
A SURVEY OF MULTIDIMENSIONAL KNOTS 

by 

M. KERVAIRE and C. WEBER 

CHAFrE~ I : INTRODUCTION 

§ 2. Some historical landmarks. 

Knotted n-spheres K = f(S n) c S n+2 with n ~ 2 make what seems to 

be their first appearance in a famous paper by E. Artin published in 

1925, where he describes a construction which produces examples of 

non-trivial n-knots for arbitrary n ~ 2. (Detailed reference data are 

provided at the end of the survey). In today's terminology, introduced 

by E.C. Zeeman (1959), the construction is called spinning and it goes 

as follows. 

Let K c S n+2 be an n-knot, i.e. a smoothly embedded n-sphere K 

in S n+2. Take the associated knotted disk pair (B, bB) C (D n+2, S n+1) 

obtained by removing from S n÷2 a small open disk U centered at a point 

of K. Here, D n+2 = S n÷2 - U and B = K - K N. U . The subset 

~n+4 2 ~ O, : 0 ) in S n+3 R n+4 
D = { ~i=I xi = I, Xn+ 3 Xn+ 4 C is an (n+2)- 

dimensional disk which we identify v, ith D n+2. Thus, B C D . Now, the 

sphere S n+3 can be obtained by rotating this disk D in R n+4 around 

the (n+2)-plane P = {Xn+ 3 = 0, Xn~ 4 = O) Note that P contains the 

unknotted boundary sphere bD = S n+~ c S n+3 which thus remains point_ 

wise fixed during the rotation. In the process, the set B c D v.ill 

sweep out a smooth (n+~)-dlmensional sDhere embedded in S n+3. This is 

the spun knot Zz c S n+3 of the knot K c S n+2 
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E.Artin observed in his paper that 

~(s n+3 - z K) ~ ~(s n+2 - K) . 

Thus, E K C S n+] is certainly knotted if w~(S n+2 - K) ~ Z . 

Starting with a non-trivlal "classical" knot (i.e. n : 3) and 

iterating the construction, one gets non-trivial n-knots for all n . 

A similar construction can be performed on linked spheres and it 

also leaves unchanged the fundamental group of the complement. See 

van Kampen (2928) and Zeemann (3959) for details. 

The objective of multidimensional knot theory is, as for classi- 

cal knots, to perform classification, ultimately (and ideally) with 

respect to isotopy, and meanwhile with respect to weaker eauivalence 

relations. There is however with higher dimensional knots the addi- 

tional difficulty that the construction of a knot cannot merely be 

described by the simple-minded drawing up of a knot projection. Thus, 

efforts at classification (i.e. finding invariants) now have to be 

complemented by construction methods (i.e. showing that the invariants 

are realizable). This is why Artin's paper is so significant. It gives 

the first construction showing that the groups of classical knots are 

all realizable as fundamental groups of the complement of n-knots for 

arbitrary n. 

After Artin's paper, multidimendional knot theory went into a 

long sleep. Strangely enough, the theory awoke subseauently to PapaPs 

proof of the sphere theorem. One of the consequences of this famous 

result is that classical knots have aspherical complements, i.e. : 

wi(S3 - f(S3)) = 0 for i > ~. Hence a natural euestion : What about 

multidimensional knots ? The answer came Quickly : In ~959, J.J. Andrews 

and M. L.Curtis showed that the complement of the spun trefoil has a 

non-vanlshing second homotopy group. In fact their result is more 
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general and also better : there is an embedded 2-sphere which repre- 

sents a non-zero element. 

This paper was followed less than a month later by D.Epstein 

(1959) who gave a formula expressing w2" the second homotopy group 

of the complement of any spun 2-knot. A corollary of Epstein's result 

is that the complement of a non-trivial spun 2-knot has a T 2 which is 

not finitely generated as an abelian group. 

The question was then raised by R.H.Fox (~96~) to describe 7 2 

as a ~1-module. This gave the impulse for the subseauent research 

in that direction. (See for example S.J. Lomonaco Jr (!968)). 

One thus began to suspect that multidimensional knots would be- 

have quite differently from the classical ones. The major breakthrough 

came from the development of surgery techniques which made it possible 

to get a general method of constructing knots with prescribed proper- 

ties of their complements. In a perhaps subtler way, surgery techniques 

were also decisive in classification problems. See our chapters III 

and IV. 

Here is an illustration of the power of surgery techniques. A 

common feature to the examples (all based on spinning) kno~ in ~960 

was that w 2 was ~ 0 because w! g Z . It was thus natural to ask : 

Can one produce an n-knot with 72 J 0 but wl = ~ ? Clearly such an 

example cannot be obtained by spinning a classical knot. Hovewer, 

J. Stallings (see M. Kervaire's paper (1963), p. ~J5) and C.T.C. Wall 

(see his book : Surgery on compact manifolds, p.18 ) proved in 4963 

that for all n ~ 3, there exist many knots K c S n+2 with w~(sn+2-K~Z 

w2(S n+2 - K) J 0 . The construction is an easy exercise in surgery. but 

At the same time, another construction method was invented by 

E.C. Zeeman (1963). It is a deep generalization of Artin's spinning 
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called twist-spinning. We shall talk about it in chap. V § 4. 

To close this short historical survey, we ought to mention 

Kinoshita's paper (1960). It gives a construction of 2-knots by pasting 

together discs in 4-space which is probably the unique knot construc- 

tion prior to 1963 not based on spinning. There is also the somewhat 

related method used by R. Fox (1961a), where a 2-knot is described 

~ice by slice, by the moving picture of its intersection with a 3-di- 

m enslonal hyperplace sliding across R 4. 

Hovewer, one cannot expect Kinoshita's nor Fox's level curve 

methods to be applicable in higher dimensions because they still rely 

on drawings and intuitive descriptions in the next lower-dimensional 

3- spac e. 

As a conclusion, let us make a few remarks : 

i) The use of surgery techniques showed that multidimensional knot 

theory could do well without direct appeal to 3-dlmensional goemetric 

intuition nor immediate computability. There resulted a useful kickback 

for classical knot theory which benefited much, since 1965, from the 

use of geometrical tools borrowed from higher dimensional topology 

and from a partial rellnquisment of computational methods. 

2) Around 1964, it became generally accepted that the theory of imbed- 

dings in codimensions ~ 3 was well understood. Piecewise linear 

imbeddings S n S n+q with q ~ 3 are all unknotted by a theo- 

rem of E.C. Zeeman of 1962, published in Unknotting combinatorial balls, 

Ann. of Math. 78 (1963)P.501-526. The differentiable theory was in 

good shape with the works, both in 1964, of J. Levine, "A classifica- 

tion of Differentiable Knots", Ann. of Math. 82 (1965), 15-50 on the 

one hand, and A. Haefliger, "Differentiable Embeddings of S n in S n+q 

for q > 2", Ann. of Math. 83(1966)p.402-436 on the other. 
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These impressive pieces of work provided a decisive encouragement 

to take up the certainly less tractable codimension 2 case. A lot of 

effort went into it and since then the growth of the subject has been 

so important that we cannot follow a chronological presentation. We 

have chosen instead to talk about articles published after 1964 in 

the chapters corresponding to their subject as listed in the table of 

contents below. Of course, at some points, whenever convenient, we did 

go back again to papers which appeared before this date. 

For the same reason we had to delete from this survey the mention 

of many beautiful papers. In particular, we have mostly disregarded 

the papers centering around a discussion of the equivalence (or non- 

equivalence) of various possible definitions. We have rather tried 

to emphasize the moving aspect of the subject. 
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§ 2 . Some definitions and notations. 

Do we now have to tell the reader what a knot is ? 

Usually an n-knot is a codimension 2 submanifold K in S n+2. Most 

of the time S n+2 will be the standard (n+2)-dimenslonal smooth sphere. 

However, in some cases, one is forced to relax this condition. (For 

instance, when n+2 = 4, in order to get the realization theorems for 

w I. (See Chap. II, § 3). 

What K should be is a little harder to make definite. For us, it 

will be a locally flat, oriented, PL-submanifold of S n+2, PL-homeo- 

morphic to the standard n-sphere or a differential submanifold homeo- 

morphic (or diffeomorphic) to the standard n-sphere. 

The reason for such hesitations can easily be explained. The 

proof of the algebraic properties of the various knot invariants usua- 

lly does not require a very restrictive definition of a knot. In some 

cases, S n+2 could as well be replaced by a homotopy sphere and K by a 

homology sphere, or even less (see chap. V, § 5), sometimes not even 

locally flat. 

On the other hand, to be able to perform geometrical constructions 

we usually need more restrictions. For instance the proof of the exis- 

tence of a Seifert surface requires local flatness in order to get a 

normal bundle (which will be trivial). 

Moreover, when one wants to prove realization theorems for the 

algebraic invariants, the str~nger the restrictions on the knot defi- 

nition, the better the theorems. 

So we decided to let a little haze about the definition of a 

knot, leaving to the reader the task to get to the original papers 
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whenever needed and see what is really required (or used). 

The dimension of a knot is n if it is an n-dimensional sphere K 

in S n+2. We also say an n-knot. 

We refer to l-knots as being "classical" ; m-knots with n ~ 2 

are "multidimensional" 

NOTATIONS : 

X o = S n+2 - K is the complement of the knot. 

X is the exterior of the knot. (See beginning of Chap. II for the defi- 

nition). 

bX is the boundary of X. 

C denotes an infinite cyclic group, written multiplicatively. 

t is a generator of C. When C = HI(Xo), t is usually chosen according 

to orientation conventions. 

A = ZC is the integral group ring of C. If t has been chosen, A is 

canonically isomorphic to the rlng Z[t,t-1]. 

This paper is mainly intended to topologists not working in multi- 

dimensional knot theory. As the standard Jeke goes : the specialist will 

find here nothing new, except mistakes. 

Therefore, in this spirit, 

~) We have often written up in some detail elementary arguments 

which are well known to people working in the field, but perhaps not 

so easy to find in the literature. 

2) We did not attempt to talk about everything in the subject, 

but rather ~ried to emphasize what seems to be its most exciting 

aspects. 
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3) The latest news is often not here. Other parts of this book 

should fill this gap and provide references. 

On the other hand, we have assumed that the reader knows some 

algebraic and geometric topology, and even sometimes that he is mode- 

rately familiar with classical knot theory. 
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CHAPTER II : THE COMPLEMENT OF A KNOT AS AN INVARIANT 

§ I : Completeness theorems 

The idea of distinguishing knots by the topology of their complements 

goes back at least to M. Dehn (Ueber die Topologie des dreidimensiona- 

fen Raumes, Math. Annalen 69 (1910), 137-168). 

However, the question to decide Just how close the complement 

comes to be a complete invariant of the knot does not seem to have 

occured (for higher knots) before the paper of H. Gluck in 1962. 

Actually it is technically advantageous to replace the comple- 

ment X ° = S n+2 - K by the so-called exterior , that is the complement 

X = S n+2 - N of an open tubular neighborhood N of K. Observe that K 

has trivial normal bundle v so that N is diffeomorphic to S n × D 2 and 

a trivialization of v will give an identification N ~ S n × D 2. Observe 

also that X o is diffeomorphic to the interior of the compact manifold 

X and that bX = bN ~ S n × S i. Thus X determines X . The converse is 
o 

true at least for n > 3 • Since this point seems left in the dark in 

the printed literature, the following explanations may perhaps he helpfu 

Suppose X and X' are knot exteriors and let F : X ~ X ' be a diffeo- 
o o o 

morphism. Take a neighborhood U of bX of the form U ~ bX x[0,1], i.e. 

a collar. Look at the submanifold M = X' 

U 

F 
o 

X - U -~ 

X 

- Fo(X-U ) . 

M ~ Fo(X - u) 

X' 

If U has been taken narrow enough, M is contained in a collar 

around bX' and it is easy to construct continuous retractions of M onto 
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each of its two boundary components M ° = bX' and M I = bFo(X-U ). Thus 

M is an h-cobordlsm between M ° and M I. Now, M ° and M I are both dlffeo- 

morphic to S n x S I, and wIM o = E . A basic theorem of differential 

topology, the s-cobordism theorem, now states that under these conditions 

tlons and if dim M ~ 6, then the diffeomorphism F ° : b(X-U) ~ M 1 can 

be extended to a diffeomorphism F : X > X' (For a proof of the 

s-cobordism theorem see M. Kervaire, Comm. Math. Helv. 40 (1965),31- 

42. Here one also needs the fact that the Whitehead group of the infinite 

cyclic group is trivial. For this fact, see H. Bass, A. Heller and 

R.G. Swan, Publications math@matiques, I.H.E.S. No 22. In the case 

n = 3, the s-cobordims theorem does not apply and one needs Theorem 

16.1 in C.T.C. Wall's book, Surgery on compact manifolds, p. 232). 

Now, if K and K' are two knots and a diffeomorphism F : X > X' 

is given between their exteriors, then after choosing identifications 

N ~ S n x D 2 ~ N', F will restrict on boundaries to a diffeomorphlsm 

f : S n x S 1 > S n x S I . The equivalence of K and K' thus reduces to a 

question of extendability of f to a (core preserving) diffeomorphism 

S n x D 2 ~ S n x D 2 . 

One is then led to study the group q)(S n x S I) of concordance classes 

of dlffeomorphlsms of S n x S 1 onto itself. Two diffeomorphisms ho, 

h I : M--~ M are concordant if there exists a dlffeomorphism 

h : M x[0,1] ~ M x[O,i] such that h(x, O) = (ho(X), O) and 

h(x, i) = (hi(x), I). 

It is clear that indeed, only the concordance class of 

f : S n × S 1 > S n x S 1 in ~(S n x S I) matters for the extension problem 

at hand. 

The final result is then 

THEOREM : For n > 1, there exist at most two n-knots with a given 

exterior. 
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Sketch of proof. The group~(S n × S I) projects onto the group of 

concordance classes of homeomorphisms~(S n × S i) and it turns out that 

the extendability question for the above f : S n × S I ~ S n × S I depends 

only on its image in ~S n × Si). 

H. Gluck (1961) calculated ~(S 2 x S I) and proved that 

~S 2 x S I) ~ Z/2Z × Z/2Z x Z/2Z, which means that there are at most 

eight 2-knots with a given exterior. 

This number can however be cut down to two, as H. Gluck observed, 

since M(S 2 × S I) has a subgroup of order 4 generated by 

L reflection on S 2 × the identity on S I, and 

the identity on S 2 × a reflection on S I, 

which both obviously extend to core preserving diffeomorphisms 

S 2 x D 2. 7 S 2 × D 2. 

The calculation of~(S n x S I) for n ~ 5 was achieved by W.Browder 

(1966) and finally completed to include the cases n = 3 and n = 4 by 

R.K. Lashof and J. Shaneson (1969). In all cases 

~S n × S I) ~ Z/2Z × Z/2Z × Z/2Z with generators which are the obvious 

generalizations of those for n = 2 . 

It still remained the question whether inequivalent knots with 

diffeomorphic complements do actually exist. 

Examples of such knots were more recently produced by S. Cappell 

and J. Shaneson (1975) in dimensions n = 3, 4, (and possibly 5) and 

by C. Gordon (1975) for n = 2. 

The method of S. Cappe~ and J. Shaneson is general and should yield 

examples of non-equivalent knots with diffeomorphic complements for 

all n ~ 3. It stumbles for n ~ 6 on the following purely algebraic 

open problem : does there exist for all n an automorphism A of Z n+] 

without any real-negative eigenvalue and with determinant + I such 
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that for all exterior powers kiA, i = l,...,n , the endomorphism 

kiA - I : kiz n+l > kiz n+l is again an automorphism ? 

Such an A can be concocted fairly easily for n = 3,4 and if one 

finds other values of n for which A exists with the required properties, 

it can be fed into the machinery of S. Cappell and J. Shameson to pro- 

duce new examples of inequivalent n-knots with diffeomorphic comple- 

ments. 
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§ 2 . Unknotting theorems 

There is one case where one would certainly lime the complement 

X = S n+2 - K to determine the knot. That is the case where X has 
O O 

the homotopy type of S I, i.e. the homotopy type of the complement 

of the trivial, unknotted imbedding K = S n C S n+2 . Is it then true 
O 

9 that K is isotopic to K ° . 

In 1957 this was known to hold in the classical case (n = I) as 

a consequence of the so-called Dehn's lemma proved by C.Papakyrlako- 

poulos. (See Ann. of Math., 66 (1957)P.I-26). 

For n = 2, this problem is still unsolved today, as far as we know. 

For n > 3, it was solved by J. Stallings in 1962 for topological 

knots. If K c S n+2 is a locally flat, topologically imbedded n-sphere 

with n > 3 and if S n+2 - K has the homotopy type of S I, then there 

exists a homeomorphism h : S n+2 e S n+2 such that hK = K o. 

From the point of view of differential topology however, the major 

problem is whether a smooth knot K c S n+2 with S n+2 - K ~ S 1 is smoo- 

thly unknotted, i.e. whether there exists a diffeomorphism 

h : S n+2 S n+2 such that hK = K 
O 

J. Levine's paper proving this and a little more in 1964 certainly 

played a decisive role in getting multidimensional knot theory off 

the ground. 

His precise result is ~follows. 

L~VI~E!:S~~I~TX~)~EM: - Let K C S n+2 be a smooth n-knotwith 

= S n+2 K. Suppose that wi(Xo) ~ wi(S I) for i < ½(n+1) n > 4 and let X o 

Then there is a dlffeomorphlsm h of S n+2 onto itself such that hK is 
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the standard n-sphere S n in S n+2 

The proof shows in fact that under the stated hypotheses, K is 

the boundary of a contractible (n+1)-manifold V smoothly imbedded in 

S n+2. We come back on this in the section on Seifert surfaces. See 

Chap. III, § 2. 

By a theorem of S. Smale, the manifold V is then diffeomorphic 

to a disc. (See Ann. of Math. 74 (1961)P. 391-406). Thus, under the 

stated hypotheses, K bounds an (n+1)-disc smoothly imbedded in S n+2. 

The remainder of the proof is then relatively easy and has to do 

with the equivalence of various definitions of isotopy. 

There remained the case of a smooth 3-knot K 3 c S 5. It was solved 

by C.T.C. Wall (1965) and independently by J. Shaneson (1968). (Note 

that these two references are only announcements of results. For a 

complete proof see C.T.C. Wall's book : Surgery on compact manifolds, 

§ 16, p. 232). 

Remark. The reader has perhaps noticed that we have slided from 

the homeomorphism type of the complement to its homotopy type, in the 

beginning of this paragraph. The invariants we are going to talk about 

in the next paragraph are invarlants of the homotopy type of the comple- 

ment. So, the question arises whether the homotopy type determines the 

topology of the complement. There are several results in this direction. 

See S. Cappell(1969) for a discussion. Here are some striking results : 

Let us treat the exterior as a pair (X, bX). Then, the homotopy 

type of (X, bX) determines the homeomorphism type : 

i) For classical knots. This is a beautiful result due to F. Wald- 

hausen : "On irrreductible 3-manifolds which are sufficiently large" 
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Annals of Math. 87 (1968) p. 56-88. 

2) When n I> 4 and w1(X) = Z. See R.K. Lashof and J.L. Shaneson 

(1968). 
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Invariants derived from the complement. 

= S n+2 K, or In view of the importance of the complement X ° 

the exterior X, as an invariant of the knot, it is desirable to ex- 

tract from X weaker but calculable invariants such as for example 

the Alexander polynomial in the case of classical knots. 

The homology of X is uninteresting. By Alexander duality, 

H.(X) ~ H.(SI), and thus H.(X) is in fact independent of the knot. 

It was then natural to turn attention to the homotopy groups 

~i(x) of x . 

Wl(X ) was easy to understand once surgery techniques were avai- 

lable to perform the necessary knot constructions. (See M. Kervalre 

(1963))~ The fundamental group w of the complement of an n-knot, n > 3, 

is characterized by the following properties : 

(1) w is finitely presented. 

( 2 )  H I ( ~ )  = z , H 2 ( ~ )  = o , 

(3) There is an element in w whose set of conjugates generates w. 

Surgery techniques (for instance ) enable one to construct an (n+2) 

dimensional oriented manifold M with wl(M ) ~ w , and HI(M ) = 0 for 

i ~ O, i, n+l, n+2 . (For this the properties (1) and (2) of w are 

used. Surgery is not essential here) . 

Then one takes an imbedding • : S I x D n+l , M representing am 

element ~ ~ w whose conjugates generate w. One constructs a new mani- 

fold E by removing from M the interior of the image o(S 1 x Dn~l), say 

X = M - int ~(S 1 x Dn+1), and replacing it by D 2 x S n. Since D 2 x S n 
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and S I × D n+1 have the same boundary S I × S n, it follows that D 2 × S n 

can be glued to X along S ~ × S n by the map m . The resulting manifold 

Z = X U m(D 2 x S n) has the homotopy type of S n+2, and for n ~ 3 is 

therefore homeomorphic to S n+2 by the theorems of S. Smale (Annals of 

Math. 74(1961)p.391-406). Actually, with some patching up one can even 

assume that Z is diffeomorphlc to S n+2. By construction E contains a 

beautifully imbedded n-sphere, namely the core K = (0} × S n in the 

subspace N = D 2 × S n C Z . The subspace X = E - N is just the exte- 

rior of the obtained n-knot K c Z and Wl(X) ~Wl(M) ~w . 

The construction of Z from M is one of the simplest examples of 

surgery. 

For a discussion of the case n = 2, see M. Kervaire (1963) as 

well as J. Levine's article : "Some results on higher- dimensional 

knot groups" in this volume. 

These references also contain some analysis of the above algebraic 

conditions (i), (2), (3) on a group. For further work in this direction 

see J.-C1. H&usmann et M. Kervaire : "Sous-groupes d@riv@s des groupes 

de noeuds", l'Enseignement Math@matique XXIV (~978~, pp. 121-$23. 

As to the higher wi, i > I, we have already mentionned in the in- 

troduction the papers of J.J. Andrews and M.L. Curtis ($959) and 

D.B.A. Epstein (1959). 

More recently the subject has been taken up again. See E. Dyer 

and A. Vasquez (1972) and B. Eckmann (1975). Their result is that for 

n > i, the space X = Sn +2 - K is never aspherical unless the knot 
o 

is trivial. 

Nevertheless, a complete understanding of the higher homotopy 

groups of knot complements seems out of reach today. 
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The most gratifying invariants at present are the homology modules 

of coverings of X and in particular those of the maximal abelian cover 

X corresponding to the kernel of the surjection Wl(X) .2 HI(X ) . 

These are simple enough to be tractable and yet non-trivial enough 

to provide a beautiful theory. 

The homology modules Aq(K) = Hq(X) are modules over the integral 

group ring A of HI(X ) which operates on ~ as the group of covering 

transformations. The group HI(X ) is infinite cyclic and if we denote 

by t a generator of HI(X), then A is the ring Z[t, t -I] of Laurent 

polynomials in t. Observe that HI(X ) is generated by a fibre of the 

normal clrcle-bundle over K C S n+2 and thus a choice of generator t is 

provided by the orientations of K and S n+2. 

We shall follow M. Hirsch and L. Neuwirth (1964) in calling 

Aq(K) a ~ I , the Alexander modules of the knot or simply, 

following J. Levine (1974), the knot modules. 

The general problem is : What sequences of A-modules AI,...,A n 

are modules of n-knots ? (It turns out that A = 0 for q > n). 
q 

Observe that ~I(X) is Just the commutator subgroup G = [~,~] of 

the knot group ~ = w1(X ). Therefore HI(X ) is G/G' viewed as a group 

with operators from HI(X ) vla the extension I ) G/G'--~ ~/G' ~ HI(X)~-~ I. 

Thus AI(K ) is determined by the knot group ~ . 

In the classical case, AI(K ) is the only (non-zero) Alexander 

module. It possesses a square presentation matrix (over A ) whose deter- 

minant is the familiar Alexander polynomial. 

The fundamental group w = wl(X ) influences A2(K ) also . 

Since G = w~(X), there is an exact sequence 
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~2(X)  , X 2 ( ~  ) , H2(G ) , 0 

by a celebrated theorem of H. Hopf (Fundamentalgruppe und zweite Betti' 

sche Gruppe, Comm. Math. Helv. 14 (1941), 257-309) and thus A2(K ) must 

surject onto H2(G ). 

It may then perhaps be more appropriate to ask : what set 

{~, A 1, A 2 ..... An} with A I = HI(G ) and surJection A2---, H2(G), 

G = [z,~], is realizable with ~ the knot group and A the knot modules 
q 

for q = i, ..., n ? 

A start on this question with ~ infinite cyclic was made by 

M. Kervaire (1964). The formulation (in terms of the homotopy modules 

of the knot complement) was however very ackward. The decisive break- 

through was accomplished by J. Levine (1974) which we now follow. 

Let X again be the exterior of a knot K c S n+2. Assume X is trian- 

gulated as a finite complex and let X be the infinite cyclic covering 

of X with the natural triangulation (such that X , X is a simplicial 

map). We denote by C the multiplicative infinite cyolic group with 

generator t . C operates on X without fixed point and the chain groups 

Cq(X) are finitely generated free ZC-modules. 

Since A has no divisors of zero, the multiplication by l-t induces 

an injection l-t : C.(X) , C.(X). The quotient module is (canonically) 

isomorphic to the chain group of X (regarded as A-module with trivial 

action) and we get an exact sequence of complexes : 

o , c . ( ~ )  1 - t c . ( ~ )  , c . ( x )  , o  . 

Passing to the associated long homology sequence 
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... ) Hq+i(X) ~ Hq(X) l-t Hq(X)- , Hq(X) , ... 

in which Hq(X) = 0 for q > I by Alexander duality, one obtains that 

I - t : Hq(ff) , Hq(~) 

is an isomorphism for q i> 2 . Inspection of the sequence near q -- I, 

i.e. 

0-~ Hl(~ ) l-t HI(X~)___. HI(X). ' , Ho(~) l-t Ho(g ) 

reveals that l-t : HI(X)--~ HI(X ) is also an isomorphism. 

Following J. Levine (1974), we sh&ll say that a A-module A is 

of type K if 

(I) A is finitely generated (over A), and 

(2) 1-t : A--, A is an isomorphism. 

We have just seen that all knot modules are of type K. 

Of course, one cannot expect this property to characterize the 

Alexander modules of knots. 

It is a remarkable theorem of J. Levine that there is however 

just one property missing : Blanchfield duality. (Except perhaps for 

a condition on the Z-torslon submoduble of AI). 

In order to understand Blanchfield duality, recall that an oriented, 

triangulated, m-dimensional manifold M possesses an intersection pairing 

I : Cq(M, bM) ~ Cm_q(M ) , Z , 

where C.(M ~) is the chain complex of the dual cellular subdivision 

M of M. If M is compact, this gives rise to Polncar@ duality. Here, 

we shall take M = X, the infinite cyclic cover of the exterior of a 

knot K c S n+2. Of course, ~ is non-compact but C z HI(X) operates on 
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simplicially with compact quotient X. 

One first uses the action of C on X to construct a A-valued inter- 

section pairing on 

Cq(~, bX) e Cn+2_q(~*) , A : ZC 

defined by 

(x,y*) = Es~C I(x, sy*)s 

This construction actually goes back to K. Reidemeister (Durch- 

sahnitt und Schnitt von Homotopieketten, Monathefte Math. 48(1939), 

226- 239 ). 

The above pairing has nice algebraic properties and because 

X=X/C is a finite complex, it is a completely orthogonal pairing and 

one gets an isomorphism 

Hq(X, bX) ~ Hn+2-q(X,A). 

The left hand side is the ordinary homology of the pair (~, bX) 

with integral coefficients. The right hand side is the cohomology 

complex HomA(C.(X*),A ). The isomorphism is an isomorphism of of the 

A-modules provided that Hn+2-q(X,A) is given its natural right-module 

structure and Hq(X, bX) is turned into a right module by the usual 

formula x . k = ~ . x, k ~ A, where k J ~ ~ is the obvious involution 

on A sending the elements of C to their inverses. 

An elegant reformulation due to J. Levine (1974) using 

Hq(X, bX) = Hq(X) for 0 < q g n and some non-trlvlal homological 

algebra yields the following statements. 

Recall Aq = Hq(X). Let Tq be the Z-torsion submodule of Aq 

= Aq/Tq . Then, 

and F .= 
q 
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(I) There is a (-1)q(n-q)-hermitian completely orthogonal pairing 

Fq @ Fn_q+ 1 ---~ Q(A)/A 

over A, where Q(A) is the field of fractions of A and Q(A)/A is the 

quotient A-module. (Note that Q(A) is merely the field of rational fmc~ons 

Q(t). The hermitian property of the pairing is of course with respect 

to the involution of A defined above). 

(2) There is a (-l)q(n-q)-symmetric completely orthogonal pairing 

[, ] : Tq Tn_ q ,Q/Z 

with respect to which C operates by isometrles, i.e. 

[ta, t~] = [~,~] 

This second pairing has also been discovered by M.S. Farber(1974). 

Now, J. Levine's realization theorem reads as follows. 

THEOREM. - Given a sequence Ai, ..., A n o_~f A-modules of type K. Let 

Tq be the torsion submodule of Aq and Fq = Aq/Tq . Suppose that 

T 1 = 0 and that the families Fq an__~d Tq are provided with pairing as 

in (1) and (2) above. Then, there exists an n-knot K such that 

A I, ..., A n is the sequence of Alexander modules of K. 

Hopefully the unfortunate assumption T 1 = 0 will turn out to be 

removable. It is known that this assumption is not a necessary condi- 

tion on T~. 
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CHAP. III : TOWARDS A CLASSIFICATION UP TO ISOTOPY . 

§ I . Seifert surfaces. 

A basic concept for any attempt at classification is that of a 

Seifert surface. 

A Seifert surface for an n-knot K is a compact, orientable sub- 

manifold V c S n+2, such that bV = K. 

The fact that V should be orientable is important and was first 

emphasized by H. Seifert (1934) who introduced the concept and proved 

existence in the classical case. 

For multidimensional knots, the existence of a Seifert surface 

seems to have become public knowledge during the Morse Symposium at 

Princeton in 1963o (However, H. Gluck had proved it earlier for 

2-knots. See H. Gluck (1961)). It appears in print in M. Kervaire 

(1963) and E.C. Zeeman (1963). 

Here is a sketch of proof. Recall that a trivialization of the 

normal bundle of the knot K provides an identification bX ~S n × S I, 

and thus a projection bX--~ S I. 

The first step consists in showing that with a proper choice of 

trivialization above, the projection bX ~ S 1 extends to a map X---~ S I. 

This is not difficult. The homotopy classes of maps into S 1 are clas- 

sified by the first cohomology group H I with integral coefficients and 

one has enough control on both HI(X) ~ Z and the restriction homomor- 

phism i* : HI(X) ~ Hi(bX) 
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The existence of a Seifert surface now follows by transversality. 

One chooses an extension X ~ S I which is transverse regular to the 

point I ~ S I. The inverse image of I is then a codimension one subma- 

nifold W in S n+2 equipped with a non-vanishing normal vector field 

(pulled back from a tangent vector to S 1 at I). Hence, W is orientable. 

The boundary of W is precisely S n × (I} c bX . We can then add a collar 

to W, joining bW to K along the radii of the normal bundle to K and get 

the submanifold V we are looking for. 

Many constructions in knot theory depend on a Seifert surface. We 

collect in this section some of the notions derived from a Seifert sur- 

face which we shall need in the subsequent chapters of this survey (even 

though they may not pertain directly to the subject of the present 

chapter). 

First, a Seifert surface enables one to perform a paste and sciss- 

ors construction of the infinite cyclic cover of a knot. 

Let V be a Seifert surface for the knot K. Let N be an open tubu- 

lar neighborhood of K and set X = S n+2 - N. We assume V to be radial 

inside N and set W = V Q X . 

Let Y be the manifold with boundary obtained by cutting X along 

W. Equivalently, Y is obtained from X by removing a small tubular neigh- 

borhood of W, homeomorphic to W x [-I, +I]. Notice that it is here that 

the orientability of V comes Im. 

The boundary of Y is the union of two copies of W, i.e. W × {-I}= W 

and W × {+I} = W+ together with bW × I , where I = [-I, +I]. These 

pieces are glued together to form bY in the obvious way. 

Notice also that there is a natural projection map w from Y onto X 

which sends the two copies of W onto W and is otherwise injeetive. 
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(Glue again what you had cut ~ ). 

Now, let (Yi} i~Z be a collection of copies of Y, indexed by the 

integers Z . Let X be the quotient of the disjoint union~i~ Z Yi by 

the obvious identification of (W_) i with (W+)i+ 1 for all i ~ Z . The 

maps ~i : Yi ~ X are compatible with these identifications and 

provide a map p : X , X. 

It is not hard to verify that p is a covering map. The covering 

is regular and its Galois group is C. (We denote by C the group of 

integers written multiplicatively). 

Hence, p : X .7 X is "the" infinite cyclic covering of X. 

This construction has been used by L.P. Neuwirth (1959) to give 

a description of the knot group. It is also the first step in proving 

the Neuwirth-Stallings fibration theorem. (We come back on this in 

the chapter on fibered knots, Chapter V, § 3). 

The above description of the infinite cyclic cover leads of course 

to a computation of the homology of this covering by a Mayer-Vietoris 

sequence. (See M. Hirsch and L. Neuwirth (1964)). 

Indeed, let Xodd be the subspace of X which is equal to the canoni 

cal image of [~ i odd Yi in X, and let Xeven be the analogous subspace 

for i even. Obviously Xodd U Xeven = ~ and Xodd A Xeven = ~i~Z Wi' 

W i being identified with (W_)i, say. 

Let now H. denote homology with some fixed coefficient group and 
J 

let A = Z C be the integral group ring of C. One has 

Hj(X~odd ) @ Hj(~even ) = Hj(Y) ~ A , 

Hj(~i~ Z W i) = Hj(W) @ A , 

the isomorphisms being A-isomorphisms, C acting on the left hand side 
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via the Galois operations. 

The Mayer-Vietoris sequence for the decomposition X = Xodd U Lven 

produces the following exact sequence : 

Hj (Y) @ A > Hj (*) ... ~Hj(W)~A ~ ~ (i) ~ ... 

The homomorphisms are all A-modules homomorphisms. 

Moreover, if we denote by i+ the homomorphisms Hj(W) > Hi(Y) 

induced by the inclusion W+ c Y, and similarly with i_, then 

~(x @ X) = i+(x) @ tk i_(x)@ k , 

the minus sign coming from the Mayer-Vietoris sequence. Here, t is 

a correctly chosen generator for C . 

Caution. Different identifications in the construction may lead to 

slightly different formulas. 

A useful fact, due to J. Levine, is that this sequence always 

breaks up into short exact sequences 

0 , Hi(W) @ A a > Hi(Y) ~ A ~ Hj(~) , 0 @ 

In some circumstances, we may thus be on the way to get a free 

resolution of the module Hi(X). See J. Levine (1976). 

Remarks. 

i. For a very nice application of this sequence to the symmetry pro- 

perties of the Alexander polynomials, see also J. Levine (1966). 

2. A variant of this process gives a description of the g-th cyclic 

covering X of X, g an integer > I. Alternatively, X can be obtained 
g g 

as a quotient of X via the automorphism t g, where t is a generator of 
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the Galois group. One then gets for the homology of X a sequence ana- 
g 

logous to the one described above in chap. II, § 3, P. 21. 

A notion of paramount importance for all classification problems 

of knots is that of the Seifert pairing associated with a Seifert sur- 

face for an odd dimensional knot. 

This notion was introduced in the classical case by H. Seifert 

(1934). We proceed to describe it in general. 

Let K c S 2m+I be a (2m-1)-knot. Choose a trivialization of the 

normal bundle of a (truncated) Seifert surface W for the knot K. The 

trivializatlon determines a map 

i+ : W ~ Y , 

where Y, as above, is the complement of a neighborhood of V. 

There is a pairing 

L : Hm(W ) x Hm(Y) 4 Z 

defined by the linking number in S 2m~I. Now, define 

A : Hm(W ) x Hm(W) ~ Z 

by the formula A(x, y) : L(x, i+(y) 

Observe that A is bilinear and thus vanishes on the torsion subgroup 

of Hm(W). 

We note F m the free part of the integral homology Hm, i.e. 

F m = Hm/Torsion. 

Since Hm(V ) = Hm(W), we have obtained a bilinear pairing 
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A : F (V) X Fro(V) ~ Z 
m 

By definition, A is called the Seifert pairing associated with the 

Self err surface V . 

In general, there is no symmetry nor non-degeneracy properties 

satisfied by A itself. However, 

has 

(A + (-1)mAT ) (x, y) = L(x, 

= L(x, 

= L(x, 

let A T denote the transpose of A. One 

i+y) + (-l)mL(y, i+x) 

i+y) - L(x, i_y) 

i+y- i_y) , 

and this is equal to the intersection number of x and y in V . 

So, A + (-l)mA T = I is the intersection pairing on Fm(V ) = 

= Hm(V)/Torsion. Since bV is a sphere, Poincar4 duality on V implies 

that A + (-1)mA T is unimodular. 

We shall come back to the study of the Seifert pairing in § 3 below 

in the case of simple knots, and in Chap. IV again, where we talk about 

knot cobordism. 
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§ 9 . Improving a Seifert surface. 

For a given knot, there are many possible Seifert surfaces. The 

surfaces may be abstractly different (non homeomorphic), or abstractly 

the same but imbedded differently. (However, the existence proof shows 

that they are all cobordant). 

It is hence natural to look for Seifert surfaces which are "minimal 

in some sense. For classical knots, it is clear what "minimal" should 

mean : V should be connected and its genus as small as possible. But, 

for multidimensional knots, the notion is not so clear, except under 

special circumstances (such as for the odd dimensional simple knots 

which we discuss in § 3 below). 

We shall now review some cases in which one can "improve" or 

"simplify" a Seifert surface. The main point is that there is a strong 

connection between the connectivity of X and the best possible connec- 

tivity of a potential Selfert surface. 

a) For all n ~ I, if a knot has a l-connected Seifert surface, 

then X is l-connected. The first proof of this fact is due to M. Hirsch 

and L. Neuwirth (1964) and it goes as follows : if V is l-connected, 

then by van Kampen, ~I(X) ~I(Y) * Z and a generator z of Z repreo 

sents a meridian of the knot. It follows that the normal closure of z 

in ~I(X) should be the entire group. (Compare the characterization of 

knot groups in Chap. I, § 3). We see immediately that this Is possible 

only if ~I(Y) = {I}, and thus ~I(X) = Z . 

Caution . It is essential in this proof to be able to identify a gene- 

rator of the factor Z as a meridian of the knot. The question whether 
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in general a free product G * Z with G ~ {I} , may or may not contain 

an element ~hose normal closure is the whole group is still an unsolved 

problem. 

b) The converse of a) is almost true. In fact, M. Hirsch and 

L. Neuwirth (1964) proved by an argument of exchange of handles 

that if w1(X ) = {I} and if n ~ 3, then there exists a l, connected 

Seifert surface for the knot. 

The case n = i is also true. (Dehn's lemma). So there remains 

only the case n = 2 which is still open. 

c) By the above case a), Alexander duality and the homology exact 

sequence (*) of-the preceeding paragraph one sees immediately that if 

there exists a k-connected Seifert surface for a knot, then X is also 

k-connected. 

d) Now, again the converse is almost true. But this is the content 

of a deep theorem of J. Levine (1964). For clarity we separate the 

statements in two parts : 

Part. ~ : Let n ~ 2k+I and suppose that X is k-connected. Then, 

there exists a k-connected Seifert surface for the knot. 

Part 2 : Let n = 2m or n = 2m.I and suppose that ~ is m-connected. 

Then, if n ~ 4, there exists a m-connected Seifert surface V for the 

knot. 

Observe that by Blanchfield duality the condition on X in Part 2 is 

equivalent to X being contractible. Similarly, Poincar@ duality and 

the Hurewicz theorem imply that the Seifert surface V in Part 2 must 

be contractible. 
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These statements constitute the essential part of J. Levine's 

unknotting theorem. Suppose that X has the homotopy type of S 1 and 

that n ) 4. Then X is contractible and so K bounds a contractible 

Seifert surface V. By S. Smale, V is a P.L. disk and so K is P.L. 

unknotted. If n ) 5 and K is differentlable, then K is differentiably 

unknotted and so has the standard differential structure. 
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In view of Levine's unknotting theorem, it is natural to study 

the n-knots which are "almost" trivial ; that is those for which 

zi(X) = 0 for i < m with n : 2m or n : 2m-l. These knots have been 

called simple by J. Levine. Their study breaks up into two cases, de- 

pending upon the parity of n . 

First case : n odd. 

This case has been much studied by J. Levine (1969). We describe 

now the content of his paper. 

By the statement under d), Part. I, in the preceeding paragraph, 

one can find for any simple knot K c S 2m+l a (m-1)-connected Seifert 

surface V. As dim V = 2m the only non-trivial homology group of V 

is Hm(V), where we use integer coefficients. 

It is not difficult, using Poincar@ duality and the paralleliza- 

bility of V in the case m even, to see that Hm(V ) is a free abelian 

group of even rank. Moreover, for m ~ 2, the conditions we have on V 

imply that V is obtained from a 2-dimensional disk by attachning handles 

of type m. (See C.T.C. Wall : "Classification of (n-1)-connected 2n- 

manifolds" in Annals of Math. 75 (1962), p. 163-198). 

So, odd dimensional simple knots have a tendency to look like 

classical knots. For instance, it is obvious how to define a minimal 

Seifert surface V for them : V should be (m-1)-conneeted and the rank 

of Hm(V ) as small as possible. 

In order to classify odd dimensional simple knots, J. Levine un- 

dertakes to classify all (m-l)-connected Seifert surfaces whether mini- 
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mal or not, which are associated to such a knot. 

It turns out that the Seifert pairing does the job. Let K be a 

simple (2m-1)-knot and let V = V 2m be a (m-l)-connected Selfert surface 

for K. Since Hm(V ) is torsion free, the Selfert pairing is a bllinear 

map 

A : Hm(V ) x Hm(V)----* Z 

such that A + (-1)mA T is (-l)m-symmetric and unimodular. 

THEOREM . For m ~ 3, the isotopy class of an (m-1)-connected Selfert 

surface V for a simple (2m-1)-knot is determined by its associated 

Selfert pairing. 

For a proof, see J. Levine (1969), p. 191, sections 14 to 16. 

Furthermore, using the fact that two Seifert surfaces for the 

same knot are cobordant, J. Levlne shows : 

Fact i : For m ~ I, any two Seifert pairings for a given knot 

are S-equivalent. 

S-equlvalence is the equivalence relation generated by Isomorphisms 

and by the following elementary operations : replace the underlying 

Z-module H by H x Z x Z and A by A' or A", where A', A" are expressed 

matriclally by 

/ 

A ! 

I I I I 

0 ... 0 

0 0 

0 0 

0 0 

1 0 

/ 

A 

0 .... 0 0 

0 .... 0 0 
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Fact. 2 : Suppose m > 2 . Let K and K' be two simple (2m-i)-knots, 

each equipped with a (m-l)-connected Seifert surface. Suppose that the 

two corresponding Seifert pairings are S-equivalent. Then the two knots 

are isotopic. 

This is of course the most difficult part of the theory. It relies 

heavily on the classification of Seifert surfaces described in the 

above theorem. 

Definition : Given an integer m ~ 2, define a Seifert form (for m) 

to be a bilinear form 

A : E×E 

on a finitely generated free 

unimodular. 

Z 

Z-module E such that A + (-l)mA T is 

For m = 2, observe that the Seifert surface is a smooth, paral- 

lelizable 4-manifold, with boundary a sphere, and therefore, by V.Roch- 

lin's theorem its intersection pairing has a signature divisible by 16. 

(For V. Rochlin's theorem, see J. Milnor and M. Kervaire, Bernoulli 

numbers, Homotopy groups and a theorem of Rochlin, Proc. of the Int. 

Congress of Math., 1958, p. 454-458). Thus, for m = 2, a Seifert form 

will be defined as a bilinear map A as above subject to the additional 

condition that ~gnature (A + A T ) ~ 0 mod 16. 

We can now state the last needed fact. 

Fact 3 : Given a Seifert form A for m . Then, if m ~ 2, there 

exists a (m-l)-connected (orientable) submanifold V 2m c S 2m+I such 

that bV is homeomorphic to the (2m-1)-sphere and A is the associated 

Seifert pairing. For m = 2, the same statement holds, except that now 

A is only S-equlvalent to the Seifert pairing of the constructed Sel- 

fert surface V. 
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In the classical case (m = i), this fact is due to H. Selfert 

himself. For multidimensional knots, see M. Kervaire (1964) in the 

case m ~ 2 , and J. Levine (1969) in general. 

Putting all these facts together, J. Levine obtains the theorem : 

For m ~ 2, the isotopy classes of simple (2m-1)-knots are in one- 

to-one correspondence with the S-equivalence classes of Seifert forms. 

In the classical case (m = i), the isotopy classes of l-knots are 

mapped onto the set of S-equivalence classes of Seifert forms. This 

fact was known already to H. Trotter (1960) and to K. Murasugi (1963). 

But the mapping is not inJective. For instance, knots with trivial 

Alexander polynomial are mapped into the trivial S-equivalence class. 

Remarks : From J. Levine's theorem, the set of simple 5-knots 

is isomorphic to the set of 9-knots, to the set of 13-knots, etc... 

The bijection is well defined. So, it is natural to ask whether one 

can define this bijection directly. In the case of fibered knots, such 

a construction is provided by L. Kauffman and W. Neumann (1976). 

Let K be a simple (2m-1)-knot. Look at the set of all its minimal 

Seifert surfaces. Question : Are all these surfaces isotopic ? If they 

are, we would say that the minimal Seifert surface for K is (essentially 

unique. 

By J. Levine's theorem this question can now be attacked algebrai- 

cally. Look at the (minimal) Seifert pairing associated with the mini- 

mal surfaces. We know that they are all S-equivalent. But if the answer 

to the question is "yes", they should all be isomorphic (m ~ I). Con- 

versely, for m ~ 2, if they are isomorphic, the Seifert surfaces are 

isotopic. Thus the problem is to determine the isomorphism classes of 
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of Seifert forms within a given S-equivalence class. This algebraic 

problem has been attacked by H. Trotter in several papers (1960), 

(1970) and (1972). Sometimes the S-equivalence class determines the 

isomorphism class, sometimes it does not. Sometimes the answer is un- 

known. The problem involves the determinant of a minimal Seifert pai- 

ring (which is an invariant of the knot and therefore of the S-equiva- 

lence class of the Seifert form). As an example, there is only one 

isomorphism class in the given S-equivalence class if this determinant 

is + 1, a result which can be interpreted (and proved) geometrically, 

using fibered knots. 

H. Trotter's papers give also nice answers to other old questions. 

For instance, it is easy to see that if we change the orientation of 

the knot, we must also change the orientation of the Seifert surface 

because K and V are given orientations which correspond each other via 

the homology exact sequence, and then, the normal vectors to V have to 

change direction. It is then easy to see that the initial Seifert form 

is changed into its transposed (up to a sign which seems to be (-l)m+]). 

H. Trotter then gives examples of Seifert forms which are not S-equiva- 

lent to their transpose, showing thus that non-invertible knots exist 

for m > I. For m = I this is the famous result first proved by H.Trotter 

(1963). 

For m > 2, it is also rather nice, because it is not based on the 

non-symmetry of some Alexander invariant. Related reference : 

C. Kearton (1974). 

Second case : n even . The case of even dimensional simple knots 

is much harder than the first case because there is no such simple al- 

gebraic invariant as the Seifert pairing. There is only a complicated 

invariant consisting of a composite algebraic object. However, the 

classification has almost been completed by C. Kearton (1975). The 

problem h&8 also been taken up by S. Kojima (1977) and A. Ranicki(1977). 
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§ 4 . Seifert pairings and the infinite cyclic covering . 

As may perhaps be expected, the Seifert pairing is related to the 

calculation of H.(X) using a Selfert surface as explained in § i. 

Let K C S 2m+l be an odd dimensional simple knot and V a (m-l)- 

connected Seifert surface for K . 

Recall that the Alexander duality gives an isomorphism 

d : Hm(Y ) > Hm(w) , 

where we keep the notations of § I. (W is the truncated Seifert sur- 

face and Y is the exterior X of the knot cut along W). 

Because W is (m-l)-connected, the evaluation map 

e : Hm(w) > Hom(Hm(W), Z) 

is also an isomorphism. 

Now, let a ~ Hm(V ) and b E Hm(Y ) be given. Then L(a,b) is by 

definition the integer obtained by evaluating on a ~ Hm(V ) the homo- 

morphism ed(b). (Recall Hm(V ) = Hm(W)) . 

In other words, the (right) adJoint to L : HmV × HmY--~ Z is 

precisely ed. 

So, the adjoint to A : HmV × HmV ~ Z is edi+ : Hm(V ) 

Hom(Hm(V), Z) • 

As e and d are (canonical) isomorphisms, we see that the alge- 

braic properties of i+ will be reflected by those of A. 

Now, if we start from a Z- basis of Hm(V), we can take the dual 

basis for Hom(Hm(V), g) and get via d and e a basis for Hm(Y ). 
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With respect to these bases, the matrix expressing the bilinear 

form A will be precisely the matrix for the map i+ : Hm(V) ~ Hm(Y). 

Returning to the short exact sequence 

Hm(V) @ A c ~ Hm(Y) @ A ~ , Hm(X) (* ) 0 0 

of § 1, with integer &oefficients, the Z-bases for Hm(V) and Hm(Y ) 

give A-bases for the tensor products. 

It now follows from the formula 

(×~) : i+(x) ~ t~ - ~_(x) e 

of § I, that the matrix expressing a is At + (-1)mA T 

So, from a Seifert matrix for K (i.e. the matrix of a Seifert 

pairing for K), one can get a presentation matrix for Hm(X). For 

classical knots this result is due to H. Seifert. 

We now consider the Blanchfield pairing on Hm(X), still assuming 

that K is a simple (2m-1)-knot. A study of the above exact sequence 

(*) with various coefficients reveals that for simple knots, Hm(X ) 

is Z-torslon free. See, for instance, the thorough study made by 

J. Levlne (1976), § 14. 

So, the Blanchfleld pairing reduces to a pairing 

Hm(~) × Hm(g) , Q(A)/A 

(Compare § 3 in Chap. I). 

Now, H. Trotter (1972) and C. Kearton (1973) have shown that 

this Blanchfield pairing is determined by the Seifert form in the 

following way. Let us take as generators for Hm(~) the images by 

: Hm(Y) @ A ~ Hm(X ) of the basis elements chosen for 

Hm(Y) @ A . Of course, they do not form a basis for Hm(X), but there 
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still is a matrix representative of the Blanchfield pairing with 

respect to this set of generators, and it is 

(1-t)(At + (-I)mAT) -1 

(See the exposition in J. Levine (1976), prop. 14.}). 

Again, different conventions will lead to slightly different 

formulas. 

This result is the starting point of H. Trotter's paper (1972). 

More precisely, to every free abe!Jan group equipped with a Seifert 

form A, H. Trotter associates a ZC-module with presentation matrix 

At + (-1)mA T and equipped with a Blanchfield pairing represented 

by the matrix (I - t)(At + (-1)mAT) -I 

He then goes on to prove that 

(I) S-equivalent Seifert forms give rise to isomorphic Blanchfield 

pairings, and the deep result : 

(2) If two Seifert forms give rise to isomorphic Blanchfield pairings, 

then they are S-equivalent. 

A nice geometric consequence of this result is that simple 

(2m-l)-knots (for m ~ 2) are classified by their Blanchfield duality. 

This furnishes an intrinsic classification for these knots. The same 

result has also been proved by C. Kearton (1973). 

An interesting question, asked by C. Kearton, and which pro- 

vides our conclusion to this chapter, is whether the same is true for 

simple even dimensional knots. Possibly, A. Ranicki will tell you the 

answer. 
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§ I : Prehistory . 

The notion of knot cobordism was invented in the context of 

classical knots around 1954 by R. Fox and J. Milnor. 

An announcement appeared in 1957 but the paper itself (with 

simplified proofs) was only published in 1966. 

Knot cobordism is a weaker equivalence relation between knots 

than isotopy and part of the motivation for introducing it certain- 

ly is the discouraging difficulties involved in the classification 

up to isotopy. But there is another motivation. The idea of knot 

cobordism is also related to the topological study of isolated 

codimension two singularities. 

Suppose that Mu+~CNn+3 is an embedded submanifold which is 

locally flat except at one point x ° ~ M. Intersecting M with the 

boundary of a small disk neighborhood U of x in N will yield a 
o 

(knotted)sphere K of dimension n in bU = S n+2. Thus an n -knot. 

Definition : A knotted n -sphere K c S n+2 is null-cobordant if 

K is the boundary of a locally flat embedded disk B c D n+3 . 

The requirement of local flatness for B is of course essential, 

or else the cone over K from the center of D n+3 would trivially do 

the Job. 

It has been believed that at least for n = I, the singularity 

at the vertex of the cone may be removable, yielding a null-cobordlsm. 
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This is definitely not the case. In fact we shall see that it is even 

worse than its higher dimensional analogues. 

Going back to the embedded M n+! C N n~3 with K = M N bU as defined 

above, it is clear that if the knot K c S n+2 is null-cobordant, then 

the embedding M c N can be replaced near x o by a locally flat embed- 

ding of M. 

Conversely, if the embedding M c N can be changed near x 
o 

within some neighborhood of x in N, to produce a locally flat em- 
o 

bedding, the above knot was null-cobordant. 

Thus in some sense, the local singularity of M at x ° is des- 

cribed by the knot cobordism class of K. 

An additional pleasant feature is that the set of cobordism 

classes has nicer algebraic properties than the set of isotopy 

classes. The set K n of isotopy classes of n-knots forms a commutative 

monoid under ambiant connected sum (Joining the knotted spheres by 

a tube). It turns out that modulo null-cobordism, the quotient 

monoid actually is an abelian group C n. (Incidentally, it does not 

seem to have attracted attention to investigate whether or not C 
n 

is in any sense the largest quotient group of Kn). 

R. Fox and J. Milnor looked at CI and after proving that the 

Alexander polynomial of a null-cobordant knot must be of the form 

tgf(t)f(I/t) for some polynomial f ~ Z[t], they recognized that C 
i 

could not be finitely generated. 

A good surprise came with the simple result 

C2m = 0 for all m ~ ~ , 

proved in M. Kervaire (1964). But it soon appeared that (contrary 

to tempting dreams) the groups C2m_~ are indeed non-finitely generated 
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for all m I> I. 

Much effort was then devoted to the rather formidable task of 

computing C2m- I" 
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§ 2. The algebraization of the problem. 

By analysing the obstructions which arise if one tries to apply 

to the odd dimensional case the ~urgery methods used to calculate 

C2m , J. Levine (1969) extracted a purely algebraic description of 

C2m_l which again hinges on the concept of a Seifert form. 

Recall from Chap. III, § I, that a Seifert form for m is a bi- 

linear pairing A : E × E ~ Z on some finitely generated free 

Z -module E such that A + (-l)mA T is unimodular. (If m = 2, there 

is also a condition on the signature). 

If K c S 2m+l is a (2m-l)-knot and V is a Seifert surface for K, 

then the Seifert pairing 

A : Fm(V) × Fro(V) , Z 

on the torsion free part Fm(V ) of Hm(V ) is a Seifert form. 

Moreover, by our discussion of simple knots in Chap. III, § 3, 

Fact 3, every Seifert form is (essentially) the Seifert pairing of 

a (simple) knot. 

The first step is to carry over to Seifert forms the notion of 

cobordism. 

Definition :A Seifert form A : E × E--~ Z is said to be null-cobordant 

(or split) if there exists a totally isotopic subspace E ° c E such 

that E ° = Eo]-, where 

E L o = ( x ~ E I A(y,x) = A(x,y) = 0 for all y ~ E ° } . 

It turns out that the monoid of Seifert forms (for a given m) 
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modulo null-cobordant forms becomes a group under the operation of 

direct sum. 

Of course the definition of this group resembles much the defi- 

nition of the Witt group of Z . But here the forms A are not assumed 

to be symmetric, and the resulting group is tremendously more compli- 

cated than W(Z). 

J. Levine's theorem says that for a given m ~ 2, the group of 

Seifert forms modulo split forms is isomorphic to the knot cobordism 

graup C2m_l of (2m-l)-knots. 

For m = I, there is a surjection of C 1 onto the cobordism 

group of Seifert forms. But it is known that the kernel is non-zero. 

(Compare C. Gordon's survey of classical knot theory in this volume). 

A corollary of J. Levine's theorem is that C is periodic of 
n 

period 4 for n ~ 4. Again, it was natural to try and explain the 

periodicity by direct geometric arguments. This was done by S. Cappell 

and J. Shaneson (1972) and by G. Bredon (1972). 

In order to prove that C2m = O, one takes a Seifert surface V 

for the given knot K c S 2m+2. Thus, dim V - 2m+l. The method con- 

sists in performing surgery on V, increasing its connectivity by 

attaching handles which are imbedded in D 2m+3. Thus, the effect 

of surgery is to increase the connectivity of V at the cost of 

pushing it into D 2m+3. As the dimension of the core of the handles 

does not exceed m + i (because it suffices to make V m-connected), 

there is no obstruction to imbedding problems in D 2m+3. It follows 

that the given knot K c S 2m+2 bounds a contractible submanifold of 

D 2m+3, and thus is null-cobordant. 

In contrast, for a (2m-l)-knot K c S 2m+~ , the Seifert 

surface V has dimension 2m . The above method will still enable one 
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to replace V by M c D 2m+2 with M (m-l)-connected . In fact, one 

proves in this way that K is cobordant to a simple knot K' c S 2m+l, 

where K' bounds an (m-l)-connected Seifert surface V' c S 2m+l. 

But at the last step, i.e. in the attempt to make ~' m-connec- 

ted, one hits obstructions. They arise from the problem of exten- 

ding to the interior of a bunch of (m+l)-dimensional discs a given 

embedding of their boundaries into S 2m+l. 

The cobordism group of Seifert forms measures precisely these 

obstructions to constructing a null knot cobordism. 
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§ 3. Unraveling the integral knot-cobordism group. 

We borrow the title of this section from the paper of N.Stolt- 

zfus (1976) containing a major part of the calculation of C2m_I. 

Here is a summary of some of this work: 

The reader will have guessed that together with the purely 

algebraic definition of C2m_l comes the possibility of defining 

cobordism groups of bilinear forms over other coefficient domains 

than Z . It was J. Levine (1969) who recognized this possibility as 

an essential tool in calculating C2m_l by algebraic methods. 

We begin by recasting accordingly the definition of a Seifert 

form. 

First note that our previous definition of a Seifert form for 

m depended on m via the sign (-i) m only. The condition on the signa 

ture for m = 2 need not really be dragged along as it is easily 

recaptured at the end of the calculation of C 3. 

Definition I : Let R be a commutative ring and M an R-module. Let 

¢ = + I . An e-form is an R-bilinear form 

A : E x E ~ M 

on a finitely generated R-module E, satisfying the condition that 

S = A + eA T is unimodular, i.e. 

ad  (S )  : E ~ HomR(E , M) 

is an isomorphism, where as usual 

ad (S) (x) (y) : S(x, y). 

As before, A itself is not assumed to possess any symmetry nor 

non-degeneracy property. 
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Basic examples are the cases R = M = Z , and E is then Z-free 

of finite rank, or R = M = k, a field, or R = Z, M = Q/Z and E is 

a finite abelian group. 

Definition 2 : An c-form A : E x E---~ M is split (or metabolic) if 

there e x i s t s  a n  R - d i r e c t  summand E c E s u c h  t h a t  E = E ± w h e r e  
o o o 

EO ]- = {x ~ E I A(x,y) = A(y,x) = 0 for all y ~ Eo} . 

Note that two e-forms A : E x E > M and B : F x F , M can 

be added by direct sum A @ B : (E @ F) x (E @ F) , M, where 

(A @ B)(x @ y, x' @ y') = A(x,x') + B(y,y'), and A @ B is again an 

c -form. Obviously, if A and B are split forms, so is A @ B . 

Given a commutative ring R and an R-module M, one can then 

define the group CRC(M ) of cobordlsm classes of M-valued c-forms 

A : E x E ~ M modulo split forms. Two e-forms A and A' represent 

the same element in CRC(M ) if there exist split forms H and H' such 

that A @ H ~ A' @ H' . The addition in CRC(M) is induced by the 

direct sum of c-forms and the inverse of a class represented by the 

form A : E x E--~ M is represented by the form -A 

We shall abbreviate CRC(R ) to CO(R). 

By J. Levine's theorem in the preceeding paragraph, C2m_l = 

= C(-1)m(z)" for m ~ 3. For m = 2, C 3 is the subgroup of C + l ( Z )  

g e n e r a t e d  b y  t h e  ( + 1 ) - f o r m s  A s u c h  t h a t  S = A + A T h a s  s i g n a t u r e  

d i v i s i b l e  b y  16 .  F o r  m = 1, t h e  g r o u p  C 1 s u r j e c t s  o n t o  C - I ( Z )  a n d  

the kernel is definitely non-zero. (Compare C. Gordon's survey in 

this volume). 

Caution : Unfortunately, CR(M ) is not a functor in M. On the other 

hand, in the special cases which one needs to consider in order to 

calculate CO(Z), it turns out that if A is equivalent to a split form, 
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i.e. A © H ~ H' , where H and H' are split, then A itself is a split 

form. However, we do not know how much of this remains true under 

reasonably general conditions for R and M. 

The starting point for the study of C~(Z) is the inclusion 

C~(Z) c C~(Q) 

and the calculation, due to g. Levine (1969), of C¢(Q) which yields 

a complete system of algebraic invariants detecting the elements 

o f  c~(z). 

Here is a summary of the method, extended by N. Stoltzfus 

(1976) to any perfect field k. 

Given an c-form A : E x E > M, let s : E , E be the 

endomorphism defined by 

S(sx,y) = A(x,y) 

for all x,y e E, where S = A + cA T 

We have S(sx,y) + S(x, sy) = A(x,y) + A(y,x) = S(x,y), or 

s(sx,y) : S(x, (i-s)y) . 

We propose to call s an additive isometry. 

Suppose now that R = M = k, a perfect field. 

Let f = fs be the (monic) minimal polynomial of s : E > E . 

It is easily verified, using the isometric property of s, that f is 

self-dual, i.e. 

f(~-X) = (-I) deg f f(X). 

Suppose that f E k[X] is irreducible. Then E becomes a vector 

space over the extension field K = k[X]/(f). Denoting by d the element 

corresponding to X in K, the action of ~ on E is defined by ~.x = s(x) 

for all x ~ E, 
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Observe also that K possesses an involution a~-~ determined 

by ~ = I -O . 

The form S is then lifted to an c-hermitian, K-valued form 

( , ) : E×E .~K 

on E, where (x,y) ~ K is defined by the formula 

t r a c e K / k  { a . ( x , y ) }  = S ( a . x ,  y)  

f o r  a l l  a c K . 

This construction is due to J. Milnor and it plays a decisive 

role in the calculation of knot cobordism groups. (See J. Milnor, 

On isometries of inner product spaces, Inventiones Math. 8 (1969), 

83-97). 

Thus, if the minimal polynomial f of s is irreducible, there 
s 

is associated with the c-form A : E × E--~ k an c-hermitian form over 

K = k[X]/(fs). Conversely, the above trace formula redefines S and A 

if a non-singular c-hermitlan form is given on some K-space E. 

It turns out that every c-form A : E × E--~ k over a field k 

is cobordant to a direct sum of c-forms A i whose associated endo- 

morphisms s i : E i × Ei--~ k have irreducible minimal polynomials. 

Denoting by HC(K) the Witt group of c-hermitian forms over the 

field K = k[X]/(f) with involution induced by X I 7 I-X, the result 

of the calculation of CO(k), due to J. Levine (1969) in a somewhat 

different formulation, is that 

= ~c(Kf) , CC(k) O f~p 

where P is the set of self-dual irreducible polynomials over k, and 

K~ = k [ X i / ( f )  
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Note that f = X - ½ if and only if Kf = k with trivial involu- 

tion. In that case 

H ~ ( K f )  = Wm(k) 

is the ordinary Witt group of c-symmetric forms. If f / X- ½ , then 

Kf/k has a non-trivial involution. In this case also the Witt group 

He(Kf) is well known by the work of W. Landherr (Abh. Math. Sem. 

Hamburg Univ. 11 (1935)p.245). It is not hard to derive a presen- 

He(Kf) by generators and relations similar to the one tation of 

for Witt groups of symmetric forms. (See the book of J. Milnor and 

D. Husemoller, Symmetric bilinear forms, Springer Verlag, 1974). 

More precisely, let F be the fixed field of the involution on K. 

If a ~ F', let < a>denote the hermitian form 

( , ) : K x K , K of rank I given by (x,y) = axy 

Then, there is a surjection Z[F'] , H(K) given by [a]---~ < a >. 

Here H(K) = H +I(K). The kernel is the ideal of Z[F'] generated by 

the elements of one of the forms 

[a] - [a.x.~] 

[ a ]  + [-a] 

[ a ]  + [ b ]  - [ a  + b]  - [ a b . ( a  + b ) ]  

f o r  a , b ,  a + b ~ F ' ,  x ~ K" 

For ¢ =-I, observe that if the involution on K is non-trivlal 

then H-I(K) ~ H+I(K) under the map ( , )--, v/--~.( , ) , ~.here 

K = F ( V / - ~ )  . 

The above argument yields in particular 

C~(Q) = e f ~ p  H ~ ( K f )  , 

where P is the set of irreducible polynomials which are self-dual, 
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i.e. f(l-X) = (-i) deg f f(X) . 

Actually, what is needed for the calculation of C¢(Z) is the 

group 

Coe(Q) = @ f ~ I  He(Kf  ) ' 

where I is the set of irreducible integral self-dual polynomials . 

N. Stoltzfus (1976)observes that there is an exact sequence 

o ~ c e ( z )  > Coe(Q) ~ , C z ~ ( ~ / z )  , o 

where a : C ¢(Q) , CZe(©./Z]. _ , is defined as follows 
0 

Let A : E x E > Q be an c-form representing some element 

Co~(Q ) . Because s = S-IA has integral characteristic polynomial, in 

there is an integral lattice L c E on which S is integral valued 

and which is invariant by S. Define 

L' = ( x ~ E I S(x,y) ~ Z for all y ~ L } . 

Then L C L '  and E = L' / L is a Z-module with a Q /Z -valued form 

S : E x E ~ Q/Z defined by S (x ,y ) = S(x,y)mod Z for x,y ~ L' re- 

presenting x ,y ~ E 

The dual L' is also invariant by s and therefore there is an 

additive isometry s : E ----~ E induced by s and satisfying 

s* ( s * ~ , y )  = s* (~,  ( l - s * ) y )  

for all x,y ~ E . It is not hard to verify that 

ad S : E ~ Hom(E~,Q /Z ) 

is an isomorphism. 

By definition 

s-x- [ ~ . , s , s ]  = [E*, s , ] 

At this point, one has to calculate CeZ(Q/Z ). A localization argument 
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gives first 

where p runs over all rational primes. Now, Cg(~p) has been evalua 

ted above since F is a perfect field, and it can be calculated ex- 
P 

plicitly. Wequote Corollary 2.9. of N. Stoltzfus' paper (1976) : 

c~(~p) = ez/2z e w~(rp), 

where We(Fp) is the Witt group of the prime field and the first 

direct sum is taken over all irreducible, self-dual, monic polyno- 

mials except X - ½ . This is for p an odd prime, if p = 2 only 

the first summand is present. 

In the remainder of his paper N. Stoltzfus uses algebraic 

number theory to make the above results more explicit. We cannot 

enter into the details here. 
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§ I : General properties 

In this chapter we study the very important special case of 

fibered knots. At least two reasons make this special case worth 

of study : 

I) Knots which appear as local singularities of complex hyper- 

surfaces are fibered knots. 

2) The geometry of the complement of fibered knots can be made 

quite explicit and thus many knot invariants get a very nice geome- 

trical interpretation. 

Let us start with the definition. Racall that HI(X;Z)~ Z and 

let t be a chosen generator. One says that K is a fibered knot if 

one is given a representative p : X >S 1 for t, which is a locally 

trivial (differentiable) fibration. 

Remark : It is often nice to add the further restriction that 

plbX~ S I (which is, by hypothesis, a fibration) should be the 

projection onto the fiber associated with a trivialization of the 

sphere normal bundle to K in S n+2. A useful remark due to S. Cappell 

shows that whenever n / 2,3, one can always change p such that this 

further requirement is satisfied. See Cappell (1969). In the sequel, 

we shall usually make this assumption. 

The fiber of p is a codimension one submanifold W of S n+2. It 

is connected because p represents a generator of HI(X;Z). (To see 
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the end of the homotopy exact sequence of the libra- 

> ~(s I) , %(F) , o .) 

If we add to W a collar inside the normal bundle to K in S n+2, 

we get a Seifert surface V for K. 

S 1 Choose now a point I ~ and remove a small open interval I 

centered in I. Call J the big closed interval that remains, p-1(I) 

is a trivialised open neighborhood of W in X. So, p-l(j) is what we 

called Y in Chap. III§ 1 . But, as J is contractible, p-i I Y > J 

is a trivial fibration. So, Y is homeomorphic to W x J. 

Looking at things a bit differently, we see that we can think 

of X as being obtained from W x [0, i] by W x{0} and W x{1} identified 

together via a homeomorphism h : W ~ W. More precisely, X is the 

quotient of W x [0,1] by the equivalence relation (x,0) N (h(x),~). 

h is called "the" monodromy of the fibration, p being given, 

h is well defined up to isotopy. If we insist that p satisfies the 

restriction condition on bX, we shall get a monodromy map which is 

the identity on bW. 
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§ 2. The infinite cyclic covering of a fibered knot. 

Let us consider the product W x R and the equivalence relation 

(x,a) ~ (hi(x), a+j) for any j ~ Z . It is immediate to verify that 

the quotient space is homeomorphic to X. Moreover, the quotient map 

W × ~ ~X is a regular covering map, whose Galois group is C. So 

thls is the infinite cyclic covering of X. We deduce from that : 

I) X has the homotopy type of W, which is a compact C.W. complex. 

2) The generator t of the Galois group C acts by the map 

(x,a)I ~ (h(x), a+l). So t acts on H.(X) as h acts on H.(W). 

As before, let us denote by Fk(X ) the torsion-free quotient of 

Hk(X~Z ). By I), Fk(X ) is a finitely generated free abelian group 

and it is also a ZC-module. Under these circumstances,a theorem 

of algebra says that a generator k of the first elementary ideal of 

the ZC-module Fk(X ) is just the characteristic polynomial of t @ 

Moreover, it is not hard to see that k is Just the Alexander poly- 

nomial A I of Hk(X;Z ). (The lazy reader can look at Weber's paper in 

this book). Recalling that t acts like ~ we get the folklore theo- 

rem : 

When a knot fibers, the Alexander polynomial of Hk(X;Z)is just 

the characteristic polynomial of the monodromy h k acting on Fk(W), 

As it is a characteristic polynomial, its leading coefficient 

is +I ; as h k is an isomorphism on the finitely generated free abe- 

lian group Fk(~ ) its last coefficient is ~I 

Remark : A simplified version of the above argument gives the fol- 

lowing : Let F be a field. Then the order of the PC-module Hk(X~;F) 

is just the characteristic polynomial of the automorphism 
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h k : Hk(W;F ) ~ Hk(W;F) . Cf Milnor (1968a)and (1968b). 

Using some more algebra, it is not hard to see that the minimal 

polynomial of the action of h k on Fk(W ) is &I/&2 , A i being the 

g.c.d, of the ith elementary ideal of Hk(~; Z). 

See R. Crowell : "The annihilator of a knot module" Proceedings 

AMS 15(1964) p. 696-700. This fact is much used by people working 

on singularities. For instances see N.A'Campo (1972a). 

Let us close this paragraph by mentioning that fibered knots 

give a nice interpretation of the pairing of torsion submodules 

mentioned in Chap. II §3 : it is the linking pairing induced on tb~ 

fiber by Poincar4 duality (See J. Levine (1974) § 7) • 
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§ 3 : When does a knot fiber ? 

We saw in this chapter § I that a knot fibers if and only if 

one can find a Seifert surface V such that Y is homeomorphic to 

W × [O,i]. One can choose a homeomorphism which is the "identity" 

from W+ to W × (0) . The homeomorphism we get from W to W × (I} is 

just h . 

Moreover i+ and i are homotopy equivalences. So, (i+) k and 

(i) k : Hk(W ~ Hk(Y ) are isomorphisms and : 

h k = (i+)k-I • (i_) k for all k . 

If the fibered knot is (2m-i)-dimensional, the Seifert pairing 

A : Fm(W ) × Fm(W ) ~ Z associated with the fiber W is unimodular, 

because (i+) m is an isomorphism. 

Suppose now that, for a given (2m-1)-knot, we can find an (m-i)- 

connected Seifert surface W such that its Seifert pairing is unimodu- 

lar. Then, if m > 3, by the h-cobordism theorem Y is homeomorphic to 

the product W x [0, I] and so the knot fibers. Moreover, using notations 

introduced in chap. III§ i and § 3, the matrix for h is given by 
m 

(_I) m÷l A -I , A T 

For classical knots (m = I), the unimodularlty of a Seifert 

matrix is necessary for a knot to fiber, but it is not sufficient. 

See R. Crowel! and D. Trotter (1962). The correct condition, due 

to L. Neuwirth and J. Stallings is that one should find a Seifert 

surface such that i+ and i induce isomorphisms on the fundamental 

group. 

It is harder to get useful fibration theorems for non-simple 

knots. 
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However, we saw in § 2 that a necessary condition for a knot to 

fiber is that the extremal coefficients of the Alexander polynomial 

for Hk(X;Z ) should be ± I for all k ~ I. A theorem due to D.W. Sum- 

nets says that the converse is true if Wl(X) = Z and n ~ 4. See 

Sumners (1971). 

If one spins a fibered knot, one gets again a fibered knot. This 

fact has been used by J.J. Andrews and D.W. Sumners (1969). 
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An important and striking way to construct a fibered knot is 

E.C. Zeaman's twist-spinning. 

We give a sketched description of the twist-spinning construction 

and for more details, we refer the reader to Zeeman's original paper 

(1963), where the geometry of the construction is beautifully des- 

cribed. 

Look at the unit closed ball E n+2 as being the product E n x E 2. 

In E 2 use polar coordinates, (p,@) being mapped onto pe 2iw@, 0 <p41,O(~l. 

So, a point in E n+2 will be described by a triple (x,p,@). Also, S 1 

is the unit circ~in E 2, with angular coordinate e , 0 ~ e < i . 

Suppose now that we have a subspace A c E n+2. Let r ~ Z be 

S 1 given. The full r twist of A is the subspace A r ~ E n+2 x consis- 

ting of the quadruples : (x,p,@ + re,e) for all (x,p,@) ~ A, e ~ [0, i]. 

It is obvious that A is abstractly homeomorphic to A × S I. 
r 

Now, let an n-knot K c S n+2 be given. Choose a small open (n+2)- 

disc neighborhood of a point belonging to K such that : 

1) The intersection of the disc with K is an open n-disc. 

2) The small disc pair thus obtained is standard. 

Let us take the complementary pair (D n+2, B). Identify D n+2 

with E n+2. r ~ Z being given, look at the pair (D n+2 x S I, Br ). 

S I On the boundary it is the standard (S n+l x S 1, S n-I x ), because 

via the identification bB goes to bE n x (0} . Glue along the boundary 

the standard (S n+1 x D 2, S n-1 x D 2) and you get an (n+1)-knot; because, 

abstractly for any k ~ 0 (D k x SI)-L(S k-1 × D 2) glued along S k-1 x S 1 

yields S k+1. 
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This is the r-twist spinning of the original knot. 

If we are careful that the subball B C D n+2 is standard near 

the boundary, the twist-spun knot will be differentiable, if we 

started with a differentiable knot. 

It is not hard to see that, for r = O, the construction is es- 

sentially Artin's spinning. Changing e into -e changes the r-twist 

spun into the (-r) one, so the construction really depends on Irl 

The properties of the twist-spinning operation are given by : 

Zeeman's theorem : Suppose r ~ 0 . Then : 

i) The exterior of the r-twist spun knot fibers on S I, in the sense 

of § I. 

2) The fiber W is the r-th cyclic branched covering of the original 

knot, minus an open (n+2)-disc. 

3) Let f be a correctly chosen generator of the Galois action on 

the unbranched r-th cyclic covering of the exterior of the original 

knot. f extends to an automorphism T of the branched cyclic covering 

(the knot being fixed) and T restricts to an automorphism h of the 

punctered branched cyclic covering W. h is of order r and can be 

taken as the monodromy of the fibration. Beware : h is not quite 

the identity on bW. 

4) There is an action of S 1 on S n+3 leaving the twist-spun knot 

invariant, and acting freely outside the knot. But the action on the 

knot is not the identity. 

Comments : 

a) Because of point 4), one is very close to counter-examples to 

the Smith conjecture, for multidimensional knots. Soon after Zeeman's 
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paper, C.H. Giffen (1964) was able to produce such counter-examples; 

by using as a start the twist-spinnlng operation. Several other 

counter-examples are now known (all for non-classical knots ~ ) . 

b) By § 2, the infinite cyclic covering of the r-twist spun knot 

has the homotopy type of the punctered branched r-cyclic covering 

of the original knot, and the monodromy is "known". So, to compute 

the invariants of the new knot, one can use classical procedures 

about branched cyclic coverings. 

c) A generalization of Artin's result about 71 of a spun knot 

shows that Wl of the r-twist spun knot is obtained from wl of the 

original knot by adding the relations saying that the r-th power 

of the meridian commutes with everybody. J. Levine has a very 

useful way to look at the twlst-splnning contruction which yields 

this result very nicely. (Unpublished). 

d) As the l-branched cyclic covering of an n-knot is the (n+1)- 

sphere, l-twist spun knots bound a disc and are thus trivial. 
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§ 5. Isolated singularities of complex hypersurfaces. 

Let f : C m+1 ~ C be a C-polynomial map, such that f(O) = 0 

and that 0 ~ C m+l is an isolated singularity of f. (This means that 

the C-gradient of f does not vanish in a neighborhood of 0 except at 

0). J. Milnor (1968b) shows : 

i) The intersection K of the hypersurface f-l(O) = H with sufficiently 

s m a l l  s p h e r e s  S 2m+1 i n  C m+l ,  c e n t e r e d  i n  O, i s  t r a n s v e r s a l .  Thus  K 
c 

i s  a ( r e a l )  c o d i m e n s i o n  two s u b m a n i f o l d  o f  S 2m+1, b u t  n o t  n e c e s s a r i l y  
C 

a sphere. 

2) The exterior of K in S 2m+1 fibers in the strong sense, i.e. the 

restriction of the fibration to bX is the projection onto S I associa- 

ted to a trivialization of the normal bundle of K in S 2m+I. 

3) The fiber W has the homotopy type of a wedge of m-dimensional sphe- 

res. 

If we look at the homology exact sequence of the pair V mod.K, 

we see that K is not too far from being a homology sphere. Its only 

(possibly) non-vanishing homology greups are in dimensions (m-i) and 

m .Their vanishing depends on the intersection pairing on Hm(V ) = 

Hm(W ). Moreover one can prove that if m ~ 3, K is slmply-connected . 

It is clear that there is a Seifert pairing for W, and that, if 

we agree to call "knots" submanifolds such as K, we have got an odd 

dimensional, fibered, simple knot. One can check that Levine's S-equi- 

valence theory works in that case also. So, from a topological point 

of view, the situation is rather well understood. See A.F. Durfee 

(1973) for detail. 
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Remarks : 

a) It is known (see Milnor's book) that locally around 0, the pair 

(cm+I,H) is homeomorphic to the cone on the pair (s2m+I,K). Thus, 

topologically, the singularity is determined by the knot. 

b) If f : U , C is a holomorphic map with f(O) = 0, (U open neigh- 

borhood of 0 in C m+l) and with 0 as isolated singularity, then the 

germ of f at 0 is analytically equivalent to a polynomial. For a 

very detailed discussion of this kind of results see : "Remarks 

on finitely determined analytic germs" by J. Bochnak and S.Lojasie- 

wlcz in Springer Lecture Notes vol. 192 (1970) p. 262-270. So one 

can apply the theory also to holomorphic germs. 

c) Define two holomorphlc germs fi : U i- ~ C , i = 1,2, U i open 

neighborhood of 0 in C m+l, fi(O) = 0, to be topologically equiva- 

lent if there exist a germ ~ of homeomorphism at 0 ~ C m+], ~(0)= 0 

and a germ ~ of homeomorphism at 0 E C, ~(0) = 0 such that : 

f2 = ~ " fl " ~ in a suitable neighborhood of 0 ~ C m+l. 

A recent theorem of H.C. King (1977) Says that, if m ~ 2, two 

holomorphic germs with isolated singularities at 0 are topologically 

equivalent if and only if the knots they determine are isotopic. So, 

roughly speaking, the knot determines the topological type of the 

germ f, a result much stronger than the classical one stated in a) 

above. 

The main question in the topological study of isolated singula- 

rities of complex hypersurfaces is to relate the topological invariants 

coming from knot theory and the invarlants coming from algebraic 

geometry. (Here, when we say "topological" we mean as well "dif- 

ferential" as opposed to "algebraic" or "analytic"). 
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For instance, the differential structure on K is an interesting 

invariant. More precisely : 

I) One would like to compute the knot invariants from the alge- 

braic data. Historically the whole story began (after O. Zariski's 

work in the thirties) when F. Pham (]965) and subsequently E. Brieskorn 

(1966) studied the sigularities : 

i i i i k 
f(Zo ' zl .... , Zk ) = (Zo) o + (zl) + ... + (Zk) 

In that case, computations can be done. For other results, see 

P. Orlik and J. Milnor (1969). 

2) One would also like to know when a given knot is obtained from 

a singularity. This can be first attacked by trying to determine 

which restrictions are imposed on the knot invariants when it is 

"algebraic", besides the fact that it is a fibered knot. Striking 

examples of such restrictions are : 

a) The monodromy theorem, which says that the roots of the Alexan- 

der polynomial of Hm(X;Z ) (which is the characteristic polynomial 

of hm) are all roots of unity. See E. Brieskorn(1969). 

b) There exists a basis for Hm(W;Z)such that the Seifert matrix 

is triangular. See A.F. Durfee (1973). 

c) The trace of h m is equal to (-i) m+i. See N.A'Campo (1972b) and, 

more generally, N. A'Campo(1974). 

All these are very deep results about singularities. 

Since the beginning of the theory, a lot of work has been 

spent to get nice geometrical descriptions of some singularities. 

For recent results, look at L.H.Kauffman (1973) and also at 

L.H. Kauff~an and W.D. Neumann(i976). 
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For a more detailed exposition and more references about the 

whole subject, the reader should see J. Milnor's book (1968b), 

A.H. Durfee (1975), M. Demazure (1974). 

Historical remark : The theory of isolated singularities began 

in the late twenties by the study of singularities of complex plane 

curves, approximately at the same time as knot theory really star- 

ted (exception being made for M. Dehn's papers). In fact, progres- 

ses were made in knot theory to understand O. Zariski's results 

about curves and conversely, algebraic geometers found beautiful 

applications of J.W. Alexander and K. Reidemeister's work. It is 

amusing to note that a remark (due to W. Wirtinger) about the 

singularity z12 + z23 = 0 being locally the cone on the trefoil 

knot appears already in E. Artin's paper (1925). This permits us 

to close this paper at the point where we started it. 
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