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Definition 3: X(yO) = -sup {X': u(rOuOy0) exp X' T is bounded for all T,
0 . T< +O}.

Type numbers (or their negatives, Lyapunov numbers) are usually defined some-
what more generally than this,2 but only the radial type numbers defined above are
needed here. Now. any hypothesis concerning the real parts of the characteristic
roots of A when k = 1 can be formulated in terms of the radial type numbers of the
limit solutions when k . 1. For it can be shown that when k = 1, the set of radial
type numbers of the limit solutions of (3) is precisely the set of real parts of the
characteristic roots of A. In particular, Lyapunov's theorem can be generalized.
THEOREM. If k > 1 and if the radial type number of every limit solution of (3)

is negative, then the trivial solution, x = 0, of (1) is asymptotically stable.
The proof consists of showing that the hypothesis implies that the radial type

number of every solution of (3) is negative and that this in turn implies that the
trivial solution of (2) is asymptotically stable. A theorem of Zubov3 is used to
prove this latter assertion. Finally, it is a theorem of Massera4 that if the trivial
solution of (2) is asymptotically stable, so is the trivial solution of (1).

3. The results of an earlier paper5 and some remarks made by S. Lefschetz were
the stimuli for what has been presented here. It should be noted that the main
theorem of reference (5) is a special case of the theorem stated above.

* This research was supported in part by the National Science Foundation under contract
number NSF G 12932.
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Let M2n be a simply connected differentiable manifold, and let teCr(M2n) be
a given homotopy class of maps S _O M2n. It is known that if n> 2, the classt
can be represented by a differentiable imbedding f: S O- M2n. This follows
from a reasoning similar to the one used by H. Whitney9 to prove that every
differentiable n-manifold can be differentiably imbedded in Euclidean 2n-space.
(Compare MilnQr,6 Lemma 6.) It is also included in a more general theorem of
A. Haefliger.3 Both arguments, however, break down for n = 2. This leads
to the following question:

Let M4 be a simply connected differentiable manifold. Is every element
of w2(M4) representable by a differentiably imbedded sphere?
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In 1951, Rohlin7 announced the erroneous result that the stable 3-stem 7rT+3(S8),
n > 5, was cyclic of order 12. (This result was corrected in a subsequent paper.8)
It was pointed out to us by Rohlin that the only mistake in reference 7 was to take
for granted an affirmative answer to the above problem. Indeed, a specific counter-
example can be extracted from Rohlin's paper, using the fact that 7rn+3(S8)- Z24
for n > 5.

In the following, we present a generalized version of Rohlin's counter-example
and also study the corresponding combinatorial problem.

Let M be a 4-dimensional closed connected, oriented, differentiable manifold.
The signature v(M) of M is defined to be the signature of the symmetric bilinear
form

H2(M; Q) ® H2(M; Q) -- Q
determined by the intersection number. We will say that an integral homology
class t e H2(M; Z) is dual to the Stiefel-Whitney class w2(M) if the natural homo-
morphisms

H2(M; Z) -- H2(M; Z2) H2(M; Z2)
(reduction mod 2 followed by Poincar6 duality) carry t into w2(M).
THEOREM 1. Let t e H2(M; Z) be dual to the Stiefel-Whitney class w2(M). If

t is represented by a differentiably imbedded 2-sphere in M, then the self-intersection
number tt~must be congruent* to a(M) modulo 16.
Two examples will illustrate this theorem. First let M be the product S2 X S2

and let a, fi E H2(S2 X S2; Z) be the standard generators. Thus, a + 3 is the
diagonal class.
COROLLARY 1. The homology class 2(a + ,3) is not represented by any differentiably

imbedded 2-sphere in S2 X S2.
Next, let M be the complex projective plane PC(2), with generator -y e H2(PC(2);

Z).
COROLLARY 2. The homology class Sy in PC(2) is not represented by any differ-

entiably imbedded 2-sphere.
A third example will be presented at the end of the paper. In contrast, we will

prove the following.
THEOREM 2. In either S2 X S2 or PC(2), every 2-dimensional homology class

can be represented by a combinatorially imbedded 2-sphere.
(In general, this 2-sphere will have exceptional points at which it is not locally

flat.) The proof of Theorem 2 will apply to some other manifolds. (See Lemma
2 below.) However, it is not known whether every two-dimensional homology
class in every simply connected 4-manifold can be represented by a combinatorially
imbedded sphere.

Proof of Theorem 1: We will use the following known result (see Rohlin,8
Milnor and Kervaire5):
LEMMA 1. If the Stiefel-Whitney class w2(M4) is zero, thent the signature a(M4)

is congruent to zero modulo 16.
(Note that this lemma can be considered as a special case of Theorem 1, corre-

sponding to the choice 0= 0.)
Reversing the orientation of M if necessary, we may assume that the self-inter-
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section number S 4 is nonpositive. Let P1, ., P8 +1 be s + 1 copies of the complex
projective plane PC(2), where s = -4.
Form the connected sum

Ml = M/P11 if ... i#P8+1.
Using the natural isomorphism

J: H2(M; Z) D H2(P1; Z) ... H2(P,+1; Z) -> H2(M]; Z),

let Xq = i(t(4 Gi ... 3Y8+l).
Here -yi denotes a generator of H2(Pi; Z). Note that the self-intersection number
v q is given by

n-n = 44t + Zisi = +1.

Using the hypothesis that 4 can be represented by a differentiable imbedding of
S2 in Al, it follows easily that I can be represented by a differentiable imbedding

f: S2 -Jo1.

Since am = 1, the Euler class of the normal bundle of f(S2) C Ml is the standard
generator of H2(S2; Z). (Compare the argument on page 51 of ref. 6.) Hence,
the normal circle-bundle of f(S2) c M1 is the Hopf fibration SI -_ S2.

Let M2 be the new differentiable manifold obtained from Ml by removing a
tubular neighborhood of f(S2) and replacing it by a 4-cell, matching the 3-sphere
boundaries. Evidently, the original Ml is diffeomorphic to the connected sum
A12 if PC(2). Hence, we have

0a(l^) = a'M2) + 1.

We claim that the Stiefel-Whitney class w2(M2) is zero. Clearly, vq is dual to the
Stiefel-Whitney class w2(M1). This implies that the class w2(M1 - f(S2)) is zero;
hence w2(M2) = 0. Therefore, we have u(M2) 0 modulo 16; hence,

o(011) = 1 (mod 16).
On the other hand,

cT(A1) = u1(M) + o(P,) + ... + o(P,+1) = o(Mi) + s + 1.

Thus, o(M) +s± 0 (mod 16)

which completes the proof of Theorem 1.
Example 1: Let M = S2 X S2 and let 4 = pa + qd be an arbitrary element of

H2(M; Z). Then .4 = 2pq. Since w2(M) = 0, the class t is dual to w2(M) if
and only if p and q are both even. If p q_= 2 (mod 4), then 4.4 8 (mod 16).
Hence, such a 4 cannot be represented by a differentiably imbedded 2-sphere in
S2 X S2. This proves Corollary 1. On the other hand, if pI < 2, then the class
pa + q3 is representable by a differentiably imbedded sphere. In general, for
higher values of p and q, the problem remains unsolved.
Example 2: Let M be the complex projective plane PC(2), and let 4 = r'Y.

Then, Act = r2. The class 4 is dual to w2(MI) if and only if r is odd. If r= 3
(mod 8), then
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t - = r2-9 (mod 16).
Since o(M) = 1, this shows that such a t is not representable by a differentiably
imbedded sphere. This proves Corollary 2.
On the other hand, for rI < 3, the class t = r-y is representable. The problem

remains unsolved for other r 0 +3 (mod 8).
The proof of Theorem 2 is elementary. We will first illustrate the proof idea

in the case of the projective plane PC(2). We will then prove a more general
statement (Lemma 2 below) which includes Theorem 2 as a special case.
PC(2) can be regarded as the union U U V of a tubular neighborhood U of the

projective line PC(1) = S2 c PC(2) and a 4-disk V. Let p: U - S2 be the
normal projection. The inverse image p-'(x) of a point x e S2 is a 2-disk. The
boundary U' of U is diffeomorphic to S3, and p restricted to U is the Hopf fibration
S3 S2. Let m be a positive integer, and let Di, i = 1,. .. ,m, denote the 2-disk
p-1(xi), where x],. . .,.rm are distinct points on S2. The disks D,. . . ,Dm are
oriented so that their intersection numbers with PC(1) are equal to + 1. Let
fj: I X I U., j = 1, .,m - 1, be imbeddings such that

(1) fj(I X 0) c D, and fj(I X 1) c D, ±1, wherefj I X 1 is orientation-
preserving and fj I X 0 orientation-reversing;

(2) The images Ej of fj, j = 1,... ,m - 1, are disjoint, and intersect
Dk only as specified in (1). (See Figs. 1 and 2.)

Ez~~~~~~~~~~~~ D

FIG. 1.-F is a right-handed trefoil
knot. FIG. 2.

In other words, we connect the disks D,. . ,Dm with each other using m - 1
strips El,...,Em- imbedded in U' so that the resulting surface with boundary
F = DI U E1 U Do U ... U Dm has an orientation compatible with the orienta-
tions of D1,. . .,Dm. The Euler characteristic of F is 1, hence F is a 2-element in
U. The boundary FP of F is a circle imbedded in the 3-sphere U' = V'. Since
V is a 4-d~sk, we can extend the imbedding F C V' to a (combinatorial) imbedding
C(F -- V of the cone over the boundary of F into V. [NOTE: In general, F C V'
will be a knotted circle. Hence, the imbedded disk CF c V will have a "singular
point" (Cf. ref. 2) at the vertex of the cone.] The surface F U CF' is a 2-sphere
22 combinatorially imbedded in PC(2). Clearly 12 represents the homology
class moy providing that its orientation is compatible with the orientations of the
disks Di. Otherwise, it represents the class (- my).
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Remark.-It is not hard to see that the strips connecting the disks D1,. .IDA
can be chosen so that F- is a torus knot of type (m - 1, - m) in S. For example,
for m = 2, the strip E1 can be chosen so that F- is unknotted. For m = 3, we obtain
the (right-handed) trefoil knot as illustrated by Figure 1. It follows from the
statement in Example 1 that for m = 3 or 5 modulo 8, such a knot does not belong
to the trivial knot cobordism class. (Compare R. Fox and J. Milnor.2 Actually,
Fox and Milnor have proved that no two distinct torus knots belong to the same
knot cobordism class.) Notice, however, that the knot cobordism class of F' is
not uniquely determined by the homology class of F U CF'. For instance, in the
case m = 2 we can add a twist to the strip E1 so as to obtain the (right-handed)
trefoil knot (compare Fig. 2).
We now come back to the proof of Theorem 2. We will prove the following

statement.
LEMMA 2. Let AI be a closed combinatorial 4-manifold containing a 2-dimensional

subcomplex K such that
(1) M - K is acyclic, and
(2) The boundary of a regular neighborhood' of K is a 3-sphere.

Then, every homology class t c H2(M; Z) can be represented by a combinatorially
imbedded sphere.

Clearly, both S2 X SI and PC(2) satisfy the hypothesis of Lemma 2. It is not
known whether every simply connected 4-manifold satisfies this hypothesis.

Proof of Lemma 2: Start with a cohomology class c in H2(K; Z) and choose
an iterated barycentric subdivision K(i) of K (i > 1) such that this cohomology
class is represented by a cocycle c0 with Ic(C) < 1 for every 2-simplex A E K().
Let U be the star neighborhood of K in IP+l). Then U is a regular neighborhood
of K (see ref. 10, Theorem 22); hence, the boundary Ur is a 3-sphere. Each 2-
simplex A e K(i) has a dual 2-cell A* c U C M(i+l) whose boundary is contained
in the boundary of U. Let ID,,. ..,Dm I be the set of those dual cells A* for
which c(A) 5 0. Orient each Di so that it has intersection number c(A) with the
corresponding simplex A. The boundaries D, ,Dm are m disjoint oriented
circles in the 3-sphere UL, where m = E co(A) . Now just as in the preceding
proof, choose m - 1 strips El, . . ., Em-i in U' which connect these m circles. Again,
the orientations are to be chosen so that the 2-element

F = D1 U E1 U D2 U ... U Dmc U

has an orientation compatible with the orientations of the Di. The boundary F'
is now a (knotted) circle in UC. But F' also bounds a 2-element F1 in the closure
V of Ml - U. Indeed, a regular neighborhood of U' = T in V is combinatorially
equivalent to SI X I, and therefore the imbedding F - V can be extended to an
imbedding of the cone over F' into V.
The union F U F1 is a combinatorial 2-sphere in Al which represents a homology

class t e H2(M; Z). Clearly, i corresponds to the cohomology class c E H2(K; Z)
under the isomorphisms

i* p j* ~ k*
H2(K) H-H2(U) - h( U, U) - HI(M1, V) - lH2(l).

Here, i, j, and k denote inclusion maps and p denotes the Poincare duality iso-
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morphism. (k* is an isomorphism since V is acyclic.) Since c was an arbitrary
cohomology class, this completes the proof of Lemma 2.
Example 3: In conclusion, we will consider the connected sum P1 # P2 of two

copies of the complex projective plane. Let Y1, Y2 e H2(P1 # P2; Z) be the standard
generators.
LEMMA 3. The homology class 37Y can be represented by a differentiably imbedded

2-sphere f: S2 -* P1 # P2.
This is rather surprising in view of Corollary 2.
The homology class 'ya can also be represented by an imbedded sphere
S,82 0 P1 # P2. It is interesting to note that the two images f(S2), g(S2) must

necessarily intersect, even though the intersection number 3y1 "Y2 is zero. For
otherwise it would be possible to choose an imbedded sphere representing the
homology class 3Yi + 'Y2 of the sum. This is impossible by Theorem 1, since

(3y1 + 72) - (3yi + 7y2) = 10 0 o(P1 # P2) = 2 (mod 16).
Proof of Lemma 3: Let U denote a tubular neighborhood of PC(1) in PC(2),

as in the proof of Theorem 2. Then P1 # P2 can be considered as the union U1 U U2
of two copies of U, with the 3-sphere boundaries matched under an orientation
reversing homeomorphism h: U' -> U'. As illustrated in Figure 1, it is possible
to imbed a 2-disk F1 in U1 so as to represent the homology class 371, and so that
the boundary Fi is a right-handed trefoil in U1. On the other hand, it is possible
to imbed a 2-disk F2 in U2 representing the trivial homology class, and so that the
boundary F' is a left-handed trefoil in U'. The construction is illustrated in
Figure 3. (This is similar to Figure 2 except that the orientation of D2 has been

FIG. 3.-F is a left-handed
trefoil.

reversed, in order to obtain the zero homology class in H2(U2, U2; Z).)
Deforming this left-handed trefoil so that it matches the image of the right-

handed trefoil under h, we obtain a 2-sphere F1 U F2 c P1 # P2 representing the
required homology class 3^Y1. It is clear that the "angles" can be rounded off
so as to make F1 U F2 into a differentiably imbedded 2-sphere. This completes
the proof of Lemma 3.

* Even if t is not representable by an imbedded 2-sphere, the weaker congruence

t. t == v(M) (mod 8)
will be satisfied, assuming that M is simply connected. (Compare van der Blij, ref. 1, formula
(7).)

t This lemma can also be stated in the form: If W2(M) = 0, then pi[M] = 0 (mod 48). The
two formulations are equivalent in view of the Thom-Rohlin identity
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pi[M] = 3a(M).
(Cf. Hirzebruch, ref. 4, Theorem 8.2.2, p. 85.) The proof of Lemma 1 is bagbd on the fact that
7rn+3(S5) is cyclic of order 24 for n > 5.

t In the sense of J. H. C. Whitehead.'0 Any two regular neighborhoods of K in M are com-
binatorially equivalent by reference 10, Theorem 23.
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1. Recently N. N. Vorobjevl has presented a constructive procedure for com-
puting all equilibrium points for the case of bimatrix (i.e., finite two-person non-
cooperative non-zero-sum) games. The purpose of the present note is to simplify
his algorithm both in theory and application. In the terms of his paper, the classi-
fication of extreme equilibrium strategies into two types is eliminated, and the enu-
meration of all such strategies is reduced to a single routine.

2. For the sake of easy comparison with Vorobjev's work, his notation will be
used. If M is any matrix, M. denotes the ith row of M, M.j denotes the jth
column of M, and MT denotes the transpose of M. Furthermore, J, denotes the
p-dimensional vector with all components equal to one, and O, denotes the p-
dimensional vector with all components equal to zero. Inequalities between vec-
tors are to hold in all components.
A bimatrix game r is defined by two real m by n payoff matrices, A = (aij) and

B = (brj): if player 1 chooses ie{ 1, .. ., m} and player 2 chooses jet 1, . . ., n}, then
player 1 is paid aij and 2 is paid byj. Mixed strategies for 1 and 2 are probability
vectors of dimension m and n and are denoted by X and Y respectively. Thus,

XJm1 X °Om and JyT=1 Y >


