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RELATIVE CHARACTERISTIC CLASSES.* 

By MICHEL A. KERVAIRE. 

1. Introduction. The main purpose of this paper 1 is to prove a lemma 
(Lemma (1.2) below) conjectured in [8]. 

In the proof, we shall make use of a not quite classical form of 
Whitney duality, involving Stiefel-Whitney characteristic classes which have 
to be considered as relative cohomology classes. Since these slightly gener- 
alized characteristic classes may have some interest for themselves, the present 
paper is divided into two parts as follows. 

In Part I, an attempt is made to give a systematic treatment of relative 
characteristic classes. Beside Stiefel-Whitney classes, relative Chern and 
Pontryagin characteristic classes will also be considered. It will be seen that 
most of the properties of the usual characteristic classes may be adapted to 
hold for the relative classes. In particular, the relative classes satisfy a 
generalized Whitney duality theorem and Wu's theorem [16] remains true 
if suitably stated. The fact that Wu's theorem may be extended to the case 
of a manifold with boundary was communicated to me by R. Thom and 
was the starting point of the proof of Lemma (1. 2). According to R. Thom, 
this extension of Wu's theorem was first known to H. Cartan, who proved 
it using (4D)-cohomology (unpublished). For our purpose, it will be suffi- 
cient to reduce (by Lemma (6. 1)) the extended Wu's theorem to the ordinary 
one, thus avoiding ('1)-cohomology. The proof of the generalized Whitney 
duality wvill be based on the interpretation of the relative characteristic 
classes as symmetric functions. The original author's proof was very cum- 
bersome and will be omitted. The proof given here is due to A. Borel and 
is reproduced with his permission. 

Part II will be concerned with the following situation considered in [8]: 
Let Md be a differentiable closed manifold imbedded2 into some euclidean 

* Received January 4,. 1957. 
1 The paper has been completed as the author was under National Science Founda- 

tion research contract. The author is also grateful to the Research Commission of 
Berne University (Switzerland) and to the Swiss Federal School of Technology for 
grants made available during the preparation of this paper. 

2 All manifolds considered are of class Cl. Imbedding will mean regular imbedding 
(and similarly for immersion). 
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518 MICIIEL A. KERVAIRE. 

space Ed+., and assume that there exists a continuous field FI of n-frames 
(n mutually orthogonal unit vectors) normal to Aid in Ed+,. To such a pair 
(Md; F.) we attach 

(a) a map W: Md -> Vd+f, of Md into the Stiefel manifold of n-frames 
with base point at the origin in Ed+n: the map w is defined by 

w (X) =-- (X), VZ (X), - * * Vn (X)*}, 

where v1 (x),* * v (x), are the vectors based at the origin in Ed+n and 
parallel to the vectors of F& at x; and we also attach 

(b) a map f: Sd Sn - 0 5n Of the (d + n) -dimensional sphere into the n- 
sphere defined as follows: Take a tubular neighborhood U of AMd in Ed+n. Any 
point u E U lies in a uniquely determined n-plane Na, normal to MId at a 
(uniquely defined) point x E Aid. Using the coordinate system in N., which is 
defined by the mutually orthogonal unit vectors of Fn at x, we attach coordi- 
nates y, *, Yn to the point u. It may be assumed that (y.,)2 =_ 1, if and 

only if u lies on the boundary of U. The definition of f will involve the 
mapping 

r: (B.,fB3) -> (Snyq*) 

of the n-ball B, onto the n-sphere S. given (for instance) by the formula 

(1.1) r(yi, Y.) 

=( 1-2y2 2y (1 ( y2) i, 2y2 (l y2) i' . . . 2yn (1_y2)i)i 

where y2 = , (Yk)2 and q* E S. is the point with coordinates (-I, O,. . , 0). 
k 

Identifying now Sd+, with Ed+n + 00, the desired mapping f: Sd+n 4 S. is 
given by 

f (u) r (yl*,y.) for uE U, f(x) =q* for xE S -U. 

The homotopy class of the map w (defined under (a) above) is deter- 
mined 3 by the generalized curvatura iintegra c which represents the homology 
class of the cycle w (Aid) in Hd (Vd3n.; Z). The number c is an integer for 
d even or n 1 and a remainder mod2 for d odd (n > 1). Define y by 
y c -X*(Md), where X*(Alid), the semi-characteristic of Aid, is equal to 

JX(Md) for d even and to 2 (- 1)'pi(Md) for d odd, pi (Md) being then 
i=O 

the rank of Hi(Md;Z2), and 2s--d+1. 

3 Recall that the Stiefel manifold of n-frames in (d + n) -space is (d - 1) -connected 
and its d-dimensional integer homology group is infinite cyclic, or cyclic of order 2, 
depending on whether d is even or n = 1, or d is odd and n>1 respectively. 
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RELATIVE CHARACTERISTIC CLASSES. 519 

It has been proved in [81 (Theoreme II) that if a manifold Md' with 
normal n-frame field F,! in Edd+, leads (by procedure (b) ) to a map 
f'; Sd+-*S. homotopic to f, then y y', i.e., c X*(Md) -c' C X* (Md/), 
this formula being valid only mod 2 for d odd. 

Actually each homotopy class in 7rd+n (Sn) contains maps f: Sd+n -S 
obtained by the procedure described under (b) and y is a homomorphism of 
7rd+n(S,,) into Z or Z2 according as d is even or odd. It has been proved 
in [81 (Theoreme IV) that, for d even, .y is always zero. 

Another homotopy invariant associated to f which will play a role in 
the present paper is Hopf's invariant as generalized by Steenrod [11 ]: 
Consider the cell complex K - Si U ed+.,+, obtained by attaching the cell 
ed+fl+1 to S,, by the given map f, then Steenrod's generalization of Hopf's 
invariant, which will be denoted by h (f), is the remainder mod 2 defined by 

Slqd+l(u) =h(f)*v, 

where u and v are the generators of Hn (K; Z2) and Hn+d+l (K; Z2) respec- 
tively and Sqq+l is the Steenrod square which raises the degree by d + 1. 

Each of the invariants h (f) and y(f) has the following properties 
which can be verified easily (see [8]) for y(f) and were proved by Steenrod 
([11], ?18) for h (f): 

(1) It is a homomorphism of 7rd, (S.) into Z2 defiined for every d ? 1 
and n?1. 

(2) It vanishes for d even. 
(3) It takes the same value on a homotopv class and on its Freudenthal 

suspension. 
(4) It is zero for every composition map gof: SpS,r where 

f: Sp ->Sq) g: Sqf*r, provided that p > q > r.' 
(5) If Sd is parallelizable, it takes the value 1 on the standard Hopf's 

map 8: S2d+, > S',d+1 with Hopf's invariant 1. 

It is not unlikely that properties (1)-(5) should characterize completely 
h (f). This proves to be true for d < 7, even with property (4) omitted.5 
I have no proof of this conjecture for general d. However, using the explicit 
definitions of h(f) and y(f), we shall prove below the following lemma, 
which was conjectured in [8]: 

LEmMA (1. 2). Using the above notations, y(f) = h(f). 

' This fact has not been proved for 'y in [8] but is easily seen. 
6 See [8], page 242. 

This content downloaded from 129.215.149.96 on Wed, 27 May 2015 06:49:49 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


520 MICHEL A. KERVAIRE. 

The use which can be made of relative characteristic classes to prove 
this lemma will become apparent during the proof in Section 8. 

I am indebted and wish to express my gratitude to A. Borel and R. Thoin 
for many fruitful discuissions during the preparation of the present paper. 

PART I. Relative characteristic classes. 

2. Definition. We shall treat first Stiefel-Whitney classes. The relative 
Chern and Pontryagin classes may be obtained similarly and will be dis- 
cussed briefly in an Appendix (? 11). The coefficients will be the remainder 
mod2, except in ?11 (and ?6). 

Let e = (B, p, K, 0(n) ) be a sphere-bundle over the simplicial 
complex K with the orthogonal group of n variables 0(n) as structural 
group. Denote by 3q = (Bq, pq, K, Vnm q, 0(n) ) the bundle associated to e 
with fibre the Stiefel manifold V,,,,nq of (n - q) -frarAes (based at a fixed 
point) in euclidean n-space. 

Let L be a subcomplex of K and assume that a cross-section or over L 
is given in the associated bundle Br. This section induces (by the projection 
Br-* Bq) cross-sections 9q over L in the associated bundle 9lq for q ? r. 
Roughly speaking, 6r defines an (n -r)-vectorfield Fnr over L, and Oq is 
given by the (n-q)-vectorfield consisting of the first (n -q) vectors of 
Fr. 

Let W'+1 be the (q + 1)-dimensional Stiefel-Whitney class of the bundle 
O. Suppose q ? r. A representative wJ+l of Wl+1 may be obtained by the 
usual stepwise extension process over KO U L, K' U L. K2U L,- * * ,KaU L 
of the cross-section Gq in 93q induced by at' over L. The r-equireineent that the 
cross-section over Kq in Oq should coincide over L with the given section oq 
leads to a representative Wq+l of WJ7+1 which takes the value zero on every 
(q + 1)-simplex of L. The cocycle wqs' is thus a representative of a relative 
cohomology class WRAq+' E Hq+ (K, L; Z2) defined for q > r, which will be 
called the (q + 1)-dimensional relative characteristic Stiefel-Whitney class 
mod L corresponding to Or. 

WRIPI does not depend on the choice of the extension of Oq over the 
0-1-, 1-, , q-simplexes of K-L (see [12], 33. 5). It does, however, depend, 
in general, on the choice of the given cross-section over L. Let 00 and 01 be 
two cross-sections over L in 23r and let 9o, 9lq be their projections in oq 
(q ? r). The stepwise attempt to make the cross-sections 00q and Olq coincide 
meets with an obstruction in dimension q on L. lIet bq Ec Hq(L) be the 
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RELATIVE CHARACTERISTIC CLASSES. 521 

obstruction cohomology class. It is easily seen, that SP is the difference of 
the (q + 1)-dimensional Stiefel-Whitney classes corresponding to 0" and 01, 
where S is the coboundary operator of the cohomology sequence: 

* H**q+1(K) (Hpi(K, L) H' (L) <Hq8(K) v * 

3. Naturality. Suppose we are given two principal 0(n) -bundles e 
and 8' over simplicial complexes K, K' respectively, such that e is induced 
from d' by a map f: K - K' which we assume to be simplicial. 

Let L and L' be subcomplexes of K and K' respectively, such that f ( L) 
is a subcomplex of L'. Suppose that cross-sections or and 9'r over L and L' 
are given in the associated bundles 3r and B'lr with fibre Vn,n-r, such that 
hor(x) 9'rf(x) for every xE L (h is the bundle map covering f). 

Then, for q > r, the relative characteristic Stiefel-Whitney classes WRq+1 

and T'Rq+l of the two bundles are both defined. 

LEMIMA (3. 1). We have WR q+ f*( WVRq+l), where f* is the dual homo- 
morphism f*: H(K', L'; Z2) - H(K, L; Z2) induced by f: (K, L) - (K', L'). 
(See [12], 32. 7). 

Choose an extension over K' U L' of the cross-section O' in !'2 given over L'. 
Define W'R9+1 using this extension. Define Oq over Kg U L as the reverse 
image by h of the cross-section O'q. By assumption, this definition is con- 
sistent with the given cross-section over L in 3q and the extended 6q may 
be used to define Wjjq+'. Let s be a (q + 1)-simplex of K. If f(s) = 0, 
I f (s) I is a subset of the q-dimensional skeleton of K', thus 0q may be defined 
over s and wq+l (s) - w"'+1 (fs) 0. If f(s) O Q, the restriction of f on s is 
a homeomorphism, and w7+1 (s) =- w'+1 (fs) follows from hq I s - O'f I s, 
together with the fact that h induces the identity h*: Z,-2 Z2 (identifying 
Hq ( T,n n-Q; Z,) with Z,). Thus, for the cohomology classes of w,+1 and Wq+l', 

|FR2+-f* IVTq+i ) 

4. The Whitney duality. Let Et be two principal 0 (ni) -bundles 
(i =- 1, 2) over the same simplicial complex K, and suppose that cross- 
sections 0O"' and 02"r over subcomplexes Li, L2 of K are given in the corres- 
ponding associated bundles 01tr, 32r2. 

Let e3 =- e E2 be the Whitney sum of 01 and Z2. The bundle e 
is an 0 (n' + n2) -bundle. The cross-sections 01r1, 02r2 induce over L - LI n Lo 
(where thev are both defined) a cross-section or in the associated bundle Tr 

This content downloaded from 129.215.149.96 on Wed, 27 May 2015 06:49:49 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


522 MICHEL A1. KERVAIRE. 

with fibre V.,n-r (n = it1 + n.., r = r1 + r'2). We shall refer to or as the Suitt 
of the given cross-sections O.J- and 622. 

Using the sum cross-section or over L, we define the relative Stiefel- 
Whitney classes WRq+1 of Z mod L for q ? r. Denote by XRk+l and YP}'+1 

the relative Stiefel-Whitney classes of Z. and 22 corresponding to the cross- 
sections O17l, 02 r. They are defined for k > r, and 1 ? r2 respectively. 

In the Theorem (4. 1) below, expressing Whitney duality for relative 
classes, the classes XRk+l, Y1R+1 which are relative classes mod L, and mod L, 
respectively are regarded as relative classes mod L. Precisely, we write XRk+l. 
meaning the image of XRk+1 by the homomorphism 11* (K, L1) - H* (K, L) 
induced by the inlclusioni (K, L) > (K, L1), anld similarly for YRu+1. 

THEOREM (4. 1). The lWhitney duality holds for relative characteristic 
Stiefel-Whitney classes in the followving form: For q > r, we have 

|,1R-q+1 _ X+l +1 + * q* YI + XUrl+l. yq-r1 + 

+ xr1. ynq-rl+l +- . . + YRq+. 

Notice that some absolute (usual) characteristic classes occur in the 
right hand side of the above formula. However, in each cup-product Xa Yb 
with a+b-1 q >=q r1+r2, either a-1?>r1 or b-1_ r2 (or both), 
because a ? r, and b ? r2 would imply a + b ? rL + r2. Therefore, in each 
product Xa. Yb, at least one of the classes Xa or yb is a relative class and 
so is every product in the right hand side of (4. 1). 

ThQe proof of the above theorenm will be carried out by showinig that the 
relative characteristic classes may be equivalently defined as symmetric fulnc- 
tions (Theorem (5. 1)). This alterniative definition in turn implies inmme- 
diately the above duality theorem. 

5. Relative characteristic classes as symmetric functions. Proof of 
Whitney duality. Let us recall Borel's definition of the (usual) characteristic 
classes [4]. Let e3 - (E, p, K, 0(n)) be a principal 0(n)-bundle over K. 
Let Q (n) denote the subgroup of 0(n) consisting of the diagonal matrices 
(ei84,), with es =-? 1 or - 1. The space E is also the bundle space of a 
fibre bundle with fibre Q(n) - 0(1) X 0(1) X . . . X 0(1) (nt factors), 
which is a covering space since Q (n) is discrete. The base space k = E/Q (n) 
of this bundle is called the space of flags over K. The space K is the bundle 
space of a bundle with fibre F(n) =-0(n)/Q(n) and base space K. Let 
p: 1?-> K be the projection. 
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RELATIVE CHARACTERISTIC CLASSES. 523 

The bundle e = (E, 7r, K, Q (n) ) is the Whitney sum of n bundles 
= 
_ C1 (D CY2 E) * * *3 ", where C' is a principal bundle over K with struc- 

tural group 0(1)_ Z2, thus a two-fold covering. Let xi E H'l (1; Z2) be 
the 1-dimensional (only non-zero positive dimensional) Stiefel-Whitney 
classes of Ci, i = 1, 2, , n, defined, for instance, as obstruction to the 
construction of a cross-section in Hi over the 1-dimensional skeleton of R. 
We have the 

THEOREM (A. Borel). The dual homomorphism p*: I* (K) -* H* (R) 
is a monomorphism and the p*-image of H*(K) contains the symmetric 
functions of the variables Xl, x2, ' x,n. 

It is then legitimate to define the characteristic class WY of the bundle 
e by the formula p1*(Wq) Sq(Xl, - ,x"), where Sq(Xl,,. * * n) denotes 
the elementary symmetric function of degree q in the variables xl,* , x". 

A. Borel has proved in [4] (Theoreme 5. 1) that the class iVq defined 
in this way coincides with the characteristic class defined as obstruction. 

We come back to relative classes: Suppose a cross-section or iS given in 
the bundle 93r = (Er, K, V 0,z_r, 0(n) ) associated to e8 over a subcomplex 
L of K. Consider the space of flags K: E/Q (n) over K. The section or 
determines a subspace L of [ as follows: Regarding e as induced by a map 
f: K - Bo (n) f (x), x E K, is a non-oriented n-plane in euclidean space of 
large dimension. A point of E consists of a point x E K, together with an 
n-frame vl,v2, ,VI in f(x) (see [12],10.2). Thus a point of R may 
be represented by {x; di, d2, . -, d,} where x E K and di, d2,, . d, , is an 
ordered set of mutually orthogonal straight lines in f (x). The set L consists 
of those points (x; di, * , dn} of R such that x E L and dr+., 4dn carry 
the (n-r) vectors of or. 

Let x, , xn E H' (R; Z2) be, as before, the 1-dimensional charac- 
teristic classes of the two-fold coverings L1, l 2, * * *n over R, the Whitney 
sum of which is the bundle (E,7r, K, Q (n)). Because r+i. * .C, n admit 
cross-sections over L given by 9r, the (n - r) last xi, i = r + 1, r + 2, - * -, n, 
may be defined as relative characteristics classes mod L (obstruction to 
extending over the 1-dimensional skeleton of R the cross-section in &, 
r + 1 i < n, already given over L). Because in any product of (q + 1) 
distinct factors from x1, * , x.n with q > r, at least one of the last n - r 
must occur, it follows that, for q : r, the elementary symmetric function 
Sq+1 (xl,, - - , x") may be (and will be) defined as a relative cohomology 
class, which we shall denote by Si+'l (xi, * * , Xn), using the relative 
xr+i,,' 

' '. . Xn 
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524 MICHEL A. KERVAIRE. 

THEOREM (5. 1). (a) The homomorphism pR*: H* (K, L) e H* (K, L) 
is a monomorphism and (b) pR* (WRQ+l) - SO+l(xl,,. , xn) for q ? r, 
where Wvq+l is the relative characteristic class mod L corresponding to the 
cross-section O. 

The proof of this theorem which will be given below is due to A. Borel. 
In the first formulation of this paper, the point (b) was proved using an 
inductive argument (on n) and the special case of relative Whitney duality 
in which one of the bundles involved in the Whitney sum is a two-fold 
covering. This special case of Whitney duality was proved directly using 
the definition of characteristic classes as obstruction, which is rather cumber- 
some. Futhermore, the point (a) of Theorem (5.1) could not be obtained 
by this method. The Lemma (5. 2) below is also due to A. Borel and was 
unknown to the author. 

The Whitney duality formula (4. 1) is an immediate consequence of 
Theorem (5. 1) and of the identity 

SBq+l (Xin 
... 

** Xmn Y, * ;Yn) ~2 Sa(X1) *,Xm) * Sb(y 2 Yn) 
a+b=q+l 

where each product in the right hand sum is a relative class (at least one 
factor in each product is a relative class if the left hand side is). 

Before we proceed to the proof of Theorem (5. 1), we give a property 
of the relative Stiefel-Whitney classes, which will be needed for this proof. 

Let L be a subcomplex of Bo(,) and or a cross-section over L in the 
associated bundle with fibre Vn,,. The cross-section or induces cross-sections 
As over L in every associated bundle with fibre Vn,, for q > r. The bundle 
space of the associated bundle with fibre VT,n-r is classifying space for O(q) 
and will consequently be denoted by Bo(q). The projection map Bo(q) - Bo(n) 
is the Borel map p(O(q), 0(n)) corresponding to the inclusion 0(q) -* 0(n). 
We write ,q.n, meaning p (O(q), 0(n)), for notational convenience. 

LEMMA (5. 2). The relative Stiefel-Whitney characteristic class WR,+' 
is the only non-zero element in HJ2+1(Bo(n),L;Z2) belonging to the kernel 
Of pq,n*: H* (Bo(n)7, L)- >H*(B(q),OqL). 

We first prove that WRq+l belongs to the kernel of pg.n*: The map 
pq.n: Bo(q) -> Bo(n) induces over Bo(7) as base space an 0(q)-bundle with 
fibre Vn,*-q and the induced cross-section over 0lL may be trivially extended 
all over Bo(q). By naturality the Stiefel-Whitney class corresponding to 
this cross-section is pqti*(WV2+l) Since the cross-section may be extended, 
pg n* (WRil) - O. 
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RELATIVE CHARACTERISTIC CLASSES. 525 

In order to prove that WR'2+1 is the only non-zero element of dimension 
q + 1 in the kernel of pq,*, let us consider the following diagram, where 
the rows are the cohomology sequences of the pairs (Bo(g), OL) and 
(BO(n), L) respectively: 

i* 
* * lH(Bo(q)) >HI(OqL) +H'$+(Bo(q), O"L) -H'+(Bo(q)) 

p 0J* Pq,n tp* 

* *-> H'(Bo(n) ) H'(L) > Hi+'(Bo(.n), L) -*H+1(Bo(n))-< 

(coefficients in Z2). One has H*(Bo(n) ;Z2)- Z[[W' V0W2,2 *,Wn] 
H*(Bo(q) ;Z2) ==Z2[Wl, W2, , Wq] and the WIV for i? q correspond to 
each other by p*. Thus, for i c q, the homomorphism p* is an isomorphism. 

By the Five Lemma, it follows that for i 5 q, the homomorphism pq. 
is also an isomorphism (9* is an isomorphism in every dimension). 

Let x be an element of the kernel of pq.n* in HQ+1(Bo(,),L). By 
commutativity in the above diagram, a*x is an element of the kernel of p*. 
Therefore, by [4], Lemma 5. 1, a*x =c W+1 with c 0 or 1. Thus 
y = x + c -VWjf+l belongs to the kernels of both pq.n* and a*. By exactness, 
there exist elements z and t in Hq (L) and I2 (Bo(q)) respectively, such that 
Sz = y and j*t - 0*-lz. Since p,* is an epimorphism in every dimension, 
there exists a class w E HqU(Bo(,,)), such that p*w =- t. It follows that 
y - i*w- =0, by exactness. 

This completes the proof of Lemma (5. 2). 
Notice that Lemma (5. 2) suggests a new (more general) definition 

of the relative Stiefel-Whitney classes: Let A be a closed subset of Bo(,, 
and suppose a cross-section 9r over A is given in the bundle with fibre Vn n- 
associated to the universal bundle over Bo(.). The (q+ 1)-dimension uni- 
versal relative Stiefel-Whitney class inod A corresponding to or (r _ q), may 
be defined as being the only non-zero element in the kernel of pq,n"*: 

H* (Bo(,) A) 4 H* (Bo(q), PqA). The proof of uniqueness runs as in Lemma 
(5. 2), replacing L by A. To complete the definition, one has to show the 
existence of an element in kernel ?q.n* the image of which by a* is the 
ordinary universal Stiefel-Whitney class and which is thus different from 
zero. Extension of this definition to the characteristic classes of a principal 
O (n) -bundle over any compact finite dimensional space X is immediate. 
However, the naturality is less easy to prove in this general case. We omit 
the details here and shall treat relative Chern classes by this method (see 
Appendix). 
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526 MICHEL A. KERVAIRE. 

Proof of Theoremn (5. 1). Proof of (a). This part is not concerned 
with characteristic classes. Let X be the base space (assumed to be a 
compact finite dimensional topological space) of an 0(n)-bundle induced bv 
some map X -- Bo(fl) and let -X be the space of flags over X (denote bv 
px: .-* X the projection). According to [4], Theor'elie 5. 1, the fibre 
F(n) =- (n)/Q(n) is totally non-homologous to zero in Ar and thus 
px*: H* (X) - H* (St) is a monomorphism. 

Let A be a closed subspace of X and suppose that a cross-section 6' 
over A is given in the associated bundle over X with fibre Vn,,>,. Let A be 
the subset of X the points of which are the sets (a; d1,, - - , d,,}, such that 
a E A, and dr+i,, . . , dn carry the (n - r) vectors given over A by 0r. 
Notice that Al is homeomorphic to the space of the bundle (A, pA, F (r), 0 (r) ) 
defined as follows: E being the space of the 0(n)-bundle over X, consider 
the fibering (E/Q (r), pE, E/O (r), F (r), 0 (r) ), where Q (r) C 0 (r) C 0 (n). 
The bundle (A, pA, A, F (r), 0 (r) ) is induced by the cross-section O9r: A 

E/O (r). Therefore, by Borel's theorem, pda* is also a monomorphism. 
Consider the following commutative diagram in which the rows are the 

cohomology sequences of (Y, A) and (X, A) respectively: 

* 

* 

Hk(X ) Hk(Z,t A) < Hk-i(,{) H k&-%() + 

(5.3) p * pR pA px 

v- EHk(X) Hk(X, A) * Hk-l(A) H<Hk-l(X) <*- 

We have to prove that pv* is a monomorphism. Let a E Hlk (X, A) be a 
cohomology class, such that pR*a 0. Since 3*pR*a - px*j*a = 0 and px* 
is a monomorplhism, it follows that j*a -0. Thus by exactness, there exists 
a class b E Hk-l (A), such that Sb = a. Because SPA*b - p*8b pR*a -0, 
there exists (by exactness) an element w E Hk-l (), such that i*w - PA*b. 
The desired conclusion a = 0 would be granted if we knew the existence of 
an element x E Hk-1 (X), such that i*v = b. Indeed, from the existence of v 
follows, by exactness, a = Sb 8Si*v -0. 

It remains to prove the 

LEMMA. Let b E H*(A) and wE H*(T) be cohomology classes, such 
that pA*b *- Vw, then there exists a cohomology class v E H* (X), such that 
i*v-b (Notations as in diagram (5.3)). 

Proof. Let xl, - - *, x1 denote, as before, the 1-dimensional charac- 
ter'istic classes of the two-fold coverings LI, 2 

2 
* . , gn over A. By definition 
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of A, we have i*xa ya for a 1,2, ,r and i*x7+b=O for b 1,* ,n r 
whiere yl, Y r,. denote the characteristic classes of the restriction over A 
of the two-fold coverings 1, .. @r. The map i: A -* 2X restricted 
on a fibre (we denote this restriction again by i) induces the inclusion 
F(r) -+F(n) corresponding to the inclusion (O(r), Q(r) ) -* (O(n),Q(n)). 
According to the results of A. Borel in [4] (Theoreme 11. 1), one has 

H1* (F (n) ; Z2) -ZI [Xln* ** Xnl / (S+ (X1 ** Xn)) 

and similarly for H* (F(r) ; Z2), where (S+(x1, , x,")) denotes the ideal 
(in Z2 [x1,. , xn]) generated by the symmetric functions of positive degrees 
in the variables x1, *, x". 

It is easily seen that there exists a basis hA, h2, * -,ht of H*(F(n)) 
over Z. with the following properties: 

(1) hi- 1, the hA are monomials in the xl, - Xn; 

(2) t*hj,*A2,, i"'A8 form a basis of H*(F(r);Z2); 
(3) i*h.+ i*h +2 Mt = 0. 

Such a basis may be obtained by writing down in some order, beginning 
with 1, all monomials in the variables xi, * , x the degree of which does 
not exceed dim F (r), followed by the other monomials in x1 , x". By 
omitting in this list the monomials which are linearly dependent (modulo 
the ideal generated by S+ (x1, - x,n)) of preceding ones, one obtains the 
desired basis hi, h2,* * *ht. 

By Borel's results, the spectral sequence of the fibering px: T -+ X is 
trivial (E2_ E.). Furthermore, since we have a coefficient field, Z2, the 
term E. is additively isomorphic to H* (Z). Therefore, 

H* (X) - H* (X) ? H* (F(n) ) 

is a module over px*H* (X) with the basis h1, h2, * - *, ht. Similarly, H* (A) 
is a module over pA*H*(A) with the basis i*hj,i*h2,, *- A M,8. 

Any element w E H* (1) admits a unique decomposition in the form 

w- px* (v) ha, where v, EH* (X). 

We have i*w- 2 i*p2x* (v.) *A M, because *haO for a = s + 1, ,t. 

If i*w = PA*b, as we have assumed in the lemma we are proving, then 

PA*b - I PA*i* (Va)* i*ha 
1-a s 
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This is (by uniqueness of the representation) only possible if i*v2-i*v. 
=--- - i*v;=.O. Thus pA*b= pA*i*(v1) (hi==1). Therefore, b i*vi, 
since pA* is a monomorphism. This completes the proof of the lemma. 

Proof of (b). By naturality, it is sufficient to prove that the relation 
pR* (Wnq+l) - SRq+' (Xl , Xn), q ? r, holds for the bundle 

(BQ (n) p(Q(fn), 0(n) ), Bo (n), F(n), 0(n) ), 

where pR is written for pR (Q (n), 0(n)). This is easily seen using the fact 
that the map f: K -+ Bo(n) inducing the given 0(n)-bundle over K may be 
approached by a simplicial injective map g as soon as dim Bo(n) ? 2 dim K 
+ 1 (for the existence of g, see Theorem 5 in S. Eilenberg, On spherical 
cycles, Bulletin of the American Mathematical Society, vol. 47 (1941), pp. 
432-434). 

Let (BO(r), Pr,n, Bo(n>) V,n,n-r, O(n)) be the bundle associated to the 

classifying bundle for 0(n), with fibre V,,r. The bundle space of this 
bundle is classifying space for 0(r) and is consequently denoted by Bo(r). 
The projection Pr.n is the Borel map p (O (r), 0 (n)). 

Consider the following commutative diagram 

BQ(r) * BQ(n) 

(5.4) gj Z r. 

Bo(r) y Bo (n) 

and let A be a closed subset of Bo(n), such that a cross-section or over A is 
given in the bundle (Bo(r),Pr,n,Bo(n))V,n,0(n)). Let A be defined as 
at the beginning of this section. As noticed previously, A is homeomorphic 
to a subset A.' of BQ(,) and j (Al) A. We have to prove that the element 

y pR* (WRq+l) -SRq+l (X.n *, * * Xn) E H* (BQ(fn),J) is zero. 

Let us consider the following commutative diagram 

i* 8 

.*H'(BQr7) " HQ(*1) * IIHq(BQ(r), A1) > H('+(BQ (r)) - (r 

'1U* i* jiA* ,8 T/XR* a* 
*+ Hq(BQ(.)) > H9(A) ---> Hq+1(BQ(n), A) --- Hq+1(BQ(n)) . 

in which the rows are the cohomology sequences of the pairs (BQ(r), AP) 
and (BQ(n), A) respectively. 
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In order to prove y 0, it is sufficient to prove fAR* (y) -0 and 
a* (y) - 0. Indeed, if these two equalities hold, there exist elements z E Hq (A) 
and t E HF(BQ(r) ), such that i*t- ILA*z and Sz = y. Now, 

H* (BQ(n) ; Z2) Z2[X1, , xn], H* (BQ(r) ; Z2) = Z2y, *', yr] 

and jA*x. - == y for i=-1,2, * ,r, u*xr+J=O for j- 1, * ,-n r. Thus, 
,u* is an epimorphism in every dimension. Therefore, there exists an element 
w E Hq(BQ(.)), such that *ww =- t. It follows that y = 'z - *,*w 

8i*w 0. 
It remains to prove that j%R*y -0 and a*y -. 

Proof of a*y- 0. This is obvious with regard to the corresponding 
result of Borel on absolute characteristic classes: 

=*y - a*pR*WRq+l a*SRq+l (xt , *) p*Wq+1 S3+l(x1, x*n) =? 

Proof of *y -=0. We prove separately that ,-*p0*Wpq+l-O and 
*SRq+1 (XI, ' * * x") = 0. 

The first assertion follows from u *=p.*/W.O+lbji*pr n*Wq+1 (see 
diagram (5.4)), and pr,,,*WRT1l0- proved in Lemma (5. 2). 

The second assertion, /.R*SO+l (xi , X,,) =0 follows from I*xr+j =0 
for j= 1,2,. ,n-r (and thus IAA*xr.j O, since a*: HI(BQ(r),A1) 
- H1(BQ(,)) is a monomorphism, A being assumed to be non-void) and the 
fact that for q _ r, each product of (q + 1) distinct factors from xi, , x, 
must contain at least one xr+j with 1 j ? n - r. Thus each product in 
SR q+(xi, , x,) is mapped into zero by pR*. 

This completes the proof of Theorem (5. 1). 

6. A lemma on Lefschetz-Poincare duality. Let G1, G2, G be coeffi- 
ficient groups (abelian) with a pairing G, X G2 -* G of the two first groups 
to the third. 

Let (X, A) be an admissible pair for cohomology theory. Assume X 
to be connected and A to be a neighborhood retract in X (hence the excision 
e: (X, A) -> (Y, X') induces an isomorphism H* (Y, X') > H* (X, A) ). 

Let Y be the space obtained by matching together two copies of X 
along the copies of A (i. e., Y = X + X', with A and A' pointwise identified). 

Let n be some positive integer. Denote by 1H, 2H, H cohomology groups 
with coefficients in G1, G2, G respectively. 

LEMMA (6.1). Assume Hn(X) =0, then the pairings of 1H7(X) with 
2H1n-q(X,,A) to Hn(X,A) and of 1HQ(X,A) with 2Hn-Q(X) to Hn(X,A) 

6 
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530 MIOHEL A. KERVAIRE. 

given by the cup-product are completely orthogonal if and only if the 
pairing of H1Ia(Y) with 2Hn-q(y) to HIn(y) is completely orthogonal (q, n 
fixed, 0?q?n). 

Recall that a pairing is said to be completely orthogonal if either of the 
first two groups involved is the group of all homomorphisms of the other 
into the third. 

Proof. Consider for a - 1, 2 the cobomology sequence of the pair (Y, X) 

s h* se 
* e'>aHt7-'(X) > alq (Y,~X) ioaHu (Y) > alq (X)o.. 

Since (by excision) the inclusion map e: (X', A') -* (Y, X) induces iso- 
morphisms e*: aljq(Y, X) - Hz (X', A'), we may substitute as (X', A') for 
aHq ( Y, X) in the above sequence. Specifically, we consider the exact 
sequence 

8' j* 
* eaHq-1 (X) aHlq(XWnA) >alq (Y) - >aHq (X) , 

where 8'-e*8 and j'*-h*e*-1. 

Let k: Y->X be the map defined by k-(x) =x, k(x') =-x, where x' 
corresponds to x in the copy X' of X. One has k-z = id., and therefore 
i*k* - id.. Thus i* is an epimorphism, k* a monomorphism and 8' is trivial. 
The sequence 

0 > aHq (X', A') alq (HY) - aIq (X) e 0 
is exact. 

IMoreover, aH (Y) is the direct sum 

(6.2) aHq(Y) j(aHq (X't A') )+ C (aGH(X)) 

(we drop the stars by j'* and k* for notational convenience), or alternatively, 
interchanging X and X': 

(6.3) aln-q(y) - k'(aHn-q(X')) + j(aH1n-q(X, A)). 

Let us denote by 1': aH (Y) -* aHq(X'I A'), respectively 1: GHQ(Y) 

-.>,Hq(X,A) the homomorphisms, such that l'j' --id., and lj id.. 
We have, for every u, E 1H (Y) and x E 2Hn-q(X, A), 

(6.4) j(iul * x) =u u1 * jx, 

which mav be proved using 3.4 of [11]. Setting u1=-ka and x=ly, one 
obtains 
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(6. 5) l(kaly)-a ly. 

Similarlv 
(6. 5') l'(b k'x') = l'b x'. 

1. Assumne the pairings of 1HY(X) with Hn-q (X,A) to Hn(X,A) and 
of Hq(X. A) wVith 2Hn-q(X) to Hn(X,A) to be completely orthogonal. 

(la) Let h: 2IH1&-ff(Y) -> Hn(Y) be a homomorphism. Define the 
homomorphisms g: 2Hn-'7(X, A) ->Hn (X, A) and g': 2Hn-q (X) -+ Hn (X', A') 
by g (x) = lhjx and g'(x') = I'hk'x' respectively. By assumption, there exist 
elements aC .Ej (X) and a'E ,H(X',A'), such that g(x) =ax and 
g'(x') a' -.' for every x E 2Hn-,(X, A) and x' C 2.Unq(X'). Set b = ka + j'a' 
(thus ib=a, l'b=a'). We have h(y)=b-y for every yCE2tHn-(Y). In- 
deed, each y admits a decomposition y k'x' + jx and lhjx = g (x) a x, 
l'hlk'x' = g'(. ) a'a x' 

Therefore, h (y) = hjx + hk'x' = j (a- x) + j'(a' x'). Notice that 

l'(b -k'Y) -I'b -x' =a' - ' 

(by (6.5')). We obtain 

h (y) j(ib . x) + j'l'(b 'x') = b - jx + b- k'x' = b- (jx + kl'x') = b y 

(j'l'= id. in dimension m follows from H" (X) = 0, because then 1': H" (Y) 
-* H"(X'. A') is an isomorphism). 

(ib) Suppose that b - y - 0 for some b C IHq(Y) and every y C 2Hf-q(Y). 
We have to prove b = 0. By (6. 2), b admits a decomposition b =j'a' + ka. 
We have j(a.x)-j(ibzx)-b jx-O, furthermore, a' x'=:l'(b.c'x') 

1'(0) - 0 for every xE 2Hn-q(X, A) and x' C 2Hn-q(XI). By assumption, 
it follows that a =-a'- 0. Thus, b = 0. 

(la) and (lb) prove that the pairing of 1H7(Y) with 2LHn-q(Y) to 
II'(Y) is completely orthogonal. 

2. Assume now th1e pairing of 1HII(Y) with 2Hn-q(Y) to HIn(Y) to be 
copnpletely ovithogonal. 

(2a) Take a homomorphism h: 2Hn-q (X, A)) Hn (X, A). By (6. 3), 
each y E 2n-q (Y) may be written uniquely in the form y = c'x' + jx. The 
map g: H,J-qJ(Y) -Hn (Y) defined by g(y) =jh(x) is a homomorphism 
and thus, by assumption, there exists an element u1 C 1EPH(Y), such that 
t- y-jh(x) for every y=l k'x'+xC 2Hn-(y). One has (with u = iul), 
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j(u x) =- j(iu,- x)-u jx = jh(x). Since j is a monomorphism, u x =- h(x) 
for every x E Hn-q (X, A). 

(2b) Let a x =0 for some a E H1P(X) and every xE 2Hn- (X,A). 
Then a= 0. Indeed, consider ka=-b E Hq(Y). We have b yO0 for 
every yE 2Hn-q(Y), because l(b y) =I(ka y) = a ly-O. In dimension 
n1 I is a monomorphism, because HI (X) = 0. The pairing of JP ( Y) with 
2Hn-q (Y) to H" (Y) being assumed to be completely orthogonal, it follows 
that b= 0. Thus, a =ika ib=O. 

The proofs of (2a'): every homomorphism 2Hn-,(X) -* Hn (X, A) may 
be "realized" by cup-product with an element of 1Hv (X, A) and of (2b'): 
if a x-0 for some aE 1Hq(X,A) and every xE 2Hn-q(X), then a= 0, are 
mechanical and similar to (2a) and (2b) and will be omitted. 

Remark. The assumption Hfn (Y) =0 is actually needed in the proofs 
of both (1) and (2) as is shown by the following examples. 

(1) Let X -=P5 be the 5-dimensional real projective space and A 
a point of P5. Let G1=--G2-G=Z2 and take n=5, q=2. Then 
1H2 (X) I 2H3 (X, A) H- 5 (X, A) -Z2 and the pairing of 1H2 (X) with 
2H3 (X, A) to H5(X, A) by cup-product is completely orthogonal. Similarly, 
the pairing of 1H2 (X, A) with 2H3 (X, A) is also completely orthogonal. 

Now Y=-P5 V P5 and 1H 2(Y) 2H3 (Y) H5 (Y) _-Z2 + Z2. How- 
ever, Hom(Z2 + Z2, Z2 + Z2) - Z2 + Z2 + Z2 + Z2. One has 15H(X) -Z2. 

(2) Let X=-A S1. Then Y=X-==S1. Take in-1, q = 0 and 
G1-G2 = G =Z. The pairing of 1HO(Y) ==Z with ,JI(Y) =Z to 
H' (Y) = Z is completely orthogonal, but since 2H1 (X, A) =-0, HI' (X, A) =0, 
the pairing of ,HO(X) ==Z with 2H'(X,A) to II'(X,A) is not. One has 
H'(X) =Z. 

7. The relative Wu classes. We come back to coefficients in the 
field Z2. 

Let K be a complex of dimension n and L a non-void subcomplex of K. 
Suppose that relative Lefschetz-Poincar6 duality holds in K mod L. In other 
words, for every q =0, 1, * , n, the pairing of Hq(K; Z2) with Hn-q(K, L; Z2) 
to H" (K, L; Z2) is completely orthogonal. Then we may define Wu classes 
UqE Hq(K;Z2) by the requirement that for every relative class 
XRn-q E Hn-q (K, L) 

(. 1) Sqq(XRn-q) - Uq. Xn-q 

should hold. 
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Because L is non-empty, HO (K, L) =0, and thus, by duality, Hn (K) = 0. 
Consequently, according to Lemma (6. 1), absolute Poincare duality holds in 
Al = K + K' (L and L' identified). Let Sq be the q-dimensional Wu class 
of Al (in the ordinary sense, see [16]), i.e., 

(7. 2) Sqq (Xn-q) Sq Xn-q 

for every class X-12 E Hn-q (Ml). 

LEMMA (7.3). Let i: K-->M be the inclusion map and i* the dual 
homomorphism induced by i, then Uq =i*Sq. 

Proof. Let j*: H*(K, L) -- H*(M) be as in (6. 3). We have, using (6. 4), 
j*(i*Sq. Xn-) - Sq. j*XRn Sqq(j*XRn-Q) - j*(Sqq(XRn-q)). Since j* is 
a monomorphism and the class Uz is determined uniquely by (7. 1), it follows 
that Uqj*S. 

Suppose now a sphere-bundle is given over HI such that its Stiefel-Whitney 
characteristic classes lVmq be connected to the Wu classes by the relation 

(7.4) -WXs == Sqqp P(Sp) 
O,<p - 5q 

which we maiy write more conveniently as Wm= Sq (S), denoting by WU 
and S the "total" classes, i.e., 

1VM=1j+WM1+ - .+**+Wn S=1+S'?+ * +Sn 

and where the operator Sq stands for Sq =Sq? +Sql + * . + Sqk+* 

According to a theorem of Wu in [16], the situation described by 
formula (7.4) arises in particular if Al is a closed differentiable manifold 
and the sphere-bundle considered is its tangent bundle. From the relative 
Lefschetz-Poincare duality for manifolds with regular boundary ([11], 7), 
it follows that (7. 4) holds in particular with A =- K + K' if K is a manifold 
with regular bountdar-y L. 

Since the characteristic classes of the restricted bundle over K are the 
i*-images of the characteristic classes of the bundle over M1 (by naturality), 
we have WV-Sq(U), where W denotes the total Stiefel-Whitney class of 
the bundle over K. 

Suppose now that 

(.. 5) a cross-section over the subcomplex L is given in the associated 
principal bundle. 

Then, for every q, WO admits a representative cocycle which vanishes on L 
and thus defines a relative class Wvq. 
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Since 110 (K, L) ) 0, the algebra HI (K, L) has no uniit element. 
It is convenient to consider, rather than 11* (K, L), the direct sum 
H_* - Z2 + H* (K, L). In other words, we introduce formallv a unit into 
the algebra H* (K, L). The requirement 1 x x 1 -x for every x E H1* 
gives to H1* a ring structure. We shall furthermore allow the Steenrod 
squares to operate (as homomorphisms again) in H1* by settinig Sq0 (I) = 1, 
Sqi(1) = 0 for i > 0. 

We may then use the classes W q to define a total relative class by 
WR =1 + WVR1 + *+ ?FRn E H1*. Since the endomorphism Sq: I11* -+ 1,1* 
defined for each X E H1 by Sq (X) = Sq0 (X) + Sql (X) + is a mono- 
morphism and therefore maps H1*, as a finite dimensional vector space, ontto 
itself, we may define relative WFu classes UR q by 

(7.6) IVR = Sq(UR), 

UR being the total class UR = 1 + UR1 + UR 2 + E I1*. 

Notice furthermore, that according to the above conventions, we have 
Sq (1) = 1, and therefore the product formula of II. Cartan 

(7. 7) Sq(X Y) =Sq(X) * Sq(Y) 

holds also in H1*. 

We state now some properties of the relative Wu class UR. 

LEMMA (7. 8). Let h: (K, 0) -- (K. L) be the inclusion miiap and h* 
the induced homo?norphism, then Uq h*URq for every q > 0. 

The proof is immediate: Apply h* to both sides of the equation (7.6) 
WR=Sq(UR), with the convention h*(1) =1. We obtain IV W Sq(h*UR). 
Since the class U is uniquely determined by IV -=Sq(U), Sq being an 
automorphism of Hl*(K), it follows that U- h*UR. 

LEMMA (7. 9). For every relative class XRn-q E H,,-q(K, L) we have 

Sq, (X,n-=) -.Rq* XRn-q. 

This is again obvious, according to the preceding lemma. 
The following is a discrepancy between properties of absolute anld relative 

Wu classes: Absolute classes the dimension of which exceed In vaniish 
(if q> 1n, then q>n -q; thus, in formula (7. 1), the square is zero for 
every XRn-q and, by duality Us, must be zero, too). This need nIot be the 
case for relative Wu classes. 
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We shall be mainly interested in the sequel in the case n even. We 
state some lemmas in this case: 

LEMMA (7. 10). Let n be even, n- 2s. Unde- assumptions (7.4) atnd 
(7. 5), we have WR = UR'S URs + UR28. 

Proof. 

Win = Sqs(UR8) + Sql +.(URs+l) + + ? p8aW(8+i) + UR28 

URe - URS + U+ *-** URs.' + ? U.' U.8+ + UR"8 

URa. URS + Sq8+l(UR31) + + Sq8+i(uR88) + + Uj 

-UR8 UR8 + UR2a. 

LEMMA (7. 11). Suppose K has even dimension i = 2s. Let r be the 
rank of the bilinear form f(X, Y) over Z2 defined for X, YE HS(K,L; Z2) 
by X Y=-f(X, Y)A, where A denotes the generator of HI(K,L). Then, 
under assumptions (7.4) and (7.5) r A - UR89 UR8. 

Proof. Introduce in Ha(K,L) a basis Z1,l . , Zr, Zr+in . . ',ZP such 
that Zr Zj ,=8A for 1 _,j r and Zi * Z,0 if r < i or r <j. 

With respect to such a basis, UR8 must have the form 

URS Z1 + Z2 + * * * + Zr + Cr+lZr+l + * * + CpZp. 

Indeed, let URs 2 ciZi, with c C Z2, and let E-= 2 xAZs be any class in 

Hs(K, L). One has 

Sqs(X) =X. ,X X12 + X22 + * +Xr2 =_X + X2 +' ** + X (mod2), 

UR"' X ClXIL + C2X2 + ? * + CrTr. 

Thus, for any choice of x1, * ,xr, Lemma (7.9) implies 

Xl + X., + * * + Xr-ClXl + C2X2 + ***+ CrXr. 

This is only possible if cl- = 2 = * 1. 
Now from UR" -- Zi + Z2 +* + Zr + Cr+lZr+l + * * + CpZ,, it follows 

that U URS"U Z Zl1+ Z2Z2+* * *+Zr Zr rA, andthe proof of (7.11). 
is complete. 

We consider now the dual classes T$R and UR which are defined by 

(7.12) TR WR ==1, UR UR 1 

respectively. WR and U7R are uniquely defined (as relative classes) because 
the cup-product with a total class UR or WVR defines an isomorphism HE1* -* H1* 
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of Hi* onto itself. Of course, W- h*W, and similarly with U substituted 
for W. 

We have 

(7.13) WR== Sq(Um). 

Proof. Denoting Sq(U C) by WE = Sq(Un), we have 

WR - WR Sq(UR) Sq ( U) ==Sq(UE UR) -Sq() = 1. 

Since WR WR - 1 determines WE uniquely, WE WEVR. 

LEMMA (7.14). We have (with n 2s and under assumptionis (7. 4), 
(7. 5)) rAn = Wn-1 WEr + Wn-2 WR2 + - + W' - WBE1-', where W97V=h*WRq 
as in (7.8) ; r and An were defined in (7. 11). 

Proof. We prove first WR"n = UA,? as follows: 

WRe==Sq0 ( UR?l) + Sql ( UR"-1') + + Sqs ( UR8) 

-UCAn + UR1 U Rn-1 + **+ URs8- CRs 
UR 8+1 *URSl +. . . + U-1* UR1 + Unn (by (7. ]2)) 
Sq+ (UR UE1) + . * + Sqn- I(C ) ? UR -UE. 

From WEn + Wie-I * WE1 + . + W1' W fn-? WRn =0, we obtain 

WRV - - WR'n-i * ? - + + W,i .' WR."_ + URn. 

Comparing this formula with (7. 10) and (7. 11), we see that 

,-An = V Wjn WR1 +* . . + WVRI. WB%-1 

hence rAn = W"- 1- W-FR1+ + + 1? ' WRt'-' This completes the proof of 

Lemma (7.14). 

PART II. Proof and Consequences of Lemma (1.2). 

8. The proof. All homology and cohomology groups occurring in this 
section will be based on remainders mod2 as coefficients (we shall therefore 
omit to mention the coefficielnt field explicitly). 

Consider the situation described in Sectioin 1: a C--d-manifold Md 

regularly imbedded in euclidean (d + n)-space Ed,,, with a continuous field 
of normal n-frames Fn. In order to prove the Lemma (1. 2), i. e., y h, it is 
sufficient to consider the special case n = d + 1. Indeed, if y (f) =- h (f) has 
been proved for every f E 7T2d+, (Sd+i), the general assertion follows from the 

This content downloaded from 129.215.149.96 on Wed, 27 May 2015 06:49:49 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


RELATIVE CHARACTERISTIC CLASSES. 537 

faot that y and h are both "stable" by suspension (Section 1, property (3)): 
If fE7rd+nn(Sn) with n?d+1, then y(f) -y(Ed+linf) -(Ed+l-nf) =h(f). 
If f E 7rd+n(Sn) with n ? d + 1, then there exists by Freudenthal's theorems 
a map g C 7r2d+1 (Sd+l), such that En-d-Ig f, and for the same reason 
y(f) .-y(g) = h(g) 7=(f). 

In the sequel n - d + 1. Let f: .2d+1 Sd+l be the sphere map corres- 
ponding to the given manifold Md in E2d+l, togetlher with the n-field F. 
(n d + 1) of mutually orthogonal unit vectors vl,, V2 ,vn, normal to 
Md in Ed+. (see Section 1, (b)). It is easily seen from the definition of f 
(see (1. 1) ) that Md = f1 (q), where q is the point of S,, with the coordinates 
q= (1, O, ,0). Furthermore, the manifold M1'd, which is the locus of 
the endpoint of the vector erv (x) as x runs over Mld (e fixed, a small positive 
real number) is also the reverse image M'd f' (q') of some point 
q' E S,, (precisely, q' is the point q'= (l-2E2, 2e(1_f2)j,0, 0), if the 
mappiingfl r: B,, -> S.,, is indeed chosen as in (1. 1)). 

By the original definition of Hopf's inivariant, one has 

(8.1) L (Md,M 31'd) = h(f) mod2, 

where L,(, ) denotes the looping coefficient in E2d+1. 
C!,onsidering E2711 (= E2d,l) as the linear subspace of E2,, defined by 

Y2-- 90 Yl, Y2, y2 -y being coordinates in E2,1, we show first that there 
exists in EB,. an immersed (not necessarily orientable) manifold X", the 
regular boundary (mod 2) of which is the given manifold Md imbedded 
il E,--,I, 

Thle existence of an abstract C*-manifold V,, with regular boundary 
(mod'2) diffeomorphic to Md follows, by a theorem of R. Thom (see [14], 
Theoreme IV.10), from the fact that all Stiefel-Whitney numbers of Md 
vaiinish mod 2 (this because the normal bundle over Md iS trivial). We want 
to prove the existence of an immersion i: V1,, --F2nE,,, such that ij IV,, be the 
given imbedding f: MId-"> 211--.1 

By Theorem 1 in Whitney's paper [15], there exists an analytic manifold 
A-,, in euclidean (2n + 1)-space E, which is C2-homeomorphic to V". Map 
A,, into E'n by F,, defined as follows: F,,jO An is the given imbedding f of 
M = OA,, into E,,,.1. Consider a neighborhood N A.,, X I of A,, in A,, 
and represent points u E N by pairs (x, t), where x E OA,, and 0 ? t < 1. 
Define F, (u) = (fx, t) = the point of E21, with (2n -1) first coordinates 
coinciding with those of fx and the 2n-th coordinate of which is t. Extend 
F, over A,,, such that FPo(A - N) C {y2n > 1}. Let N1 be the subset of N 
characterized by 0 ? t ? i. Extending again F,, over E now, we use Weier- 
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strass' approximation theorem to get a C2 map Fi1: A, n > Ea., such that 
F1(A -N1) n E2n1 0-. Let wO be a real valued C2 function on A., such 
that wO?1 in A -N, w? 1 in N for t?2, 0? c0?1 for A1t?< , 
?00 = 0 for t ? <. Take, for instance, WO (x, t) (1 + cos (37rt) ) 2 for (X, t) 
in N with4_ t!h 2, For u N, F, (u) has the form F1(u)=Fo(u) + e (it). 
Define F: A,, -E2n by F I A -N - F1 A -N and F(u) ==Fo(u) + wO(u) &(u). 
Then F is C2 and its restriction over A,, is f. Moreover, FI N1 Fo INl, 
and thus F is completely regular in N1 since F, is. 

Now, by a theorem of H. Whitney (see [15], Theorem 2, assertions (a) 
and (b)), we can approximate F, together with its first derivatives by a 
completely regular immersioni j: A.,, - E. Let N2 be the subset of N1 
defined by 0 ? t ?- and define the C0 real-valued function w1 over A,, by 
w1 (x) - 1 for x C A - N1, wl(u) 1 for.?t_1, t w(u) (1 + cos(9rt))2 

for i ? t ? and w1 (u) = 0 for it E NT. Substitute for j the immersion 
i: Ae->E2n defined by iIA-N-j=jjA--Nij_. In N1, j takes the form 
j(u)- =F(it) + v7(u). Define i(U) by i((u) -F (u) + 011 (u>),(u). Since 

we may take q (u) togetlher with its first derivati-ves arbitrarily small anld 
the derivatives of w1(u) are all zero except the derivative with respect to t 
which is ? 20, it follows that, for suitablv chosen j, the miiap i will 
be completely regular (FIN1= F0IN1 is completely regular). Moreover, 
ijN2, =F0N2, and therefore the normal vector to Mlld and tangent to i(A,) 
is the constant vector v0, normal to E2n in E2,f. Finally, we can obviously 
manage that i(A- OA) has no common point with E2n_1 Denote i(AZ?,) 
by Xn. 

We replace now the given field Fn of n-frames v1 (x), * v, (x) normal 
to Md in E2fl l by the (n+ 1)-field F,+, of (n+ 1)-frames v0(x),v1(x), 
* , (x) consisting of the (constanit) vector v, (x) tangent to X,, and 

normal to Md at x E Md, followed by the vectors of the field Fn. 
The homotopy class of the map 0': Md -- V2,,,,,+ induced by the (n 4+ 1)- 

field F,+, is represented by the same remaiinder mod 2, i. e., c, as the homotopy 
class of the map 0: Md -* --> A induced by the given field F,, (we hale 
assumed d odd, which is no loss of generality in view of y = h = 0 for d 
even by [8], Theore'me IV. Thus n=d+lI is even., n-=2s). 

On the other hand, using certain vectors of F,,-, as a cross-section over 
Md C X,, we can define relative characteristic Stiefel-Whitney classes as 
follows: the n last vectors of F,,+1 provide a cross-section over Md in the 
piincipal normal bundle over X,, and lead in every positive dimension to a 
clhss WR4 mod M1d (1 ? i ? n). The vector field v0 leads to the charac- 
teristic class WRn of the tangent bundle to X,. Using finally the vectors 
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of F"+1 altogether, we can define the relative n-dimensional class S1n of the 
Whitney sum: tangent E3 normal bundles over X,. According to Whitney 
duality for relative characteristic classes (Theorem (4. 1)), we have" 

(8. 2) SR -WRn +Wn1W1 ?. + W . ,FRn-1 + WVn 

The remaining part of the proof of Lemma (1. 2) consists in inter- 
preting the several terms occurring in formula (8.2). 

First, 
(8. 3) SAn- AAn 

where ARn denotes the generator of Hn (X, M; Z2). The class SRn is indeed 
the obstruction class to the extension of Fn+i over X. under the only condition 
that it keeps being an (n + 1) -framefield in E2n. The formula (8. 3) follows 
then from the fact that V213n+1 is (n -2) -connected. 

Since WR?n is the obstruction cohomology class to the extension of the 
vector vo (x) as a tangent vector field over X, we have by [2] (Satz I, page 
549) 
(8.4) W'rn =X (X) *AR". 

It has been proved in Lemma (7. 14) that 

(8.5) rARn - Wn-. Wi 1 +.. + WVI TVRn-i. 

Let us prove now that 

(8.6) R-n _ h(f)ARi. 

Indeed, WfVn is the obstruction class to the extension over Xn of the vector 
v1 (x) of the field Fn+1 as a unit vector field normal to X,, in E2n. The 
extension is possible over the (n - 1)-skeleton (a triangulation of X is taken, 
such that Ml is a subcomplex). Suppose this extension has been constructed. 
Extend then v1 (x) in the interior of the n-simplexes of X1Y as a normial 

6 Notice that we could prove (8. 2) as follows: The restriction over M of the normal 
principal bundle 1 over X is trivial. Let K = X U C be obtained by attaching to X 
the cone over M. Then 1 can be extended over K (i. e., the map N: X e Bso(.) inducing 
gl can be extended to a map K - Bso(,)). K being realized in E.,, define T: K - BSO(3) 
by T (x) = n-plane orthogonal to N ($) for every x E K. This defines a bundle ? over 
K. Let w be the total Stiefel-Whitney class of T, wb the total class of RJ. By excision, 
one has H+ (K) KH+(, C) H+(X,M), where H-1 is the ring consisting of the 
elements of positive dimensions in the cohomology ring. It is not difficult to see that 
these isomorphisms send wn into Si' + TIV," and w', wfJ for 1 is < n, 1 _ j < n, into 
W34, W,' respectively. Ordinary Whitney duality w . w = 0 goes thus over into 
formula (8. 2) in particular. However, this raisonning does not apply in the more 
general situation considered in Part I. 
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vector of length ? 1. This is always possible if we allow v1 (x) to have 
length 0 in some interior points of some n-simplexes of X". Consider the 
locus X' of the endpoint of the vector Ev (x) so extended (where e> 0 is 
smaller than the radius of a tubular neighborhood of 24 in E2?; see [14], 
page 27). Denote by V = X ? 2 the closed manifold obtained by adding 
to X its mirror image X with respect to the hyperplane E21., in E2B,. We 
may choose the extension v1 (x), x E X2, such that X' and V are in general 
position in E2,, so that we may determine the intersection coefficient mod 2 
of V and X' by simply counting the intersection points. We assume all 
intersection points to be simple. We have then two kinds of intersection 
points of X' with V: Those arising from the impossibility of extending v, (z) 
in the interior of an n-simplex of Xn as a normal unit vector (let their 
number be I), and those which arise from self-intersection points of X. It is 
clear that intersection points of the last category can occur only in pairs, 
thus their number is 2N, where N is some integer. 

By definition of WR,0 we have WRI - IAR" modulo 2. Furthermore, 
II-+2N-S(V,X') =L'(V,M') modulo2, where L'( , ) denotes the 
looping coefficient in E2n and Al', as before, the locus of the endpoint of 
eV, (x) as x runs over Md (OX" - M' mod 2). Since V nfE21l = Md, we have 
L'(V, Al') = L(M, A'), where L( , ) is again the looping coefficient in E2,1. 
Therefore, I=-L (M, M') =h (f ) mod 2. In other words, WRn=h (f)ARn. 

Using the formulae (8. 3), (8. 4), (8. 5) and (8. 6), the formula (8. 2) 
translates into 

(8.7) c==x(X) +r+h(f) mod2. 

It has been proved in [8], that 

(8.8) X*(M) x(X) +,p mod2, 

where p is the rank of the bilinear form S (x, y) defined by the intersection 
coefficient in Hs (X,,; Z2), n = 2s (i. e. S (x, y) is the intersection coefficient 
of the classes x,yE H.(X.;Z2)). It is not difficult to see that pSor. We 
prove, however, 

(8.9) X* (I)=X(X) + r mod 2 

more simply by qonsidering the exact cohomology sequence of the pair (X, Al), 
i.eM., 

hTla(X) *- Ha(X,Al) - H81(M) *~' - 0(M) 
rl8(ff) < H8(X, SI) <H XEJ 1(HO(X, M* <-- 0 
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Using the completely orthogonal pairing of H8 (X) with Hs (X, M) to 
Hn (X, M), it follows from h*C Z = 0 Z, C, Z E HI (X, M) that the kernel 
of h* in Ha (X, M) consists exactly of those elements C for which C Z =0 
for every Z E Ha (X, M). Thus, we have r =- (rank of Hs (X, M) - (rank 
kernel h*). Using the exactness of the above sequence, we obtain 

r ==p8 (X,M )-p8s1 (M) + p81 (X) -p8s1 (X, M) + * * . 

+ (- 1)8pO(M) + (-1)s-lpo(X) + ( 1)8po(X M), 

where pq,(X, M), pq(M), pq(X) denote the ranks of H2(X, M), H'2 (M), 
H9 (X) respectively. 

Replacing in this formula p. (X, M) by pnq (X) according to relative 
Lefschetz-Poincare duality in X mod M, we obtain 

r= -( 1)8X*(M) + ( i)8-1 X (- l)ypi(X) + (- 1)8 I (- )pi(X). 
Ogi58-1 8 i-n 

In other words, 

(8. 10) X*(M)-f{ (- l)p4(X)- I (- 1)p(X)} + (- 1)8r, 
01-{-igs-l 8;94;9 

from which formula (8.9) follows by reduction modulo 2. 
Now, since by definition y(f) c- X*(M), formulae (8.7) and (8.9) 

complete the proof of the Lemma (1. 2): y(f) h (f). 

9. Consequences of the Lemma (1. 2). Using the Lemma (1. 2) we 
may improve the generalized Curvatura Integra theorem. We obtain first 
from h(f) ==O if n?d (because then Sq4+1(ul) O) the 

THEOREM (9. 1). Let the closed differentiable manifold M14d be regularly 
imbedded in Ed+" with a field of normal n-frames Fn and n d, then the 
corresponding curvatura integra c does not depend on the imbedding nor on 
the n-field and is given by c - X* (M,d). 

Indeed, c-x* ( =) -y(f), where f is a map Sd S, as constructed 
in Section 1, (b). Since -y(f) h(f) 0 because n< d, the theorem 
follows. 

Suppose that the integer d is such that every element in 7r2dl+n(Sd+l) has 
even (or zero) lopf's invariant. Then every element in 7rd+, (Sn) with 
arbitrary n has zero generalized Hopf's invariant h. In this case we may 
therefore omit the restriction on n in the above theorem and obtain the 

THEOREM (9. 2). Let the closed differentiable manifold Mig be regu- 
larly imbedded in any euclidean space Ed+- with a field of normal n-frames 
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F.; if d is su,ch that there is nto element of odd Hopf's in-,varianlt in 7r,d, ($d+L 
then the curvatura integra c corresponding to the imbedding and to F,, 
depends in fact only on illd and is givent by c= X* (Md). 

We may replace in this theorem the assumption of an imbedding of Ml4 
by the weaker one of an immersion (with self-intersections allowed). Indeed, 
if M1d is immersed in Ed+. with a field of normal n-frames Fn defining a 
curvatura integra c, we may imbed Ed+n as a linear subspace in Ed+N (X1 ?! N), 
with a field of ilormal N-frames FN which consists of the n vectors of F. 
followed by (N - n) constanit mutually orthogonal unit vectors normal to 
Ed+n in Ed+N. The curvatura integra corresponding to the new field FN is 
again c and if N has been chosen sufficiently large (d + 1 N), a slight 
deformation in Ed]L+N of the inimersion Mild -) Ed+N will provide an imbedding 
of Md into Ed+N with a field of normal N-frames obtained by continuous 
deformation from FN (apply Theorem 2, case (c) of II. Whitney's paper [15] 
to obtain the imbedding and the covering homotopy theorem to obtain the 
desired field). The curvatura integra c still belongs to the new situatioil to 
which now Theorem (9. 2) applies (d has not been changed). Thus we 
obtain the 

THEOREM (9. 2*). The thorem (9. 2) is still valid replacing the 
assumption of an "imbeddinig" of Aid by the assumption of an "immersion." 

Of special interest miiay be the case n =- 1, originally considered by Hopf 
for d even. If d is odd and the manifold Md assumed to be imbedded in 
Ed+l, then the curvatura integra c (the degree of the Gauss mapping Mld -* Sd, 

in this case) is modulo 2 equal to X* (Md). This was proved in [8] and 
also by J. Milnor, using a simpler method especially adapted to this special 
case, in [9]. As a corollary to Theorem (9.2*), we obtain the following 
improvement: 

COROLLARY. Let d be an integer such that there is no element of 
7r2d+l(Sd+l) with odd Iopf's invariant. Let Md be a closed orientable hyper- 
sutrface in Ed5+ with self-intersections allowed, and let c be the degree of the 
Gaauss mapping Ald -> Sd. Then c x* (Al) modulo 2. 

Let us remark that the condition on d in the Theorem (9. 2) (no map 
with odd lopf's invariant in 7r,+1 (Sd+l)) is known to be satisfied at least for 
d # 2a -1, according to J. Adem [1] (explicit proofs in H. Cartan [7]).* 

* Added in proof: The details of Adem's proof have been recently published in 
Algebraic Geometry and Topology, Princeton University Press, 1957. 
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According to H. Toda it is satisfied for d - 15 too (As is well known, HI. llopf 
has proved that the condition is not satisfied for d =-, 3 and 7). 

Along the same lines, we obtain an extension of a part of N. Steenrod- 
J. EI. C. Whitehead's theorem [13] according to which the d-sphere Sd 

canniot be parallelizable if d & 2a - 1. 

THEOREM (9. 3). Any manifold Md with odd semi-characteristic X* (l) 
is niot parallelizable if d 2a_ 1, (in fact, if d is such that every elenment 
in 7r2d+i(Sd+l) has even Hopf's invariant). 

P'roof. Suppose M1d is parallelizable. It is known that any regular 
imbedding of M7d in E2d+l admits in this case a field of normal (d + 1)-frames 
Fd+l, the corresponding curvatura integra c being zero (see [8], Section 8). 
Therefore, the semi-characteristic being odd, the corresponding value of y is 
ycC X* (M) =1. Since by Lemma (1. 2), y is the Hopf's invariant 
mod 2 of some map S2d+1 -- Sd+1, the dimension d must be of the form 
d = 2a- 1. 

I do not know if there are examples of manifolds Afd with odd semi- 
characteristic, carrying 2k fields of mutually orthogonal unit vectors (k being 
defined by d+ 21 2(2r+ 1)). 

It was proved in [8] (Corollaire au theoreme VIII, ? 8), that the real 
projective space Pd may be immersed into a euclidean space Ed+n (n ? d + 1) 
with a field of normal n-frames if and only if it is parallelizable. The 
Lemma (1. 2) provides a similar (perhaps weaker) statement for a larger 
class of manifolds: 

THEOREM (9. 4). Suppose that the manifold lMld admits a 2m-fold 
covering manifold Mid with odd semi-characteristic: X* ( Md)- =1mod 2. 
Then the manifold Md cannot be immersed into any euclidean space Ed+.n 

wvith a field of normal n-frames unless theere is in 7r2d+1 (Sd+i) some element 
of odd Hopf's invariant. 

Proof. From an immersion g: Mld-Ed+,l. of Md, into some euclidean 
(d + n) -space Ed+n with a field Fn of normal n-frames, we obtain by com- 
position with the covering map p: R d -> Md a regular immersion g: Md -> Ed+,, 

with a field of normal n-frames Fn. Let us call c the curvatura integra of Md 

corresponding to Fn. Because g (i d) is homologous to 2m g (Mid) in Vd+n.n, 9 

denoting the composition g- gop, we have c = 2m- c =0 (mod 2). 
Therefore, j - x* (i d) # 0, and because of Theorem (9. 2*), 7r2d+1 (Sd+l) 

must contain some element of odd Hopf's invariant. This completes the 
proof of Theorem (9. 4). 
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It is known that if Sd is parallelizable, then any manifold Aid which may 
be immersed in some euclidean space Edn with a normal n-frame is also 
parallelizable (see [8], Theoreme VIII). In [9], J. Milnor formulates the 
conjectures that if a parallelizable manifold Mj may be immersed in Ed+l in 
such a way that the Gauss degree be 1, then Sd should be parallelizable. 

From Lemma (1. 2) follows the 

THEOREM (9. 5). If a parallelizable manifold Mi% may be immersed in 
some euclidean space Ed+n with a field of normal n-frames inducing an odd 
curvatura integra, then there is in 7r2d+1 (Sd+1) some element of odd Ilopf's 
invariant. 

Proof. Assuming n ? d + 1, and using the covering homotopy theorem, 
we may construct on Aid a field G,n of normal n-frames in Ed+, such that 
the induced curvatura integra is zero (see [8], ? 8). Thus the given field 
and Gn induce different curvatura integra. By Theorem (9. 2*), this implies 
the existence in 7r2d+1 (SdZ+) of an element of odd Hopf's invariant (the 
question whether this is possible without Sd being parallelizable is unsolved 
as is well known). 

10. Remark. It should be noticed that if one is not interested in the 
value of the curvatura integra c but only in the fact that c does not depend 
on the imbedding nor on the normal field (as in Theorem 9.5), then a 
simpler proof may be given in the case d odd. Let us sketch a "direct" 
proof of the following weaker form of Theorem (9. 2) in this case: 

THEOREM (10.1). If the odd integer d is such that each element cJ 
7r2d+I (Sd+l) has even Iopf's invariant, then the curvatura integra of any 
closed differentiable manifold .M4-d regularly immersed into Ed.+ with a field 
of normal n-frames depends only on AiId. 

Proof. Let Md T' (Aid), i = 1, 2 be two regular immersions of the 
given manifold Aid of dimension d into euclidean spaces Ed+n,. Let F$i, be 
two fields (i =- 1, 2) of normal ni-frames on Md' respectively, inducing maps 
q': Md- Vd+nj,nj the classes of which are represented by ci. In order to 
prove c= c2, let Aido = TO (Ad) be an arbitrary regular imbedding of AId 

into E2d+l (euclidean (2d + 1) -space). Consider Ed+fl1,E2d+l, Ed+,2 as linear 
subspaces of the euclidean space EN = Ed, X E2d?l X Ed+n.0 Consider on 
Aid' the fields F'N-d Of (N - d) -frames normal to Mdi, consisting of the 
vectors of F'., followed by N- d -ni constant unit vectors (mutually 

This content downloaded from 129.215.149.96 on Wed, 27 May 2015 06:49:49 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


RELATIVE CHARACTERISTIC CLASSES. 545 

orthogonal) normal to Ed.,, in EN. Each immersion T (M1f), i =- 1,2, is 
isotopic in EN with TO (Md). By the covering homotopy theorem, we obtain 
on Mdo two fields of normal (N - d) -frames in EN, which we denote again 
by FN-d. The curvatura integra corresponding to the mapping Md -> VN,Nd 
induced by the new field FN-d on Mdo is ci. 

It is easily seen that F'N-d may be continuously deformed (keeping the 
(N-d)-frames of FN-d normal to Md0 during the deformation), in such a 
way that the first (d + 1) vectors become vectors in E2d+l and the last 
N - (2d + 1) be constant and normal to E2d+l. In other words, we have 
obtained two fields Fid+i, i =- 1, 2, of (d + 1)-frames normal to J1[d in E2d+1. 
Moreover, the curvatura integra corresponding to the map Md -> V2d+l,d+1 

induced by Fd+1 (as field over MahL in E2d+l) is equal to the given c' which 
we started from. 

Recall that TO(Md) =- Md has been assumed to be an imbeddding into 
E2d+l. According to Section 1 (b), it thus corresponds to F1d+j and F2 +d 
sphere maps fl, f2 of S2d+1 into Sd+l. By assumption, these maps have the 
same lopf's invariant mod 2: h (fl) = h (f2) mod 2. It is not difficult to 
see, that we may change one of the fields, F1d+l say, without changing cl 
(which is only defined mod 2 because d has been assumed to be odd) in such 
a way that h (fl) - h (f2) as integers. Assume that such a change has been 
achieved. The Hopf's invariant of fi is the looping coefficient in E2d+j of Md? 

with the locus, Vd' say, of the endpoint of the first vector of the field F1d+l. 
These looping coefficients being equal, it is possible using again the covering 
homotopy theorem, to deform Fld+l and F2d+l continuously (keeping their unit 
vectors mutually orthogonal and normal to 3Md1) in such a way that after 
the deformation their first vectors coincide. Such a deformation does not 
change cl or c2. 

Let us denote by {v, vil, V2 ,vd} the vectors of FPd+1 (after de- 
formation) and by 0i: Md->V2d+l,d+1 the induced mappings, the classes of 
which are represented by ci (i -1,2). 

In order to prove c1' c2, let us first assume that Md is a parallelizable 
manifold and let t1, t2, . .*, td tb, a d-field of (mutually orthogonal unit) tan- 
gent vectors on Mdo. Then each 0' is homotopic to the map 9: Md -* V2d+l,d+l 

defined by 0(x) = {v(X),tl(x),t2(x), ,td(x)}. The desired homotopy 
is given by 

0'8(x) - (v(x),v 1'(x)cos(j7rs) + t1(x)sin(17rs), * 

Vd (x) cos (17rs) + td sin (ars) }, 

7 
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where 0 < s ? 1. Therefore, if Md is parallelizable, 6' and 02 are homotopic 
and cl- 2 

In general, 3d will not be parallelizable. However, if cl anid c2 were 
different, then one of them would be zero (it follows from d being odd, that 
c' and c2 are remainders mod 2). If c- = 0, i = 1 or 2, the corresponding 
map 04 is homotopic to zero. By a reasoning of [7] (? 8), it follows that 
31d would be parallelizable. 

This completes the "direct" proof of Theorem (10. 1). 

Appendix. 

11. Relative Chern and Pontryagin characteristic classes. 

11.a. Relative Chern, classes. 
In this section the coefficients are the itntegers. 
Let e = (Eu(s), p, Bu(n), U(n) ) be the classifying bundle for the unitary 

group of n variables U (n). Suppose that a cross-section 6r over a closed 
subset A of Bu(") is given in the associated bundle 9r with fibre l'Vnn-r (the 
complex Stiefel manifold of n- r complex vectors in C0). 

For q > r, the relative Chern class CRq+ C EU2(q+1) (Bu(,,), A; Z) corres- 
ponding to the cross-section or will be defined by the properties 

(11.1) a*Cgq+l - C+l, the ordinary (absolute) Chern class, a* being the 
homomorphism H*(BU(n),A,Z) -*H*(Bu(n),Z) induced by the 
inclusion a: (BU(n), O) -> (Bu(n). A ) 

(11. 2) p*q,1GCRq+l 0, where p*.n H* (Bu(fl), A) - fH* (Bu(q), 6qA) is in- 
duced by the Borel map p(U(q),U(n)). 

We consider the diagram 

...>Hq(Bu,q)) --> Hq(,6qA) ..Hq+1 (Bu (q) I OA) > q'B() 

S a* 
-* Hq(Bu()) -+ Hq(A) - Hq+(Bu(n) A) -3 Hq+'(Bu(n)) ) 

where Bu(,) is the space of the bundle Es (Bu(q) is a classifying space for 
U(q), thus the notation) and Es is the cross-section over A in Eq induced 
by or (q? r). 

By considerations similar to those made for the orthogonal group, it is 
easily seen that c* is an epimorphism in every dimension and a monomor- 
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phism in dimensions not exceeding q. It follows, using exactness and 
commutativity in the diagram, that if p*q,,nZ=0O and a*z-O for some 
z EH*(Bu(),, A) then z must be zero. 

The existence of at least one cohomology class with properties (11. 1) and 
(11. 2) is seen as follows: The restriction of C2+1 to A is zero because of the 
assumed existence of a cross-section over A in Or. Let Cq+1 - a*x. Because 
0 - -*C+-x*a*x = *p*q,nx, we have p*qnx 0*-ly for some y E I (A). 
The class x -Sy has the properties (11. 1) and 11.2). 

This proves that properties (11. 1) and (11. 2) indeed define the relative 
Chern classes uniquely for the classifying U(n)-bundle. 

We consider now the more general situation of a U(n)-bundle over 
some compact finite dimensional space X induced by some map g: X - Bu() 
Let (Er, 7r, X, Wn,mr) be the associated bundle with fibre Wn.n and assume 
a cross-section or: A--* Er to be given over the closed subset A of X. We 
may assume dim Bu(n) arbitrarily high. Take dim Bu(n) > 2 dim X + 1 and 
let f: X-> Bu(n) be an injective map homotopic to g. The bundle induced 
by f is equivalent to the one induced by g; let us denote it again by 
(Enr . 75XV n-nr) - 

Let S be a closed subset of Bu(n) containing f (A) and such that there 
exists a cross-section 4,: S-> Bu(r) in 58r, with the property +(a) = 70(a) 
for every aC A (f: Er *Bu(r) is the bundle map covering f: X->Bu(n)). 
Let cvq+p be the (q + 1)-dimensional relative Chern class of the classifying 
bundle mod S obtained using the cross-section & (q > r). We shall prove the 

LEMMA (11. 3). f*css+1 depends only on the homotopy class of the 
map g inducing the given bundle and on the cross-section or over A. 

Defintition. f*c.q+l CQq+l E H2(q+1) (X, A ; Z) is the relative Chern class 
(of dimension 2(q+ 1), defined for q>r) modA of the bundle (E,7r,X), 
corresponding to the cross-section or. 

In order to prove Lemma (11. 3), we first notice that f*cil+l does not 
depenad oIn S. Indeed, let i*: H* (Bu(n), S) -> H* (BU(n,), f(A) ) be the homo- 
morphismi dual to the inclusioni: (Bu(-n),f(A)) -* (Bu(-n),S). We prove 
that i*cRq+' is the relative Chern class mod f (A) corresponding to the restric- 
tion 'A of ' over f (A). Consider the diagram 

H2(I+l)((Bu((n)) fA) H H2(q+1)(Bu(r), 5S) 

a* 
H 2(q+1)(Bu(-t,)) <- ---H2(+l) (BuMr, ifA) H 2 (q+l) (Bu(nf)p S).- 
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By commutativity, the relations p*,fl(i*cBq+l) - 0 and a* (j*cBq+1) - Cq+l 

(showing, by properties (11. 1) and (11. 2), that i*cR<+l is indeed the relative 
Chern class mod fA corresponding to AA) follow from the corresponding rela- 
tions p'*, c =q+1 0 and a/*cBq+l =- c+' for cRg+1' (where a'* - a*i*). Since 
i*cp.+l is independent of S, so is f*cRq+l, since f* f'*i*, where f`* is induced 
by f': (X,A) -> (Bu(n), f (A)). 

It remains to be proved that f*cRq+l does not depend on thle choice of 
the injective map. Let fl, f2 be two injective maps X -> Bu () homotopic to g. 
We may assume that f1A n f2A=0. Otherwise take an injective map 
fo: X -> Bu(n) such that fox l f1X =0 and fox n f2X =0 (such a map 
may be obtained taking dim Bu(") ? 2 dim X +3 if necessary) and apply 
the following proof to fO and f, first and again to fo and f. Let S be the 
union fjA U f2A. The cross-section ,b over S is given by ' (ai) =- Of- (at) 
for a, E f f(A). Denoting by CiR and C2R the relative (universal) Chern classes 
mod fjA and f2A respectively corresponding to the restriction of i over f1A 
and f2A, we have to prove fl*c R - f *c2p. By the above remark, we have 
fl*CR - fl*CB, f2*C2R = f2*CR, where cR is the 2 (q + 1)-dimensional class 
mod S corresponding to q. The equality fl*cR = f2*cR due to fl f2 com- 
pletes the proof of the Lemma (11. 3). 

Remark. Similarly to the definition of the Stiefel-Whitney classes, 
the definition of the relative Chern classes could have been introduced in 
terms of obstructions to the extension of cross-sections originally given over 
a subcomplex of the base. The two definitions coincide on their common 
domain: U(n)-bundles e3 over a complex K modulo some subcomplex L. 
(Use S. Eilenberg's approximation theorem, 1.c. section 5). 

Naturality property. 

LEMMA (11.4). Let (E,r,X) be a U(n)-bundle and let (E',7r',X') 
be the U(n)-bundle over X' induced by some map g: X'- X. We denote 
by C'R and CR the 2 (q + 1)-dimensional relative Chern classes of the bundles 
(E',r', X') and (E,7r,X) respectively, modulo closed subsets A'CX' and 
A C X such that g (A') C A and corresponding to cross-sections 0 and 0' in 
the associated bundles with fibre W,,>, (rC q), such that gO'(a') =Og(a') 
for every a'EA'. Then C'R=g*(CR). 

Proof. Let f: X->Bu(n) be an injective map inducing (E,7 ,X) and 
f': X' - Bu(") be an injective map inducing (E, lr' X'). We may assume 
that fg(A') and f'(A') have no commoon point. Let S be the union 
fg (A') U f'(A') and V& the cross-section over S in the associated bundle with 
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fibre W,,, defined by qlf'(ad) =-'O(a') and pfg(ad) =-=?g(a'). Denoting 
again by cR the 2 (q + 1) -dimensional (universal) relative Chern class modulo 
S corresponding to i/, we have C'R-f`*(cR) g*f*(c) g*(C) 

Whitney duality. Let T1 and 2 be two principal bundles with bundle 
groups U(n1) and U(n2) respectively, over the same base space X and let 
01Or and 0212 be cross-sections over closed subsets A1 and A2 (of X) in the 
associated bundles B18r and 92.2 with fibres Wni ,n,lr and V respectively. 
01rl and 02r2 determine a cross-section or (r - ri + r2) over A A1 , A2 in 
the bundle Wr, with fibre Wn, (n n1 + n2) associated to the Whitney 
sum e =- 93 E 2 

Denote by ClRl+1 the relative Chern class of BI, i - 1, 2, defined for 
q ? r, and let CRp1+l be the relative Chern class of e defined for q ? r. 

For the relative Chern classes, the Whitney duality takes the form 

(11. 5) C =q+l =--C1 + Cl C21 + + C2R 

In (11. 5) sonme absolute Chern classes occur, however, again, since each 
product contains at least one relative class, it is itself a relative class. 

The proof of formula (11. 5) will be based on a theorem similar to 
Theorem (5. 1) stated below (Theorem (11.6)). 

Relative Chern classes as symmetric functions. Let (E, p, X, U(n)) be 
a principal U (n) -bundles over a compact finite dimensional space X. Con- 
sider the subgroup Q(n) = U(1) X U(1) X . . . X U(1), n factors, of U(n) 
and the " space of flags " X = E/Q (n) over X. We have a fibering 
p: X X induced by the projection p: E -> X and the cross-section 0r over 
A C X may be used to construct a subset J C X as follows. Let Er - E/U(r) 
be the space of the bundle with fibre T associated to (E, p, X, U(n)). 
We have the diagram 

Br ,r[-~> PZr->Ap 

{ PA jPE IpX 

A >Er >X= 
0 p 

where Er iS the space of flags over Er (i.e. E/Q(r) Bl,r) and pE: BrEr 
is induced by Q(r) C U(r). The bundle (J,PA, A, F (r), U(r)) is induced 
by 9: A -* El. The principal bundle e = (E,7r, 1, Q (n)) is the Whitney 
sum (E ('1 eD C2 2 *. . . ED 9n of n principal bundles (i with group U (1). 
Let xi E HJ2 (=I;Z) be the 2-dimensional (only non-zero positive dimensional) 
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Chern class of Hi. For r + 1 <i n, the relative Chern class mod A of g' 

may be defined (using the cross-section over A in V induced by Or). Let 
Xr+i, xr+2, * *, xn mean the relative classes. Then the elementary symmetric 
function Sq+1 (x,, *, x"n) is a relative class for q ? r (each product of q + 1 
distinct factors from the x1, * *, xn must contain at least one of the variables 
Xr+l< , x.n). Let us denote by SRq+l (Xl, * ,n) this relative class. We 
have the theorem 

THEOREM (11. 6). Let pR*: H*(X,A;Z) -H*(!,Al;Z) be the homo- 
morphism induced by pR: (X, Al) -> (X, A). Then, 

(a) pR* is a monomorphism, 

(b) pV*CRq+l .SRq+l(xl, *, x") for q?>r. 

The proof is very similar to the proof of Theorem (5. 1). We are not 
going to enter into the details again. Along the same lines as for the proof 
of (5. 1), we need the result 

H* (F(n) ; Z) - Z[xi, Xn *, n](S+ (Xlp Xn)) 

with F(n) =U(n)/Q(n), where (S+(x1, . ,x,)) denotes the ideal gene- 
rated in Z [xl, - , x,x] by the symmetric functions of positive degree (see 
[3], Proposition 31. 1). The only points where the method of proof of 
(5. 1) breaks down now are those where use was made of the fact that the 
coefficient ring for Stiefel-Whitney classes was a field (Z,). 

The assertion that the term E2 in the spectral sequence of p: A -> X 
reduces to H* (X) ? 1H* (F(n)) is, however, still true because F(n) 
=U(n)/Q(n) has no torsion. 

The only non-trivial change is that it is no longer obvious that H* (X; Z) 
should be (at least additively) isomorphic to E.. This proves, however, tc 
hold, as will be seen from the following argument I learned from A. Borel, 
similar to an argument by J. P. Serre ([10], Chap. III, 7, Prop. 9). 

LEMMA (11. 7). Let g: H* (F) -- H* (E) be a right-inverse (additive) 
homomorphism to i*: H* (E)-+ H* (F), where E is the space of a bundle 
(E, 7r, B, F) with fibre F and i the inclusion i: F ->E. Assume that either 
B or F has no torsion. Then H*(E) is isomorphic to H*(B) ? H*(F). 
Moreover, the isomorphism preserves the product if cr does. (In this lemma 
the domain of coefficients is any commutative ring with unit). 

Proof. Let w: H* (B) ? H* (F) -> H* (E) be the linear map defined 
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by w(x f) =7r*(x) a(f). We are going to prove that w is an isomorphism 
which preserves products if a does. 

We first notice that w preserves the filtration: I1*(B) 0 H*(F) being 
filtered by the ideals Aq- Hi (B) 0 H* (F) and H* (E) by the ideals 

Qi;q 
Jq- r*( 7 Hi (B)) H* (E). We have for every q, (Al) C Jq. Therefore, 

ilzq 
X induces an additive homomorphism Zi of the corresponding graded rings 
, Al/Aq+l into 2 Jq/Jq+1, where > denotes the direct sum. It is well known 

and easily seen that w is an isomorphism if Zi is. 
By triviality of the spectral sequence of the fibering p: E -* B (because 

i*: H* (E) -> H* (F) which admits a right inverse, is an epimorphism), 
it follows that .2 - H* (B, H* (F)) is isomorphic to the graded ring E. 
associated to H* (E)1) i. e. 2 Jq/Jq+'. Let kc be this isomorphism (k2. with 
the notations of [3], ? 1). 

Since either B or F has no torsion bv assumption, E, - H* (B) H H* (F); 
identifying Y Aq/A+1 with 1* (B) 0 H* (F) in the natural manner, the 
lemma will be proved by showing that i;: H* (B) 0 H* (F) -> E. is identical 
to the map k: H*(B) ? H*(F) -.>E,. 

Let x f f EH*(B) ?H*(F), where x E HP(B), f E HI(F). We have 
w(xOf) 7r*(x) .a(f)E JPp,=7r*( 2H4(B)) HQ(E), and zi (x 0 f) is the 

Qgp 

image of w(x 0 f) in JP',/Jp+',q-1 E-_P,q. By definition of the product in 
E., we obviously have z (x 0f) = ) (x C 1) Zi (1 C f ). Since k has also this 
property, it is sufficieint to verify k k on the elements of the form x 0 1 
and l Of. 

i(xX01)- 7r*(x)EJPO (JP+1-1_O). Wehave 1c(x?31) 7r*(x). See 

[3], ? 4, (b). 
zi (1 Of) = c(f), where -o(f) represents the image of a(f) E JO?r in 

JO,q/Jl,q-l. By [3], ?4(c), we have kIr(a(f)) IC=1?i*(f) =1 f since 
a is a right inverse to i*. Thus, again (10f) lfkt(1Gf). 

If a preserves the product, then 

w[(xf) f (xI0f')] = (_ 1)Pp'w (xX0ff') 1)2P7rP'*(x x') .a(f f') 
= ( 1)qPx'r*(x) - r*(x) (a(f) a(f') 7r*(x) - (f) ,7r*(x') -a(f) 

=w (x0(3f) (o (x'?3f'). 

In the situation of Theorenm (11. 6), the existence of the homomorphism 
ar is obvious (one has H*(F(n) ;Z) ==Z[u,, - -Un]/(S+(u1,- * 

where uk _ i*- ; let h1 = 1, h1 t be a basis for the vector space 

This content downloaded from 129.215.149.96 on Wed, 27 May 2015 06:49:49 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


552 MICHEL A. KERVAIRE. 

H*(F(n) ;Z), the hi1 being represented by polynomials Pi(u,, * -,u,) in 
ul,- -,,u,, and define a(h.j) as the polynomial in xl, * ,x, obtained from 
PI by the substitution Utk --Xk, extend then cr by linearity). This completes 
the proof of Theorem (11.6) part (a). 

The proof of part (b) is similar to the proof of (b) in Theorem (5. 1). 
Use has to be made of the results of [6] (in particular Prop. 4. 1) rather 
than from [4]. A slight change occurs at the end of the proof: we 
have to show that pp.*SRq+l (x,-. , X,;) 0, where IAv*: H* (BQ(n), jA) 
-->H*(BQ( ,),A1). The argument used for Stiefel-Whitney classes does not 
work now, because degxj= 2 and a*: H2(BQ(r),J1) EH2(BQ(r)) need not 
be a monomorphism. However, ItqB*x,,j = O for j =i,* , n -r may be 
seen as follows. Consider for some j (1 ? j ? n r) the U(1)-bundle er+i 
over BQ(n); it admits over A the section Oj. The map ,u: BQ(r) - BQ(n) induces 
over BQ(r) a U(1)-bundle (" counter-image of ;r+j 1) and explicit construction 
shows that the induced cross-section k over Al (defined by + (u) =- (u, Ogj (u) ) 

can be extended all over BQ(r). Thus, by naturality, ,uR*x,.+j =0 (from this 
IA*SRq+l (X12 * * , x = 0 follows because of q ? r). 

11. b. Relative Ponttryagin classes. 

From now on, the coefficients are integers mod p, where p is prime and 
> 2. The following definition and naturality property. would be valid with- 
out alteration with integer coefficients, but Whitney duality is not. 

Let T = (E, p, X, SO (n)) be a principal SO (n) -bundle induced by a 
map T: X - Bso(n). Ljet a: Bso(fl) -* Bu(n) be the mapping corresponding 
to the inclusion SO (i) -> U (n). Then a o r induces over X a principal 
U(n)-bundle dc a-(Ec,7r, X, U(n) ). 

Let 9r be a cross-section over the closed subset A of X in the bundle 
B& associated to e with fibre Vn."2r+l. For k> ;r we have a cross-section 
0k over A in !k (with fibre VI?n2k-+1) induced by or. These cross-sections 
provide cross-sections #Ck over A in the corresponding "complex" bundles 
OCk ,associated to &o with fibre V'n,,n2k+,) as follows. Let :, ai be the maps 
of the total space covering -r, r respectively (a is not a bundle map), and 
let h be the bundle map covering r o?r. Then h is injective (actually a 
homeomorphism) on each fibre lViit 2k+1, and 90k may be defined by 

(11. 8) 7rck (a) =a, ek (a) =_7b-iafk (a) 

Definition. The 4k-dimensional relative Pontryagin class 

Ppk H4(X,X ; Zp) mod A 
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corresponding to the cross-section 6r, defined for ki > r, is given by 

(11. 9) PRk (_-1) kCR2k, 

where CR2k is the relative Chern class modA of Oc corresponding to Oc'k. 

Naturality. Let 3, Q' be two SO(n)-bundles over X and X' respec- 
tively, such that e is induced from 9' by a map f: X -> X'. Let 3k - (Ek, X), 
-Bk ((E', X') be the associated bundles with fibre VI,,2k+l and assume that 
cross-sections or, O'r in or ' br are given over closed subsets A C X, A' C X' 
respectively, such that f (A) c A' and O'f (a)- =0(a), (: Eko E'k cover f) 
for every aEA. 

Let pk and P'k be the relative Poiltryagili classes (kc ? r) of e and Q' 
corresponding to 0 and 0' respectively. Then 

(11. 10) Pk = f* (Ptk) 

Proof. The above formula follows from the naturality property of 
relative Chern classes, provided we prove that feOc (a) = 0'0f (a), where 
Fc: Ek-* Ec'k covers f (Remark that (ECk, X) is induced from (Eck,X') 

by f: X->X'). We have 

h-O'f (a) =- aO'f (a) = -r (a) =-- hfOc (a) 

and, since h is homeomorphic on the fibres, 

O'cf(a) = f Oc(a) for every a E A. 

We are thus in position to apply the naturality property of relative Chern 
classes and (11. 10) follows. 

Whitney duality for Pontryagin classes will follow from WVhitney duality 
for relative Chern classes reduced modp. Because of the naturality prop- 
ertv, we may restrict attention to the case of a classifying SO(n) bundle 
e (Eso(n), p, Bso(n), SO(n) ) assuming a cross-section to be given over A 
(closed subset of Bso(n)) in the associated bundle 9r with fibre V", 21.' 
Let Sc be the U(n) -bundle over Bso(n) induced by a: Bso (n) -> Bu(n), and let 
00r be the cross-section over A induced by Or in the bundle Oor associated 
to Oc with fibre Wn,i1-r+1. 

LEMMA (11. 11). The (4i + 2)-dimensional relative Chern classes of 
9& mod A corresponding to ocr are zero modCp: = 0, i_r. 
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554 MICHEL A. KERVAIRE. 

Proof. Consider the diagram 

1* 8 
H 4i+'(B) -> H4J+1(0 'A) H4J+2 (Bi, O'A) , I4S+2(Ej) 

(11.12) f A) 

t)* @ ~ ~~* wR .* 
i* > , 8 ~~~~a* 

H4i'+(B,so(.) ) 3H4'+'(A) H p4is(Bso(nf) A) - >14i+2(BSOs n) 

Since a* (CR2i+I) = C2i+l, we have (by [5], Proposition 25. 4) a*C2i+1 -0 

(coefficients mod p). Therefore CR2+1 = SX, x E H4+1 (A; Zp), and siince B* 
is an isomorphism, there exists a class u C H4'+1 (OVA), with O*u x x. We lhave 

SU - 8*-lX =- WR*SX = WR*CR2i+l = 0. 

The last equality follows from consideration of the diagram 

H4i+2 (Ej, VA ) ( H4j+2 (.Ec, ip O ) 

if (J(T f7r* 
I ~~a* 

H4"+2 (Bso(ff), A) < iI4i+2 (Bu(n), A). 

Indeed, cOR*CG2+l =(* *C 2+1 = * * 2 "+1-0 (by (11.4)) 

By exactness of the rows in diagram (11. 12), there exists an elemeent 
z E H4+1 (EJ) such that i*z u= . The assertioin C21 == 0 follows from the 
fact that w* is an epimnorphism in every dimension (By [5], Theorem 23.2, 
H* (Bso(2ml); Zp) == Zp[P,, * - P^n ] and 

H* (Bso (2m) ; Zp) -- Zp [PI) * Pl&--1n l} 2m] 

Notice that B' is classifying space for SO (2i 1).). 

Remarlc. Using the fact that w* is still an epimorphism if integer 
coefficients are used (see a forthcoming paper by A. Borel and F. Hirzebruch), 
the same method would give 2C.2+1 - 0, where CR2"+1 is the integer relative 
Chern class of a U (n) -bundle obtained from an SO (n) -bundle. 

Whitney duality for relative Pontryagin classes is an immediate conse- 
quence of the same property for relative Chern classes with coefficients mod p, 
making use of Lemma (11. 11). 

Let 9s be two SO(ni)-bundles (i =, 2) over X and let 6i be 
cross-sections over (closed subsets) At C X in the associated bundles 

-o. (EirO, pi, X, V%,9n t.-2r$+i). 
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RELATIVE CHARACTERISTIC CLASSES. a55 

Let e3 = ZI (D e 2 be the Whitney sum and e the cross-section over 
A=An1 A A2 in 13r (with fibre V=,,n2r+i, where n =- n + n2, r = ~r + r2) 
obtained using oirn and 02r2. 

PR1, the relative Pontryagin class of dimension 4k of corresponding to 
0 is defined for k _ r. Similarly, P1RYC, P2R7 are defined for k ? ri and k _ r2 
respectively. 

One has in H41 (X, A; Z,): 

(11.13) pRk PlRk + * * . + P1Rr1.P2R7C-r1 + +P2Rk (k l r) 

Although some absolute classes might appear in the above formula, each cup- 
product contains at least one relative class. The sum on the right consists 
only of relative classes. 

Pontryagin classes as symmetric functions. Consider again a principal 
SO(n) -bundle S_ = (E, p, X, SO (n)) and define the subgroup Q (n) of 
SO(n) by Q(n)= SO(2) X SO(2) X . * X SO(2) or Q(n) SO(2) 
X SO(2) X . * X SO(2) X SO(1) according as n=-2m or n= 2m + 1 
(m factors S0(2) in both cases). Consider the quotient space E/Q (n). 
The principal fibre bundle (E, r,E/Q (n), Q (n)) is the Whitney sum of m 
principal SO (2)-bundles ( 1, 2 . )el". Let xi, x,, x. be their Chern 
classes (SO (2) being identified with U (1) ). 

Assuming a cross-section 0 over A C X (closed subset) to be given in 

r- (Er, p, X, V -27+1) we obtain cross-sections in CY' for i = r, r + . , m 
over A C BQ(s) as follows: Er is the base space of a principal SO (2r -1)- 
bundle (E, Er, SO (2r -1)). Let Bsr be the space of flags over Br, i.e. 
Br E/Q(2r -1), where Q(2r -1) is the subgroup of SO(it) consisting 
of the matrices of the type 

D. 

0 

Dr-,rcs2~~ 
0 1 , where Ds= cos (2rxi) sin (27rx)] 

1 | -sin(27rxi) cos(27rxj) 

1 
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556 MILCHIEL A. KERVAIRE. 

We have the diagram 

(11. 14) PR JPX 

A ),Er > X 

The map w: BRr - is induced by the identity E->E(Q(2r-1) C Q(n)). 
Let A be the space of the bundle (, pA, A, F(2r -1), SO(2r- 1) ) induced 
by 0. Notations: F(2r -1)=SO(2r - 1)/Q(2r -1), O: A -*r is the 
bundle map covering 0. The maps pO and J are injective and we may con- 
sider A as a subset of 1Y. Geometrically, a point of A C X consists of a 
point a of A together with a sequence of m oriented 2-planes 7r1, 72, * ' * WM, 

such that 7rr contains the first, 7rr+1 the second and the third, , 7r the 
(n -2r)-th and the (n - 2r + 1)-st vectors of 0 (a), assuming n =2m. 
If n -2m + 1, 7rr contains the first and second, etc., 7rm the (n - 2r) -th 
and the (n -2r + 1) -st vectors of 0 (a). In both cases (n =- 2m or 2m + 1), 
since 7r is oriented, er admits a cross-section over A and so do Cr+1 ... * :nm. 

We define xr, xr+1, , xm (the characteristic classes of Yr, * * * en') as 
relative classes corresponding to the cross-sections given by 0 over A. The 
elementary symmetric functions Sk (X12 -* * Xm2) are then relative classes 
mod A (of dimension 4k) for Ic ! r and will, consequently, be denoted by 
SRI (X2>- * . 'Xr2). One has the 

THEOREM (11.15). Let pB*: H*(X, A;Z,) H*(1,1;Zp) be the 
homomorphism induced by pR: (X,A) -> (X, A). Then (a) pR* is a mono- 
mnorphism, and (b) pR*PRk - SRk(X12,> * X,2) for kc __ r. 

Proof of (a). Consider the diagram 

H[42c-l ( t) Hk-" (A ) - H4k (1 A ) - H4* (1) 

T * .A* a* 
H4k--l (X7) > Q-1 (A ) -->H4k (X, A) > HE*(X) 

(coefficients = remainders mod p, p prime > 2), where px* and PA* are 
monomorphisms in every dimension (see [5], Theorem 23.2) and i, i are 
the inclusions i-p0, i = . 

The situation is entirely similar to the one in the proof of Theorem 
(5. 1). A straightforward exactness argument shows that (a) follows from 
the Lemma: If b E H* (A) and w E H* (9) are such that pA*b *w, then 
there exists a class v E H* (X), such that i*v - b. 
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The proof of the lemma is entirely similar to the one given in the 
proof of Theorem (5.1). 

Proof of (b). By naturality, it is sufficient to prove the formula 
pR*PRk - Se(X2l, 

- 
Xm2) for the bundle e8 - (BQ(n), pn, Bso(,n) F(n), SO(n)) 

obtained from the classifying bundle (BQ(") is the space of flags over BSO(n)) 
The diagram (11. 14) reads in this case. 

0 - 
A > Bso(2r71) >BQ() 

PA IP2r-1 p P 
6 P 

A- BQ (2r-1) >Bso(n) 

and there is a similar diagram with k substituted for r for every k such that 
r? ick ?< (n +1). Considering A as a subset of BQ(2r.1) and BQ(n) by the 
injections 0 and p,u we have the following diagram 

6* 8 a* 
Hl-'(BQ(2k-1)) ->H47C-1(2) ,H41(Q (2k-1, ) >H4k(BQ(2k-1)) fA /AB**/1 T* @~~*I X a* T 

Ht41-(BQ(,n)) > 04-1(A) HI H(BQ (n,) > j H4k(BQ (n). 

From the relation p* (Pk) - Sk(X1% 2 
- , nX2) for the absolute Pontryagin 

classes, (see [6], Proposition 5. 1), we have a*y 0, setting y = pR*PRk 
- SAk(x12,. -, x.2). Indeed, a*PRk - Pk iS immediately seen from the 
definition and the corresponding equality for Chern classes. 

By an exactness argument used several times in this paper, (b) follows 
from pR*y -0. The proof of ILR*SRk(xl2, *, X.2) = 0 is similar to the 
one given for Chern classes. The equality LR*pR*PRk O- follows from con- 
sideration of the diagram 

!R* 
HQ4 (BQ (2k-1) > A) < H 4k (BQ (n)n A -) 

(KR* pR 
I ~ ~~~~ P* I 

H4k (Bso(2k-1), A ) < H4O (Bso (n), A) . 

One has JLR*pR*PIk - KR**p*PRk. Now, p* (PRk) -0 because 

PR k (_ 1) k* (CR2k) 
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558 MICHEL A. KERVAIRE. 

and of the diagram 

Hlk(BSO (2k-1) , A ) < HIk(Bu(2k-1)) aA) 

Is ,* fr* 
HI4(Bso(n)~ A) Hlk (Bu (n) A) 

p*(PRk) ( 
(-l)kp*Uf*(CR2k) (= (1) Cr*(CR2k) 0, by definition of the 

relative Chern classes. 

This completes the proof of Theorem (11. 1). 

MASSA.CHUsErrs INSTITUTE OF TECHNOLOGY. 
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