mathbf{k}_1 \mathbf{x} + \mathbf{k}_2 \mathbf{y}$, $\mathbf{\bar{k}}_2 \mathbf{x} - \mathbf{\bar{k}}_1 \mathbf{y}$), where x, y ϵ Kp. Hence, $-1 = k_1 \cdot k_1 + k_2 \cdot k_2$ implies that V_1 is of order 4 in $C_{\mu}(F_{\mu})$. In order to show that $-1 = k_1 \cdot k_1 + k_2 \cdot k_2$ we can either appeal to a general theorem stating that a regular quaternary space over a local field is universal. (See 0'Meara, [6], § 630. In particular Remark 63:18.) Or, we can see this directly in the case of interest to us as follows: Let Q_p be the completion of the rationals contained in F. Assume first $p \neq 2$. Then, -1 is a sum of squares in Q_p and so a fortiori a sum of norms in every quadratic

extension K_{p}/F_{p} . Sketch of proof: First, an easy counting argument shows that -1 is a sum of squares in F_{p} , the field with p elements. Indeed, let S be the set of non-zero squares in F_{p} . If $0 \in -1 - S$, then -1 is a square and we are trough. Otherwise, $-1 - S \leq F_{p}^{*} =$ $S \cup (-S)$. We have $-S \neq -1 - S$ because $-1 \notin -1 - S$. It follows that $-1 - S \notin -S$ because the inclusion would imply equality since the two sets have the same cardinality $\frac{1}{2}(p-1)$. Thus, -1 - S intersects the complement S of -S, i.e. $(-1-S) \cap S \neq \emptyset$. Thus there exist \propto^{2} , $\beta^{2} \in S$ so that $-1-\beta^{2} = \chi^{2}$.

Now it is easy to solve $-1 = x^2 + y^2$ in Q_p . Choose x_o , $y_o \in Z$ so that $-1 = x_o^2 + y_o^2$ mod p. We can actually take $0 \leq x_o < p$, $0 \leq y_o < p$. Assuming by induction that we can find $s_n = x_o + x_1 p + \dots + x_n p^n$ ($0 \leq x_i < p$) and $t_n = y_o + y_1 p + \dots + y_n p^n$ ($0 \leq y_i < p$) such that

 $-1 = s_n^2 + t_n^2 \mod p^{n+1}$,

set $s_{n+1} = s_n + x_{n+1}p^{n+1}$, $t_{n+1} = t_n + y_{n+1}p^{n+1}$ with unknown x_{n+1} , y_{n+1} . Writing $1 + s_n^2 + t_n^2 = k_np^{n+1}$, we find that $1 + s_{n+1}^2 + t_{n+1}^2 = 0 \mod p^{n+2}$ if (and only if) x_{n+1} , y_{n+1} satisfy the congruence

 $k_n + 2(x_0x_{n+1} + y_0y_{n+1}) = 0 \mod p.$

Solving this congruence in x_{n+1} , y_{n+1} is clearly possible since $p \neq 2$ and x_0 , y_0 cannot both be 0 mod p since $x_0^2 + y_0^2 = -1 \mod p$. The sequences $\{s_n\}$, $\{t_n\}$ clearly converge in Q_p to x, resp. y, satisfying $x^2 + y^2 = -1$.

The case p = 2 would be more difficult. However, it does not arise here. Recall that $(1-\tau)^{-1}$ has to be integral. (τ is a root of the polynomial $X^2 - cX + 1$ defining the extension K_p/F_p .) This implies that $\frac{1}{2-c}$ and hence c^{-1} must be integral in F_p . (Here $p \mid 2$ of course.) But then, using the fact that the multiplicative group of the residue class field of F has odd order (finite field of characteristic 2), one can find an integral element \propto of F such that $\alpha^2 + c^{-2} = 0 \mod \varphi$. Setting d = $c^2 - 4$ (the discriminant of $X^2 - cX + 1$), we then have

 $(2\alpha)^2 - d \cdot c^{-2} = -1 \mod 4\eta^2$.

From there it is easy to find x, $y \in F_{y}$ such that $x^{2} - d.y^{2} = -1$ using the successive approximations as in the case $p \neq 2$. This last equation however means that -1 is a norm from K_{y} to F_{y} .

BIBLIOGRAPHY

[1]	M. Kervaire,	Les noeuds de dimensions supérieures.
		Bull. Soc. Math. de France, 93 (1965), 225-271.
[2]	M. Kervaire	and J. Milnor, Groups of homotopy spheres.
		Annals of Math. 77 (1963), 504-537.
[3]	J. Levine,	Knot Cobordism in Codimension Two.
		Comm. Math. Helv. 44 (1969), 229-244.
[4]	J. Levine,	Invariants of Knot Cobordism.
		Inventiones Math. 8 (1969), 98-110.
[5]	J. Milnor	On Isometries of Inner Product Spaces.
		Inventiones Math. 8 (1969), 83-97.
[6]	0.T. O'Meara	, Introduction to quadratic forms.
		Springer Verlag. 1963.

New York University Courant Institute NEW YORK, N.Y.