
K-THEORY HOMOLOGY OF SPACES

ERIK KJÆR PEDERSEN AND CHARLES A. WEIBEL

Abstract. Let KR be a nonconnective spectrum whose homotopy groups give the algebraic
K-theory of the ring R. We give a description of the associated homology theory KR∗(X)
associated to KR. We also show that the various constructions of KR in the literature are
homotopy equivalent, and so give the same homology theory

0. Introduction

There is a generalized homology theory E∗ associated to every spectrum E, namely

En(X) = lim
i→∞

πn+i(Ei ∧X)

In particular this is true if E is the nonconnective K-theory spectrum KR of a ring R. In this
paper, we give a geometric interpretation of KRn(X) for n ≤ 0 ( and a new interpretation
for n > 0)

Let X be a subcomplex of Sn, and form the open cone O(X) on X inside Rn+1 (which
is the open cone on Sn). There is a category C = CO(X)(R), whose objects are based free
R-modules parameterized in a locally finite way by O(X), and whose morphisms are linear
maps moving the bases a bounded amount. (Compare with Quinn’s geometric R-modules in
[13]). The group K1(C) is generated by the automorphisms in C, with well-known relations
[1]; our main theorem yields the formula:

KR0(X) ∼= K1(C)

When R = Zπ, these groups appear as obstruction groups of bounded (or thin) h-cobordisms
parameterized by O(X) with constant fundamental group π. (See [8] for a relatively elemen-
tary proof of this. This, of course, is in accordance with the basic results of Chapman [2, 3]
and Quinn [11, 12]).

The negative KR-homology groups of X can be obtained from the formula KR−n(X) =
KR0(S

nX). The positive KR-homology groups are Quillen’s higher K-groups of C:

KRn(X) ∼= Kn+1(C) for n ≥ 0.

To make the proofs easier, it turns out to be better to generalize the above discussion,
replacing the category FR of finitely generated based free R-modules by any additive category
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A. We impose the semisimple exact structure of [1], i. e., declaring every short exact sequence
split, in order to compute the K-theory of A; this makes Bass’ groups K1(A) the same as
Quillen’s by [17].

This being said, we can generalize the spectrum KR (for A = FR) to the nonconnective
spectrum KA constructed in [9] and ask about KA-homology. There is a category CO(X)(A),
generalizing CO(X)(R) and described in §1 below. In §2 we make this construction functorial
in X. Our Main Theorem is carefully stated in §3 and proved in §4:

Main Theorem. The KA-homology of X is naturally isomorphic to the algebraic K-theory
of the idempotent completion C∧ of C = CO(X)(A), with a degree shift:

KA∗−1(X) ∼= K∗(CO(X)(A)∧).

Note that K∗(C∧) = K∗(C) for ∗ ≥ 1 but that K0(C∧) 6= K0(C) in general. For example if
C = FR, then K0(C) is Z (or a quotient of Z) but K0(C∧) = K0(R). If ∗ < 0 and C 6= C∧,
the groups K∗(C) are not even defined. As in [9], the key technical step is an application of
Thomason’s double mapping cylinder construction from [15].

The knowledgeable reader will wonder about the relationship between the spectrum KA
and other nonconnective spectra in the literature. We pin down this loose end in §6. When
A = FR we show that our spectrum KFR is homotopy equivalent to the Gersten-Wagoner
spectrum of [4, 16]. For general A, we prove that our spectrum KA is homotopy equivalent
to Karoubi’s spectrum [6]. Actually, the discussion in [6] only mentions K0 and K1, and not
spectra, since it was written before higher K-theory emerged. We devote §5 to showing that
Karoubi’s prescription in [6] actually gives an infinite loop spectrum. The authors want to
thank W. Vogell for pointing out an error in an earlier draft of this paper.

1. The functor C
In this section we generalize the functor Ci(A) considered in [9] to a functor in two variables.

We have already described how Ci(−) is an endofunctor of the category of filtered additive
categories [9]. We remind the reader that a filtered additive category is an additive category
A, that comes with a filtration of the homsets Hom(A, B)

0 ⊆ F0 Hom(A,B) ⊆ F1 Hom(A,B) ⊆ . . . ⊂ Hom(A,B)

such that

a) Fi Hom(A,B) is a subgroup and Hom(A,B) = ∪Fi Hom(A,B).
b) F0 Hom(A,A) contains 0A and 1A for each A, all coherence isomorphisms of A, all

projections A⊕B → A and all inclusions A → A⊕B.
c) if f ∈ Fi Hom(A,B) and g ∈ Fj Hom(B,C) then g ◦ f ∈ Fi+j Hom(A,C).

Note that any additive category may be endowed with “discrete filtration”, in which

F0 Hom(A,B) = Hom(A,B)

for every A,B.
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Thinking of the lower index i as the metric space Zi or Ri, we shall now turn C into a
functor of that variable. (See [9, Remark 1,2,3]).

Definition 1.1. Let X be a metric space and A a filtered additive category. We then define
the filtered category CX(A) as follows:

1) An object A of CX(A) is a collection of objects A(x) of A, one for each x ∈ X,
satisfying the condition that for each ball B ⊂ X, A(x) 6= 0 for only finitely many
x ∈ B.

2) A morphism φ : A → B is a collection of morphisms φx
y : A(x) → B(y) in A such

that there exists r depending only on φ so that
(a) φx

y = 0 for d(x, y) > r
(b) all φx

y are in Fr Hom(A(x), B(y))
(We then say that φ has filtration degree ≤ r.

Composition of φ : A → B with ψ : B → C is given by (ψφ)x
z =

∑
y∈X ψy

zφ
x
y . Notice that

the sum makes sense because the category is additive and because the sum will always be
finite. The category CZi(A) is the category Ci(A) of [9].

We now introduce the categoryM of metric spaces and proper, eventually Lipschitz maps.

Definition 1.2. The category M has objects metric spaces X. A morphism f : X → Y
must be both proper and eventually Lipschitz. We remind the reader that a map f : X → Y
is Lipschitz if there exists a number k ∈ R+ such that

d(f(x), f(y)) ≤ kd(x, y)

We say that f is eventually Lipschitz if there exist r and k, only depending on f , so that

∀x, y ∈ X, ∀s ∈ R+ : if s > r and d(x, y) < s then d(f(x), f(y)) < k · s.
Finally, we call f proper if the inverse image of a bounded set is bounded.

Example 1.3. One should note that maps in M are not necessarily continuous, but any
jumps allowed must be universally bounded. For example the map R → Z sending a real
number x to the greatest integer smaller than x is a map in M.

Given a proper eventually Lipschitz map f : X → Y we obtain a functor f∗ : CX(A) →
CY (A) by defining (f∗(A))y = ⊕z∈f−1(y)A(z) for objects A in CX(A). Since the inverse of a
bounded set is bounded, there are only finitely many nonzero modules in a ball in Y , and
f∗(A)) is well-defined. On morphisms f∗ is induced by the identity. The eventually Lipschitz
conditions on f ensures that we indeed do get morphisms in the category CY (A). Hence
C−(A) is a functor from M to (semisimple filtered) additive categories.

Lemma 1.4. Let X and Y be metric spaces and give X × Y the max metric,

dX×Y ((x1, y1), (x2, y2)) = max(dX(x1, x2), dY (y1, y2)),

then CX×Y (A) = CX(CY (A)).
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Proof. This is where we use that C takes values in filtered categories. The internal filtration
degree will control distances in the Y component, while the external filtration degree will
control distances in the X component and thus the max distance will be controlled. ¤
Remark. Note that the isomorphism class in M is not affected if we change the metric to a
proper Lipschitz equivalent metric, i. e. a metric so that the identity map is a proper Lipschitz
equivalence both ways. Therefore Lemma 1.4 remains true up to natural equivalence if the
max metric is replaced by the usual product metric

dX×Y ((x1, x2), (y1, y2)) =
√

dX(x1, x2)2 + dY (y1, y2)2

The concept homotopy is introduced in the category M in a standard fashion using the
inclusions X = X × {0} → X × I, X = X × {1} → X × I and the projections X × I → X
Since X × I has the max metric, these are maps in the category M. Note that the inclusion
Z→ R is a homotopy equivalence in M, with homotopy inverse the greatest integer function
of example 1.3.

Lemma 1.5. A compact metric space X is homotopy equivalent to a point in M and hence
CX(A) is equivalent to the category A.

Proof. Since maps are not required to be continuous and a compact metric space is globally
bounded, any map X × I → X which is constant on the top and the identity on the bottom
will be a contracting homotopy. The second assertion follows from the evident fact that
CX(A) = A when X is a point. ¤
Proposition 1.6. The functor C−(A) is homotopy invariant. That is, for each metric space
X, the inclusion X ⊂ X × I as X × 0 and the projection X × I → X induce an equivalence
of categories

CX(A) → CX×I(A).

Proof. By 1.4 and 1.5, CX×I(A) = CI(CX(A)) is homotopic to CX(A). ¤

2. Open Cones

In this section we construct an open cone functor O(X) from finite PL complexes to M,
so that CO(X)(A) depends functorially on X in a homotopy invariant way.
To fix notation let S0 = {−1, 1} ⊂ R. Then the n-sphere is the join Sn = S0 ∗S0 ∗ · · · ∗S0 as
a sub PL-complex of Rn+1. We shall be considering the category of finite sub PL-complexes
of S∞ (PL complexes that are subcomplexes of some Sn) and PL morphisms. We denote
this category PL. This is essentially the category of finite PL-complexes, since any such
may be embedded in some Sn, but we need the way the complex sits in Sn as part of the
structure. We think of Rn+1 as a metric space using the max metric

d(x, y) = max |xi − yi|.
This induces a metric on the n-sphere and hence on any subcomplex.
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We now construct a functor O from PL to M.

Definition 2.1. O sends an object X ⊂ Sn to O(X) = {t · x ∈ Rn+1|t ∈ [0,∞), x ∈ X}
with metric induced from Rn+1. For example O(Sn) = Rn+1. On morphisms f : X → Y we
extend to O(f) : O(X) → O(Y ) by linearity: f(t · x) = t · f(x). One checks easily that O(f)
is proper and Lipschitz (and therefore eventually Lipschitz) using the following well-known

Lemma 2.2. A PL-map f : X → Y between finite complexes is Lipschitz.

Proof. Triangulate so that f is linear on each simplex. Since there are only finitely many
simplices, f will be Lipschitz. ¤
Remark 2.3. For a PL complex X, O(X) does not really depend on the embedding X ⊂
Sn, since a PL homeomorphism X1 ⊂ Sn to X2 ⊂ Sm will induce a proper Lipschitz
homeomorphism from O(X1) → O(X2).

Lemma 2.4. Let X and Y be two PL complexes and let ∗ denote the join. Then

O(X ∗ Y ) ∼= O(X)×O(Y ).

In particular, O(ΣX) = O(X ∗ S0) ∼= O(X)× R and O(CX) ∼= O(X)× [0,∞).

Proof. Embed X ⊂ Sn and Y ⊂ Sm so X ∗ Y ⊂ Sn ∗ Sm = Sn+m+1. A point in O(X ∗ Y ) is
s · (t · x + (1− t) · y) = stx + s(1− t)y and stx lies in O(X) ⊂ Rn+1 × 0, whereas s(1− t)y
lies in O(Y ) ⊂ 0 × Rm+1. The last sentence follows from the identities ΣX = X ∗ S0,
CX = X ∗ (point), O(S0) = R and O(point) = [0,∞). ¤
Remark 2.5. The functor O is not homotopy invariant. We only obtain homotopy invariance
after passing to K-theory.

3. The Main Theorem

So far we have constructed functors

O : PL →M and

C−(A) : M→ (semisimple) additive categories

For our main theorem, we need a functor K∗ from additive categories to graded abelian
groups. For n ≥ 1, there is no problem: given an additive category A we take KnA =
πn(ΩBQA) as in [10], using the semisimple exact structure (in which all exact sequences
split). However, unless A is idempotent complete, the groups K0A may be wrong for our
purposes, and A’s negative K-groups will not even be defined.

For example consider the category FR of finitely generated based free R-modules. when
R is a group ring, we know that the geometrically interesting group is not K0(FR) = Z, but
rather K0(R), which measures projective modules.

To handle this problem, we pass to the idempotent completion A∧ of A. This provides
the correct group K0(A∧) and does not change the higher groups, since Kn(A) = Kn(A∧)
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for n ≥ 1 For example FR
∧ is equivalent to the category of finitely generated projective

R-modules.

Scholium. A∧ inherits the structure of a filtered additive category from A. The objects of
A∧ are pairs (A, p), where p : A → A is idempotent. A morphism φ from (A1, φ1) to (A2.φ2)
is an A-morphism φ : A1 → A2 with φ = p2φp1 . The filtration degree of φ is the smallest
d such that φ = p2fp1 for some f ∈ Fd Hom(A1, A2) satisfying fp1 = p2f . This filtration
should have been stated explicitly in [9, 1.4].

If A is idempotent complete, the negative K-groups of A were defined by Karoubi in [6],
and agree with the definition in [9] (as we shall see in §6 below). If A = FR, they agree with
Bass’ negative K-groups Kn(R).

The construction in [9] actually gives us slightly more information. If A is idempotent
complete, it yields a nonconnective infinite loop spectrum KA, and the homotopy groups of
KA are the groups K∗A above.

Now associated to any spectrum such as KA is a reduced homology theory KA∗. It is
defined by

KAn(X) = lim πn+i((KA)n ∧X).

The coefficients of this homology theory are the groups

KAn(S0) = πn(KA) = Kn(A).

We can now state our main theorem.

Theorem 3.1. If A is an idempotent complete additive category, the functor from PL to
graded abelian groups sending X to K∗(CO(X)(A)∧) is the KA∗-homology theory of X, with
a degree shift:

K∗(CO(X)(A)∧) ∼= KA∗(X).

Remark 3.2. This theorem had previously been known for spheres. For X = Si, O(Si) =
Ri+1, which is homotopy equivalent to Zi+1 in M, so therefore by 1.4

K∗(CRi(A)∧) = K∗(CZi(A)∧),

which was shown in [9] to equal K∗−i−1(A∧). The category CZi+1(A) was first studied in [8],
where A was the category of finitely generated R-modules. There it was shown that

K1(CZi+1(R)) = K−i(R)

which is equal to KRi(S
0) = KR0(S

i), thus agreeing with our main theorem.

4. Proof of main theorem

Define the functor f as the composite

PL O−→M C−(A)−−−→ filtered add. categ.
¤−→ add. cat.

∧−→
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idempotent complete add. cat.
Ω∞K−−−→ Top. spaces

Here ¤ is the forgetful functor, ∧ is idempotent completion and Ω∞K is the zeroth space
of the infinite loop spectrum K giving the K-theory of the category, either ΩBQ or the result
of applying an infinite loop machine to the symmetric monoidal category of isomorphisms
(see Thomason for a very functorial construction [15]). That is :

f(X) = Ω∞K(CO(X)(A)∧).

Lemma 4.1. If X is a cone, X = CK, then f(X) is contractible.

Proof. CO(CK)(A) = C[0,∞)×O(K)(A) = C1(CO(K)(A)) in the notation of [9]. It was proven in
[9, (3.1)] that Ω∞KC+(A) is contractible for an arbitrary category, A, and the argument
given there applies verbatim to show that

f(X) = Ω∞K((C+(CO(K)A)∧)

is also contractible.
¤

Proposition 4.2. For each X, Ωf(ΣX) is homotopy equivalent to f(X). In particular f(X)
is an infinite loop space.

Proof. By 1.6 and 2.4 we have

CO(ΣX) = CO(X)×R = CR(CO(X)(A)) = C1(CO(X)(A)).

By [9, Theorem (3.2)], applied to the filtered additive category CO(X)(A)∧, we know that the
loop space of Ω∞KCO(ΣX)(A) is homotopy equivalent to f(X). But by the cofinality theorem,
the spaces Ω∞K(C) and Ω∞K(C∧) have homotopy equivalent connected components, and
hence homotopy equivalent loop spaces, for any C. ¤
Theorem 4.3. The functor f sends cofibrations to fibrations.

Before proving this result , let us draw a quick consequence. It follows from Lemma 4.1
that f is homotopy invariant, since X → X×I → CX is a cofibration. The homotopy groups
of the spectrum {f(X), f(ΣX), f(Σ2X), . . .} coincide with the groups K∗(CO(X)(A)∧). These
groups are homotopy invariants of X which vanish when X is contractible by 4.1. From 4.3
we immediately obtain

Corollary 4.4. The functor from PL to graded abelian groups sending X to K∗(CO(X)(A)∧)
is a reduced homology theory.

Proof of Theorem 4.3. The special case X ⊂ CX ⊂ ΣX follows from 4.1 and 4.2. To do
the general case, we proceed in a manner very much like the proof of Theorem 3.4 in [9].
Consider a cofibration A ⊂ X → X ∪ CA. Then we get

O(A) ⊂ O(X) ⊂ O(X) ∪O(A) O(CA)
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and a diagram

CO(A)(A)

²²

// CO(CA)(A)

²²
CO(X)(A) // CO(X∪CA)(A)

By 1.6 and 2.4 we have O(CA) = O(A)× [o,∞) and

CO(CA)(A) = C[0,∞)(CO(A)(A)) = C+(CO(A)(A)).

To simplify notation, let us write C
=X

for the category of isomorphisms in CO(X)(A)∧. Using

the “double mapping cylinder” pushout construction P
=

of Thomason [15, (5.1)], we get

C
=A

²²

// C=CA

²²
C
=X

// P=

Σ $$IIIIIIIIIII

C
=X ∪ CA

We wish to show that Σ induces a homotopy equivalence on certain components, i. e.
that Σ induces a π0-monomorphism and πi-isomorphism. That π0 behaves correctly is then
obtained by applying the argument to the suspension of this cofibration. It is therefore
enough to show that for every object Y of CO(X∪CA)(A), considered as an object of C

=X ∪ CA
,

that the category Y ↓ Σ is a contractible category. At this point we follow the proof of [9,
Theorem (3.4)] very closely. We use the bound d to filter Y ↓ Σ as the increasing union of
subcategories fild and show each of these has an initial object ∗d.

Fild is the full subcategory of all iso’s α : Y → Σ(BA, BX , A+), where BX is an object of
C
=X

, BA and object of C
=A

and A+ an object of C
=CA

. We define Y A
d , Y X

d and Y +
d in C

=A
,

C
=X

and C
=CA

as follows: Let

Nd = {x ∈ O(X ∪ CA)|∃y ∈ O(A) : d(x, y) ≤ d}.
Since A ⊆ is a cofibration it is easy to see that Nd is proper Lipschitz homotopy equivalent
to O(A). Choose some proper Lipschitz homotopy equivalence h : Nd → O(A) and proceed
as follows:
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Y X
d (x) =

{
Y (x) for x ∈ O(X)−Nd

0 otherwise

Y +
d (x) =

{
Y (x) for x ∈ O(A)× (d,∞) = O(CA)−Nd

0 otherwise

and

Y A
d = h∗(Y A

d ) where

Y A
d =

{
Y (x) for x ∈ Nd

0 otherwise

There is now an obvious isomorphism

σ : Y ∼= Y X
d ⊕ Y A

d ⊕ Y +
d = Σ(Y A

d , Y X
d , Y +

d )

bounded by d (essentially the identity) and we may proceed to prove this is an initial object
in Fild exactly as in the proof of [9, Theorem 3.4]. ¤

We finish off the proof of the main theorem as follows:

Proof of main theorem 3.1. We need to identify the homology theory of 4.4 as the homology
theory associated to th spectrum K(A). It was proven by Thomas Gunnarson [5] that when
a homotopy functor f sends cofibrations to fibrations and contractible spaces to contractible
spaces, then the homology theory obtained by applying homotopy groups has as its repre-
senting spectrum {f(S0), f(S1), f(S2), . . .}. This is a well-known fact when the homology
theory is connective - see e. g. [18, theorem 1.14], [14] or [7] - but in the general case we
need to use [5] Now we have by Lemma 2.4 that

f(Si) = Ω∞K(Ci+1(A)∧).

The space f(Si) is therefore the (i+1)st-space of the spectrum K(A) constructed in Theorem
B of [9]. The representing spectrum for the homology theory of 4.4 is therefore Ω−1K(A),
and the main theorem follows. ¤

We are finished, except we need to show that the delooping given in [9] agrees with the
other deloopings in the literature. This is the subject of the final 2 sections.

5. Karoubi’s nonconnective spectra

In this section, we follow Karoubi’s ideas in [6] and construct nonconnective K-theory
spectra, whose negative homotopy groups are the negative K-groups defined by Karoubi in
op. cit. We then show that these agree with the spectra constructed in [9] (and in special
cases, in [4], [16]). More explicitly, but also more technically, we show that C1(A) → C+(A)/A
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induces an isomorphism on Quillen K-theory. We are indebted to Karoubi, who suggested
this possibility to us in 1983.

We shall use Karoubi’s delooping construction from [6], so we begin by recalling the
construction. Let A be a full subcategory of an additive (hence semisimple exact) category
U . We shall use the notation that letters A−F (resp U −Z) denote the objects of A (resp.
U), and that U = Eα ⊕ Uα means an internal direct sum decomposition of U with Eα ∈ A.
We say that U is A- filtered if every object U has a family of decompositions {U = Eα⊕Uα}
(called a filtration) of U) satisfying the following axioms (cf. [6, pp. 114 ff.]):

(F1) For each U , the decompositions form a poset under the partial order that Eα⊕Uα ≤
Eβ ⊕ Uβ whenever Uβ ⊆ Uα and Eα ⊆ Eβ.

(F2) Every map A → U factors A → Eα → Eα ⊕ Uα = U for some α.
(F3) Every map U → A factors U = Eα ⊕ Uα → Eα → A for some α.
(F4) For each U, V the filtration on U ⊕ V is equivalent to the sum of the filtrations

{U = Eα ⊕ Uα} and {V = Fβ ⊕ Vβ} i. e., to {U ⊕ V = Eα ⊕ Fβ)⊕ (Uα ⊕ Vβ)}.
We shall assume each filtration is saturated in the sense that if U = Eα ⊕ Uα is in the

filtration and Eα = A ⊕ B in A, then U = A ⊕ (B ⊕ Uα) is also in the filtration. Finally,
we say that U is flasque if there is a functor ∞ : U → U and a natural transformation
U∞ ∼= U ⊕ U∞ ([6, p. 147]).
Our favorite selection of U is the following:

Example 5.1. The category C+(A) of [9, (1.2.4)] is flasque and A-filtered. Objects of C+(A)
are sequences (A0, A1, . . .) of objects in A, and the morphisms are given by “bounded”
matrices. A is the full subcategory of objects (A0, 0, 0, . . .). The A-filtration on an object
U = (A0, A1, . . .) contains the decompositions

U ∼= Filn(U)⊕ (0, . . . , 0, An+1, . . .)

Filn(U) = A0 ⊕ . . .⊕ An in A.

We proved that C+(A) was flasque in [9, (1.3)], using the translation t(A0, A1, . . .) =
(0, A0, A1, . . .) on C+(A).

We now suppose given an A-filtered category U . Call a map U → V completely continuous
(cc) if it factors through an object of A. Karoubi defined U/A to be the category with the
same objects as U , but with HomU/A(U, V ) = HomU(U, V )/{cc maps}.
Lemma 5.2. Suppose A is idempotent complete and that φ : U → V is an isomorphism
in U/A. Then there are decompositions U = Eβ ⊕ Uα and V = Fα ⊕ Vα in the (saturated)

filtrations and a U-isomorphism Uα
∼= Vα such that φ is represented by U → Uα

∼= Vα → V .

Proof. Choose representatives φ, ψ for φ, φ
−1

. Since 1U − ψφ is cc, there is a decomposition
U = Eα ⊕ Uβ with 1 = ψφ on Uβ. Replace U by Uβ to assume 1U = ψφ. Similarly, write
V = F ⊕W with φψ = 1W . Write φ = (ε, i) : U → F ⊕W and ψ = (δ, j) : F ⊕W → U .
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Observe that ij = 1W and that

(*) δε + ji = 1U

Multiplying (*) by i, j and by (*) yields the equations iδε = 0, δεj = 0 and (δε)2 = δε.
Replacing ε by εδε makes (εδ)2 = εδ without affecting φ or (*). Set Fα = ker(εδ) and
Vα = (εδF ) ⊕ W ; Fα ∈ A because A is idempotent complete. The rest of the proof is
straightforward, and left to the reader. ¤
Remark. The failure of this lemma when A is not idempotent complete is the Bass-Heller-
Swan phenomenon. See [8, (1.16)].

Theorem 5.3. Let A be semisimple and idempotent complete. Then for every A-filtered
category U the sequence

KQ(A) → KQ(U) → KQ(U/A)

is a homotopy fibration, where KQ(A) denotes the space whose homotopy groups give the
algebraic K-theory of A.

Before proving this theorem, we draw our main conclusion. Suppose that in addition U
is flasque; from additivity and the equation ∞ ∼= 1 + ∞ we conclude that KQ(U) ' ∗.
Since U/A shares the same objects as U , we conclude that K0(U/A) = K0(U) = 0. Finally,
applying 5.3 to the diagram U → C+(U) ← C+(A) shows that KQ(U/A) ' KQ(C+(A)/A).
This proves:

Theorem/Definition 5.4. Let A be semisimple and idempotent complete. Choose a
flasque, A-filtered category U and define SA to be U/A. Then KQ(SA) is a connected
space with ΩKQ(SA) ' KQ(A), and the homotopy type of KQ(SA) is independent of the
choice of U .

Our proof of Theorem 5.3 follows the proof of [9, (3.4)]. Let A
=

, U
=

and S
=

denote the

categories of isomorphisms of A, U and U/A. It is well-known that KQ(A) is the group
completion of BA

=
, and that KQ(A), BA

=
−1A

=
and Spt0(A=

) are homotopy equivalent. Let

Q
=

denote the double mapping cylinder of (0 ← A
=
→ U

=
) given by Thomason in [15, (5.1)].

Thus objects of Q
=

are pairs (A,U), and a Q
=

-map from (A,U) to (B, V ) is an equivalence

class of data (E,F,A ∼= E ⊕ B ⊕ F, F ⊕ U ∼= V ). Thomason proves in [15, (5.2) and (5.5)]
that Spt0(A=

) → Spt0(U=
) → Spt0(Q=

) is a homotopy fibration. Since U
=
→ S

=
factors through

Q
=

, we see that 5.3 follows from [15, (2.3)] and the following result:

Proposition 5.5. The functor Σ : Q
=
→ S

=
given by Σ(A, U) = A ⊕ U is a homotopy

equivalence when A is idempotent complete.
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Proof. Fix an object S of S
=

; we will show that S ↓ Σ is a contractible category. The desired

result will the follow from Quillen’s Theorem A [10]. In order to do this, we need to thicken
S ↓ Σ up a bit. Let S denote the category whose objects are tuples

α = (A,U, S ∼= Dα ⊕ Sα, U ∼= Eα ⊕ Uα, fα : Sα
∼= Uα)

where A ∈ A, U ∈ U , fα is a U -isomorphism, and the direct sum decompositions belong to
the A-filtrations of S and U . A map from α to

β = (B, V, S ∼= Dβ ⊕ Sβ, V ∼= Fβ ⊕ Vβ, fβ : Sβ
∼= Vβ)

is just a map in Q
=

from (A, U) to (B, V ), say given by

e = (E, F, A ∼= E ⊕B ⊕ F, F ⊕ U ∼= V )

such that Dα ⊕ Sα ≥ Dβ ⊕ Sβ, (F ⊕ Eα)⊕ Uα ≥ Fβ ⊕ Vβ in the filtrations of S and V , and
such that there is a commutative square in U :

Sβ ∼= Vβ

Sα

OO

∼= Uα

OO

There is a natural functor pr : S → (S ↓ Σ) sending α to the object prα : S → Sα
∼=

Uα → U → A ⊕ U = Σ(A,U) and e to itself. By Lemma 5.2, pr is onto. In fact pr is
cofibered. We assert that pr is a homotopy equivalence, which follows from [10, p. 93] and
the following: ¤
Sublemma 5.6. Given an isomorphism φ : S → Σ(A,U) in U/A, the fiber category pr−1(φ)
is a cofiltered poset, and hence contractible.

Proof. Set Φ = pr−1(φ); it is clear from the definition of S that Φ is a poset. We need only
show that for each α, β in Φ there is a diagram α ← γ → β in Φ. To do this, we introduce
some notation. Write α = (A, U, S ∼= Dα ⊕ Sα, U ∼= Eα ⊕ Uα, fα) and β = (A,U, S ∼=
Dβ ⊕ Sβ, U ∼= Eβ ⊕ Uβ, fβ). If Dα ⊕ Sα ≤ Dγ ⊕ Sγ we set Dγα = Dγ ∩ Sα, Eγα = fα(Dγα)
and α1 = (A,U, S ∼= Dγ ⊕Sγ, U ∼= (Eα⊕Eγα)⊕ fα(Sγ), fα|Sγ : Sγ

∼= fα(Sγ)). We shall refer
to α1 as “α cut down to Dγ ⊕ Sγ”; note that there is a map α1 → α in Φ.

By axion (F1), there is a decomposition S ∼= D0 ⊕ S0 larger than both Dα ⊕ Sα and
Dβ ⊕ Sβ. Cutting α and β down, we can assume that Dα = Dβ = D0 and Sα = Sβ = S0.
Now fα − fβ : S0 → D is completely continuous, so after cutting α and β down further we
can assume that fα = fβ. Note that we still may have Eα 6= Eβ. Consider the maps

Eα → U → Uβ
∼= S0 and Eβ → U → Uα

∼= S0.

By axiom (F2) there is a decomposition S ∼= Dγ ⊕ Sγ for which these two maps factor
through Dγ. Let γ be α cut down to Dγ ⊕ Sγ ; evidently γ is also β cut down to Dγ ⊕ Sγ.
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The resulting maps α ← γ → β in Φ were what we needed to prove sublemma 5.6, so we are
done. ¤

Resuming the proof of 5.5 we let e : α → β be the map described at the proof’s outset.
Let Dαβ = Dα∩Sβ and Eαβ = fβ(Dαβ), so that Dαβ⊕Dβ = Dα and Dαβ⊕Sα = Sβ. We first
observe that from the definition of the map e there is a natural identification of subobjects
of V :

(*) Fβ ⊕ Eαβ = F ⊕ Eα.

Using this, there is a natural isomorphism in A:

se : Dα ⊕A⊕Eα
∼= (Dαβ ⊕Dβ)⊕ (E ⊕B ⊕ F )⊕Eα

∼= (Dαβ ⊕E)⊕ (Dβ ⊕B ⊕ Fβ)⊕Eαβ.

Now define qα to be the object S → Sα → Σ(Dα ⊕ A ⊕ Eα, Sα) of S ↓ Σ defined naturally
by α, and let qe : qα → qβ be the map

(Dαβ ⊕ E, Eαβ, se, Eαβ ⊕ Sα
∼= Sβ).

It is easy to see that q is a functor from S to S ↓ Σ.
Now let z denote the object 1 : S → Σ(0, S) of S ↓ Σ. There is a map θα : qα → z given

by the data

(A⊕ Eα, Dα, Dα ⊕ A⊕ Eα
∼= (A⊕ Eα)⊕ 0⊕Dα, Dα ⊕ Sα

∼= S)

and a map ηα : qα → prα given by the data

(Dα, Eα, Dα ⊕ A⊕ Eα = Dα ⊕ A⊕ Eα, Eα ⊕ Sα
∼= Eα ⊕ Uα

∼= U).

Using (*), it is a straightforward matter to check that θ and η are natural transformations.
This proves that the maps z, q and pr from BS to B(S ↓ Σ) are homotopic. Since pr is a
homotopy equivalence, this shows that B(S ↓ Σ) is contractible. This finishes the proof of
Proposition 5.5, and hence of Theorem 5.3.

Next we show how to remove the hypothesis that A is idempotent complete from Theorem
5.4 Let U be a flasque A-filtered category. Let A∧, and let U∧ be the full subcategory of the
idempotent completion of U on objects P ⊕U , P in A∧, and U in U . Then U∧ is A∧-filtered
but not flasque. However it is easy to see that KQ(U∧) is contractible, and Theorem 5.3
applies to show that ΩKQ(U∧/A∧) ∼= KQ(A∧). On the other hand, U∧/A∧ ∼= U/A, so we
have proven:

Corollary 5.7. If A∧ denotes the idempotent completion of A, and U is a flasque A-filtered
category, then

(i) KQ(U/A) ' KQ(U∧/A∧)
(ii) ΩKQ(U/A) ' KQ(A∧)
(iii) KQ(A) → KQ(U) → KQ(U/A) is a homotopy fibration if and only if K0(A) ∼=

K0(A∧)
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Definition 5.8. (Karoubi [6]) Given a semisimple exact category A, we define K−n(A) to
be K1(S

n+1A). Note that K−0(A) = K0(A∧) by 5.7 (ii). This is well-defined because by
5.4 the homotopy type of Sn+1A is independent of the choice of flasque category U used
to construct SA = U/A. Note that K0(S

nA) = 0 for n ≥ 1 because SnA need not be
idempotent complete. In fact K0((S

nA)∧) = K−n(A). (Cf. [6, p.151]

Definition 5.9. By 5.4, 5.7 and 5.8, there is an Ω-spectrum

|K−n(A)×KQ(SnA)| ' |KQ((SnA)∧)|
We shall call it Karoubi’s non-connective K-theory spectrum for A, since Karoubi gave the
prescription for this spectrum in [6].

6. Agreement of spectra

Our task is now to show that Karoubi’s spectrum agrees with the other spectra in the
literature. We first recall Wagoner’s construction in [16]. Given a ring R, let lR denote the
ring of locally finite N- indexed matrices over R, i. e. matrices (rij) with 1 ≤ i, j < ∞ such
that each row and each column has only finitely many nonzero entries. The finite matrices
form an ideal mR of lR, and we let µR = lR/mR. Wagoner’s spectrum is

{K0(µ
nR)×BGL+(µnR)}.

We shall show that this spectrum is the same as Karoubi’s spectrum for the category FR of
(based) finitely generated free R-modules, Note that F∧(R) is equivalent to the category of

finitely generated projective R-modules, so K(F∧(R)) is the usual space KQ
0 (R)×BGL+(R).

The following argument was shown to us by H. J. Munkholm and A. A. Ranicki.

Proposition 6.1. Let U denote the category of countably (but not necessarily infinitely)
generated based free R-modules and locally finite matrices over R. Then U/F(R) is equivalent
to the category F(µR). Consequently, Wagoner’s spectrum for R is homotopy equivalent to
Karoubi’s K-theory spectrum for F(R).

Proof. (Munkholm-Ranicki) Choose an infinitely generated based R-module R∞ in U , and
observe that EndU(R∞) = lR. Now U is F(R)-filtered, and the completely continuous
endomorphisms of R∞ form the ideal mR. Thus EndU/F(R∞) ∼= µR. The additive functor
F(µR) → U/F(R) which sends 1µR to 1R∞ is therefore full and faithful. But every object of
U/F(R) is either isomorphic to 0 or to R∞, so this functor is also an equivalence. Done. ¤

Gersten has also constructed a nonconnective spectrum for the K-theory of a ring in [4].
Since Wagoner showed in [16] that it agreed with Wagoner’s spectrum, Gersten’s spectrum
is also homotopy equivalent to Karoubi’s spectrum.

Finally we must compare Karoubi’s K-theory spectrum with the spectrum {f(Sn)} of
section 4 above, constructed in [9] using the categories Cn(A). We assume that A is filtered
in the sense of [9, (1.1)], or §2 above, so that in the notation of op. cit. we have Cn+1(A) =
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C1(Cn(A)). The choice of the filtration affects the morphisms allowed in Cn(A) and C+(A),
but not the homotopy type of KQ(Cn(A)), as [9, (3.2)] shows. The real point of the filtration
on A is to reduce the discussion to the case n = 1.

Recall the objects of C1(A) = CZ(A) are Z-graded sequences A = (. . . , A−1, A0, A1, . . .) in
A. A map φ : A → B is a matrix of maps φij : Ai → Bj such that for some bound b = b(φ)
we have φij = 0 whenever |i− j| > b. Composition is given by matrix multiplication. Define
trunc(A) to be the object (A0, A1, . . .) of C+(A) and trunc(φ) to be the submatrix of φij with
i, j > 0. If ψ : B → C, then trunc(ψφ) − trunc(ψ) trunc(φ) is completely continuous being
bounded by b(ψ) + b(φ). Hence trunc defines a functor from C1(A) → C+(A)/A.

Theorem 6.2. The functor trunc induces a homotopy equivalence

KQ(C1(A))
∼−→ KQ(C+(A)/A) ' KQ(SA)

Assuming this result, it follows directly from the above remarks that we have KQ(Cn+1(A)))
∼−→

KQ(C1(Cn(A)) ' KQ(SCn(A)) ' KQ(Sn+1A). Hence the spaces B̂n of [9] are K−n(A) ×
KQ(Cn(A)), and we have

Corollary 6.3. The nonconnective spectra of [9] agree with Karoubi’s. In fact, trunc induces
a homotopy equivalence of spectra:

{K−n(A)×KQ(CnA)} ∼−→ {K−n(A)×KQ(SnA)}
Proof of Theorem 6.2. We shall use the notation of [9] , only remarking that C

=ε
is the

category of isomorphisms of Cε(A), and that Spt0(C=ε
' KQ(Cε(A)). By 5.7 and [9, §3], we

can assume that A is idempotent complete. There is a map of squares

A
=

²²

// C=+

²²
→

A
=

²²

// C=+

²²
C
=− // C=1 0 // S=

By Theorem 5.3 and [9, §3], applying Spt0 yields homotopy cartesian squares with Spt0(C=1
) '

KQ(C1(A)) and Spt0(S=
) ' KQ(SA) connected. Since Spt(C

=−
) and Spt(C

=+
) are con-

tractible, it follows that KQ(C1(A)) → KQ(SA) is a weak homotopy equivalence, hence a
homotopy equivalence. ¤
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