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Abstract. We prove a close cousin of a theorem of Weinberger about the
homotopy invariance of certain relative eta-invariants by placing the prob-
lem in operator K-theory. The main idea is to use a homotopy equivalence
h : M → M ′ to construct a loop of invertible operators whose “winding num-
ber” is related to eta-invariants. The Baum-Connes conjecture and a technique
motivated by the Atiyah-Singer index theorem provides us with the invariance
of this winding number under twistings by finite-dimensional unitary repre-
sentations of π1(M).

1. Introduction

Eta-invariants arose in the work of Atiyah, Patodi, and Singer [APS1] as the
contribution from the boundary in their formula for the signature of a manifold
with boundary.

Definition. Let N be a smooth, compact, Riemannian manifold, and let D be a
self-adjoint, first-order elliptic operator on N . Define

ηD(s) =
∑

λ∈sp(D),λ6=0

sign(λ)|λ|−s,

where sp(D) is the spectrum of D.

The sum converges for Re s � 0. It is a deep result that ηD(s) has an analytic
continuation that is regular at s = 0 — see [G], for instance. The quantity ηD(0)
measures the “spectral asymmetry” of D, in the sense that if D is an operator
whose spectrum is symmetric with respect to 0, then ηD(0) = 0.

Let N be a 4k-dimensional, oriented, Riemannian manifold with boundary M . If
N is locally a (Riemannian) product near the boundary, the Atiyah-Patodi-Singer
signature theorem [APS1] states that

Sign(N,M) =

∫
N

L(TN) + ηD(0),

where D is the signature operator on M , and L is the Hirzebruch L-class of N .
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In [APS2], ηD(0) is examined for signature operators on manifolds M which are
not necessarily boundaries. Suppose M has fundamental group Γ. Let α, β : Γ →
U(n) be unitary, finite-dimensional representations of Γ of the same dimension. Let
Lα be the flat vector bundle over M associated to α. Let Dα denote the signature
operator with coefficients in Lα.

Define

ηα(s) = ηDα(s), ηβ(s) = ηDβ
(s),

and set

ρα,β(s) = ηα(s)− ηβ(s).

In [APS2] it is proved that ρα,β(0) is a differential invariant of M (it does not
depend on the Riemannian structure on M). We denote ρα,β(0) by ρα,β(M); it is
called the relative eta-invariant of M associated to the representations α, β [APS2].

The following question may be posed: Is ρα,β(M) a homotopy invariant of M? In
other words, if h : M →M ′ is an orientation-preserving homotopy equivalence be-
tween oriented compact manifolds without boundary, is ρα,β(M) = ρα◦h∗,β◦h∗(M ′)?

The answer to this question is no in general, as is illustrated by the example
of the lens spaces L(7, 1) and L(7, 2). These are homotopy equivalent manifolds
([deR], Theorem 1, p. 97) which have different relative eta-invariants [Kes].

On the other hand, Neumann has shown in [N] that ρα,β(M) is a homotopy in-
variant for manifolds M with free abelian fundamental group. Mathai reproved this
result using index theory [M]. In 1988, Shmuel Weinberger [W] noticed a connection
between the homotopy invariance problem for eta-invariants and the assembly map
in surgery theory. He extended Neumann’s result, proving the homotopy invariance
of ρα,β(M) for a larger class of manifolds M , those for which the Borel conjecture
is known for the fundamental group Γ.

Motivated by the close analogy (see [KM] and [HR]) between the assembly map
in surgery theory and the index map of Kasparov [K2] and Baum-Connes [BCH],
our goal is to give an analytic proof of a result parallel to Weinberger’s, with the
Borel conjecture replaced by its operator-theoretic analogue, the Baum-Connes
conjecture.

Let C∗maxΓ and C∗redΓ denote the full and reduced group C∗-algebras of Γ, respec-
tively. Denote by BΓ the classifying space for principal Γ-bundles. For torsion-free
discrete groups Γ, the Baum-Connes conjecture (see [BCH]) states that a certain
index map µred : K∗(BΓ) → K∗(C∗redΓ) is an isomorphism. At the present time
the groups Γ for which this conjecture is known to be true have the property that
K∗(C∗maxΓ) ∼= K∗(C∗redΓ). Thus, for the torsion-free discrete groups for which
the Baum-Connes conjecture is currently known, there is an index isomorphism
µmax : K∗(BΓ)→ K∗(C∗maxΓ). In our work we will need to use the maximal group
C∗-algebra since we require that finite-dimensional unitary representations of Γ
induce a representation of the C∗-algebra involved.

Theorem 1.1. Let M be a closed, smooth, oriented, odd-dimensional, Riemann-
ian manifold. Suppose that π1(M) = Γ is torsion-free and the Baum-Connes index
map µmax is an isomorphism for Γ. Let α, β be finite-dimensional unitary repre-
sentations of Γ of the same dimension. Then the relative eta-invariant ρα,β(M) is
an oriented homotopy invariant of M .
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We will prove this theorem by means of the following association of ideas:

Eta-invariants←→Winding numbers←→ K-theory.

In Section 2 we establish a link between eta-invariants and the winding numbers of
(open) paths of unitary operators. Using these paths and a homotopy equivalence
h : M →M ′ we construct a loop of unitary operators describing an element of the
K-theory of C∗maxΓ. At this point we will bring the Baum-Connes machinery to
bear upon the problem of understanding the invariance of the winding number of
this loop under twistings by finite-dimensional unitary representations of Γ.

Most of the known groups covered by our theorem are covered by Weinberger’s
and vice versa. There are however, two examples of groups for which we are able to
extend Weinberger’s result, namely, amenable groups and other groups which act
metrically properly on Hilbert spaces [HK].

Some of the techniques developed in the proof may be of interest for other
purposes. In particular, this applies to our observation that K-homological equiv-
alences between elliptic operators on manifolds are realized through paths of oper-
ators with certain controlled analytic properties.

2. Winding numbers

First we review an integral formula for the eta-invariant. Notice that∫ ∞

0

t
s−1
2 λe−λ

2tdt = Γ( s+1
2 )sign(λ)|λ|−s for Re s > −1.

Here Γ(s) =
∫∞
0 ts−1e−tdt is the gamma function. Let D be the signature operator

on a smooth, closed manifold M . Summing over all λ ∈ sp(D), λ 6= 0, we get for
Re s� 0, ∫ ∞

0

t
s−1
2 trace(De−tD

2

)dt = Γ( s+1
2 )ηD(s).

Analytically continuing to s = 0 and noting that Γ(1/2) =
√
π, we obtain

1√
π

∫ ∞

0

t−
1
2 trace(De−tD

2

)dt = ηD(0).

From the substitution t→ t2 we get

2√
π

∫ ∞

0

trace(De−t
2D2

)dt = ηD(0).(2.1)

For a detailed derivation see [G]. The convergence of this integral is a delicate
matter which is also treated in [G]. Notice though that according to this formula,

ρα,β(0) =
2√
π

∫ ∞

0

trace(Dαe
−t2D2

α)− trace(Dβe
−t2D2

β )dt,

where α, β : Γ → U(n) are finite-dimensional unitary representations of Γ of the
same dimension. The right-hand side of the above equation exists for much easier
reasons than the integral appearing in (2.1) since it involves a difference of inte-

grands. For small t, the Schwartz kernel of Dαe
−t2D2

α is concentrated near the
diagonal and (up to a small error which vanishes as t → 0) depends only on the
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local geometry of the manifold and the bundle Lα. Since Lα is flat, it has no local
geometry. It follows that as t→ 0 the difference of local traces

tracex(Dαe
−t2D2

α)− tracex(Dβe
−t2D2

β )

(where x ∈M) converges uniformly to 0.
Now, let Ut, a ≤ t ≤ b, be a norm continuous path of unitary operators on a

Hilbert space H satisfying:

1. Ut = I + Trace Class, for a ≤ t ≤ b; and
2. the path Ut is smooth in the trace norm.

Define the winding number of U = {Ut}a≤t≤b:

w(U) =
1

2πi

∫ b

a

trace(U−1
t

dUt
dt

)dt

(compare [HS]). Let ϕ(x) = 2√
π

∫ x
0 e−t

2

dt. Define a path of unitary operators by

Vt = − exp(iπϕ(tD)).

Since 1+exp(iπϕ(x)) and the derivative of exp(iπϕ(x)) are Schwartz class functions,
the path Vt satisfies conditions 1 and 2 above (except that it is defined on the open
interval 0 < t <∞). Formally calculating the winding number of V = {Vt}t>0, we
get

w(V) =
1

2πi

∫ ∞

0

trace
(
V −1
t

dVt
dt

)
dt

=
iπ

2πi

∫ ∞

0

trace
(
exp(−iπϕ(tD)) exp(iπϕ(tD))ϕ′(tD)D

)
dt

=
1√
π

∫ ∞

0

trace
(
De−t

2D2)
dt

=
1

2
ηD(0).

Twist Vt by α to obtain the path V α
t as follows:

V α
t = − exp(iπϕ(tDα)).

Then

2 lim
ε→0

(w(Vαε )− w(Vβε )) = lim
ε→0

2√
π

∫ 1/ε

ε

trace(Dαe
−t2D2

α)− trace(Dβe
t2D2

β )dt

= ρα,β(M).

3. The Baum-Connes conjecture

Let h : M → M ′ be a homotopy equivalence between manifolds M,M ′. Let Γ
be the fundamental group of M and let D and D′ denote the signature operators
on M and M ′ respectively. Let Lmax denote the Miscenko bundle [Ros1]; this is a
flat bundle over BΓ whose fibers are projective C∗maxΓ-modules. Let Dmax, D

′
max

denote the signature operators with coefficients in the pullback of Lmax over M,M ′

respectively. Let

Vt = − exp(iπϕ(tDmax)), V
′
t = − exp(iπϕ(tD′max)).

If ε > 0, then we shall obtain, from the homotopy equivalence h : M →M ′, a loop
[h] of operators on Hilbert C∗maxΓ-modules which is comprised of four segments, two
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Figure 1. The loop [h].

of which are the closed paths {Vt}1/εt=ε and {V ′
t }1/εt=ε. The remaining two segments

are constructed as follows: we use the hypothesis of injectivity of µmax to connect
Vε to V

′
ε through what we shall call the small time path (denoted STε) of unitary

operators. This will be done in Section 5. In Section 4 we shall connect V1/ε to V
′
1/ε

through a large time path (denoted LT1/ε) of unitary operators (see Figure 1).
Note that the large and small time paths actually depend on ε > 0. However,

the homotopy class of [h] is independent of ε. Putting the constructions of these
paths aside for a moment, we shall outline in this section our proof of Theorem 1.1.

Notice that [h] is a loop of unitary operators, each of which is a compact pertur-
bation of the identity. So [h] corresponds to an element of π1(GL(C∗maxΓ)), which
by Bott periodicity is the same as K0(C

∗
maxΓ); see [B].

Now every finite-dimensional unitary representation α : Γ→ U(n) determines a
trace map traceα : K0(C

∗
maxΓ)→ C.

Lemma 3.1. Let the twisted index map Indexα : K0(BΓ)→ Z be given by

Indexα([H, F ]) = Index(Fα).

(Here [H, F ] is an abstract elliptic operator on BΓ; these form the basic cycles of
Kasparov’s model for K-homology [K1].) Then, the following diagram commutes:

K0(BΓ)
µmax−−−−→ K0(C

∗
maxΓ)

Indexα

y ytraceα

Z −−−−→ C
Proposition 3.2. If the Baum-Connes assembly map

µmax : K0(BΓ)→ K0(C
∗
maxΓ)

is surjective, and if α, β : Γ→ U(n) are finite-dimensional unitary representations
of Γ of the same dimension, then traceα = traceβ on K0(C

∗
maxΓ). In particular,

traceα[h]− traceβ [h] = 0.
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Proof. Let [P ] ∈ K0(C
∗
maxΓ). Since µmax is surjective, there is a preimage [H, F ] ∈

K0(BΓ) to [P ]. By Lemma 3.1, all we need to check is that Index(Fα) = Index(Fβ).
To simplify the argument slightly we will assume for now that BΓ is a manifold.

By using Chern-Weil theory and the Chern isomorphism, one can show that in
topological K-theory, flat bundles are of the following form [Ros2]:

[Lα] = dim(α).1 + torsion ∈ K0(BΓ).

Thus, since dim(α) = dim(β), we have that

[Lα]− [Lβ] = torsion ∈ K0(BΓ).

Now we know that there is a canonical pairing

K0(X)⊗K0(X)→ Z
given by

[E]⊗ [F ]→ Index(FE).

And thus,

Index(Fα)− Index(Fβ) = ([Lα]− [Lβ])⊗ [F ]

= torsion⊗ [F ]

= 0.

To calculate traceα[h] we note that tensor product with α constructs from a loop
of unitary operators on a Hilbert C∗maxΓ-module a loop of Hilbert space unitary
operators. Let us denote by [h]α the loop so obtained from [h]. Like [h] it is

composed of four segments: the paths {Vα,t}1/εt=ε and {V ′
α,t}1/εt=ε together with paths

STε,α and LT1/ε,α. We shall prove in Sections 4 and 5 that:

Theorem 3.3. If α, β : Γ → U(n) are finite-dimensional unitary representations
of Γ of the same dimension, then in the limit as ε → 0, the winding numbers of
STε,α and STε,β are equal, whereas the winding numbers of LT1/ε,α and LT1/ε,β are
zero.

Now,

Lemma 3.4. Let α be a finite-dimensional, unitary representation of Γ. Then

traceα([h]) = w([h]α).

From Theorem 3.3 and Lemma 3.4 we obtain:

Theorem 3.5. For α, β : Γ → U(n) finite-dimensional unitary representations of
Γ of the same dimension and [h] as above,

traceα[h]− traceβ [h] = ρα,β(M)− ρα,β(M ′).

Proof. By Lemma 3.4 the traces of [h] are winding numbers. Decomposing the
winding numbers into contributions from the four segments of [h], we see from
Theorem 3.3 that the α and β contributions from the large and small time paths
cancel one another as ε → 0, whereas the remaining contributions converge to
ρα,β(M)− ρα,β(M ′).

Proof of Theorem 1.1. This is immediate from Proposition 3.2 and Theorem 3.5.
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4. The large time path

In Theorem 3.18 in [HR], Higson and Roe write down an explicit path that
realizes the equality in K∗(C∗maxΓ) of the indices of the signature operators of
homotopy equivalent manifolds having fundamental group Γ (compare also [KM]).
We use this path to obtain the large time path. One checks by an explicit calculation
that for any finite-dimensional unitary representation α of Γ,

Lemma 4.1. As t→∞, the winding number of LTt,α converges to 0.

5. The small time path

The small time path is obtained from the equivalence relation defined in K-
homology and a result of Kasparov.

Lemma 5.1 ([KM]). If the Baum-Connes assembly map is injective, then [D] =
[D′] in K1(BΓ).

Sketch of Proof. It is first established that due to the homotopy equivalence h :
M →M ′, D and D′ have the same index in K1(C

∗
maxΓ); see Theorem 3.18 in [HR].

The result then follows from the injectivity of µmax.

Definition. Let ε > 0. An ε-compression of a bounded operator F is an operator
Fε satisfying the following conditions:

1. Fε is a trace class perturbation of F ; and
2. the propagation of Fε is no more than ε.

Definition. An operator F is said to have polynomial growth if there is a polyno-
mial p such that for each ε > 0, there is an ε-compression of F , Fε, satisfying

‖F − Fε‖1 < p

(
1

ε

)
.

Definition. Let Y be a metric space. A path Ft of bounded operators on a Hilbert
space H equipped with an action of C(Y ) is called a controlled path provided the
following are true:

1. the path Ft has polynomial growth; and
2. the paths F 2

t − 1 and Ft(F
2
t − 1) are paths made up of trace class operators

and are trace-norm continuous and piecewise continuously differentiable in
the trace norm.

Note that this definition is modelled on the equivalence relation in Kasparov’s
realization of K-homology [K1]. In particular, a controlled path is a homotopy of
abstract elliptic operators in the sense of [K1].

Definition. A chopping function is a continuous function f on R which satisfies
the following:

1. |f | ≤ 1;
2. limx→±∞ f(x) = ±1.

In the following theorem we use the (M,E, φ) description of K-homology due
to P. Baum [BD]. We also use the notion of a degenerate operator as defined by
Kasparov in his formulation of K-homology [K1].
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Definition. Let Y be a compact Riemannian manifold (possibly with boundary).
Let H be a Hilbert space equipped with an action of C(Y ). A degenerate operator
is a bounded self-adjoint operator F on H satisfying:

1. F 2 − I = 0;
2. Ff − fF = 0 for all f ∈ C(Y ).

Theorem 5.2. Let Y be a compact Riemannian manifold with boundary. Let
(M,E, φ) and (M ′, E′, φ′) be two Baum K-cycles on Y and suppose that φ : M → Y
and φ′ : M ′ → Y are Lipschitz maps. Let χ(x) be a chopping function such that:

1. the derivative of χ is Schwartz class;
2. the Fourier transform of χ is smooth and is supported in [−1, 1]; and
3. the functions χ2 − 1 and χ(χ2 − 1) are Schwartz class and their Fourier

transforms are supported in [−1, 1].

Let DE, D
′
E′ be the Dirac operators on M,M ′ respectively, with coefficients in E,E′

respectively. If
[
(M,E, φ)

]
=
[
(M ′, E′, φ′)

] ∈ K∗(Y ), then there are degenerate
operators A,A′ such that

1. χ(DE)⊕A and A′ ⊕ χ(D′E′) are defined on the same Hilbert space H;
2. the Hilbert space H has an action of C(Y );
3. χ(DE)⊕A is connected to A′ ⊕ χ(D′E′) by a controlled path.

A consequence of Lemma 5.1 and Theorem 5.2 is

Corollary 5.3. There is a controlled path Fs,ε connecting ϕ(εD)⊕I and ϕ(εD′)⊕I.
Let STε = {− exp(iπFs,ε)|0 ≤ s ≤ 1}.
If α and β are finite-dimensional unitary representations of Γ of the same dimen-

sion, then

Lemma 5.4. As ε→ 0, the difference of the winding numbers of STε,α and STε,β
converges to zero.

Sketch of Proof. Using standard techniques (see [R], Proposition 5.11), one writes

STε,α(s) = Fs,ε +Gs,ε

where Fs,ε has small propagation and tr(Gs,ε) → 0 as ε → 0. Now the Schwartz
kernels of Fs,ε are localized near the diagonal and hence depend only on the local
geometry of the manifold and the bundle Lα. Since Lα is flat, it has no local
geometry and thus the kernel of Fs,ε does not detect it. Thus w(Fs,ε) is independent
of Lα and w(Gs,ε)→ 0 as ε→ 0.
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