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SMOOTH HOMOLOGY SPHERES AND 
THEIR FUNDAMENTAL GROUPS 

BY 

MICHEL A. KERVAIRE 

Let Mn be a smooth homology n-spherei, i.e. a smooth n-dimensional manifold 
such that H*(Mn) H*(S n). The fundamental group -a of M satisfies the following 
three conditions: 

(1) -a has a finite presentation, 

(2) H1(7T)=O, 
(3) H2(7r)=O, 

where H&(7r) denotes the ith homology group of -a with coefficients in the trivial 
Z-a-module Z. Properties (1) and (2) are trivial and (3) follows from the theorem of 
Hopf [2] which asserts that H2(7T)=H2(M)/P7T2(M), where p denotes the Hurewicz 
homomorphism. 

For n> 4 we will prove the following converse 

THEOREM 1. Let 7T be a group satisfying the conditions (1), (2) and (3) above, and 
let n be an integer greater than 4. Then, there exists a smooth manifold Mn such that 
H*(Mn) H*(Sn) and -a1(M) --. 

The proof is very similar to the proof used for the characterization of higher knot 
groups in [5]. Compare also the characterization by K. Varadarajan of those 
groups -a for which Moore spaces M(-a, 1) exist [9]. 

Not much seems to be known for n < 4. If M3 is a 3-dimensional smooth manifold 
with H*(M)-H*(S3), then 7T=7T1(M) possesses a presentation with an equal 
number of generators and relators. (Take a Morse function f on M with a single 
minimum and a single maximum. Then f possesses an equal number of critical 
points of index 1 and 2.) 

Also, under restriction to finite groups there is the following 

THEOREM 2. Let M3 be a 3-dimensional manifold such that H*(M)-H*(S3). 
Suppose that 7T1(M) is finite. Then, either 7IT(M)={1} or else, 7T1(M) is isomorphic 
to the binary icosahedral group with presentation 

(X, y; X2 = y3 = (xy)5). 

This is implicitly well known: The hypotheses imply that 7T = 7T1(M) is a group of 
fix-point free transformations of a homotopy 3-sphere. Any such group belongs 
to a list established by Suzuki [8] and even to the shorter list of Milnor [7]. The 
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binary icosahedral group is the only (nontrivial) group in Milnor's list satisfying 
H17T = 0. 

REMARK. Curiously enough, it seems that the trivial group and the binary 
icosahedral group are the only available examples of finite groups 7T satisfying 
H17r = 0 and having a presentation with an equal number of generators and relators. 

For n =4, it follows from the proof below that every finitely presented group 7T 

with an equal number of generators and relators and satisfying H17T=O is the 
fundamental group of some homology 4-sphere. It seems unlikely that these con- 
ditions should characterize the fundamental groups of homology 4-spheres, but I 
do not know of a counterexample. 

1. Proof of Theorem 1. We start with a finite presentation of 7T: 

(x1, . . .,. x.; Rl, . . ., RO) 

and the manifold 

MO = (Sl x Sn- 1)# . .#(S x Sn-1) 

connected sum of a copies of S1 x Sn -1. Choosing as usual a contractible open 
set U in MO as " base point", the condition n > 2 implies that 7I1(M, U) is free on a 

generators. After identification of free generators of 7T1(M, U) with xl, .. ., xa, the 
elements R1, . ., R, of the free group on xl, . ., x, can be represented by disjoint 
differentiable imbeddings ?,i: S1 x Dn- M05 i= 1,..., /3. Moreover, these can 
be chosen so that the spherical modification X(?), ... . ?)) can be framed (see [6]). 
The resulting manifold M,= X(Mo; ?1, ... . ?)) is stably parallelizable as was MO 
and 7T1(M1)-7T since n > 3. 

From the homology exact sequences of the pairs (Mo, Ui Oi(S' x Dn- 1)) and 
(M1, Ui /,(D2 x Sn-2)), where ?' denotes the natural imbedding D2 x Sn-2 -M 
with S 1XjS n x x Sn-2, one concludes that Hi(Ml)=0 for i=O0, 2, n-2, 
n, and that H2(M1) is free abelian of rank y =-a. (Observe that /3> a since 7T 

abelianized is trivial.) Hence, there exist bases el, ... ., of H2(M1) and ia, ..., XY 
of Hn-2(Ml) respectively such that 6i r. =8 j, where 6i .rj is the homology inter- 
section number, and 8,j is the Kronecker delta. 

By the theorem of Hopf mentioned above, H27T =H2(M1)/P7T2(M1), and so by 
condition (3) on I7, the Hurewicz homomorphism p: IT2(Mi) --- H2(M1) is surjective. 

Since n> 4, the classes 1,. ., y can be represented by disjoint differentiable 
imbeddings fi: S2 __ M1, i= 1,..., y, and M1 being stably parallelizable, these 
extend to disjoint imbeddings Ob: S2 x Dn-2 M1. It follows from the arguments 
in [6, ?5] that the manifold M=X(Ml; 01,..., Oy) obtained by spherical modifica- 
tion is a homology sphere with 7T1(M) 7T. 

2. Many of the homology spheres occurring in the literature are constructed 
as the boundary of a contractible manifold. We investigate this question whether, 
in general, homology spheres bound contractible manifolds. 



1969] SMOOTH HOMOLOGY SPHERES 69 

The following well-known construction provides an example of a 3-dimensional 
homology sphere which does not bound a contractible manifold. 

Let W= D4 + (?1) +... + (?8) be the manifold obtained from the 4-disc by 
attaching eight handles of type 2 using unknotted imbeddings (with disjoint 
images) ?,i: S' x D2- S3, such that the matrix of linking numbers 

L(oi(S 
1 x xo), Oj(S 

1 x X1)) 

with xo0=x1, xo, x1 E D2, is: 

-2 1 0 0 0 0 0 O0 

1 2 1 0 0 0 0 0 

O 1 2 1 0 0 0 0 

L= 0 0 1 2 1 0 0 0 

O O O 1 2 1 0 1 

O O 0 O 1 2 1 0 
O O O O O 1 2 0 

_0 0 0 0 1 0 0 2j 

This matrix is unimodular and has signature 8. The picture shows the images 

Si S S3 S4 S 6 S7 

Si =i(S x 0) in R3=S3-point. From the handle decomposition of W one sees 
that 7T1 W= {1}, and H2 W is free abelian on 8 generators. An easy calculation shows 
that 7T1(bW) is the group with presentation: 

(X, y; X5 = y2 = (x- ly)3) 

where x and y are the classes of the loops shown on the picture. Hence, b W is a 
homology sphere. If bW were the boundary of a contractible manifold V, one 
could form the closed 4-manifold M= W u V, and the above matrix L would be 
the matrix of intersection numbers of H2M. From L one reads off the Stiefel- 
Whitney class w2M= 0 and the signature c(M) = 8, contradicting Rohlin's theorem 
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which says that if w2M= 0 for a closed orientable 4-manifold M, then ai(M) _ 0 mod 
16. (Cf. [4].) 

In contrast, we have 

THEOREM 3. Every 4-dimensional homology sphere bounds a contractible manifold. 
If M' is a smooth oriented homology sphere with n_ 5, there exists a unique smooth 
homotopy sphere EM such that Mn # En bounds a contractible smooth manifold. 

This has been obtained independently by the Hsiang brothers [3]. 
Let first M4 be a smooth 4-dimensional homology sphere which we think of as 

imbedded in Sk + 4 with k large. It is easy to see that M has trivial normal bundle. 
Indeed, the only obstruction to trivializing the normal bundle is an element 
(9 e H4(M; 7T3(SOk)) =Z. It is known that 2(9= +p1[M], where p1 is the Pontryagin 
class. (Cf. e.g. [4].) The latter vanishes by the Thom-Hirzebruch formula spl[M] 
=c(M)=O. Now, choosing a trivialization-of the normal bundle of M4 in Sk+4, 

the Thom construction provides an element in 7Tk+ 4(Sk). Since 7Tk+ 4(Sk) = 0, we 
see that M4 is the boundary of a parallelizable manifold W5. This manifold can be 
modified to get a new 5-manifold V5 with bV5=bW5=M4 such that 7r1V={1} 
and 7T2 V= 0. (Cf. [6, ?5].) Clearly, V is contractible. 

Assume then that n > 5. 
We associate with the given smooth homology n-sphere Mn some smooth 

homotopy sphere En. Observe that Mn is stably parallelizable. Since 

H?(M; 7ri -(SO)) = 0 for i < n, 

there is only one possible obstruction (9 E Hn(M; 7Tn-l(SO))=7T1nl(SO) to pro- 
ducing a trivialization of the stable tangent bundle of M. It is known that (9 
belongs to the kernel of the homomorphism J: 7rn- 1(SO) - n- 1H where ?n-1 

=7Tn+k-l(Sk) k large. Thus (9=0 by the same arguments as in [6, ?3]. 
We obtain En from Mn by framed surgery in dimensions 1 and 2. Let xl, .. ., x", 

be a finite set of generators of 7r1(M, U), where U is a contractible open " base set" 
in M. Let Ol.. . ., ?)< be smooth imbeddings of S1 x Dn-1 into MTn with disjoint 
images representing xl, ..., x<, respectively. We use 01, . .., O", to attach a handles 
of type 2 to Ix M along (1) x M, where I= [0, 1]. Let 

V0 = Ix M+(01)+ * +(Oa) 

be the resulting (n + 1)-manifold. We may assume that the imbeddings b1, ..., ? O 
have been chosen so that V0 is parallelizable. The manifold N= b Vo -(0) x M will 
be called the right-hand boundary of V0. It is easily checked that 7T1N= 7T1 VO ={1}, 
and HiN= 0 for 3 < i < n -3 (if n > 6). The groups H2N and Hn - 2N are free abelian 
of rank a and the inclusion N i V0 induces an isomorphism H2N- H2 Vo. 

Let el . . ., < and 1, . . . , be bases of H2N and Hn_ 2N respectively such that 
.j= 8ij. Then, representing the classes el,..., 5e by disjoint differentiable im- 

beddings 01, ..., 5 Oa of S2 x Dn -2 into N we construct 

V, = I x M+(0,)+ * * * +(O,,)+(O,)+ ***+(Oa,) 
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by attaching a handles of type 3 to VO along N using 01, . . ., 0, Again this can be 
done so that V1 is parallelizable. Now, the right-hand boundary b V1 -(0) x M is 
a smooth homotopy n-sphere En. We think of it as oriented so that the (oriented) 
boundary of V1 is -En -(0) x M, where the orientation of V1 is given by the one 
of Ix M. 

Claim: Mn #E n bounds a contractible manifold. Indeed, let t: (I x Dn, bI x Dn) 
(V1, bV1) be a smooth imbedding with t(int Ix Dn) int V1, then after rounding 

off corners we get a smooth contractible manifold V= V1 - t(I x int Dn) whose 
boundary is diffeomorphic to M # E. 

It remains to prove the uniqueness of E. Let El be a homotopy n-sphere such 
that M# El is the boundary of a contractible manifold W. Using a connected 
sum of V1 (as constructed above) and Ix E along t(I x S n-) and Ixn - 1, where 
an-1 is the boundary of a smooth n-disc An in El, one gets a manifold W' whose 
homotopy type is S n, and b W'= (-E) # E1 + (-M) # El. (W' is obtained from 
the disjoint union 

{ V1 -t(I x (O)) + {I x S1- I x (O)} 

under the identification of t(x, ry) e t(Ix Dn) with (x, (1 -r)y) C Ix n for x e I, 
y E Sn-1 and O<r< 1.) 

Now, paste the manifold W along the left boundary ((O) x M) # El of W' by 
the identity diffeomorphism 

bW = M# Y1 >((O) xM) #El. 

The resulting union W u W' is a contractible manifold as follows easily using the 
van Kampen and Mayer-Vietoris theorems. The boundary of W u W' is (-s) #El. 
Therefore, E and El are h-cobordant, and thus diffeomorphic since we assume 
dim Z=dim Zi>5. 

COROLLARY. Every combinatorial homology sphere K n of dimension n =3 is the 
boundary of a contractible combinatorial manifold. 

By Hirsch's obstruction theory [1, Theorem 3.1], every combinatorial manifold 
Kn admits a smoothness structure in the neighborhood of its 7-skeleton. We need 
a smoothness structure in a neighborhood N of the 2-skeleton of Kn. Then N is 
parallelizable and we can apply the above surgery arguments requiring the im- 
beddings to have their images in the smooth subset. We obtain a manifold WTn + 1 

such that b W= En + Mn, where En is a combinatorial homotopy n-sphere and the 
inclusion E c W is a homotopy equivalence. Since n > 5, En is PL-homeomorphic 
to bAn +1, and pasting Ain+1 to Wn+1 by such a homeomorphism provides a con- 

tractible manifold Vn+1 with boundary Mn. 
Thus, as a by-product, we have proved the probably well-known fact that every 

combinatorial homology sphere admits a smoothness structure. 
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