- On Higher Dimensional Knots
MICHEL A. KERVAIRE!

Which groups = can be fundamental group of the complement of an
imbedded n-sphere in (n + 2)-space?

A well-known necessary condition is for instance that =/=' be iso-
morphic to the group of integers. (n' denotes the commutator subgroup
of 7.)

In the case n = 1, further necessary conditions have been given by
various authors. (For instance, the first elementary ideal of = in the
integral group ring of #/=»’ must be principal, generated by the ‘“Alexander
polynomial” A_(f), where ¢ denotes a generator of x/n’. Moreover, A(t)
must satisfy an equation A, (i) = ¢+ A (f) with m even. Compare [12],
[4], [6].) However, the problem of characterizing knot groups by algebraic
conditions remains unsolved.

Let us define a (differential) n-knot to be a differential imbedding f:
87 — 8§n+2, and the group of the n-knot f; 8* — 8*12 to be =, (S*+2 — f(Sn)).

For n = 3, we get a complete algebraic characterization of the groups
of n-kmots. (See Theorem 1 below.)

For n = 2, we only give a set of sufficient conditions on the group =
for the existence of an imbedding f: 82 — X¢ into a homotopy 4-sphere
with 7 o2 m (3% — f(§?%)). A homotopy k-sphere is a closed differential
k-manifold with the homotopy type of S*. (See Theorem 2.) A “good”
set of algebraic conditions for a group = to be the group of a 2-knot is
unknown to me. Recall that the first elementary ideal of m,(S* — f(S3%))
need not be principal. Compare [5], Example 12. On the other hand; if the
ideal is principal, generated by P(t), S. Kinoshita has proved that one can
prescribe P(f) arbitrarily, subject to the only, obviously necessary con-
dition, that P(1) = +1. See [11]. I do not know whether in Theorem 2
the manifold X¢ can be taken to be 8% This question may of course be
related to the 4-dimensional Poincaré problem.

The case n = 1 will not be considered. All groups in this paper are
assumed to be finitely presentable. The proofs will rely on the technique
of spherical modifications as expounded in [10], §5.

1 The author holds an Alfred P. Sloan Fellowship.
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1. Statement of results

Define the weight w(m) of a group = # {1} to be the smallest integer &
with the property that there exists a set of &k elements ay,. . ., qp €=
whose normal closure equals =. By convention the trivial group {1} has
weight 0.

It is easy to prove that for any differential imbedding f: 8" — S"+2 the
fundamental group m,(S"*? — f(9")) is of weight 1. (See Lemma 2 below.)

THEOREM 1. Given n = 3. The group w is isomorphic to my(S*+2? — f(8))
for some differential imbedding f: S* — 8"2 if and only if w|n’ == Z, the
weight of 7 i8 1, and Hy(w) = 0.

(Here Hy(w) denotes the second homology group of = with integral
coefficients and trivial action of 7 on Z.)

Actually, the “only if”’ part of this theorem holds for n = 1:

Lemma 1, Let X2 be a homotopy (n + 2)-sphere, where n = 1. If

7 m(Z — f(8)

for some differential imbedding f: S* — Zn+2, then w[n’ = Z, w(w) = 1, and
Hy(m) = 0.

For n = 2, the argument in the proof of Theorem 1 breaks down. We
shall get a partial result by strengthening the algebraic conditions. Define
the deficiency of a presentation (z,,. . .,,; Ry,. . ., R,) of a group to
be the integer ¢ — r. Clearly, a group = with a presentation of deficiency
1 and such that m/n’ = Z satisfies the condition Hy(w) = 0. [Let K*' be
the g-fold wedge of S, and attach ¢ — 1 two-dimensional cells to KXW
using R,,. . ., B,_;. The resulting 2-complex K satisfies m K =~ 7 and
H,K = 0. Hence Hy(w) = H,K/p(m,K) = 0, where p: m,K — H,K is the
Hurewicz homomorphism. Compare Hopf [7].]

THEOREM 2. Given a group w of weight 1, with a presentation of deficiency
1, and such that n|n' > Z. There exist a homotopy 4-sphere X% and a
differential imbedding f: 82 — X* such that m o~ m(Z* — f(8%).

The condition of deficiency 1 is definitely stronger (for groups satisfying 2
n[n’ =~ Z) than the condition Hy(w) = 0. For example, the group G with
the presentation (x,a;a® =1, x = aza) considered by R. Fox in [5], i
Example 12, has vanishing second homology group because it is the group -
of some 2-knot. (Compare Lemma 1.) However, this group does not have :
deficieney 1 (it has therefore deficiency 0) because its Alexander ideal,
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(For the notion of the Alexander ideal, compare [4]. If the group =,
satisfying #[n’ =~ Z, has deficiency 1, one can find a presentation of
of theform (z,, . . ., % 2,0, =1,. . ., 2,40, = 1), whereCy, . . .,Cpy
belong to the commutator subgroup of the free group on z,,. . ., %,
It follows that an Alexander matrix of = has its last column consisting of
zeros only. Hence this matrix has only one non-zero minor of order ¢ — 1,
i.e., the Alexander ideal &, is generated by a single element.)

The proof of Theorem 1 generalizes trivially to the case of links, i.e.,
unions of k disjointly imbedded n-spheres in S"+2,

THROREM 3. Given n = 3. The group = i3 tsomorphic to w,(S*+2 — L),
where Ly i8 a union of k disjointly imbedded n-spheres if and only if n/n’
18 free abelian of rank k, the weight of  is equal to k, and Hy(m) = 0.

The proof follows closely the pattern of the proof of Theorem 1 and will
be left to the reader.
Similarly :

TrrorEM 4. If the group = of weight k and such that =[n' is free abelian
of rank k has a presentation of deficiency k, then there exists a link Ly, of k
disjoinily imbedded 2-spheres in some homotopy 4-sphere X4, such that
moe m(Zt — Ly).

é. Proofs

We begin with the proof of a slight generalization of part of Lemma 1.

Lemma 2. Let M™2 be a simply connected differential manifold, and
V* a connected submanifold. (Either or both manifolds possibly with
boundary.) Then the weight of w((M — V) is at most 1.

Let a: 8 —+M — V be an imbedding such that a(S') bounds a small
2-disc 7 in M which intersects V transversally at exactly one point.
Taking a base point z, € S, let a(z,) = z, be the base point in M — V.
Let o be the homotopy class of a: (S, z,) — (M — V, ;). I claim that
the normal closure of a in m (M — V, z,) is equal to m(M — V, z,). Let
e m(M — V, z,) be an arbitrary element, and let f: (S, 2e) > (M — V,x,)
be a differential mapping representing &. Since M is simply connected, we
can extend f to a map F': D? — M which may be assumed to be differential
and transversal to V. (Compare [14].) Then F-Y(V) is a finite set of points
Uy o - U EDP — 8L Tet D,,. .., D, be small disjoint discs around
Uy, . . ., %, contained in D? — 81, Jouung F(u;) to yy = 7N V by a path
on V, we can deform F in D,, keeping it fixed in D?* — D,, so that the
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represents o/, where g = +1 or —1. Let z; be a base point on the bound-
ary of D%, i.e., a point such that F(z;) = x,. A path on D? — ;D% from
2; to the base point z, on S maps by F into a loop at x, representing some
element 7', € m(M — V, x,). Taking these paths on D? to be disjoint, we
clearly have & = II,T;'«;T,. Hence the weight of = (M — V, z,) is at
most 1.

To complete the proof of Lemma, 1 it remains to show thatif f: S8 — Zn+2
is a differentiable imbedding, where 3#+2 is a homotopy (n -} 2)-sphere,
then Hy(w) =0, where 7 = m(3*+2 — f(S*)). This follows from the
theorem of Hopf in 7] since H, (32 — f(8")) == 0 by Alexander duality.

The proofs of Theorem 2 and of the “if”” part of Theorem 1 are based on
the same construction. Thus we start proving them simultaneously.
Eventually the proof will split into the two cases # = 2 and n = 3.

Let 7 be a given group of weight 1 and such that =/n' ~ Z.

Suppose we have succeeded constructing a manifold M*+2 such that
mM >~ n, and HM =0 for 2 < ¢ < n, where n = 2. Let o€ 7 be an
element whose normal closure is equal to =, and let ¢: §* — M"+2 be a
differential imbedding representing o (under some isomorphism = o~
(M, x,), where xy = 1(2,)). Extending y to an imbedding ¢@: §* x Dn+t
— M#+2 and performing the spherical modification y(g), we obtain a
Zn+2 which is easily seen to be a homotopy sphere. We have

St = (M — (8 X Br))y D x S,

where B! denotes the interior of D#+!, and Z"+2 is simply connected by
the theorem of van Kampen. Using nf/n' =~ Z and the fact that the
homology class of & must be a generator of H; M, it follows that

HS = H,S =0.

Compare [10], §5, Lemma 5.6. The vanishing of H,X for 2 <k <n
follows readily using a Mayer-Vietoris sequence. i
Let ¢': D? X §" — In+2 be the inclusion map, and f: §# — E+2 the
imbedding defined by f(u) = ¢'(0,%). Clearly, X+ — f(S*) and”
Znt2 — o'(D? % S") have the same homotopy type. Hence :

,,.1( Tint2 —f(S")) o ,,.1( Snt+e ‘I"(D’ X Sn))
=mM - X D) m Mo,

since dim M = 4.
If n = 2, I do not know how to go any further. For n = 3 the connected
sum Y # (—Y) is h-cobordant. and hence diffeomornhie to S7+2. (Comvare
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is diffeomorphic to S® and we do not have to appeal to the connected sum
Z # (—ZX)) '

It remains to construct the manifold M"+? such that =M ~ = and
HM=0for2<k=<n.

Let m = (. . - % By, . . ., BR,) be a finite presentation of » (not
necessarily of deficiency 1). We start with the manifold

M3+2=Slxgn+l#slxgn+1#. <o # S x Sl

i.e., the connected sum of ¢ copies of §* x S"+.. Observe that My+? is
S-parallelizable, i.e., the stabilized tangent bundle of Mg+? is trivial.
(Compare [10].) It is convenient to choose as base “point” on M3+2 some
contractible open subset U < M,. The fundamental group my(M,, U) is a
free group on ¢ generators which we identify with z,,.. ., z, Let
Jit (8% 29) = (M, U), where j=1,. . ., r be r mutually disjoint differ-
ential imbeddings representing R;(x,, . . ., #,). Since M, is orientable, we
can extend f; to disjoint differential imbeddings @,: 8! x D+l — M,
and then perform a polyspherical framed modification x(¢y,. . ., ¢,). In
other words, we consider the manifold M, obtained from the disjoint union
(My — Usp,(§* x Br1)) U (D? X 8), U (D? x §"),W - - U (D2 X 8%),
by identifying @, (u, v) for u€ 8, v€8" with (u,v)e (D® X 8", j=1,

. ., 7. We denote by ¢ the inclusion of (D? x 8"), into M;. It is known
that M, has a natural differential structure, and that the extensions g;
of f; can be chosen so that M, is S-parallelizable. (Compare [10], p. 521 and
Lemma 5.4.) By the theorem of van Kampen, we have m,(M,) >~ =.

If the presentation (2, . . ., %; By, . . ., R,) of  hag deficiency 1, i.e.,
if r=gq —1, then @,: H,(U,(8* X D*)) —» H,(M,) must be injective
since Hy M /Im ¢, o~ H, M, ~ Z. Then H,M, = 0 implies

Hy(M,, U8t x D)) =0,
and by excision we also have
Hy(M,, Upi(D? x 87) = 0.
The exact sequence .
S Hy(D? x 8%) "> H,M, — Hy(M,, Ug}(D* x %)

then yields H,M, = 0, at least for » > 2. For n = 2 the conclusion
H,M, = 0 still follows since @, maps the generators of X,H,(S* x D")
into primitive elements of Hy M, and it follows that the map @, of the

ahnave samttanna 1a varn (Cnmnara 10T Toamma E 82 and the $CAcacartian??
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If the presentation of = is not necessarily of deficiency 1, and all we
know is that Hy(w) = 0, we have to assume » = 3 in order to be able to
kill H,M, by spherical modifications.

Let p: meM, — H,M; be the Hurewicz homomorphism. Then p(m,M,)
is the subgroup of spherical homology classes, and according to H. Hopf
Hy(w) = HyM,[p(m,M,), where the homology of = is understood with
integer coefficients and trivial action of n. (Compare [7].) Hence the
assumption Hy(m) = 0 implies that p: myM, — H,M, is surjective. The
assumption n = 3 guarantees that every homology class &e H, M, is
representable by a differentiably imbedded 2-sphere. (Recall that accord-
ing to [9] this is definitely false for » = 2.) Since M; is S-parallelizable,
every differentiably imbedded 2-sphere in M, has a trivial normal bundle.

Following the discussion in §5 of [10], we construct a finite sequence
M, M, ... M,...of (»n4 2)manifolds. M, is obtained from M,
by a spherical modification y(g,) were ¢,: 82 X D* — M, represents a
suitable class &, € H,M,.

Since M, = (M) — @i(S® X B") U D? x 81, it follows from n = 3,
using the theorem of van Kampen, that m M, , o m; M, ~ «=. Hence, at
every stage of the construction, p: w,M;, — H,M, is surjective (by Hopf’s
theorem [7]) and every class in H,M, is representable by a differentiably
imbedded 2-sphere. Taking care of performing only framed spherical
modifications (see §6 of [10]), all the manifolds M, will be S-parallelizable,
and every dlﬂ'erentlably imbedded 2-sphere in M, has a trivial normal
bundle.

The choice of &, € H, M, is made as follows: (1) If H, M, is infinite, then
H M, contains a primitive element &, This means that there exists an
element » € H, M, such that & -# = 1. Then, killing &, by a spherical
modifieation also kills # and H,M, , o~ H,M,/(§.). For the proof, see
Lemma 5.6 of [10]. (2) If H, M, is finite (and non-zero) then n» must equal
3. Killing an arbitrary element &,€ H,M, by spherical modification
introduces a new class & € HyM, , necessarily of infinite order. More
precisely, the sequence

0—>Z—->H,M, ,— Hsz/(Ek) -0

is exact in this case, as proved in [10], p. 18. The next modification will -
be taken to kill a primitive element &, in the newly introduced infinite
cyclic summand of H,M, ,. (In general &, # &'.)

It is left to the reader to convince himself that the non-vanishing of the

fundamental groups of M, in the present situation does not invalidate
Tommacd EL and EQ afT1N0T Tha rranfs adiven tn F101 annly ward Far warard
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arbitrary generator if H,M, is finite, the sequence M,, . . , M,,. . .leads
in a finite number of steps to a manifold M; == M such that mM ~ =~

and H,M = 0.
If n = 3, then H,M = 0 implies HyM = 0 by Poincaré duality since
H M ~ n|n’ ~ Zis free abelian. Ifn > 3, then HM =- - - =H, , =0

because then H, M, is torsion free, and killing a primitive class of H,M,
leaves the g-dimensional homology group unchanged for 3 < g <n — 1.
Moreover, H,M = 0 again by Poincaré duality.

Thus the manifold M satisfies the requirements M ~ 7 and H M = 0
forg = 2,. . ., n. This completes the proof of Theorem 1.

Remarg. Of course, having an imbedding f: 8% — 88 such that
m (8% — f(S®)) =2 = it is eany to obtain an imbedding f,: 8% — 9"+2 with
m, (872 — f (S")) o« 7 for all » = 3 by the Artin ‘“‘spinning™ construction.
{Compare Artin [1].)

3. Appendix

This last section contains some remarks which came up in discussions
during the Symposium. They are due for the most part to M. Hirsch, J.
Milnor, and J. Stallings. (However, except for Theorem ITI and Milnor’s
example under (3) below, the proofs given here are my own.)

The first question was: What is the situation in the case of a differentiably
imbedded homotopy n-sphere Tr tn Sn+27%

TurorEM 1. 4 homotopy n-sphere X# can be imbedded in S*+2 (by a
_ differential imbedding) if and only if %" is the boundary of a parallelizable
n - 1)-manifold.

ProoF. Suppose Z¢ is imbeddable in S**+2, then 3# bounds a paralleliz-
able (n -+ 1)-manifold. In fact, every X» < §#+2 bounds a parallelizable
Vril < §n+2, Let U be a tubular neighborhood of " < §%+2 and

T=bU=0U-U.

Since %" has a trivial normal bundle in 72, we have a diffeomorphism
I x D~ U.Let I} < T bethe submanifold corresponding to =* X (x,),
where z, € §* © D2 It is enough to show that X} bounds a parallelizable
(n + 1)-manifold V in 8**2 — . The Pontrjagin~-Thom construction
applied to X} < 7"+ and a normal vector-field to X7 in 7' yields a map
®,: T — 8. We extend this map to a map ¢: §*+2 — U — S, The only

obstruction to the extension is a cohomology class y € H¥S*+2 — U, T).
P L T Y I R - T L - S T S > N PO T S



112 MICHEL' A, KERVAIRE

in 7. By the Alexander duality theorem, Z, is homologous to zero in
8n+2 — [/, hence there exists a class £€ H, (8" — U, T') such that
& = (Z,), the homology class of %, (in H,T). Using the diagram
HY(S™ — U) -5 BT — > B¥ 82 — U, T)
T
H, (8 — U, T) —> H,T —> H,(8"* — U)

where the vertical isomorphisms are given by Poincaré duality, we see
that the dual of £ maps by i* onto 4-¢. (The diagram is commutative up
to sign.) Hence, 0 = y = 0. Keeping ®|7' = ®, fixed, we can approxi-
mate ®: §n+2 — 7 — 1 by a differential map, and assume that

(D(zl) =a ESI

is a regular value of ®. Then ®-1(g) = V»-1 < §»*2 or at least the com-
ponent of X, in @1 (a) is the desired manifold.

In particular, thls shows that every higher knot has some sort of

“generalized genus.”

The converse is clear for n = 1 or 2. For n = 3, every compact orientable
3-manifold in imbeddable in S3. [M. Hirsch, Ann. of Math., 74 (1961),
494-497. Theorem 3.] If n = 4 we argue as follows. Every homotopy
4-sphere >4 is the boundary of a contractible 5-manifold V. (Compare [10],

Theorem 6.6.) Let 3° be the double of V. The homotopy 5-sphere X8 is the *

boundary of a contractible 6-manifold W, and according to Smale [13]
W is diffeomorphic to the 6-disc D Hence, 3° is diffeomorphic to S5,
and so every homotopy 4-sphere is imbeddable in 8%, Let » == 5, and suppose
that the homotopy n-sphere 2 is the boundary of a parallelizable (n -+ 1)-
manifold. If n is even, then 3# is h-cobordant to 8% (See {10], Theorem

6.6.) Hence, according to Smale [13], 2 is diffeomorphic to S*. If  is. -
odd, 2# is h-cobordant and hence diffeomorphic to the boundary of a

T M Rae

#(n — 1)-connected manifold W+!, where W is the connected sum along
the boundary of a finite number of copies of some manifold W, In Part IT

of [10] we give an explicit construction of W, as a “‘thickened’ wedge of -
k-spheres, where 2k = n + 1. Each S8* imbedded in W, has a stably -
trivial normal bundle. Now any wedge of k-spheres can be imbedded in -

87+, and the imbeddability of W in S#+2 follows if we prove that every

A
'

stably trivial SO,-bundle over §* can be realized by a normal field of

k-planes over S* in §2+1, Let f+1 be a trivialization of the normal bundle
of S" < S”""'l If v is the field of normal vectors over S* corresponding to

Y1 . ¢ VRS s s v s Vo BETL . T N
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then the SO,-bundle over S* given by the field of normal k-planes ortho-
gonal to v has a characteristic element y € m,_,(S0O,) given by y = 7(a),
where 7: m(8%) — m,_,(80,) is the transgression homomorphism of the
fibration 80, — 8O,.; — 8* and (a) is the homotopy class of a. Stably
trivial SO,-bundles over S* are exactly those whose characteristic element
is in the image of 7. Hence, by a proper choice of («), one can realize any
stably trivial SO,-bundle over S* by a field of normal k-planes in S2++1,
This completes the proof of Theorem I.

Turorem II. (J. Milnor.) If X# is the boundary of a parallelizable
manifold, there exists a differential imbedding f,: X* — S"+2 such that
(9 — fo(E") e Z.

Proor. The statement is trivial for n = 1, 2 and #» even = 6 since
then X is diffeomorphic to 8* as observed before. For n = 4 it follows
since every homotopy 4-sphere is imbeddable in $5. (Compare the proof of
Theorem I.) If n is odd, let W2¢ = §2%+1 where 2k = n + 1, be a con-
nected submanifold of §2¢+! such that bW = 3 and §%+1 — W is simply
connected. We shall prove that for such an imbedding X» < §n+2, we have
m,(8n+2 — ¥n) ~ Z. The existence of a submanifold W2k — §2%+1 of the
required kind will be shown at the end of the proof. Let ¢ be a loop in
the complement of 3. We can assume that £ is a differentiable curve,
transversal to W. Let A(Z) be the algebraic intersection number I(¢, W)
€Z. Clearly, A(f) depends only on the homotopy class of ¢ in
my(S*+2 — Tn, x,), where z, = £(0), and provides a homomorphism
A: my (82 — 30, ) — Z. It is obvious that A is surjective. Suppose that
A(f) = 0. We show that ¢ is homotopic in 8% — Z# in & loop in
872 — W. Unless ¢ is already a loop in §»+2 — W, there exist a pair
t < ¢’ of values of ¢t and small positive numbers &, &’ such that ¢t 4 &,
i’ — ¢'] is contained in 7+ — W, and

I(f7t — e, t 4 €], W) = —I(/t' — &', ¢’ + &'], W) #0,
where the sets £[t — &, ¢+ eJN W and £[¢ — &',t' + &JN W oconsist
of a single point. Since §*+2 — W is simply connected, £|[t + ¢, ' — &' is
homotopic in S"*2 — W (and a fortiors in S*+2 — 3%) to a path ¢’ con-
tained in a neighborhood of W. (Use a path on W connecting #(f) and
£(t').) Replacing the portion of £ between ¢ + ¢ and ¢’ — &’ by ¢’ and using
a field of normal vectors to W in §#+2 we can “push’ the path

At —et+ &) Ot + 6t — &) At — &, ¢ + &)

anrncas W (roonine 40 andnmtinte Lvod) withmmt ntanmacnndtivmea SN thave
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follows by induction on the cardinality of the finite set £(I) N W. Since
— W is simply connected, A(f) =0 implies £~ 1, hence A4 is
an isomorphism and m,(S"+2 — 3#) ~ Z
If n = 5, we take for W a finite connected sum along the boundary of
thickened wedge of k-spheres, and the imbedding W2* < §2¢+1 whose
existence has been shown in the proof of Theorem I. Since W retracts
by deformation on a wedge of k-spheres, we clearly have

Ty (8% — W) = {1}.

If n = 3, take an imbedding 32 — 5 which bounds a simply connected
W4 < 85. (Compare Hirsch, Ann. of Math., 74 (1961), 494497, Theorem
3.) I claim that 8% — W is simply connected. Let f: 81—+ 85 — W be a
given differential imbedding and denote again by f an extension
J: (D2, 8Y) — (85,85 — W). Firstly, we can push f(D?) away from
23 = bW+ To do this assume that f is transversal to W and X3. If z, 2’
are two intersection points of f(D?) and X2 with opposite intersection
numbers, then z, 2’ are the endpoints of a path w in f(D?) N W and also
endpoints of a path w' on 23, Let ¢: @ — W* be an immersion of the 2-
dise with two corners @ into W such that @|bQ = w’ - w1 (W is simply
connected.) Keeping ¢|bQ fixed we can approximate ¢ by an imbedding
into 8° such that @(int Q) N %2 = @. Using a field of normal 3-frames on
@(@) we can push f along ¢(Q) using the method of H. Whitney [ Ann. of
Math., 45 (1944), 220-248]. The effect of this operation is to remove the
intersection points z, ' from f(D?) N X3. After a finite number of such
operations we obtain a new mapping f: (D2, 81) — (8% — X8, 85 — W9

with f |Sl unchanged.
Now, assuming f still transversal to W, the intersection f(D*) N W.
consists of a finite number of disjoint closed curves. Let Cy,. . .,C, be

the corresponding curves in D2 Let C; bound a dise D; on D2 Since
f(C,) is homotopic to a point in W, we can replace f|.D, by a mapping into
W. Using a normal vector-field on W, f can be pushed away from W in a.
neighborhood of D,, thus reducing the number of components of’
f(D?) N W by at least 1. Hence the intersection f(D?) N W can also be:
removed in a finite number of steps, proving that f|8* is homotopic. bo\'
a point in 8% — W. Thus m,(S® — W) = {1}. This completes the proof of*
Theorem II. B

TagoreM IIT. (M. Hirsch.) Let f: T — 8742 be a differential imbedding
with n = 5. If 8™ — f(X*) has the homotopy type of S', then Xr is
diffeomorphic to S*.
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set Vnt2 = §n+2 _ TJ, Extending ¢ to an imbedding g: 8 x Dr+l — ni2
using a trivialization of the normal bundle of g(S). Then

V' =V — g(8* X int D+

provides a simple %-cobordism between ¢(8* X 8*) and bU = bV. It is
easily seen that inclusions g(S! X 8*) < V' and U < V' are homotopy
equivalences, and since the fundamental group is infinite cyclic, they are
simple homotopy equivalences (compare J. H. C. Whitehead, Proc.
London Maih. Soc., 45 (1939), 243-327). It follows by a theorem of B.
Mazur [Ann. of Math., 77 (1963), 232-249] that bU is diffeomorphie to
St x 8*, Since X* has a trivial normal bundle, bU is diffeomorphic to
St X X». Hence there exists a diffeomorphism A:8* x Ir — 81 x 8",
Lifting » to the universal coverings, we get a diffeomorphism
H: R' X 3*— R! X 8* = Rr+l Hence X* can be differentially imbedded
into R*+1, The compact region W bounded by H(0 x 2#) in R*! is a
contractible manifold with boundary X». Using the assumption n = 5,
it follows by Smale [13] that W is diffeomorphic to Dn+i. In particular
X = W is diffeomorphic to §*.

TrEOREM IV. Given a homotopy n-sphere X* which s the boundary of
a parallelizable manifold, n = 3, and a finitely presentable group = of
weight 1, such that w|n' =~ Z and Hy(w) = 0, there exists a differential
tmbedding f: T* — 8™ with 7 o= m (S*+2 — f(Zn)).

Proor. Let 3 < §*+2 be an imbedding such that (82 — 38) ~ Z

(Theorem II). Let fy: 8 — S"+2 be an n-knot with = (8"+2 — fi(8%)) o o

" (Theorem 1). Take the relative connected sum (S™+2, Xn) # (842, f,(8")),
and let f: X#— 8n+2 be the resulting differential imbedding., Then
my (Sn+2 — f(2)) 2« w*Z[(a~ly), where y generates Z, and « is some ele-
ment of 7. Hence, m (S*+2 — f(3")) o~ o.

If the complement of a 1-knot f: 8* — S® has an infinite cyclic funda-
mental group, then 8% — f(8') and 8 have the same homotopy type.
This is a simple consequence of the Lemma of Dehn-Papakyriakopoulos
[Ann. of Maih., 66 (1957), 1-26].

For which values of n-can one imbed 8" into 8n+2 so that ,(87+2 — f(8*))
is infinite cyclic but S*+2 — f(8") does not have the homotopy type of S1?

.TneoREM V. (J. Stallings) For n = 3 there exist smooth imbeddings
Sf: 8% — 82 such that 7, (8"t — f(8")) = Z and wy(S"+2 — f(S")) # 0.

For n = 2 the question remains open.

- - N aa NA . s -+ % 4 * % s v -, .
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with J. Then, my(M,, x,) is & free Z[J]-module on one generator, where
Z[J] is the integral group ring of J. Choosing a generator of my(M,, ,), we
can identify my(M,, z,) with Z[{J]. Let @,: 82— M, be a differential
imbedding representing the element (2 — &) € my( My, 2,) = Z[J]. Clearly,
¢, has a trivial normal bundle and we can extend ¢, to an imbedding
@: 82 X D> M, Let M = y(M,, ¢) be the manifold obtained from M,
by spherical modification. M = (M, — ¢(8 X int D®)) U D? x 8»-1,
Since the homology class of ¢,(8?) is & generator of HyM,, it follows that
HM=":-+=HM=0. Since n =3, mM =~ Z and it is easily seen
that 7, M is non-trivial. Indeed, M, and M are the two components of
the boundary of a manifold W which is homotopy equivalent to M, U ¢®
and M U e*. Hence, the inclusions My, — W and M — W induce epi-
morphisms ¢, : 7 M, — 7, W and w,M — =, W. The kernel of 4, is the ideal
of Z[J] generated by 2 —¢. Hence, mW = Im 4, = 0, and therefore
waM # 0.

Let y: 8* X D"l — M be an imbedding representing a generator of
mM =~ Z, Then, the manifold

1M, ) = (M — p(8* X int D*1)) U D? x 8

is & homotopy (n + 2)-sphere X#t2, Let f: 8" —»iZ"’.f’ be the imbedding
81— 0 x 8 < D? x §* < Zr+2, We have :
m( T — f(8") o m M o~ Z,
and _
.".2( e+ _f(Sn)) o .”2( Snt2 — D2 Sn)
o my(M — (8 X D)) o2 M # 0.

By suitably changing the differentiable structure of X*+2 in the comple-
ment of f(.9*) we obtain a differential imbedding f: 8" — 872 with

Cm(8 —f(S) = Z  and  my(Sv? — f(Sm) £ 0.

Finally, we discuss the independence of the algebraic conditions:

() wln' = Z;
(ii) There exists an element o € whose normal closure is ;
(iii) Hy(m) = 0.

(1) Any finite cyclic group satisfies (ii) and (iii) and does not satisfy (i).
(2} Let @ be a non-trivial groun such that @ = @'. and suvpnose that G
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the group with the presentation @ = («, f; a® = f° = (a~1§)%). A repre-
sentation p: G — U(5) into the group of 5 X 5 unitary matrices is given by

01000 00100
1000 01000
pl@y=l0 0 0 1 0 pB)=[0 00 0 1
00100 00010
00001 10000

Under the above assumptions on @, the group = = G = Z satisfies (i)
and (iii). It even satisfies the requirement stronger than (iii) of having
deficienoy 1. I claim that the weight of r is bigger than 1. We prove this for
the above group G = («, f; a? = f% = («~'8)%). In the general case the
proof is quite similar. Let W(«, §, ) be a word representing an element &
in 7 = G * Z. (y denotes a generator of Z.) Claim: =/(§) # {1}.

The statement is trivial unless the sum of exponents of y in W(a, 8, »)
is equal to +1. (Look at the abelianized group of =/(£).) We can then
assume that the exponent-sum of y in W(a, f,y) is -+1. Regard
W(A, B, X) = E, where 4 =p(x) and B ==p(f) as an equation in
U(5) for the unknown matrix X. (& denotes the unit matrix of U(5).)
Following M. Gerstenhaber and O. Rothaus, consider the mapping
w: U(8) — U(8) defined by w(X) -= W(A4, B, X). (Compare Proc. Nat.
Acad. Sci., 48 (1962), 1531-1533. I am very grateful to W. Magnus and
G. Baumslag for pointing out this paper to me.) Since U(5) is connected,
w is homotopic to the mapping wy: U(5) — U(5) defined by

wy(X) = W(&, B, X).
Since X enters into W(4, B, X) with exponent-sum 1, we have
W(E, E,X)=X.

Hence, w, is the identity mapping, and w must be & surjective map since
U(5) is a finite dimensional manifold. In other words, the equation
W(A, B, X) = E has a solution C e U(5), i.e., W(4, B,C) = E. Now,
let 7. < U(5) be the subgroup of U(5) generated by A, B, C. Then
m % {1} and «f(§) maps surjectively onto . by p.: #f(&) — U(5)
defined by ps(a) = 4, pu(B) = B, ps(y) = C. It follows that «/(&) #{1}.
Since this argument applies to any group element & € 7, the group 7 does
nnt anfiafr (13)



N

118 MICHEL A. KERVAIRE

and let a: St x S1— 8! x 8! be the corresponding automorphism of the
torus:

wz, 29) = (42D, ),
where

A=

a b
¢ dl|

(a, b, ¢, d € Z). Let B, be the closed orientable 3-manifold obtained from
81 X 8t x I by identifying 8! X 8* X (0) with 8* x 8* X (1) using «.
Then E, is the total space of a (locally trivial) fibration over 8 with .
fibre 81 X 81 It follows that mE , = 0. Since a(l,1) = (1, 1), we can
define a section S? — F, by mapping each z € §* into the point (1, 1) of
the fibre over z. This defines an element € = (B, z,), where x, is the
point (1, 1) €.8* x 8 of the fibre over 1 € 8. Let &, 5 be the generators
of the fundamental group of the fibre over 1< 8! represented by
&(t) = (e*¥%, 1) and 9(t) = (1, €2%%). The group =(E ,, z,) is generated by
7, & n and has the presentation (r, &, n;[& 9] =1, +%r= &,
7-lyr = &%°%). Hence, denoting my(# 4, z,) by =, we have w/n’ o Z if and
only if (@ — 1)(d — 1) —bc = 4+1. Then, Hyl ,)=<Z by Poincaré
duality, and since my(E ;) = 0, it follows that

Hy(m) = Hy(E s)|pms(B4) = Z

Moreover, if (a — 1)}(d — 1) — bc = 41, the normal closure of ~ in = is
equal to . .
A simple example of a unimodular matrix satisfying the above require-

ments is
' 1 1
—1 0

The corresponding group, satisfying (i), (i) but not (iii), has the presenta.'_fff
tion (7, &, 9; 6~y = 1, v Y7 = &y, v~ yr = &)
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