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RELATIVE CHARACTERISTIC CLASSES.*

By MicHEL A. KERVAIRE.

1. Introduction. The main purpose of this paper * is to prove a lemma
(Lemma (1.2) below) conjectured in [8].

In the proof, we shall make use of a not quite classical form of
Whitney duality, involving Stiefel-Whitney characteristic classes which have
to be considered as relative cohomology classes. Since these slightly gener-
alized characteristic classes may have some interest for themselves, the present
paper is divided into two parts as follows.

In Part I, an attempt is made to give a systematic treatment of relative
characteristic classes. Beside Stiefel-Whitney classes, relative Chern and
Pontryagin characteristic classes will also be considered. It will be seen that
most of the properties of the usual characteristic classes may be adapted to
hold for the relative classes. In particular, the relative classes satisfy a
generalized Whitney duality theorem and Wu’s theorem [16] remains true
if suitably stated. The fact that Wu’s theorem may be extended to the case
of a manifold with boundary was communicated to me by R. Thom and
was the starting point of the proof of Lemma (1.2). According to R. Thom,
this extension of Wu’s theorem was first known to H. Cartan, who proved
it using (®)-cohomology (unpublished). For our purpose, it will be suffi-
cient to reduce (by Lemma (6.1)) the extended Wu’s theorem to the ordinary
one, thus avoiding (&)-cohomology. The proof of the generalized Whitney
duality will be based on the interpretation of the relative characteristic
classes as symmetric functions. The original author’s proof was very cum-
bersome and will be omitted. The proof given here is due to A. Borel and
is reproduced with his permission.

Part IT will be concerned with the following situation considered in [8]:
Let M; be a differentiable closed manifold imbedded? into some euclidean

* Received January 4,. 1957.

3 The paper has been completed as the author was under National Science Founda-
tion research contract. The author is also grateful to the Research Commission of
Berne University (Switzerland) and to the Swiss Federal School of Technology for
grants made available during the preparation of this paper.

2 All manifolds considered are of class C®°. Imbedding will mean regular imbedding
(and similarly for immersion).
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518 MICHEL A. KERVAIRE.

space K4, and assume that there exists a continuous field F, of n-frames
(n mutually orthogonal unit vectors) normal to M; in E4.. To such a pair
(M4;F,) we attach

(a) a map w: Mg— Vgunm of Mg into the Stiefel manifold of n-frames
with base point at the origin in E;,,: the map o is defined by

o(z) = {v.(2), v:(2)," - -, 0a(2)},
where v,(z),- - -,v,(z), are the vectors based at the origin in Eg, and
parallel to the vectors of F, at z; and we also attach

(b) a map f: Sg.n— 8s of the (d 4 n)-dimensional sphere into the n-
sphere defined as follows: Take a tubular neighborhood U of M; in Eg,s. Any
point w€ U lies in a uniquely determined n-plane N, normal to M; at a
(uniquely defined) point z € My. Using the coordinate system in N, which is
defined by the mutually orthogonal unit vectors of F, at z, we attach coordi-
nates ¢, - -, ¥y, to the point u. It may be assumed that ‘2 (:)?=1, if and

only if u lies on the boundary of U. The definition of f will involve the
mapping
r: (B, 8By) = (Sn, q*)

of the n-ball B, onto the n-sphere S, given (for instance) by the formula

(1.1) 7(y5" - “59Yn)
= (1—2y% 2, (1 _yz)], Ry.(1 __yz);, © % (1 —y?)d),
where y?> = (v:)? and g¢* € S, is the point with coordinates (— 1,0, - -,0).
k

Identifying now Sy with Eg,, + o0, the desired mapping f: Szum—> Sn is
given by

f(w) =7r(ys,- - -,yn) for ue U, f(z) =q* for z€ S—U.

The homotopy class of the map o (defined under (a) above) is deter-
mined ® by the generalized curvatura integra ¢ which represents the homology
class of the cycle w(My) in Hy(Vamn;Z). The number ¢ is an integer for
d even or n=1 and a remainder mod?2 for d odd (n>1). Define y by
y=c—x*(Mq), where x*(M;), the semi-characteristic of M4 is equal to

8-1
3x(M;) for d even and to X (—1)ipi(Mg4) for d odd, pi(Mg) being then
4=0
the rank of H{(M4;Z,), and 2s=d } 1.
3 Recall that the Stiefel manifold of n-frames in (d 4 n)-space is (d — 1)-connected

and its d-dimensional integer homology group is infinite cyclie, or cyclic of order 2,
depending on whether d is even or n =1, or d is odd and n>1 respectively.
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RELATIVE CHARACTERISTIC CLASSES. 519

It has been proved in [8] (Théoréme II) that if a manifold My with
normal n-frame field F,’ in E,,, leads (by procedure (b)) to a map
f’s Sain—> S» homotopic to f, then y=1v/, i.e,, c—x*(Mg) = —x* (M),
this formula being valid only mod? for d odd.

Actually each homotopy class in w4 (S.) contains maps f: Siqn—>Sa
obtained by the procedure described under (b) and y is a homomorphism of
7am(Ss) into Z or Z, according as d is even or odd. It has been proved
in [8] (Théoréme IV) that, for d even, y is always zero.

Another homotopy invariant associated to f which will play a role in
the present paper is Hopf’s invariant as generalized by Steenrod [11]:
Consider the cell complex K ==8,U €g.n,y obtained by attaching the cell
€ams1 to S, by the given map f, then Steenrod’s generalization of Hopf’s
invariant, which will be denoted by A (f), is the remainder mod 2 defined by

8g* (u) =h(f) v,

where % and v are the generators of H*(K;Z,) and H"# (K ;Z,) respec-

tively and Sqe** is the Steenrod square which raises the degree by d - 1.
Each of the invariants h(f) and y(f) has the following properties

which can be verified easily (see [8]) for y(f) and were proved by Steenrod

([11), §18) for A(f):

(1) It is a homomorphism of 4., (8s) into Z, defined for every d =1
and n=1.

(2) It vanishes for d even.

(3) It takes the same value on a homotopy class and on its Freudenthal
suspension.

(4) It is zero for every composition map gof: S,— S, where
f: 85— 8¢ g: 8q— 8, provided that p>¢qg>rt

(8) If 8, is parallelizable, it takes the value 1 on the standard Hopf’s
map $: Szq.4—> S with Hopf’s invariant 1.

It is not unlikely that properties (1)-(5) should characterize completely
h(f). This proves to be true for d =7, even with property (4) omitted.®
I have no proof of this conjecture for general d. However, using the explicit
definitions of A(f) and y(f), we shall prove below the following lemma,
which was conjectured in [8]:

Lemma (1.2). Using the above notations, y(f) =h(f).

¢ This fact has not been proved for v in [8] but is easily seen.
5 See [8], page 242.
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520 MICHEL A. KERVAIRE.

The use which can be made of relative characteristic classes to prove
this lemma will become apparent during the proof in Section 8.

I am indebted and wish to express my gratitude to A. Borel and R. Thom
for many fruitful discussions during the preparation of the present paper.

PART 1. Relative characteristic classes.

2. Definition. We shall treat first Stiefel-Whitney classes. The relative
Chern and Pontryagin classes may be obtained similarly and will be dis-
cussed briefly in an Appendix (§11). The coefficients will be the remainder
mod 2, except in §11 (and §6).

Let B=(B,p,K,8,:,0(n)) be a sphere-bundle over the simplicial
complex K with the orthogonal group of n variables O(n) as structural
group. Denote by B¢= (B, p4, K, Vynq, O(n)) the bundle associated to B
with fibre the Stiefel manifold V,nq of (n—g)-frames (based at a fixed
point) in euclidean n-space.

Let L be a subcomplex of K and assume that a cross-section 67 over L
is given in the associated bundle 8. This section induces (by the projection
Br— B?) cross-sections 62 over L in the associated bundle B¢ for ¢=r.
Roughly speaking, 67 defines an (n—r7)-vectorfield F, . over L, and 6 is
given by the (n— gq)-vectorfield consisting of the first (n—gq) vectors of
For. :

Let Wt be the (g -+ 1)-dimensional Stiefel-Whitney class of the bundle
B. Suppose ¢=r. A representative w?! of W' may be obtained by the
usual stepwise extension process over K°UL,K*UL,K*UL,- - -,K¢UL
of the cross-section 67 in 87 induced by 6" over L. The requirement that the
cross-section over K¢ in %9 should coincide over L with the given section 64
leads to a representative w?! of T2 which takes the value zero on every
(g + 1)-simplex of L. The cocycle w?* is thus a representative of a relative
cohomology class W€ He*(K,L;Z,) defined for ¢=r, which will be
called the (¢4 1)-dimensional relative characteristic Stiefel-Whitney class
mod L corresponding to 6.

W2t does not depend on the choice of the extension of 6¢ over the
0-,1-,- - -, g-simplexes of K-L (see [12], 33.5). It does, however, depend,
in general, on the choice of the given cross-section over L. Let 6° and 6* be
two cross-sections over L in B" and let 6%, 6'¢ be their projections in B¢
(g=r). The stepwise attempt to make the cross-sections 6°¢ and §'¢ coincide
meets with an obstruction in dimension ¢ on L. ILet b2€ H?(L) be the
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RELATIVE CHARACTERISTIC CLASSES. 521

obstruction cohomology class. It is easily seen, that §b¢ is the difference of
the (g4 1)-dimensional Stiefel-Whitney classes corresponding to 6° and 6,
where 8§ is the coboundary operator of the cohomology sequence:

. He'(K) « He (K, L) <~ H4(L) « H(E) «- - -

3. Naturality. Suppose we are given two principal O(n)-bundles B
and B’ over simplicial complexes K, K’ respectively, such that B is induced
from %’ by a map f: K— K’ which we assume to be simplicial.

Let L and L’ be subcomplexes of K and K’ respectively, such that f(L)
is a subcomplex of L’. Suppose that cross-sections 6" and 67 over L and L’
are given in the associated bundles Br and B’" with fibre V,,,-,, such that
hor(x) =0'rf(x) for every € L (h is the bundle map covering f).

Then, for ¢ = r, the relative characteristic Stiefel-Whitney classes Wz
and TWz7! of the two bundles are both defined.

LeEMMA (3.1). We have Wrtt = f* (W), where f* is the dual homo-
morphism f*: H(K',L’;Z,) > H (K, L;Z,) induced by f: (K,L) - (K’,L’).
(See [12], 32.7).

Choose an extension over K’4U L’ of the cross-section §'7 in 8’7 given over L.
Define W’g?** using this extension. Define 62 over K¢U L as the reverse
image by h of the cross-section 69. By assumption, this definition is con-
sistent with the given cross-section over L in %8¢ and the extended 67 may
be used to define Wge. Let s be a (¢ -+ 1)-simplex of K. If f(s) =0,
| f(s)| is a subset of the g-dimensional skeleton of K’, thus 67 may be defined
over s and w?(s) = w'®*(fs) =0. If f(s) %0, the restriction of f on s is
a homeomorphism, and w?(s) = w'e!(fs) follows from h8?|s§=40f |3,
together with the fact that h induces the identity hy: Z,— Z, (identifying
H,(Vanq;Z:) with Z,). Thus, for the cohomology classes of w?! and w'?2,
Wett = f* (W ge).

4. The Whitney duality. Let %B; be two principal O(n;)-bundles
(¢=1,2) over the same simplicial complex K, and suppose that cross-
sections 6, and 6, over subcomplexes L,, L, of K are given in the corres-
ponding associated bundles 8,7, B,".

Let 8=, @ B, be the Whitney sum of B, and B,. The bundle B
is an O (n, -+ n,;)-bundle. The cross-sections 6,m, §,™ induce over L = L, N L,
(where they are both defined) a cross-section 6 in the associated bundle B~
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522 MICHEL A. KERVAIRE.

with fibre Vynr (n=mn, + ns,r =1, 4 1,). We shall refer to 6" as the sum
of the given cross-sections 6, and 6,".

Using the sum cross-section 6" over L, we define the relative Stiefel-
Whitney classes Wg?* of Bmod L for g=r. Denote by Xg*' and I'p!*
the relative Stiefel-Whitney classes of 8, and B, corresponding to the cross-
sections 6,™, @,2. They are defined for k¥ = r, and ! = r, respectively.

In the Theorem (4.1) below, expressing Whitney duality for relative
classes, the classes Xg**!, Yg!** which are relative classes mod L, and mod L,
respectively are regarded as relative classes mod L. Precisely, we write Xz,
meaning the image of Xz*! by the homomorphism H*(K,L,) — H*(K,L)
induced by the inclusion (K,L)— (K, L,), and similarly for Yg!*.

THEOREM (4.1). The Whitney duality holds for relative characteristic
Stiefel-Whitney classes in the following form: For ¢=r, we have

I,qui-l I X’un + X‘Rq Yt + PN + Xeru . Yq—rl +
+ ‘le . YRq—rlu ,+_ P + Yan.

Notice that some absolute (usual) characteristic classes occur in the
right hand side of the above formula. However, in each cup-product X¢-¥?
with a +b—1=¢qg=r +r; either a—1=r, or b—1=r, (or both),
because a = r, and b =r, would imply a + b =, + r.. Therefore, in each
product X¢-Y?, at least one of the classes X2 or ¥Y? is a relative class and
so is every product in the right hand side of (4.1).

The proof of the above theorem will be carried out by showing that the
relative characteristic classes may be equivalently defined as symmetric func-
tions (Theorem (5.1)). This alternative definition in turn implies imme-
diately the above duality theorem.

5. Relative characteristic classes as symmetric functions. Proof of
Whitney duality. Let us recall Borel’s definition of the (usual) characteristic
classes [4]. Let B= (E,p,K,0(n)) be a principal O(n)-bundle over K.
Let Q(n) denote the subgroup of @(n) consisting of the diagonal matrices
(ed;), with e¢g=-+1 or —1. The space E is also the bundle space of a
fibre bundle with fibre Q(n) =0(1) X O(1) X+ - - X O(1) (n factors),
which is a covering space since Q(n) is discrete. The base space K = E/Q(n)
of this bundle is called the space of flags over K. The space K is the bundle
space of a bundle with fibre F(n) =0 (n)/Q(n) and base space K. Let
p: E— K be the projection.
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The bundle € = (E,n,K,Q(n)) is the Whitney sum of n bundles
C=C'DEC:D: - - P € where &* is a principal bundle over K with struec-
tural group O(1) ==Z,, thus a two-fold covering. Let z;€ H*(K;Z;) be
the 1-dimensional (only non-zero positive dimensional) Stiefel-Whitney
classes of €% i=1,2,- - -,n, defined, for instance, as obstruction to the
construction of a cross-section in E* over the 1-dimensional skeleton of X.
We have the

THEOREM (A. Borel). The dual homomorphism p*: H*(K) - H*(K)
is a monomorphism and the p*-image of H*(K) contains the symmetric
functions of the variables z,,2,,- - -, Zp.

It is then legitimate to define the characteristic class W¢ of the bundle
B by the formula p*(W?) = 89(=z,,- - -,z,), where 89(z,,- - -,z,) denotes
the elementary symmetric function of degree ¢ in the variables z,,- - -, z,.

A. Borel has proved in [4] (Théoréme 5.1) that the class W¢ defined
in this way coincides with the characteristic class defined as obstruction.

We come back to relative classes: Suppose a cross-section r is given in
the bundle Br= (E", K, Vyar, O(n)) associated to B over a subcomplex
L of K. Consider the space of flags K =FE/Q(n) over K. The section 4
determines a subspace L of K as follows: Regarding B as induced by a map
f: K—>Bowm), f(z), z€ K, is a non-oriented n-plane in euclidean space of
large dimension. A point of E consists of a point z € K, together with an
n-frame v, ,,- - -,v, in f(x) (see [12],10.2). Thus a point of K may
be represented by {x;d,, ds,- - -,d,}, where € K and d,,d,,- - -,d, is an
ordered set of mutually orthogonal straight lines in f(z). The set L consists
of those points {z;d,,* - -,d,} of K such that € L and d,.,,- - -, d, carry
the (n—r) vectors of 6.

Let «,,- - -,2,€ H'(K;Z,) be, as before, the 1-dimensional charac-
teristic classes of the two-fold coverings €, €2%,- - -,&" over K, the Whitney
sum of which is the bundle (E, = K,Q(n)). Because €, - -,E" admit
cross-sections over L given by 6, the (n—r) last z;, i=r+ 1,742, - -, n,
may be defined as relative characteristics classes mod L (obstruction to
extending over the 1-dimensional skeleton of K the cross-section in €¢,
r4 1=1=mn, already given over L). Because in any product of (¢ -+ 1)
distinet factors from z,,- - -, 2, with ¢=r, at least one of the last n—r
must occur, it follows that, for ¢ =r, the elementary symmetric function
S8¢*(zy,- - -,2,) may be (and will be) defined as a relative cohomology
class, which we shall denote by Sg®'(z,- - -,z,), using the relative

Try1y® * * 5 Tne
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524 MICHEL A. KERVAIRE.

TueorEM (5.1). (a) The homomorphism pg*: H*(K,L) — H*(RK, L)
is & monomorphism and (b) pr*(Wg?') = Sg®(2y,* + -, ,) for ¢=r,
where Wgtt is the relative characteristic class mod L corresponding to the
cross-section 6.

The proof of this theorem which will be given below is due to A. Borel.
In the first formulation of this paper, the point (b) was proved using an
inductive argument (on n) and the special case of relative Whitney duality
in which one of the bundles involved in the Whitney sum is a two-fold
covering. This special case of Whitney duality was proved directly using
the definition of characteristic classes as obstruction, which is rather cumber-
some. Futhermore, the point (a) of Theorem (5.1) could not be obtained
by this method. The Lemma (5.2) below is also due to A. Borel and was
unknown to the author.

The Whitney duality formula (4.1) is an immediate consequence of
Theorem (5.1) and of the identity

,S'an(xl,. Ty Y1yt .,yn) =a+'§1+1‘ga(xb. . .’xm) 'S"(yl,' . .,yn),
where each product in the right hand sum is a relative class (at least one
factor in each product is a relative class if the left hand side is).

Before we proceed to the proof of Theorem (5.1), we give a property
of the relative Stiefel-Whitney classes, which will be needed for this proof.

Let L be a subcomplex of Bony and 6" a cross-section over L in the
associated bundle with fibre V, ... The cross-section 8 induces cross-sections
62 over L in every associated bundle with fibre V,, . for ¢=r. The bundle
space of the associated bundle with fibre V.., is classifying space for O(q)
and will consequently be denoted by Bo(g. The projection map Bo(q) —> Bon)
is the Borel map p(Q(q),0(n)) corresponding to the inclusion O (q) - O (n).
We write pg,n, meaning p(0(q),0(n)), for notational convenience.

LemMa (5.2). The relative Stiefel-Whitney characteristic class W gt
s the only non-zero element in H%(Bomy,L;Z,) belonging to the kernel
of pgn*: H*(Bomy, L) = H*(Bo(q),0L).

We first prove that Wz?** belongs to the kernel of pgn*: The map
pan: Bog)— Bo) induces over Bo() as base space an O(q)-bundle with
fibre Vg and the induced cross-section over 2L may be trivially extended
all over Bo(,). By naturality the Stiefel-Whitney class corresponding to
this cross-section is pga* (Wg?*'). Since the cross-section may be extended,
pan* (W) =0.
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RELATIVE CHARACTERISTIC CLASSES. 525

In order to prove that Wz is the only non-zero element of dimension
¢+ 1 in the kernel of pga*, let us consider the following diagram, where
the rows are the cohomology sequences of the pairs (Bo(g,0L) and
(Bony, L) respectively:

7* 8
- +=> H¥(Bo(q)) — HY69L) —> H**(Bo(q), $°L) —> H**(Bo(g)) =" " -
* 0* pan* o*

¥ ) a*
> H¥YBow)—> HY(L) —> H*'(Bow),L) —> H*'(Bow)—>" - -
(coefficients in Z,). One has H*(Bowm);Z;) =Z,[W, W3- - -, Wn],
H*(Bog ; Z,) =Z,[W,W2,- - -, W] and the Wi for ¢=q correspond to
each other by p*. Thus, for 1= ¢, the homomorphism p* is an isomorphism.

By the Five Lemma, it follows that for 1= ¢, the homomorphism pg,n*
is also an isomorphism (6* is an isomorphism in every dimension).

Let « be an element of the kernel of pg.* in H%'(Bg),L). By
commutativity in the above diagram, a*z is an element of the kernel of p*.
Therefore, by [4], Lemma 5.1, a*z=c- W' with ¢=0 or 1. Thus
y=2x -+ ¢- Wg2* belongs to the kernels of both p,.* and a*. By exactness,
there exist elements 2z and ¢ in H9(L) and H9(Bg() respectively, such that
2=y and j*/=0%"2. Since p* is an epimorphism in every dimension,
there exists a class w€ H%(Boy), such that p*w=1¢. It follows that
y=&*w =0, by exactness.

This completes the proof of Lemma (5.2).

Notice that Lemma (5.2) suggests a new (more general) definition
of the relative Stiefel-Whitney classes: Let 4 be a closed subset of Bo:
and suppose a cross-section 67 over A is given in the bundle with fibre Vy,po
associated to the universal bundle over Bo(). The (¢4 1)-dimension uni-
versal relative Stiefel-Whitney class mod A corresponding to 67 (r=gq), may
be defined as being the only non-zero element in the kernel of pg.*:
H*(Boy;, A) > H*(Bo(q),094). The proof of uniqueness runs as in Lemma
(5.2), replacing L by A. To complete the definition, one has to show the
existence of an element in kernel p,.*, the image of which by a* is the
ordinary universal Stiefel-Whitney class and which is thus different from
zero. Extension of this definition to the characteristic classes of a principal
O(n)-bundle over any compact finite dimensional space X is immediate.
However, the naturality is less easy to prove in this general case. We omit
the details here and shall treat relative Chern classes by this method (see
Appendix).

P
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Proof of Theorem (5.1). Proof of (a). This part is not concerned
with characteristic classes. Let X be the base space (assumed to be a
compact finite dimensional topological space) of an O(n)-bundle induced hy
some map X — Bo) and let X be the space of flags over X (denote by
px: X —> X the projection). According to [4], Théoréme 5.1, the fibre
F(n) =0(n)/Q(n) is totally non-homologous to zero in X and thus
px*: H*(X) > H* (X) is a monomorphism.

Let A be a closed subspace of .Y and suppose that a cross-section 6"
over A is given in the as:ociated bundle over X with fibre V. Let 4 he
the subset of X the points of which are the sets {a;d,,- - -,d,}, such that
a€ A, and d,.,- - -,d, carry the (n—r) vectors given over A by 4"
Notice that 4 is homeomorphic to the space of the bundle (4, p4, F(r), 0(r))
defined as follows: E being the space of the O(n)-bundle over X, consider
the fibering (E/Q(r), o, E/O(7),F(r),0(r)), where Q(r) C O(r) C O(n).
The bundle (4,p4,4,F(r),0(r)) is induced by the cross-section 67: A
- E/O(r). Therefore, by Borel’s theorem, p* is also a monomorphism.

Consider the following commutative diagram in which the rows are the
cohomology sequences of (X¥,4) and (X,4) respectively:

3* 8 %
< e HMX) e—HYX, ) e—H*"'(A) «e—H"Y(X) - - -

(5.3) px* pr* pa* px*
't 8 i*

C BYX) L HY(X, ) e HEH(A) — BFA(X) - -

We have to prove that pz* is a monomorphism. Let a€ H¥(X,4) be a
cohomology class, such that pg*a=0. Since j*pr*as =px*j*a—0 and px*
is a monomorphism, it follows that j*a=0. Thus by exactness, there exists
a class b€ H¥'(4), such that 3 —a. Because 8ps*b = pg*db = pg*a =0,
there exists (by exactness) an element w € H*'(X), such that 7*w = p,*b.
The desired conclusion a==0 would be granted if we knew the existence of
an element z € H*'(X), such that i*v=>5. Indeed, from the existence of v
follows, by exactness, @ = 8b = §i*v =0.
It remains to prove the

Lemma. Let b€ H*(A) and we H*(X) be cohomology classes, such
that pa*b=1i*w, then there exists a cohomology class v € H*(X), such that
t*v =0 (Notations as in diagram (5.3)).

Proof. Let =z,,- - -,z, denote, as before, the 1-dimensional charac-
tevistic classes of the two-fold coverings €, &2,- - -,&" over X. By definition
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of 4, we have i*z, =y, fora=1,2,-- -, r and t*z,,, =0 for b=1,-- -, n—r,
wiere ¥,,* - *, 9y, denote the characteristic classes of the restriction over A
of the two-fold coverings €, €2 - - -,€". The map i: 4> X restricted
on a fibre (we denote this restriction again by ) induces the inclusion
F(r) — F(n) corresponding to the inclusion (O(r),Q(r)) = (0(n),Q(n)).
According to the results of A. Borel in [4] (Théoréme 11.1), one has

H*(F(n);Z.) =Z,[z,, - -, 2]/ (8* (21" * *,2a))

and similarly for H*(F(r) ;Z;), where (8*(z,,- - -,%,)) denotes the ideal
(in Z,[z,, * -, %a]) generated by the symmetric functions of positive degrees
in the variables z,,- - -, z,.

It is easily seen that there exists a basis hy, ks - -, by of H*(F(n))
over Z, with the following properties:

(1) hy=1, the k; are monomials in the z,,- - -, z,;

(2) *hy,7*hs, - - -,1*h, form a basis of H*(F(r);Z,);

(8) *hgy =1T*hgo=" - - =1*h; =0.
Such a basis may be obtained by writing down in some order, beginning
with 1, all monomials in the variables z,,- - -,z, the degree of which does
not exceed dim F(r), followed by the other monomials in @, - -,z,. By
omitting in this list the monomials which are linearly dependent (modulo
the ideal generated by S*(z.,- - -,%s)) of preceding ones, one obtains the
desired basis Ay, he,- ¢ ¢, Ry

By Borel’s results, the spectral sequence of the fibering px: X —> X is

trivial (E,=E,). Furthermore, since we have a coefficient field, Z,, the
term E., is additively isomorphic to H*(X). Therefore,

H*(%) = H*(X) @ H*(F(n))

is a module over px*H*(X) with the basis Ay, hiz, - - -, hs. Similarly, H*(4)
is a2 module over p,*H*(A) with the basis T*h,,i*h,,- - -, i*h,.

Any element we€ H*(X) admits a unique decomposition in the form

w== 2 px*(,) ' hg, Where v;€ H*(X).
1054

We have i*w = 3, i*px*(v,) : *h,, because i*h, =0 for a=s-}1,- - -, 1.
1=a=s
If ¥*w =p,*b, as we have assumed in the lemma we are proving, then

pa*b =3 pa*i*(v,) - i*h,.
1=q¢Ss
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This is (by uniqueness of the representation) onmly possible if 1%*v,—i*v,
=+ +=1*9,=0. Thus ps*b=ps*i*(v,) (hy=1). Therefore, b =1i*v,
since ps* is a monomorphism. This completes the proof of the lemma.

Proof of (b). By naturality, it is sufficient to prove that the relation
pr* (Wptt) = Sp®*(zy,- * -, %a), ¢=7r, holds for the bundle

(Bo(n):P(Q(n): O(n) )5 BO(an(n)’o(”’) ))

where pg is written for pr(Q(n),0(n)). This is easily seen using the fact
that the map f: K — Bo(n) tnducing the given O(n)-bundle over K may be
approached by a simplicial injective map g as soon as dim Bo(n) =2 dim K
41 (for the existence of g, see Theorem 5 in S. Eilenberg, On spherical
cycles, Bulletin of the American Mathematical Society, vol. 47 (1941), pp.
432-434).

Let (Bo(r)s prims Bonys Vanrs @(n)) be the bundle associated to the
classifying bundle for O(n), with fibre Vapayr The bundle space of this
bundle is classifying space for O(r) and is consequently denoted by Bo-
The projection p,,» is the Borel map p(O(r),0(n)).

Consider the following commutative diagram

»
By —> Bo(n)

(5.4) pt
Pr.an

Bo) —> Bom)

and let 4 be a closed subset of Bg(n), such that a cross-section 6" over 4 is
given in the bundle (Bo),prns Bom)s Vanr O(n)). Let A be defined as
at the beginning of this section. As noticed previously, A is homeomorphic
to a subset A of Bg() and u(A4') =A. We have to prove that the element
y = pr* (W) — Sg? (21, * *,2a) € H*(Bom),4) is zero.
Let us consider the following commutative diagram
7* )
-+ += H(Bo(n)) —> HY(4*) —> H**(Bo(n), ') —> H®*(Bo(n) =" - *

* *

pa* pr* p®
i* 3 a*
. '—)Hq(BQ(”))——)Hq(A-) '—-—)Hq'“‘(BQ(n),x{) ——)HQ*I(BQ(,,))-—)' .

"

in which the rows are the cohomology sequences of the pairs (Bg),4*)
and (Bg),A) respectively.
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In order to prove y=0, it is sufficient to prove uz*(y)=0 and
a*(y) =0. Indeed, if these two equalities hold, there exist elements z € He(A)
and ¢ € H1(Bg(y)), such that i*f =p,s*7 and 82=y. Now,

H*(Bon) ;Z:) =2Z,[x:,- - ,7:], H*(Bor) 5 Z2) = Zo[ys, - *,9r]

and p*z; =y, for t=1,2,- - -,r, p*z ;=0 for j=1,- - -,n—r. Thus,
w* is an epimorphism in every dimension. Therefore, there exists an element
w€ Hi(Bgm ), such that p*w=1. It follows that y=38z = 8u*ti*p*w
=8t*w =0.

It remains to prove that pz*y =0 and a*y=0.

Proof of a*y=0. This is obvious with regard to the corresponding
result of Borel on absolute characteristic classes:

a*y=a*pR*WRq+1__a*SRq+1(zh. . .,z”) =P#Wq+1_Sq+1(x1,. . ‘,27,;) =0

Proof of pr*y=0. We prove separately that up*pg*Wz?*'=10 and
/l'n*anu(%,‘ . "wn) =0,

The first assertion follows from pgp¥*pp*Wgt*t = p¥p, ¥ Wett (see
diagram (5.4)), and p,,*Wg?**=0 proved in Lemma (5.2).

The second assertion, up*Sgd**(2s,- - -, 2s) =0 follows from p*z,. ;=0
for j=1,2,- - -,n—r (and thus pp*z,;=0, since a*: H'(Bg,4)
— H*(Bg(r) is & monomorphism, A being assumed to be non-void) and the
fact that for ¢ =7, each product of (¢4 1) distinct factors from z,,- - -, 2,
must contain at least one z,,; with 1==j=n-—r. Thus each product in
Sr¥*1(2y,* * -, %») is mapped into zero by uz*.

This completes the proof of Theorem (5.1).

6. A lemma on Lefschetz-Poincaré duality. Let G,, G,, G be coeffi-
ficient groups (abelian) with a pairing G, X G,— G of the two first groups
to the third.

Let (X,4) be an admissible pair for cohomology theory. Assume X
to be connected and 4 to be a neighborhood retract in X (hence the excision
e: (X,4)— (¥Y,X’) induces an isomorphism H*(Y,X’) - H*(X,4)).

Let Y be the space obtained by matching together two copies of X
along the copies of 4 (i.e., Y =X -} X’, with 4 and A’ pointwise identified).

Let n be some positive integer. Denote by 1H, .H, H cohomology groups
with coefficients in G,, G, G respectively.

Lemma (6.1). Assume H*(X) =0, then the pairings of HI(X) wilh
Hv (X, A) to H*(X,A) and of HU(X,A) with .H*1(X) to H*(X,4)

6
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gwen by the cup-product are completely orthogonal if and only if the
pairing of {HY(Y') with ,Hv4(Y) to H*(Y) is completely orthogonal (g, n
fixed, 0= q¢=n).

Recall that a pairing is said to be completely orthogonal if either of the
first two groups involved is the group of all homomorphisms of the other
into the third.

Proof. Consider for ¢ =1, 2 the cohomology sequence of the pair (¥, X)

8 h* o*
c > HN(X) — HYY,X) —> HY(Y) —> HI(X) > - -.
Since (by excision) the inclusion map e:(X’,4’) - (Y, X) induces iso-
morphisms e*: (Y, X) - He(X’, 4"), we may substitute ,H9(X’, 4’) for
JHYY,X) in the ahove sequence. Specifically, we consider the exact
sequence
¥ i* i*
c > JHN (X)) —— HYX', A') —> HYY) —> HI(X) > - -

where & = ¢*3 and §/* = h¥e*-1,

Let k: Y— X be the map defined by k(z) ==, k(z) =2, where 2’
corresponds to « in the copy X’ of X. One has ki=id., and therefore
1*k* =id.. Thus ¢* is an epimorphism, k* a monomorphism and & is trivial.
The sequence

37 % 1:*
0> HI (X', A) —> HI(Y) —> H1(X)—>0
is exact.

Moreover, ,H9(Y) is the direct sum
(6.2) HUY) =7 (HUX', 4")) + k(HY(X))

(we drop the stars by j/* and %* for notational convenience), or alternatively,
interchanging X and X’:

(6.3) H" YY) =¥ (H"(X")) + j(H" (X, 4)).

Let us denote by U: ;HY(Y)— He(X’, A’), respectively I: HU(Y)
— H9(X,A) the homomorphisms, such that I'j/ =14d., and lj =1d..

We have, for every u, € ,H9(Y) and z€ . H*1(X,4),
(6.4) j(tuy - &) =u, - j,

which may be proved using 3.4 of [11]. Setting u,==Fka and z=1y, one
obtains
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(6.5) l(ka-y) =aly.
Similarly,
(6.5") V(b-Fz') =0Ub-2'.

1. Assume the pairings of ;H4(X) with H*9(X,A) to H*(X,4) and
of HY(X,A) with ,H*1(X) to H*(X,A) to be completely orthogonal.

(la) Let h: H%w9(Y)—>H"(Y) be a homomorphism. Define the
homomorphisms g: ,H*1(X,A) - H*"(X,4) and ¢’: .H*2(X’) - H*(X', A")
by g(z) =!hjz and ¢’ (2’) =UVhk'’ respectively. By assumption, there exist
elements a€.H?(X) and o' €,HY(X’,A’), such that g(z)=a-2 and
g'(&)=da - for every z € ,H"4(X,A) and 2’ € ,H*9(X’). Set b==Fka - ja’
(thus tb=a, 'b=a’). We have h(y) =0b-y for every y€ ,H*?(Y). In-
deed, each y admits a decomposition y=1=%2"+ jz and lhjzr=g(z) =@z,
Vhi's' = g' (') =d - 2.

Therefore, h(y) =hjz + hk's’ =j(a-z) + j/(a’-2’). Notice that
V(b-ke)=0b-2/ =0 o
(by (6.5")). We obtain
h(y) =4(b-2) + 7V (0 ¥2')=Db-ju+ b ¥/ =b- (ja+k)=0b"y

(j/V =1id. in dimension n follows from H"(X) =0, because then I': H*(Y)
— H"(X’.4") is an isomorphism).

(1b) Suppose that b-y =0 for some b € H9(Y) and every y € ;H*4(Y).
We have to prove b=0. By (6.2), b admits a decomposition b = j’a’ -} ka.
We have j(a-z)=j(ib-2z) =0 jr=0, furthermore, o' -o’'=1(d-¥2’)
=1'(0) =0 for every z€ ,H*9(X,4) and 2’ € ,H*9(X’). By assumption,
it follows that a =a"=0. Thus, b =0.

(1a) and (1b) prove that the pairing of ;H?(Y) with H"9(Y) to
H*(Y) is completely orthogonal.

2. Assume now the pairing of HU(Y) with ,H"1(Y) to H*(Y) to be
completely orthogonal.

(2a) Take a homomorphism h: ,H*9(X,4)—> H"(X,A). By (6.3),
each y € .[{"¢(Y) may be written uniquely in the form y =#"2" 4 jz. The
map ¢: H*"9(Y)—>H"(Y) defined by g(y) =jh(z) is a homomorphism
and thus, by assumption, there exists an element u, € ,H?(Y), such that
u, -y ==jh(z) for every y="~1v' 4 jr€ ,H*9(Y). One has (with u=1u,),
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ju-x) =j(iu, - x) = u, - jo = jh(z). Since j is a monomorphism, ¥ -z = ~hA(x)
for every z€ ,H"9(X,4).

(8b) Let a-z=0 for some @€ ,H?2(X) and every z€ .,H"1(X,4).
Then ¢=0. Indeed, consider ka==>b¢€  H?(Y). We have b-y=0 for
every y€ ,H"e(Y), because I(b-y) =I(ka-y) =a-ly=0. In dimension
n, | is a monomorphism, because H*(X) =0. The pairing of ;H%(Y) with
H"9(Y) to H*(Y) being assumed to be completely orthogonal, it follows
that b=0. Thus, ¢ =1tka=1b=0.

The proofs of (Ra’): every homomorphism ,H*¢(X)—> H"(X,A) may
be “realized” by cup-product with an element of ;H?(X,4) and of (2b"):
if a-2=20 for some a€ ,H?(X,A) and every z € ,H"*9(X), then a=0, are
mechanical and similar to (2a) and (2b) and will be omitted.

Remark. 'The assumption H"(Y) =0 is actually needed in the proofs
of both (1) and (R) as is shown by the following examples.

(1) Let X=P5s be the 5-dimensional real projective space and A
a point of P;,. Let 6,=6G,=G=2Z, and take n=>5, ¢=2. Then
H*(X) = ,H*(X,A) =H*(X,A) =2, and the pairing of H%(X) with
H®(X,A) to H°(X, A) by cup-product is completely orthogonal. Similarly,
the pairing of H?*(X,4) with ,H3(X,A) is also completely orthogonal.

Now Y=P;V P; and ,H?*(Y) = ,H*(Y)=H®*(Y)=2,+Z,. How-
ever, Hom(Z, 4 Z2,,Z, -+ 2,) =Z,-+ 2,4+ Z,+2Z,. One has H*(X) =Z..

(8) Let X=A=8,. Then Y=X=§8,. Take n=1, q=0 and
G,=G,=G=1Z. The pairing of H*(Y)=Z with ,H(Y)=1Z to
H*(Y) ==1Z is completely orthogonal, but since ,H*(X,4) =0, H*(X,4) =0,
the pairing of H°(X) =Z with ,H*(X,A) to H*(X,A) is not. One has
H(X)=Z.

7. The relative Wu classes. We come back to coefficients in the
field Z,.

Let K be a complex of dimension n and L a non-void subcomplex of K.
Suppose that relative Lefschetz-Poincaré duality holds in Kmod .. In other
words, for every ¢=0,1,- - -, n, the pairing of HY(K ;Z,) with H*%(K,L;Z,)
to H*(K,L;Z,) is completely orthogonal. Then we may define Wu classes
Ute HY(K;Z,) by the requirement that for every relative class
Xprt€ H4(K, L)

(7.1) S8q1(Xgv1) = U1- X g1
should hold.
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Because L is non-empty, H°(K, L) =0, and thus, by duality, H#(K) = 0.
Consequently, according to Lemma (6.1), absolute Poincaré duality holds in
M=K+ K’ (L and I’ identified). Let S¢ be the g-dimensional Wu class
of M (in the ordinary sense, see [16]), i.e.,

(7.2) Sq1(Xn1) = 8§2- Xna
for every class Xn-2e€ H*e(M).

Lemma (7.3). Let i: K— M be the inclusion map and ©* the dual
homomorphism induced by 4, then U= 1*89.

Proof. Let j*: H*(K,L)—> H*(M) be as in (6.3). We have, using (6. 4),
JH(E*89 Xpm0) = 89 j* X g0 = 8qU(j* X ") = j*(8¢(Xr"9). Since j* is
a monomorphism and the class U? is determined uniquely by (7.1), it follows
that U7=1*Su.

Suppose now & sphere-bundle is given over M such that its Stiefel-Whitney
characteristic classes Wx? be connected to the Wu classes by the relation

(7.4) Wut= 3 8¢17(87),
0=p=q

which we may write more conveniently as Wy =_Sg(S), denoting by Wy
and S the “total” classes, i.e.,

Wy=14+Wyr4- - -+ Wun, S=14+84+- -4 8=

and where the operator Sq stands for S¢q=8¢° 4 Sq¢*+- - -+ 8¢*+- - -.

According to a theorem of Wu in [16], the situation described by
formula (7.4) arises in particular if M is a closed differentiable manifold
and the sphere-bundle considered is its tangent bundle. From the relative
Lefschetz-Poincaré duality for manifolds with regular boundary ([11],7),
it follows that (7.4) holds in particular with M =K + K’ if K s a manifold
with regular boundary L.

Since the characteristic classes of the restricted bundle over K are the
1*-images of the characteristic classes of the bundle over M (by naturality),
we have W= Sq(U), where W denotes the total Stiefel-Whitney class of
the bundle over K.

Suppose now that

(%.5) @ cross-section over the subcomplex L 1is given in the associated
principal bundle.

Then, for every g, W9 admits a representative cocycle which vanishes on L
and thus defines a relative class Wz

This content downloaded from 129.215.149.96 on Wed, 27 May 2015 06:49:49 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

534 MICHEL A. KERVAIRE.

Since H°(K,L) =0, the algebra H*(K,L) has no unit element.
It is convenient to consider, rather than H*(K,L), the direct sum
H,*—=1Z,+ H*(K,L). In other words, we introduce formally a unit into
the algebra H*(K,L). The requirement 1-z=z'1=z for every z € H,*
gives to H,* a ring structure. We shall furthermore allow the Steenrod
squares to operate (as homomorphisms again) in H,* by setting 8¢°(1) =1,
Sqi(1) =0 for ¢ > 0.

We may then use the classes Wg? to define a total relative class by
Weg=1+4Wg'4- - -4 Wgre H,* Since the endomorphism Sq: H,*— H,*
defined for each X € H, by Sq(X)=8¢°(X) 4+ 8¢*(X) +4- - - is a mono-
morphism and therefore maps H,*, as a finite dimensional vector space, onlo
itself, we may define relative Wu classes Ugr? by

(7.6) Wr=2_8q(Ur),
Ur being the total class Ug=1- Ug' -+ Us®*+- - - € H,*.

Notice furthermore, that according ‘to the above conventions, we have
S8q(1) =1, and therefore the product formula of H. Cartan

(1.7) 8q(X-Y)=28q(X)-8q(Y)
holds also in H,*.

We state now some properties of the relative Wu class Ukg.

Lemma (7.8). Let h: (K,0)—> (K,L) be the inclusion map and h*
the induced homomorphism, then Ut=h*Ugt for every q > 0.

The proof is immediate: Apply A* to both sides of the equation (7.6)
Wgr=_8q(Ug), with the convention h*(1) =1. We obtain W = Sq(h*Ug).
Since the class U is uniquely determined by W =Sq(U), Sq being an
automorphism of H*(K), it follows that U =#h*Uk.

Lemma (7.9). For every relative class Xgr2€ Hv4(K,L), we have
Sq‘](XR”-'I) = Ul Xgr.

This is again obvious, according to the preceding lemma.

The following is a discrepancy between properties of absolute and relative
Wu classes: Absolute classes the dimension of which exceed in vanish
(if ¢> in, then ¢ > n—gq; thus, in formula (7.1), the square is zero for
every Xz"? and, by duality U% must be zero, too). This need not be the
case for relative Wu classes.
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We shall be mainly interested in the sequel in the case n even. We
state some lemmas in this case:

LeMMA (7.10). Let n be even, n=2s. Under assumptions (7.4) and
(7.5), we have Wgt=Up*- Ug® -+ Ug®.

Proof.
War = Sq(Us) + 8¢ (Ust) ++ + -+ Sp-i(U*) ++ - -+ Uz
—Ug Ugt 4+ Ug - Ugtt - - -+ Ugti-Ugti 4= - -+ Ug
=Ug Ux' + 8¢ (Ur?) +- - -+ Sq*Uz%) + - -+ Uz®
=Ug* Ur*+ Ug®.
LemMma (7.11). Suppose K has even dimension n=2s. Let r be the
rank of the bilinear form f(X,Y) over Z, defined for X,Y € H*(K,L;Z,)

by X-Y=f(X,Y)A, where A denoles the generator of H*(K,L). Then,
under assumptions (7.4) and (7.5) rA="Ug® Up®.

Proof. Introduce in H*(K,L) a basis Z,,- + *,Z,, 2y, - -, Zp, such
that Z;-Z;=08yd for 1=¢,j=rand Z;-Z;=0 if r<i or r<j.

With respect to such a basis, Uz® must have the form

UR'=‘Z1+Z2+' o +Zr+0r+1Zr+1+' - '+0pzp-
Indeed, let Ug*= 3 ciZi, with ¢;€ Z,, and let X = 3 x;Z; be any class in
154 1545
H*(K,L). One has
8¢ (X) =X X=z242z24 - +a2=z,4+2.+ - -+2z (mod?),
Ut X =11+ €224 * * + G

Thus, for any choice of z;,- - -,z,, Lemma (7.9) implies

T+ T+ =02t ot -+ 6y
This is only possible if ¢;=¢; ="+ +=¢,=1.
Now from Ut =2Z,+Z:+- - -+ Zp+ craaZpia +- - -+ €52y, it follows
that Ugt Up*=2,"Z,+Z, Zy+- - -+ Z,-Z,=rA, and the proof of (7.11)
is complete.
We consider now the dual classes W5 and Ug which are defined by

(7. 12) ‘VR'WR=‘1, UR'(73=1

respectively. Wpx and Ug are uniquely defined (as relative classes) because
the cup-product with a total class Ug or Wz defines an isomorphism H,* — H,*
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of H,* onto itself. Of course, W = h*Wp and similarly with U substituted
for W.
We have

(7.13) Wr=28q(Uz).

Proof. Denoting 8q(Tz) by We=S8q(Uz), we have
We-We—=2_8q(Uz) -8q(Tr) =8q(Ug- Ug) =8q(1) =1.
Since Wg: Wr—=—1 determines Wz uniquely, Wr=Wg.

Lemma (7.14). We have (with n=2s and under assumptions (7.4),
(7.5)) rAr =Wnt- Wgt +Wn2- Wg? - - -+ W' Wg*?, where We=h*Wp¢
as in (71.8); r and A" were defined in (7.11).

Proof. We prove first Wg"=Ug", as follows:
We" =8¢ (Tr") + 8¢*(Tr**) +- - -+ 8¢*(Ur*)
=Up"+ Ug'- Up"* 4+ - -+ Uz Uz
=Ugt - Upt' - - - Upt* Ut + Ur® (by (7.12))
=8¢ (Tg*) 4+ - -+ 8¢"*(Ugr ) + Ur"=Usr"
From Wgr+4 Wert- We'+4- - -+ Wl Wg** 4 Wg" =0, we obtain
Wet=Wer*-Wg'+- - -+ Wgt- Wem 4 Ug™
Comparing this formula with (7.10) and (7.11), we see that
rAr=Wgert-Wgt+4- - - Wg'- Wg™?,

hence rAn = W»t-Wgt 4 - -+ W Wg*2 This completes the proof of
Lemma (7.14).

PART II. Proof and Consequences of Lemma (1.2).

8. The proof. All homology and cohomology groups occurring in this
section will be based on remainders mod 2 as coefficients (we shall therefore
omit to mention the coefficient field explicitly).

Consider the situation described in Section 1: a C=-d-manifold M,
regularly imbedded in euclidean (d + n)-space Eg,, with a continuous field
of normal n-frames F,. In order to prove the Lemma (1.2), i.e.,, y=h, it is
sufficient to consider the special case n—d 4 1. Indeed, if y(f) =h(f) has
been proved for every f € ms4.1(Sas1), the general assertion follows from the
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faot that y and & are both “stable ” by suspension (Section 1, property (3)):
If € wgun(Sn), with n = d 4 1, then y(f) = y(E#*-7f) = h (E¥*-nf) =h(f).
If f€ 740 (8Sn), with n=d + 1, then there exists by Freudenthal’s theorems
a map ¢ € mea1(Sas1), such that Endlg—f and for the same reason
v(f) =v(9) =h(g) =h(f).

In the sequel n=d 1. Let f: S,3,1— Sg.. be the sphere map corres-
ponding to the given manifold My in Eug.., together with the n-field F,
(n=d+1) of mutually orthogonal unit vectors v,,v,,- - -,v, normal to
My in E;,, (see Section 1, (b)). Tt is easily seen from the definition of f
(see (1.1)) that My=7F"*(q), where q is the point of §, with the coordinates
g==1(1,0,- - -,0). Furthermore, the manifold M’;, which is the locus of
the endpoint of the vector ev; (2) as z runs over Mg (e fixed, a small positive
real number) is also the reverse image M’q=7f"(¢’) of some point
¢ € 8. (precisely, ¢’ is the point ¢’ = (1 —2¢% 2¢(1—¢€°)3,0,- - -,0), if the
mapping r: B,— 4§, is indeed chosen as in (1.1)).

By the original definition of Hopf’s invariant, one has

(8.1) L(Mg, M) =h(f) mod?,

where ﬁ( , ) denotes the looping coefficient in X,4,,.

Considering Eany (==FEz..) as the linear subspace of E,, defined by
Yo =0, Y1,Ys," * *, Y21 being coordinates in F,,,, we show first that there
exists in K., an immersed (not necessarily orientable) manifold X,, the
regular boundary (mod?) of which is the given manifold M, imbedded
in K., ;.

The existence of an abstract C<-manifold V, with regular boundary
(mod 2) diffeomorphic to Mg follows, by a theorem of R. Thom (see [14],
Théoréme IV.10), from the fact that all Stiefel-Whitney numbers of 3/,
vanish mod 2 (this because the normal bundle over My is trivial). We want
to prove the existence of an immersion i: V,— H,,, such that ilaV,, be the
given imbedding f: M;— E,y 5.

By Theorem 1 in Whitney’s paper [15], there exists an analytic manifold
A, in euclidean (2n 4 1)-space E, which is C?-homeomorphic to V,. Map
A, into E,, by F, defined as follows: Fo|8A,, is the given imbedding f of
M =04, into E,,,. Consider a neighborhood N =~ a4, X I of 84, in A,
and represent points € N by pairs (z,¢), where z€ 94, and 0=t=1.
Define Fo(u) = (fz,t) = the point of E,, with (2n—1) first coordinates
coinciding with those of fz and the 2n-th coordinate of which is ¢. Extend
F, over A,, such that Fo(4—N)C {y., >1}. Let N, be the subset of N
characterized by 0 =¢=4. Extending again F, over E now, we use Weier-

This content downloaded from 129.215.149.96 on Wed, 27 May 2015 06:49:49 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

538 MICHEL A. KERVAIRE.

strass’ approximation theorem to get a C® map F,: 4,— F,,, such that
Fi(A—N,)NEz=0. Let o® be a real valued C? function on 4,, such
that o®*=1in 4A—N, o*=1in N for t=3, 0=0’=1 for }=¢=3,
o®=0 for t = 4. Take, for instance, 0®(z, ) =3(1 4 cos(3xt))* for (z,t)
in Nwith{=t=2% Foru€N,F;(u) has the form F;(u) = Fo(u) + £(u).
Define F': Ay —> Ezy by F|A—N =F,|4A —N and F(u) = Fo(u) + o*(u)&(w).
Then F is C* and its restriction over 94, is f. Moreover, F |N 1=F0|N1,
and thus F is completely regular in N, since F, is.

Now, by a theorem of H. Whitney (see [15], Theorem 2, assertions (a)
and (b)), we can approximate F, together with its first derivatives by a
completely regular immersion j: A,— L ,. Let N, be the subset of N,
defined by 0 =¢=} and define the C* real-valued function o' over A, by
o'(x) =1 for € A —N;, o'(u) =1 for & =t =4, o’ (u) =1 (1 +cos(9rt))?
for §=t=% and o'(u) =0 for u€ N,. Substitute for j the immersion
i: Ay— B, defined by ¢|4—N,=j|A—N,. In N,, j takes the form
j(u) =IF(u) +y(u). Define i(u) by i(u) =F(u) + o'(u)y(uw). Since
we may take n(u) together with its first derivatives arbitrarily small and
the derivatives of w'(u) are all zero except the derivative with respect to ¢
which is =0, it follows that, for suitably chosen 4, the map + will
be completely regular (F|N,=F,|N, is completely regular). Moreover,
1| Ny=F,|N., and therefore the normal vector to My and tangent to i(dA,)
18 the constant vector vy, normal to Espy in E,,. Finally, we can obviously
manage that ¢(4—0A4) has no common point with Z,,;. Denote i(d,)
by X,.

We replace now the given field F, of n-frames »,(z),- - -, v,(z) normal
to My in Epyy by the (n-+ 1)-field Fpy of (n - 1)-frames v,(z),v,(z),

- -,vn(z) consisting of the (constant) vector w,(x) tangent to X, and
normal to M, at € M, followed by the vectors of the field F,.

The homotopy class of the map o’: Mg—> Vyp,nssr induced by the (n + 1)-
field F,,, is represented by the same remainder mod 2, i.e., ¢, as the homotopy
class of the map w: Mg—> Vipy,n induced by the given field F, (we have
assumed d odd, which is no loss of generality in view of y=h =10 for d
even by [8], Théoréme IV. Thus n=d |1 is even, n=—2s).

On the other hand, using certain vectors of F,., as a cross-section over
M; C X,, we can define relative characteristic Stiefel-Whitney classes as
follows: the n last vectors of F,,, provide a cross-section over My in the
piincipal normal bundle over X, and lead in every positive dimension to a
class Weimod My (1=4i=mn). The vector field v, leads to the charac-
teristic class Wz of the tangent bundle to X,. Using finally the vectors
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of F,,, altogether, we can define the relative n-dimensional class Sz* of the
Whitney sum: tangent @ normal bundles over X,. According to Whitney
duality for relative characteristic classes (Theorem (4.1)), we have®

(8.?) Sgt—=Wpg" -+ W Wgt - - -4 W Went -+ We"

The remaining part of the proof of Lemma (1.2) consists in inter-
preting the several terms occurring in formula (8.2).
First,

(83) SR"=0‘AR",

where Ag" denotes the generator of H*(X,M;Z,). The class Sg* is indeed
the obstruction class to the extension of F,,, over X, under the only condition
that it keeps being an (n -4 1)-framefield in E,,. The formula (8.3) follows
then from the fact that V4., is (n—2)-connected.

Since Wg" is the obstruction cohomology class to the extension of the
vector vo(x) as a tangent vector field over X, we have by [2] (Satz I, page
549)

(8-4) H’R"=X(X) - Agn.
It has been proved in Lemma (7.14) that
(8.5) rApt=Wrt- gt +- - - W Werl,

Let us prove now that
(8.6) We"=h(f)Az"

Indeed, Wr" is the obstruction class to the extension over X, of the vector
v, (z) of the field Fy,,, as a unif vector field normal to X, in E,,. The
extension is possible over the (n—1)-skeleton (a triangulation of X is taken,
such that M is a subcomplex). Suppose this extension has been constructed.
Extend then »,(z) in the interior of the m-simplexes of X, as a normal

¢ Notice that we could prove (8.2) as follows: The restriction over M of the normal
principal bundle % over X is trivial. Let K = X U C be obtained by attaching to X
the cone over M. Then 0 can be extended over K (i.e., the map N: X - Bsow, inducing
i can be extended to a map K - Bsowm,). K being realized in H,,, define 7': K - Bsom
by T(x) = n-plane orthogonal to N («) for every # € K. This defines a bundle ¥ over
K. Let w be the total Stiefel-Whitney class of ¥, i the total class of ). By excision,
one has H*(K) o~ H*(K,C) ~ H*(X,M), where H* is the ring consisting of the
elements of positive dimensions in the cohomology ring. It is not difficult to see that
these isomorphisms send w" into Sz* 4 W;" and w?, @/ for 1 =it =<n, 1 <j=n, into
Wsé, Wy’ respectively. Ordinary Whitney duality w.4#% =0 goes thus over into
formula (8.2) in particular. However, this raisonning does not apply in the more
general situation considered in Part I.
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vector of length = 1. This is always possible if we allow v»,(z) to have
length 0 in some interior points of some n-simplexes of X,. Consider the
locus X’ of the endpoint of the vector ev,(x) so extended (where ¢> 0 is
smaller than the radius of a tubular neighborhood of X, in E,,; see [14],
page 27). Denote by V=X + X the closed manifold obtained by adding
to X its mirror image X with respect to the hyperplane E,,; in B We
may choose the extension w,(z), € X,, such that X’ and V are in general
position in F,,, so that we may determine the intersection coefficient mod 2
of V and X’ by simply counting the intersection points. We assume all
intersection points to be simple. We have then two kinds of intersection
points of X’ with V': Those arising from the impossibility of extending », ()
in the interior of an nm-simplex of X, as a normal unit vector (let their
number be I), and those which arise from self-intersection points of X. It is
clear that intersection points of the last category can occur only in pairs,
thus their number is 2N, where N is some integer.

By definition of Wg", we have Wx"=— IAg*modulo?. Furthermore,
I=I+4+2N=8(V,X’)=L'(V,M’) modulo?, where L’( , ) denotes the
looping coefficient in F,, and M’, as before, the locus of the endpoint of
ev; () as z runs over M;(0X' = M"mod?2). Since V N E,,, = My, we have
L(V,M’) = L(M, M’), where L( , ) is again the looping coefficient in E,, ,.
Therefore, I =L(M,M’) =h(f) mod 2. In other words, Wg" =h(f)Ax"™

Using the formulae (8.3), (8.4), (8.5) and (8.6), the formnla (8.2)
translates into

(8.7) c=x(X)+r4nh(f) mod?.
It has been proved in [8], that
(8.8) x*(M) =x(X) +p mod?,

where p is the rank of the bilinear form S(z,y) defined by the intersection
coefficient in H,(X,;Z,), n=2s (i.e. S(z,y) is the intersection coefficient
of the classes =,y € Hy(X,;Z,)). It is not difficult to see that p=1r. We
prove, however,

(8.9) (M) =x(X)4r mod?

more simply by considering the exact cohomology sequence of the pair (X, M),
i.e,

h* 8
H(X) «—H*X,M) «—H**(M) «- - -—H(M)
ik h*
—— H(X) «—H%(X, M) «0.
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Using the completely orthogonal pairing of H*(X) with H*(X,M) to
H»(X, M), it follows from h*C-Z=C-Z, C,Z € H*(X, M) that the kernel
of h* in H*(X,M) consists exactly of those elements C for which C-Z =0
for every Z€ H*(X,M). Thus, we have r= (rank of H*(X,M)) — (rank
kernel h*). Using the exactness of the above sequence, we obtain

7= ps(X, M) — pos (M) + pos (X) — poa (X, M) +- - -
+ (—1)°po (M) + (—1)**po(X) + (—1)°po(X, M),
where pg(X, M), pe(M), po(X) denote the ranks of He(X,M), HI(M),
He(X) respectively.
Replacing in this formula pg(X,M) by paq(X) according to relative
Lefschetz-Poincaré duality in X mod M, we obtain

r— DR+ DS (CDRE + (D S (D).

In other words,
(8.10) xUD—(_3 DD —_3 (—D@D} + (1D,

from which formula (8.9) follows by reduction modulo 2.
Now, since by definition y(f) ==c—x* (M), formulae (8.7) and (8.9)
complete the proof of the Lemma (1.2): y(f) =h(f).

9. Consequences of the Lemma (1.2). Using the Lemma (1.2) we
may improve the generalized Curvatura Integra theorem. We obtain first
from i(f) =0 if n =d (because then Sqg#*(u") =0) the

THEOREM (9.1). Let the closed differentiable manifold My be regularly
tmbedded in Eg.. with a field of normal n-frames F, and n=d, then the
corresponding curvatura integra ¢ does not depend on the imbedding nor on
the n-field and is given by c¢=x*(My).

Indeed, ¢ —x* (M) =vy(f), where f is a map S4.,—> S, as constructed
in Section 1, (b). Since vy(f) =a(f) =0 because n= d, the theorem
follows.

Suppose that the integer d is such that every element in m,q:n(S4s1) has
even (or zero) Hopf’s invariant. Then every element in gy, (S,) with
arbitrary n has zero generalized Hopf’s invariant k. In this case we may
therefore omit the restriction on n in the above theorem and obtain the

THEOREM (9.2). Let the closed differentiable manifold M, be regu-
larly vmbedded in any euclidean space Eg., with a field of normal n-frames
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F,; if d is such that there is no element of odd Hopf’s invariant in wg.1 (Sasa),
then the curvature integra c corresponding to the imbedding and to F,
depends in fact only on 3y and is given by c=yx*(Ily).

We may replace in this theorem the assumption of an imbedding of M,
by the weaker one of an immersion (with self-intersections allowed). Indeed,
if M; is immersed in 4., with a field of normal n-frames F, defining a
curvatura integra ¢, we may imbed Fq,, as a linear subspace in Esy (n = N),
with a field of normal N-frames Fy which consists of the n vectors of F,
followed by (N -—n) constant mutually orthogonal unit vectors normal to
E4.n in E4y. The curvatura integra corresponding to the new field Fy is
again ¢ and if N has been chosen sufficiently large (d+1=N), a slight
deformation in Fg4,x of the immersion M;— B,y will provide an imbedding
of My into Iy with a field of normal N-frames obtained by continuous
deformation from Fy (apply Theorem 2, case (c¢) of II. Whitney’s paper [15]
to obtain the imbedding and the covering homotopy theorem to obtain the
desired field). The curvatura integra c still belongs to the new situation to
which now Theorem (9.2) applies (d has not been changed). Thus we
obtain the

THEOREM (9.2%). The thorem (9.2) is still valid replacing the
assumption of an “imbedding” of My by the assumption of an “itmmersion.”

Of special interest may be the case n =1, originally considered by Hopf
for d even. If d is odd and the manifold M; assumed to be imbedded in
E .., then the curvatura integra ¢ (the degree of the Gauss mapping M;— S,
in this case) is modulo 2 equal to x*(Mg). This was proved in [8] and
also by J. Milnor, using a simpler method especially adapted to this special
case, in [9]. As a corollary to Theorem (9.2%), we obtain the following
improvement :

CoroLLARY. Let d be an integer such that there is no element of
waa+1(Sas1) with odd Hopf’s invariant. Let My be a closed orientable hyper-
surface in Eg., with self-intersections allowed, and let ¢ be the degree of the
Gauss mapping Mq— Sq. Then ¢=x*(M) modulo 2.

Let us remark that the condition on d in the Theorem (9.2) (no map
with odd Hopf’s invariant in m.q.; (Sg.1)) is known to be satisfied at least for
d42—1, according to J. Adem [1] (explicit proofs in H. Cartan [7]).*

* Added in proof: The details of Adem’s proof have been recently published in
Algebraic Geometry and Topology, Princeton University Press, 1957,
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According to H. Toda it is satisfied for d =15 too (As is well known, H. Hopf
has proved that the condition is not satisfied for d =1,3 and 7).

Along the same lines, we obtain an extension of a part of N. Steenrod-
J. H. C. Whitehead’s theorem [13] according to which the d-sphere Sy
cannot be parallelizable if d 4 2¢—1.

TaEOREM (9.3). Any manifold M, with odd semi-characteristic x* (M)
is not parallelizable if d54<2°—1, (in fact, if d is such that every element
i mgs1(San) has even Hopf's invariant).

Proof. Suppose M; is parallelizable. It is known that any regular
imbedding of Mg in g, admits in this case a field of normal (& + 1)-frames
F.., the corresponding curvatura integra ¢ being zero (see [8], Section 8).
Therefore, the semi-characteristic being odd, the corresponding value of y is
y=c—x*(M)=1. Since by Lemma (1.2), y is the Hopf’s invariant
mod? of some map Sz, —> Sg.1, the dimension d must be of the form
d=2—1.

I do not know if there are examples of manifolds My with odd semi-
characteristic, carrying 2* fields of mutually orthogonal unit vectors (% being
defined by d+1=2%(2r41)).

It was proved in [8] (Corollaire au théoréme VIII, § 8), that the real
projective space Pg may be immersed into a euclidean space Egn (n=d 1)
with a field of normal n-frames if and only if it is parallelizable. The
Lemma (1.2) provides a similar (perhaps weaker) statement for a larger
class of manifolds:

TaEOREM (9.4). Suppose that the manifold My admits a 2m-fold
covering manifold M, with odd semi-characteristic: x*(M,) = 1mod 2.
Then the manifold My cannot be immersed into any euclidean space Eg.,
with a field of normal n-frames unless there s in wzq,1(San) Some element
of odd Hopf’s invariant.

Proof. From an immersion g: Mz— Eq.n of My into some euclidean
(d + n)-space Eq4., with a field F, of normal n-frames, we obtain by com-
position with the covering map p: M 4— M, a regular immersion §: Mq—> Eq,n
with a field of normal n-frames F,. Let us call ¢ the curvatura integra of M4
corresponding to F,. Because §( M) is homologous to 2m - g(Mz) in Vann §
denoting the composition j=gop, we have ¢=2mc=0 (mod 2).

Therefore, ¢— x* (M ¢) %40, and because of Theorem (9.2%), mag:1 (Sas1)
must contain some element of odd Hopf’s invariant. This completes the
proof of Theorem (9.4).
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It is known that if S, is parallelizable, then any manifold M, which may
be immersed in some euclidean space Eg,, with a normal n-frame is also
parallelizable (see [8], Théoréme VIII). In [9], J. Milnor formulates the
conjectures that if a parallelizable manifold M, may be immersed in Fg,, in
such a way that the Gauss degree be 1, then S; should be parallelizable.

From Lemma (1.2) follows the

THEOREM (9.5). If a parallelizable manifold X, may be immersed in
some euclidean space Egq., with o field of normal n-frames inducing an odd
curvatura integra, then there is in gy (Sasn) some element of odd Hopf’s
invariant.

Proof. Assuming n=d -1, and using the covering homotopy theorem,
we may construct on My a field G, of normal n-frames in Ejg,,, such that
the induced curvatura integra is zero (see [8], §8). Thus the given field
and G, induce different curvatura integra. By Theorem (9.2%), this implies
the existence in sz, (Sazs) of an element of odd Hopf’s invariant (the
question whether this is possible without S, being parallelizable is unsolved
as is well known).

10. Remark. It should be noticed that if one is not interested in the
value of the curvatura integra ¢ but only in the fact that ¢ does not depend
on the imbedding nor on the normal field (as in Theorem 9.5), then a
simpler proof may be given in the case d odd. Let us sketch a “direct”
proof of the following weaker form of Theorem (9.2) in this case:

TaEOREM (10.1). If the odd integer d is such that each element cf
meas1(Sasa) has even Hopf’s invariant, then the curvatura integra of any
closed differentiable manifold My regularly immersed into Eg., with a field
of normal n-frames depends only on M.

Proof. Let Mgt=T*%(My), i=1,2 be two regular immersions of the
given manifold M, of dimension d into euclidean spaces Eg..,. Let Ff,, be
two fields (¢=1,2) of normal n;-frames on My* respectively, inducing maps
¢%: Mg—> Viun,m, the classes of which are represented by ¢f. In order to
prove ¢t =c? let M°==T°(M;) be an arbitrary regular imbedding of M,
into Epg. (euclidean (2d -+ 1)-space). Consider Faun,F2ir1, Faim, as linear
subspaces of the euclidean space Ey=Fg.n, X Ezss X Egin,. Consider on
Mgt the fields Fiyg of (N —d)-frames normal to Mg, consisting of the
vectors of F+, followed by N-—d-—n; constant unit vectors (mutually
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orthogonal) normal to Eg.., in Ey. Each immersion T%(M,), 1=1,2, is
isotopic in Ey with T°(M;z). By the covering homotopy theorem, we obtain
on My two fields of normal (N —d)-frames in Ey, which we denote again
by Fiy_s. The curvatura integra corresponding to the mapping Mg— Vy,x-q
induced by the new field Fiy_; on My° is ct.

It is easily seen that Fiy_s may be continuously deformed (keeping the
(N — d)-frames of Fiy_g normal to Ms° during the deformation), in such a
way that the first (d4-1) vectors become vectors in E,;; and the last
N— (8d+1) be constant and normal to E,z,. In other words, we have
obtained two fields Fig,,, 1=1,2, of (d - 1)-frames normal to M,° in E,4.;.
Moreover, the curvatura integra corresponding to the map M;— Vagirau
induced by Fig,, (as field over M® in E,4,,) is equal to the given ¢é which
we started from.

Recall that T°(My) = M,° has been assumed to be an imbeddding into
Eiqi.  According to Section 1 (b), it thus corresponds to F’s, and F?,
sphere maps f, f> of Sz into S4;. By assumption, these maps have the
same Hopf’s invariant mod2: A(f') =h(f?) mod?2. It is not difficult to
see, that we may change one of the fields, F'4,, say, without changing ¢*
(which is only defined mod 2 because d has been assumed to be odd) in such
a way that h(f') =h(f?) as integers. Assume that such a change has been
achieved. The Hopf’s invariant of f* is the looping coefficient in Fz.y of M4°
with the locus, Vgt say, of the endpoint of the first vector of the field Fig,,.
These looping coefficients being equal, it is possible using again the covering
homotopy theorem, to deform F4,, and F?;,, continuously (keeping their unit
vectors mutually orthogonal and normal to M,°) in such a way that after
the deformation their first vectors coincide. Such a deformation does not
change ¢! or c2.

Let us denote by {v, v} v.%- - -, 04t} the vectors of Fig, (after de-
formation) and by 6*: My—V4.1.0.1 the induced mappings, the classes of
which are represented by ¢t (1=1,2).

In order to prove c¢*=c?, let us first assume that 14 is a parallelizable
manifold and let 2,2, - +,2; ko a d-field of (mutually orthogonal unit) tan-
gent vectors on M°. Then each ¢ is homotopic to the map 8: Mg~ Vygi1,001
defined by 6(z) = {v(z),t.(z),t:(2)," - -,8a(z)}. The desired homotopy
is given by

b4 (z) = {v(z), v.*(z)cos(ms) + t.(z)sin(§ns),- - -,
v4i (z)cos(3ms) 4 Lasin($ns) },
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where 0 =< s=1. Therefore, if 3, is parallelizable, §* and 6° are homotopic
and ¢t =2

In general, M, will not be parallelizable. However, if ¢' and ¢* were
different, then one of them would be zero (it follows from d being odd, that
¢' and ¢? are remainders mod2). If ¢i=0, i=1 or 2, the corresponding
map 6% is homotopic to zero. By a reasoning of [VY] (§8), it follows that
My would be parallelizable.

This completes the “direct” proof of Theorem (10.1).

Appendix.
11. Relative Chern and Pontryagin characteristic classes.

11.a. Relative Chern classes.

In this section the coefficients are the integers.

Let 8= (Ey(), P, Bumy, U(n)) be the classifying bundle for the unitary
group of n variables U(n). Suppose that a cross-section 67 over a closed
subset A of By is given in the associated bundle 8" with fibre W, -, (the
complex Stiefel manifold of n—r complex vectors in ().

For g=r, the relative Chern class Cr?*€ H*@V(By(,A;Z) corres-
ponding to the cross-section 67 will be defined by the properties

(11.1) a*Cr®* = (%, the ordinary (absolute) Chern class, a* being the
homomorphism H*(Byy,4,Z) —> H*(By),Z) induced by the
inclusion a@: (Bymy,0) = (Bym),4),

(11. 2) p*q,nOun = O, where P*q.ﬂ: H* (Bu(n), A) — H* (By(q), an) is in-
duced by the Borel map p(U(q),U(n)).

We consider the diagram
) a*
* +=> H%By(q)) > HY(6°A) —> H**(By g, §°4) —> H**(By(g)) > * -
a* * p*an a*
] a*

- +=> H(Bym)—> HY(4) —>H"(Bywm),4) —> H*(Bywm)—- - -
where By(q is the space of the bundle B¢ (By(, 1is a classifying space for
U(q), thus the notation) and 6¢ is the cross-section over 4 in B¢ induced
by 67 (g=r).

By considerations similar to those made for the orthogonal group, it is
easily seen that o* is an epimorphism in every dimension and a monomor-
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phism in dimensions not exceeding ¢. It follows, using exactness and
commutativity in the diagram, that if p*,,2=0 and a*2=0 for some
2€ H*(By),4) then z must be zero.

The existence of at least one cohomology class with properties (11.1) and
(11.2) is seen as follows: The restriction of (%' to A is zero because of the
assumed existence of a cross-section over 4 in B7. Let C%*'=g*z. Because

= q*(9"! = g*a*z = a*p* 2, we have p*; .z =30*y for some y€ HI(4).
The class z—3&y has the properties (11.1) and 11.2).

This proves that properties (11.1) and (11.2) indeed define the relative
Chern classes uniquely for the classifying U(n)-bundle.

We consider now the more general situation of a U(n)-bundle over
some compact finite dimensional space X induced by some map g: X — Bym).
Let (Er,n, X, Wynr) be the associated bundle with fibre W, ., and assume
a cross-section §7: A—> E" to be given over the closed subset 4 of X. We
may assume dim By, arbitrarily high. Take dim By =2dimX 4+ 1 and
let f: X— By be an injective map homotopic to g. The bundle induced
by f is equivalent to the one induced by g¢; let us denote it again by
(B X, Wanr).

Let 8 be a closed subset of By containing f(4) and such that there
exists a cross-section y: §— By(, in B", with the property y(a) =74(a)
for every a€ A (f: E"— By is the bundle map covering f: X — By))-
Let cz?* be the (g 4 1)-dimensional relative Chern class of the classifying
bundle mod S obtained using the cross-section y(g=r). We shall prove the

LEMMa (11.3). f*cg®* depends only on the homotopy class of the
map g inducing the gwen bundle and on the cross-section 67 over A.

Definition. f*cpt' = Cp®* € H> @V (X, A ;Z) is the relative Chern class
(of dimension 2(g 1), defined for ¢ =) mod A of the bundle (E,=, X),
corresponding to the cross-section 6r.

In order to prove Lemma (11.3), we first notice that f*cg?*! does not
depend on 8. Indeed, let i*: H*(Byy, S) = H*(Bym),f(4)) be the homo-
morphism dual to the inclusions: (Bymy,f(4)) = (Buw),S). We prove
that i*cg?** is the relative Chern class modf(4) corresponding to the restric-
tion y4 of ¢ over f(4). Consider the diagram

*
H*@)(Bym), fA) «—H*@( By, yS)
P*r,» P’*r.n
: a* i*
H*@)(By ) «— H*@D(By (), yfA) «— H* @ (By), 8).
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By commutativity, the relations p*,,(i*cz?*) =0 and a*(i¥*cpt*?) = 0"
(showing, by properties (11.1) and (11.2), that i*cg?*! is indeed the relative
Chern class mod f4 corresponding to y.) follow from the corresponding rela-
tions p*,nce?** =0 and a’*cp? = c®** for cp?' (where a'* =a*i*). Since
1¥cp?*? is independent of S, so is f*cp®?, since f* = f"*i*, where f’* is induced
by £': (X, 4) — (Bow, F(4)).

It remains to be proved that f*cp?' does not depend on the choice of
the injective map. Let fi, f, be two injective maps X — By, homotopic to g.
We may assume that f,4 Nf,A=0. Otherwise take an injective map
fo: X— By such that fe X Nf;X=0 and fo(X Nf,X=0 (such a map
may be obtained taking dim By =2dim X -+ 3 if necessary) and apply
the following proof to f, and f, first and again to f, and f,. Let S be the
union f;A U f,A. The cross-section y over S is given by y(a;) = 0fi*(a)
for a; € fy(4). Denoting by ¢,z and ¢.z the relative (universal) Chern classes
mod f,A and f,A respectively corresponding to the restriction of y over f,4
and f,A, we have to prove f,*¢,p=7F,*c,r. By the above remark, we have
fi*cie="Ff1*cr, fr*cor=7F>%cp, where cp is the 2(q -4 1)-dimensional class
mod S corresponding to y. The equality fi*cp= f,*cz due to f;=f, com-
pletes the proof of the Lemma (11.3).

Remark. Similarly to the definition of the Stiefel-Whitney -classes,
the definition of the relative Chern classes could have been introduced in
terms of obstructions to the extension of cross-sections originally given over
a subcomplex of the base. The two definitions coincide on their common
domain: U(n)-bundles B over a complex K modulo some subcomplex L.
(Use 8. Eilenberg’s approximation theorem, l.ec. section 5).

Naturality property.

Lemma (11.4). Let (E,n,X) be a U(n)-bundle and let (E',n,X’)
be the U(n)-bundle over X’ induced by some map g: X'—> X. We denote
by C'r and Cp the 2(q + 1)-dimensional relative Chern classes of the bundles
(o', X’y and (E,=,X) respectively, modulo closed subsets A’ C X’ and
A C X such that g(A’) C A and corresponding to cross-sections 6 and ¢ in
the associated bundles with fibre Wy, (r=gq), such that g6’ (') =40g(a’)
for every o' € A’. Then C'gr=g*(Cr).

Proof. Let f: X— By be an injective map inducing (E, =, X) and
f': X’ By be an injective map inducing (E’,«’,X’). We may assume
that fg(4’) and f’(4’) have no commoon point. Let S be the union
fg(A")U f(4’) and ¢ the cross-section over § in the associated bundle with
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fibre Wy,a defined by yf'(a’) =7¢ (¢/) and yfg(a’) =7f0g(a’). Denoting
again by cg the 2 (g 4 1)-dimensional (universal) relative Chern class modulo
8 corresponding to y, we have C'gp=f"*(cg) = g*f*(cz) = g*(Cr).

Whitney duality. Let B, and B, be two principal bundles with bundle
groups U(n,) and U(n,) respectively, over the same base space X and let
6, and 6, be cross-sections over closed subsets 4, and A, (of X) in the
associated bundles 8B, and B, with fibres Wy, n,r, and Wy, n,r, respectively.
6, and 6, determine a cross-section 4" (r=r,+1,) over A=A, NA4, in
the bundle %Br, with fibre Wy, (n=mn,-+ n,) associated to the Whitney
sum B =11, G B..

Denote by C.;z%* the relative Chern class of %y, 1=1,2, defined for
g =1; and let Cg?** be the relative Chern class of B defined for g=r.

For the relative Chern classes, the Whitney duality takes the form

(11. 5) Crtt = 01,91 4 01,2 Cpt -+ - - Op, .

In (11.5) some absolute Chern classes occur, however, again, since each
product contains at least one relative class, it is itself a relative class.

The proof of formula (11.5) will be based on a theorem similar to
Theorem (5.1) stated below (Theorem (11.6)).

Relative Chern classes as symmetric functions. Let (E,p,X,U(n)) be
a principal U(n)-bundles over a compact finite dimensional space X. Con-
sider the subgroup Q(n) =U(1) X U(1) X - - X U(1), n factors, of U(n)
and the “space of flags” X =E/Q(n) over X. We have a fibering
p: X— X induced by the projection p: E—> X and the cross-section 8" over
A C X may be used to construct a subset A C X as follows. Let E"—= E/U(r)
be the space of the bundle with fibre 1V, .., associated to (E,p,X,U(n)).
We have the diagram

¢ ©
A— Er—s X

e |

A—> Er—>s X
4 p
where E7 is the space of flags over Er (i.e. E/Q(r) = E7) and pg: E'—.Er
is induced by Q(r) CU(r). The bundle (4,pas, 4,F(r),U(r)) is induced
by 6: A— E7. The principal bundle € = (E,=,X,Q(n)) is the Whitney
sum E=C*'Q E*@- - - @ € of n principal bundles &* with group U(1).
Let z;€ H*(X ;Z) be the 2-dimensional (only non-zero positive dimensional)
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Chern class of €%, For r 4+ 1=1=n, the relative Chern class mod 4 of &}
may be defined (using the cross-section over A in €* induced by 67). Let
Trea, Trezy* * 5 Tn mean the relative classes. Then the elementary symmetric
function 89 (zy,- - -, x,) is a relative class for ¢ = r (each product of ¢4 1
distinct factors from the z,,* - -, z, must contain at least one of the variables
Try1,” * 5, %s). Let us denote by Sz?'(z,,- * *,%,) this relative class. We
have the theorem

TurEoREM (11.6). Let pp*: H*(X,A;Z) —> H*(X,A;Z) be the homo-
morphism induced by pg: (X,4) — (X,A). Then,

(a) pr* is @ monomorphism,
(b)  pr*Cr¥* = Sg¥'(zy,- + +,24) for q=r.

The proof is very similar to the proof of Theorem (5.1). We are not
going to enter into the details again. Along the same lines as for the proof
of (5.1), we need the result

H*(F("’)SZ) =Z[$1)' ' ':xn]/(S+(x1;' ) ',xn))’

with F(n) =U(n)/Q(n), where (S*(zy,- - -,2,)) denotes the ideal gene-
rated in Z[z,,- - -,2,] by the symmetric functions of positive degree (see
[8], Proposition 31.1). The only points where the method of proof of
(5.1) breaks down now are those where use was made of the fact that the
coefficient ring for Stiefel-Whitney classes was a field (Z.).

The assertion that the term E, in the spectral sequence of p: ¥ > X
reduces to H*(X)®H*(F(n)) 1is, however, still true because F(n)
=U(n)/Q(n) has no torsion.

The only non-trivial change is that it is no longer obvious that H* (X ; Z)
should be (at least additively) isomorphic to E.. This proves, however, tc
hold, as will be seen from the following argument I learned from A. Borel,
similar to an argument by J. P. Serre ([10], Chap. III, 7, Prop. 9).

Lemma (11.7). Let o: H*(F) —> H*(E) be a right-inverse (additive)
homomorphism to i*: H*(E)— H*(F), where E is the space of a bundle
(E,=,B,F) with fibre F and ¢ the inclusion i: F— E. Assume that either
B or F has no torsion. Then H*(E) 1s isomorphic to H*(B) @ H*(F).
Moreover, the isomorphism preserves the product if ¢ does. (In this lemma
the domain of coefficients is any commutative ring with unit).

Proof. Let w: H*(B) @ H*(F) —> H*(E) be the linear map defined
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by 0 (z®f) ==*(z) -o(f). We are going to prove that v is an isomorphism
which preserves products if o does.

We first notice that o preserves the filtration: II*(B) ® H*(F) being
filtered by the ideals A=Y Hi(B) @ H*(F) and H*(E) by the ideals
i=q

Ji=x*(3 Hi(B)) -H*(E’).— We have for every ¢,0(A49) C J% Therefore,
i=q

o induces an additive homomorphism & of the corresponding graded rings
S A1/A% into X J9/J1*:, where 3, denotes the direct sum. It is well known
and easily seen that o is an isomorphism if @ is.

By triviality of the spectral sequence of the fibering p: £ — B (because
i*: H¥*(E) > H*(F) which admits a right inverse, is an epimorphism),
it follows that E,= H*(B,H*(F)) is isomorphic to the graded ring E,
associated to H*(E), i.e. 2, J9/J¢', Let k be this isomorphism (%2, with
the notations of [3], §1).

Since either B or F has no torsion by assumption, E, = H*(B) @ H*(F) ;
identitying X A7/4e! with H*(B) ® H*(F) in the natural manner, the
lemma will be proved by showing that : H*(B) ® H*(F) — E,, is identical
to the map k: H*(B)  H*(F) — E..

Let «®f€ H*(B) ® H*(F), where z€ H?(B), f€ H1(F). We have
o(z®f) ==*(z) - o(f) € Jp'q=w*(§H‘(B)) -He(E), and a(z®f) is the
image of o(z®f) in Jwe/Jrlat =—l-f7:1”‘1. By definition of the product in
E, we obviously have 5(z®f) =o(2®1) -5(1®f). Since & has also this
property, it is sufficient to verify =% on the elements of the form z®1
and 1Qf.

5(z®1) ==*(z) € J»° (JP*1=0). We have k(z®1) ==*(z). See
[3], §4, (b).

5(1®f) —o(f), where o(f) represents the image of o(f) € J%¢ in
Joe/Jhet, By [3], §4 (c), we have k(c(f)) =1®i*es(f) —1®f since
o is a right inverse to ¢*. Thus, again (1Qf) =k(1Qf).

If ¢ preserves the product, then

o[ Q) - (¢ Bf)] = (—1)Pu(ad ff') = (—1)¥=*(2- ) -o(f-[)
= (=1)@7*(z) - x*(@) -0 (f) - o (f') = *(2) - (f) -7* (') - (')
=0(z®f) 0 (2 ).
In the situation of Theorem (11.6), the existence of the homomorphism

o is obvious (one has H*(F(n);Z) =2Z[uy,- - -, un]/(S*(Us,* = 5 1)),
where uy=1i%*z;; let hy,=1,h,,- - -,h; be a basis for the vector space
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H*(F(n);Z), the h; being represented by polynomials P;(uy,- - -,u,) in
Us,* * , Uy, and define o(k;) as the polynomial in z,,- + -, z, obtained from
P; by the substitution u;—> 23; extend then ¢ by linearity). This completes
the proof of Theorem (11.6) part (a).

The proof of part (b) is similar to the proof of (b) in Theorem (5.1).
Use has to be made of the results of [6] (in particular Prop. 4.1) rather
than from [4]. A slight change occurs at the end of the proof: we
have to show that ugp*Sg?*'(xzy,- - ',2,) =0, where pp*: H*(Bo),4)
— H*(Bg(),A*). The argument used for Stiefel-Whitney classes does not
work now, because degz;=2 and a*: H*(Bg(),A') = H*(Bq(y) need not
be a monomorphism. However, pg*z,,;j=0 for j=1,- - -,n—r may be
seen as follows. Consider for some j (1=j=n—r) the U(1)-bundle ¢/
over Bg(y ; it admits over 4 the section §;, The map p: Bg(r) —> Bo(ny induces
over Bg(r & U(1)-bundle (““counter-image of €™/ ”’) and explicit construction
shows that the induced cross-section y over A* (defined by y(u) = (u, O (u))
can be extended all over Bg(y. Thus, by naturality, pz*z,.;=0 (from this
pr*S™ (2, - -, 2,) =0 follows because of ¢=7).

11.b. Relative Pontryagin classes.

From now on, the coefficients are integers mod p, where p is prime and
> 2. The following definition and naturality property would be valid with-
out alteration with integer coefficients, but Whitney duality is not.

Let 8= (E,p,X,S0(n)) be a principal SO(n)-bundle induced by a
map 7: X — Bsgn). Let o: Bso@n)—> By be the mapping corresponding
to the inclusion SO(n) —>U(n). Then osor induces over X a principal
U(n)-bundle B¢ = (F¢, =, X,U(n)).

Let 67 be a cross-section over the closed subset 4 of Y in the bundle
B associated to B with fibre Vypomi. For k=7, we have a cross-section
6% over A in B* (with fibre Vpp-or1) induced by 67. These cross-sections
provide cross-sections f¢* over A in the corresponding “complex” bundles
B* ,associated to Bo with fibre W, 4 01.1) as follows. Let 7, & be the maps
of the total space covering 7, o respectively (o is not a bundle map), and
let b be the bundle map covering cor. Then % is injective (actually a
homeomorphism) on each fibre W, , 211, and 6¢* may be defined by

(11.8) 70o*(a) =a, 0c* (a) = h~'a76*(a)
Definition. The 4k-dimensional relative Pontryagin class

Pgve H*(X,X;Z,) mod A
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corresponding to the cross-section 7, defined for k=1, is given by
(11.9) Pgk=— (—1)*Cz%,
where Cg* is the relative Chern class mod 4 of B¢ corresponding to c*.

Naturality. Let B, B’ be two SO(n)-bundles over X and X’ respec-
tively, such that B is induced from B’ by a map f: X — X’. Let B* = (E*, X),
B’ — (B, X’) be the associated bundles with fibre V, 4 0., and assume that
cross-sections 7, 8 in B7, B'" are given over closed subsets 4 C X, A’ C X’
respectively, such that f(4) C A’ and 6'f(a) =f0(a), (F: E*—> E* cover f)
for every a€ 4.

Let P* and P’* be the relative Pontryagin classes (k=7) of B and B’
corresponding to 6 and & respectively. Then

(11.10) Pk— f*(P").

Proof. The above formula follows from the naturality property of
relative Chern classes, provided we prove that fcfc(a) =0"cf(a), where
fo: E— B¢ covers f (Remark that (E¢% X) is induced from (E’¢*, X”)
by f: X—> X’). We have

ho'cf (a) =o70'f (a) =o7f6(a) = kfcbe(a)
and, since kb is homeomorphic on the fibres,
0cf (a) = f 6c(a) for every a€ A.

We are thus in position to apply the naturality property of relative Chern
classes and (11.10) follows.

Whitney duality for Pontryagin classes will follow from Whitney duality
for relative Chern classes reduced mod p. Because of the naturality prop-
erty, we may restrict attention to the case of a classifying SO (n) bundle
B = (Esowm)s P, Bso(ny), SO (n)) assuming a cross-section to be given over 4
(closed subset of Bsoy) in the associated bundle Br with fibre Vyaore.
Let B¢ be the U(n)-bundle over Bson) induced by ¢: Bso) —> By), and let
fc" be the cross-section over A induced by 6" in the bundle B¢" associated
to B¢ with fibre Wy, nori.

LemMa (11.11). The (4i+ 2)-dimensional relative Chern classes of
Bemod A corresponding to O¢" are zero mod p: Cr**1 =0, i=1.

This content downloaded from 129.215.149.96 on Wed, 27 May 2015 06:49:49 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

554 MICHEL A. KERVAIRE.

Proof. Consider the diagram

i* b
H“"’(E) —_— H“*I(NA) —_— H“*z(E"', giA) —_— Hﬁ»,z(Eu)
(11.12)
o* o* wp* o
¥ ) 3 a*
H**(Bso(m)) — H***(4) ——> H*"**(Bson), 4) —> H***(Bsony).

*

Since a*(Cg*+*') = (1, we have (by [5], Proposition 25.4) a*Cg?*'=0
(coefficients mod p). Therefore Cg*** =28z, x € H**'(4;Z,), and since 6*
is an isomorphism, there exists a class u € H**1(¢‘A), with 6*u=2z. We have

U =380* 2 = wp*dr = wp*(Cp*""' = 0.

The last equality follows from consideration of the diagram
b"*
H4iv2 (Ei, oiA) — 4042 (Egi, ociA)

wgp® ¥
0'*

H*#*(Bso ), 4) «— H***(Byw),4).
Indeed, wp*Cp?**' = wp*o*cg? —=THn¥cp? =0 (by (11.4)).

By exactness of the rows in diagram (11.12), there exists an element
2 € H**1(E*) such that i*z==wu. The assertion Cp**'=0 follows from the
fact that o* is an epimorphism in every dimension (By [5], Theorem 23.2,
H*(Bso(em-1) 3 Zp) = 2Zy[Py," - -, Ps] and

H*(Bso2m) 3 2y) "=Zp[P1,' “ P, Wom].
Notice that E¢ is classifying space for SO (R1—1).).

Remark. TUsing the fact that o* is still an epimorphism if integer
coefficients are used (see a forthcoming paper by A. Borel and F. Hirzebruch),
the same method would give 2Cz?%*! = 0, where Cg?*** is the integer relative
Chern class of a U(n)-bundle obtained from an SO (n)-bundle.

Whitney duality for relative Pontryagin classes is an immediate conse-
quence of the same property for relative Chern classes with coefficients mod p,
making use of Lemma (11.11).

Let B; be two SO(m;)-bundles (1=1,2) over X and let 6; be
cross-sections over (closed subsets) A4; C X in the associated bundles
By = (Eir‘; D, X ) Vm,n;—-znu) .
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Let 3=93B,@ B, be the Whitney sum and 6 the cross-section over
A=A4,NA, in B (with fibre Vpnpor, Where n=mn; 4 n, r=r,41)
obtained using 6, and 6.

Pg¥, the relative Pontryagin class of dimension 4% of corresponding to
@ is defined for k = r. Similarly, P'g¥ P?g* are defined for k=r, and k=1,
respectively.

One has in H*(X,A;Z,):
(11.13) Pgt=Pit - - - Pign-Pogirn | . . . | P2k (k=r).

Although some absolute classes might appear in the above formula, each cup-
product contains at least one relative class. The sum on the right consists
only of relative classes.

Pontryagin classes as symmetric functions. Consider again a principal
SO (n)-bundle B= (E,p,X,S0(n)) and define the subgroup Q(n) of
SO(n) by Q(n)=SO0(R)XSO(2)X* - -XSO(R) or Q(n)=80(R)
X8O(R)X- - - X SO(2)XSO(1) according as n=2m or n=2m-41
(m factors SO(2) in both cases). Consider the quotient space E/Q(n).
The principal fibre bundle (E,=, E/Q(n),Q(n)) is the Whitney sum of m
principal SO(2)-bundles €, €2, - - -,€™. Let &, 25, * *,Zn be their Chern
classes (SO(2) being identified with U(1)).

Assuming a cross-section § over A C X (closed subset) to be given in
B = (B, p, X, Van-2rsr) We obtain cross-sections in €* for i=r,r41,---,m
over A C By as follows: E” is the base space of a principal SO (%r—1)-
bundle (E,Er,SO(2r—1)). Let Er be the space of flags over E7, i.e.
Er—=E/Q(2r—1), where Q(2r—1) is the subgroup of SO(n) consisting
of the matrices of the type

r D, 3

0 1 , where Ds=[ 008(2131;) Sln(21r9?i)) .

—sin(Rwx;) cos(Rnx;)
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We have the diagram

w
Br— X

(11.14) PE 1 l px
6 r

A—> Br— X

The map w: E”— X is induced by the identity E— E(Q(2r—1) C Q(n)).
Let 4 be the space of the bundle (4, p4, 4,F(2r—1),80(2r—1)) induced
by 6. Notations: F(2r—1) =80 (2r—1)/Q(2r—1), §: A— Er is the
bundle map covering 4. The maps pf and wf are injective and we may con-
sider 4 as a subset of X. Geometrically, a point of 4 C X consists of a
point @ of A together with a sequence of m oriented 2-planes s, mz,- * =, 7m,
such that =, contains the first, =, the second and the third,: - -, =, the
(n—=2r)-th and the (n—2r 4 1)-st vectors of 6(a), assuming n=22m.
If n=2m + 1, =, contains the first and second, etc., m, the (n—2r)-th
and the (n—2r -+ 1)-st vectors of §(a). In both cases (n=2m or 2m 4 1),
since =, is oriented, & admits a cross-section over A and so do @r+,- - -, E&m,
We define z,,@p1," * -,Zm (the characteristic classes of @r,: - -,€m) as
relative classes corresponding to the cross-sections given by 6 over A. The
elementary symmetric functions S*(2,%- -+ -,2,%) are then relative classes
mod A (of dimension 4%) for % =r and will, consequently, be denoted by
Sg¥ (2% - *,2n*). One has the

TueoreM (11.15). Let pp*: H*(X,A;2Z,) > H*(X,4;Z,) be the
homomorphism induced by pr: (X,4) > (X,A). Then (a) pr* is a mono-
morphism, and (b) pp*Pr*==_8g*(2% " * -, zZm?) for k=r.

Proof of (a). Consider the diagram

i* 8 a*

H%(X) — H%(4)—> H%(X,A) — H¥*(X)
px* pa* pr* px*
¥ 8 a*

H%(X) —> H%1(A)—> H¥*(X,A) — H¥%(X)
(coefficients = remainders mod p, p==prime >2), where px* and p,* are
monomorphisms in every dimension (see [5], Theorem 23.2) and 14, i are
the inclusions i= pf, i = of.

The situation is entirely similar to the one in the proof of Theorem
(5.1). A straightforward exactness argument shows that (a) follows from
the Lemma: If b€ H*(A) and we€ H*(X) are such that p,*b=1i*w, then
there exists a class v€ H*(X), such that i*v=20.

This content downloaded from 129.215.149.96 on Wed, 27 May 2015 06:49:49 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

RELATIVE CHARACTERISTIC CLASSES. 557

The proof of the lemma is entirely similar to the one given in the
proof of Theorem (5.1).

Proof of (b). By naturality, it is sufficient to prove the formula
pr*PrF = Sp¥(z:%,- - -, Zm?) for the bundle B = (Bo ), pn, Bso ), F(n), SO(n))
obtained from the classifying bundle (Bg) is the space of flags over Bso()).
The diagram (11.14) reads in this case.

¢ ®
A —> Bsg(or-1) —> Bom)

l PA P2r-1 Pn
v 6 P
A'__>Bo(2r_1) _>Bso(n)
and there is a similar diagram with % substituted for r for every % such that

r=k=3%(n-+1). Considering A as a subset of Bg(zr1) and Bg) by the
injections § and uf, we have the following diagram

g% 8 a*
H*%Y(Bg(s1-1)) —> H*(A) —> H*(g(s11), 4) —> H*(Bg(21-1))
w* e= pr* u*
0* ) a*

H%Y(Bow) -—> H%'(4)—> H*(Bow),4) —> H*(Bow)-

From the relation p* (P¥) = 8*(z,?,- - -, 2s?) for the absolute Pontryagin
classes, (see [6], Proposition 5.1), we have a*y =0, setting y— pp*Pg*
— 8% (2, - *,Tm?). Indeed, a*Pg*¥=P* is immediately seen from the
definition and the corresponding equality for Chern classes.

By an exactness argument used several times in this paper, (b) follows
from pgr*y=0. The proof of ur*Sg*(2:%- - ', 2w?) =0 is similar to the
one given for Chern classes. The equality pr*pr*Pg*=0 follows from con-

sideration of the diagram
*

_. Pr _
H*%(Bo(x-1),4) <— H*(Bgn),4)

& &

KR PR

p*
H*(Bsozx-1), 4) <— H*(Bso), 4).
One has pr*pr*Pr* = kp*p*Pgr%. Now, p*(Pg*) =0 because

PRk J— (__, l)ka.* (ORZk)
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and of the diagram
¥

g
H*(Bso(2k-1), 4) «— H*(By(3x-1),74)

o*
H*(Bsoun),A) «—H*(Byw),4)
p¥ (PgF) = (— 1)*p*o* (Cp*) = (— 1)*a*=* (C*) =0, by definition of the
relative Chern classes.

This completes the proof of Theorem (11.15).

MASSACHUSETTS INSTITUTE OF TECHNOLOGY.
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