


Orthogonal Polynomials and Continued Fractions

Continued fractions, studied since the time of Ancient Greece, only became a powerful tool
in the eighteenth century, in the hands of the great mathematician Euler. This book tells how
Euler introduced the idea of orthogonal polynomials and combined the two subjects, and how
Brouncker’s formula of 1655 can be derived from Euler’s efforts in special functions and
orthogonal polynomials. The most interesting applications of this work are discussed, including
Markoff’s theorem on the Lagrange spectrum, Abel’s theorem on integration in finite terms,
Chebyshev’s theory of orthogonal polynomials and very recent advances in orthogonal polyno-
mials on the unit circle. As continued fractions become more important again, in part due to
their use in finding algorithms in approximation theory, this timely book revives the approach
of Wallis, Brouncker and Euler and illustrates the continuing significance of their influence.
A translation of Euler’s famous paper “Continued fractions, observations”, is included as an
appendix.

S e r g e y K h r u s h c h e v is a Professor in the Department of Mathematics at Atilim
University, Turkey.
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120 T. Nishiura Absolute Measurable Spaces



Orthogonal Polynomials and
Continued Fractions

From Euler’s Point of View

S E R G E Y K H R U S H C H E V
Atilim University, Turkey



c a m b r i d g e u n i v e r s i t y p r e s s

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521854191

© Cambridge University Press 2008

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2008

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-85419-1 hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.



Dedicated to the memory
of Galina Kreidtner (8/10/1920–23/12/2000)





Contents

Preface page ix

1 Continued fractions: real numbers 1
1.1 Historical background 1
1.2 Euler’s theory of continued fractions 11
1.3 Rational approximations 17
1.4 Jean Bernoulli sequences 36
1.5 Markoff sequences 49

2 Continued fractions: algebra 71
2.1 Euler’s algorithm 71
2.2 Lagrange’s theorem 81
2.3 Pell’s equation 84
2.4 Equivalent irrationals 92
2.5 Markoff’s theory 98

3 Continued fractions: analysis 123
3.1 Convergence: elementary methods 123
3.2 Contribution of Brouncker and Wallis 131
3.3 Brouncker’s method and the gamma function 146

4 Continued fractions: Euler 158
4.1 Partial sums 158
4.2 Euler’s version of Brouncker’s method 163
4.3 An extension of Wallis’ formula 169
4.4 Wallis’ formula for sinusoidal spirals 174
4.5 An extension of Brouncker’s formula 177
4.6 On the formation of continued fractions 180
4.7 Euler’s differential method 183
4.8 Laplace transform of hyperbolic secant 191
4.9 Stieltjes’ continued fractions 194
4.10 Continued fraction of hyperbolic cotangent 199
4.11 Riccati’s equation 206

vii



viii Contents

5 Continued fractions: Euler’s influence 228
5.1 Bauer–Muir–Perron theory 229
5.2 From Euler to Scott–Wall 232
5.3 The irrationality of � 238
5.4 The parabola theorem 240

6 P-fractions 247
6.1 Laurent series 247
6.2 Convergents 253
6.3 Quadratic irrationals 258
6.4 Hypergeometric series 272
6.5 Stieltjes’ theory 285

7 Orthogonal polynomials 296
7.1 Euler’s problem 296
7.2 Quadrature formulas 298
7.3 Sturm’s method 303
7.4 Chebyshev’s approach to orthogonal polynomials 310
7.5 Examples of orthogonal polynomials 315

8 Orthogonal polynomials on the unit circle 322
8.1 Orthogonal polynomials and continued fractions 322
8.2 The Gram–Schmidt algorithm 336
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This book has emerged as a result of my attempts to understand the theory of
orthogonal polynomials. I became acquainted with this theory by studying the excellent
book by Geronimus (1958). However, the fundamental reasons for its beauty and
difficulty remained unclear to me. From time to time I returned to this question but
the first real progress occurred only in the autumn of 1987, when I visited the Mittag-
Leffler Institute right at the beginning of the foundation of the Euler International
Mathematical Institute in St Petersburg (the EIMI). A simple proof of Geronimus’
theorem on the parameters of orthogonal polynomials had been found (Khrushchev
1993). The paper specified an important relationship of orthogonal polynomials on
the unit circle to Schur’s algorithm. Later this very paper was the starting point for
Khrushchev (2001). It took about eight years to complete the EIMI project, which
occupied all my time, leaving no chance to continue this research.

I returned to the subject matter of this book again only in the summer of 1998 in
Almaty, where I was able to get back to mathematics with the assistance of mountains
and the National and Central Scientific libraries of Kazakhstan. Both these libraries
had a complete collection of Euler’s books translated into Russian as well as a lot of
other wonderful old Russian mathematical literature such as the Russian translation
of Szegő’s Orthogonal Polynomials (1975) by Geronimus, complete with his careful
and comprehensive comments. All this was very helpful for my paper Khrushchev
(2001), but the question of what is the driving mechanism for, and how it explains
the mystery of, orthogonal polynomials remained open. It was clear to me that most
likely this mechanism is continued fractions. And my impression that something very

ix
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important had disappeared from the modern theory was supported by Chebyshev’s
and Markoff’s contributions to the subject area as well as by the following remark
of Szegő in 1939: “Despite the close relationship between continued fractions and
the problem of moments, and notwithstanding recent important advances in the latter
subject, continued fractions have been gradually abandoned as a starting point for the
theory of orthogonal polynomials”.

The study of the book by W. B. Jones and W. J. Thron (1980), which I found in
Pushkin’s library in Almaty, indicated that perhaps the right answer to my question
could be found in Euler’s research on continued fractions. That not all Euler’s papers on
continued fractions had been carefully studied was already mentioned by Khovanskii
(1957). There are two great papers of Euler in this field: (1744) and (1750b). The
brief summary of Euler (1744) published as the eighteenth chapter of Euler (1748)
is usually also mentioned. English translations of Euler (1744, 1748) are available.
As for Euler (1750b), its first English translation is given as an appendix to this
book. I thank Alexander Aptekarev (Institute of Applied Mathematics, Moscow) for
arranging a translation from Latin to Russian. Then using my understanding of Euler
(1750b), its Russian translation and Latin–Russian dictionaries, I translated it into
English. Therefore it is not as professional as the translation of Euler (1744) but will,
I hope, be acceptable. The most important facts on continued fractions from Euler
(1744, 1748) are presented in the first chapter here.

I saw the Latin version of Euler (1750b) only in January 2003 when, at the kind
invitation of Barry Simon, I visited Caltech, California, to lecture from a preliminary
version of the present book. At that time I knew nothing of the project of the Euler
Archive run by the Euler Society (www.eulersociety.org), which possibly then was
only under construction. Lecturing in front of Simon’s group in Caltech strongly
reminded me of the golden years in St Petersburg in the 1970s. There are of course
some differences because of the location. For instance, they do not have late evening
tea and instead take lunch before the seminar where you can enjoy, if you are brave
enough, hot Mexican pepper.

Even a very brief inspection of Euler (1750b) shows that it was motivated by the
remarkable formula (1) discovered in March 1655 by Brouncker, the first President
of the Royal Society of London. The proof of this formula was included in section
191 of Wallis (1656). I did not have access to this striking book at that period but
from historical literature in Russian, for instance from Kramer (1961), I discovered
that the presentation in this particular part is just impossible to understand. This was
indirectly confirmed by Euler (1750b), who, in spite of the fact that Wallis’ Arithmetica
Infinitorum was a permanent feature of his desk, complained that Brouncker’s proof
was seemingly irreparably lost.

Nonetheless, in the summer of 2004 in the mountains of Almaty I came to the con-
clusion that possibly this can be done very easily if suitably transformed partial Wallis
products are written as continued fractions. I couldn’t find the required transformation
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and was about to give up but suddenly help arrived from the Amazon bookstore. It has
a very good knowledge system which makes proposals based on the captured interests
of their customers. Amazon’s email claimed that the English translation of Arithmetica
Infinitorum by Jacqueline Stedall (2004) was available from Oxford.

When I arrived back in Ankara the book awaited me in the post office. I opened Wal-
lis’ comment on section 191 and saw the following: “The Noble Gentleman noticed
that two consecutive odd numbers, if multiplied together, form a product which is
the square of the intermediate even number minus one � � � He asked, therefore, by
what ratio the factors must be increased to form a product, not those squares mi-
nus one, but equal to the squares themselves”. When I read this I could imme-
diately understand how Brouncker proved (1). It took some time to complete the
calculations and this proof is now available in Chapter 3. Wallis’ previously unclear
remarks are now used to confirm that the proof presented is exactly that discovered
by Brouncker.

A few words explaining why (1) is so important. It is the functional equation
b�s− 1�b�s+ 1� = s2, reminding us on the one hand of an elementary formula
�s−1��s+1�= s2−1 from algebra and, on the other hand, of the functional equation
for Euler’s gamma function ��x+1�= x��x�. In fact these two functions are related
by the Ramanujan formula (see Theorem 3.25). Another mystery is that Ramanujan’s
formula in turn is an easy consequence of Brouncker’s theory � � �Combining the
Ramanujan formula with Chebyshev’s arguments presented in Section 7.4, one easily
obtains that the polynomials written explicitly in Wallis (1656, §191) are orthogonal
with respect to the weight

d�= 1

8�3

∣∣∣∣�
(

1+ it
4

)∣∣∣∣4 dt �
In (1977), J. A. Wilson, following some ideas of R. Askey on the gamma function,
introduced a new class of orthogonal polynomials depending on a number of indepen-
dent parameters. An impressive property of Wilson’s polynomial family is that almost
all the so-called classical orthogonal polynomials are placed on its boundary. An in-
quiry into Andrews, Askey and Roy (1999) shows that, on the contrary, Brouncker’s
polynomials are placed at the very center, corresponding to the choice a= 0, b= 1/2,
c = d = 1/4. Thus Brouncker’s formula in 1655 already listed important orthogonal
polynomials, though not in a direct form. But neither was the Universe in its first
few minutes similar to the present world. In addition to special functions, Brouncker’s
formula stimulated, or it is better to say could stimulate, developments in two other
important directions.

The first is the moment problem considered by Stieltjes (1895). One can easily notice
a remarkable similarity of Brouncker’s arguments to those of Stieltjes. The second is
the solution of Pell’s equation obtained by Brouncker as his answer to the challenge of
Fermat. It looks as if Fermat carefully studied Wallis’ book. Still, I have never heard
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that he ever mentioned §191 in his letters. Instead Fermat proposed to outstanding
British mathematicians a problem which they could solve by the method of Brouncker
presented in this very paragraph. And indeed Brouncker solved Fermat’s problem by
applying a part of the argument he used to answer Wallis’ question. After that Wallis
developed his own method. This is considered in more detail in Chapter 2.

It is just unbelievable that such a partial, on first glance, result obtained in 1655
encapsulated a considerable part of the further development of algebra and anal-
ysis. True, this was a result on the quadrature problem obtained with continued
fractions � � �

From the critical analysis of Brouncker’s proof of (1), two interesting properties of
continued fractions can be observed. If some continued fractions give a development
of one part of mathematics then it is quite possible that similar progress can be made
with other continued fractions in another part. In most cases the arguments could be
simplified, as for instance Wallis did for Pell’s equation, but at the cost of losing some
substantial relationships, regarding which Euler was such a great master. I assume that
the right explanation of this phenomenon lies in approximation theory. Any continued
fraction is nothing other than an algorithm whose elementary steps are simple Möbius
transforms. Therefore, adjusting these parameters in an appropriate way at each step,
one can significantly change the original result. The art is to make this choice properly
so that a new result can at least be stated.

In 1880 A. A. Markoff completed his Master’s thesis at St Petersburg University,
which was devoted to the theory of binary quadratic forms of positive determinant. I
strongly believe that this was the best work of Markoff’s whole mathematical career. It
appears to have determined his later significant papers, in particular those in probability
theory. It was not just one more application of continued fractions. Rather it was
an incredibly beautiful demonstration of what can be done with their proper use.
Therefore, although I was forced to sacrifice Stieltjes’ theory of moments to a great
extent in consequence, I have included this important theory in Chapter 2. The theory of
moments is well presented in a number of books (Akhiezer 1961, Shohat and Tamarkin
1943 and Stieltjes 1895), whereas Markoff’s original approach to this problem is not.
In addition Markoff’s theory has some relations to my own research (Khrushchev
2001a, b, 2002).

The key to both is Lagrange’s formula (1.50). The Lagrange function ���� is defined
for irrational � as the supremum of c > 0 such that∣∣∣∣pq −�

∣∣∣∣< 1
cq2

has infinitely many solutions in the integers p, q, q > 0. So, the greater ���� is, the
better can � be approximated by rational numbers. The range of� is called the Lagrange
spectrum. Markoff proved that, on the one hand, for ���� < 3 the Lagrange spectrum
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is discrete and any � with ���� < 3 is a quadratic irrational that is equivalent to the
continued fraction

��	
��= 1
r1 +

1
r1 +

1
r2 +

1
r2 +

1
r3 +

1
r3 + · · · +

1
rn +

1
rn + · · ·


 (2)

with �= 0 and a rational 0< 	 � 1. Here

rn = ��n+1�	+�
− �n	+�

is a Jean Bernoulli sequence,1 which Jean Bernoulli introduced in his treatise on astron-
omy (1772). On the other hand, ����	
��� = 3 for irrational 	 ∈ �0
1�. Hence there
are transcendental numbers with ����= 3. Moreover, they may be represented by reg-
ular continued fractions (2), which are simply expressed via Jean Bernoulli sequences.
These are the worst transcendental numbers from the point of view of rational approx-
imation, as follows from Markoff’s main result, in contrast with Liouville’s constant

L=
�∑
n=0

10−n!

= 1
9 +

1
11 +

1
99 +

1
1 +

1
10 +

1
9 +

1
999 999 999 999 +

1
1 + · · · �

In Khrushchev (2001, 2002), Lagrange’s formula, see Theorem 8.67, is applied not to
regular continued fractions but to Wall continued fractions, which are nothing other
than a form of the classical Schur algorithm. In the case of numbers one usually con-
siders either their decimal representations or regular continued fraction expansions,
and in this case there are three closely related objects. The first is the continuum P�T�

of all probability Borel measures on T. The second and the third are the continuums
of analytic functions F� with positive real part in the unit disc D:

F��z�=
∫

T

�+ z
�− zd����=

1+ zf�
1− zf� (3)

and contractive analytic functions f� in D. Any such f� expands into a Wall continued
fraction

f�z�= a0+
�1−�a0�2�z

ā0z +
1
a1 +

�1−�a1�2�z
ā1z + · · · 
 (4)

where, by Geronimus’ theorem, which I mentioned right at the start, �an�n�0 are on the
one hand the Verblunsky parameters of � and on the other hand the Schur parameters
of f� . The even convergents to (4) are contractive rational functions An/Bn, which
by Schur’s theorem (1917) converge to f� uniformly on compact subsets of D. The
substitution of f� in (3) with An/Bn results in rational functions� ∗

n /�
∗
n, where ��n�n�0

are monic orthogonal polynomials in L2�d��. By Lagrange’s formula, asymptotic

1 So-called by A. A. Markoff, who discovered important properties of these sequences.



xiv Preface

properties of the normalized orthogonal polynomials ��n�n�0, ���2d� ∈P�T�, can be
studied from the point of view of approximation on T either of f� by An/Bn or F� by
� ∗
n /�

∗
n. For instance, it turns out that Szegő measures, i.e. measures with finite entropy∫

T

log� ′dm >−� 
 (5)

where m is the Lebesgue measure on T, are exactly the measures such that An/Bn→ f

in L1, where the distance between values of An/Bn and f is measured in the Poincaré
metric of the non-euclidean geometry of D; see Theorem 8.56.

A measure � ∈P�T� is called a Rakhmanov measure if

∗- lim
n
��n�2d� = dm

in the ∗-weak topology of P�T�. A measure is a Rakhmanov measure if and only if
the Máté–Nevai condition

lim
n
anan+k = 0 for k� 1 


for the Verblunsky parameters �an�n�0 is satisfied (Theorem 8.73). Moreover An/Bn⇒
f� in measure on T for any Rakhmanov measure � . With this theorem to hand we
can prove that An/Bn ⇒ f� in measure on T if and only if either � is singular
or limn an = 0; see Theorem 8.78. The last two results have an important practical
application. Let � be any Szegő measure. By Geronimus, theorem (5) is equivalent to

�∑
n=0

�an�2 <� �

Let us now modify the sequence �an�n�0 on an arbitrary sparse subset � of integers,
which in addition starts far from n = 0. We replace an with 10−1000! if n ∈ �. The
sequence obtained, �a∗n�n�0, is a Máté–Nevai sequence. Hence the measure �∗ with
Verblunsky parameters �a∗n�n�0 is a Rakhmanov measure, implying that An/Bn⇒ f�

∗

on T. Since limn a
∗
n 	= 0, we obtain that �∗ is singular. It is impossible to distinguish

in practice the Szegő measure � from the singular measure �∗ just by observing their
first Verblunsky parameters.

We also construct in Chapter 8 examples of extremely transcendental � , such that the
sequence ���n�2d��n�0 is dense in P�T�. Elements of the theory of periodic measures
are also considered at this point.

Although the analogy described above is rather remote, in my opinion it is beautiful
and justifies the inclusion of Markoff’s results in Chapter 2. At many points I follow the
Russian version of Markoff’s thesis. However, there is an important difference. From
Lagrange’s formula Markoff quite naturally arrives at a combinatorial description of
Jean Bernoulli sequences. In this book the properties of Jean Bernoulli sequences are
first studied in detail in Chapter 1. Then these results are applied in Chapter 2, which
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makes the basic ideas of Markoff look more natural. With Jean Bernoulli sequences
and the formulas for Jean Bernoulli and Markoff periods one can easily calculate
numerically as many points of the Lagrange spectrum as necessary.

Markoff’s theory completes the algebraic part of this book. The analytic part begins
in Chapter 3 and is followed in Chapter 4 by Euler’s research. To a great extent
this chapter covers Euler (1750b) but with the difference that Brouncker’s method
recovered in Chapter 3 is applied. The method can be extended from the unit circle
considered by Wallis to the class of sinusoidal spirals introduced into mathematics
in 1718 by another great British mathematician, Colin Maclaurin. Chapter 4 covers
the forgotten Euler differential method of summation of some continued fractions of
hypergeometric type. It turns out that, for instance, approximately half the continued
fractions discovered later by Stieltjes can be easily summed up by this method of
Euler. However, the differential method does have some limitations. Attempting to
overcome them Euler arrived at the beautiful theory of Riccati equations. In (1933)
Sanielevici presented Euler’s method in a very general form. Later Khovanskii (1958)
using Sanielevici’s results developed as continued fractions many elementary functions.
Still, I think that Euler’s method as stated by Euler makes everything more clear. In
this part I filled some gaps in the proofs while trying not to violate Euler’s arguments.
The central result here is the continued fraction for the hyperbolic cotangent. I collect
in Chapter 5 some results which were or could be directly or indirectly influenced by
Euler’s formulas. Such an approach sheds new light on the subject.

Chapter 6 presents results either obtained by Wallis interpolation or by a direct
transfer from the regular continued fractions of number theory to polynomial con-
tinued fractions, i.e. to P-fractions. Euler’s results on hypergeometric functions play
a significant role here. Another interesting topic of this chapter is the periodicity
of P-fractions. As before, the first results were obtained by Euler. Using contin-
ued fractions of the radicals of quadratic polynomials as guidance, Euler found his
now well-known substitutions for integration. This was extended by Abel in one
of his first papers, which incidentally preceded his discoveries in elliptic functions.
I include in this chapter a beautiful result of Chebyshev on integration in finite
terms.

Chapter 7 indicates how Euler’s ideas eventually led to the discovery of orthogonal
polynomials. Finally, I present in Chapter 8 my own research on the convergence of
Schur’s algorithm.

A few words on the title. It varied several times but since the essential part of the
book is related to Euler I believe that finally I made a good choice. Moreover, in 2007
the tercentenary of Euler was celebrated.

Following Euler, I have split the book into small numbered “paragraphs” (sub-
sections). This was an old tradition in mathematics, now almost forgotten. It makes
the book easier to read. The difference from what Euler did is that almost all the
“paragraphs” also have titles.
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This book is not a complete account of what has been done in orthogonal polynomials
or in continued fractions. In orthogonal polynomials Szegő’s book (1939) is still
important. There are also two important contributions made by Nevai (1979, 1986),
and another two books by Saff and Totik (1997) and by Stahl and Totik (1992). As to
orthogonal polynomials on the unit circle there is the recent and exhaustive work in
two volumes of Barry Simon (2005). More on continued fractions can be found in
Jones and Thron (1980), Khinchin (1935), Khovanskii (1958), Perron (1954, 1957)
and Wall (1943).

Most parts of this book require only some knowledge of calculus and an under-
graduate course on algebra. In Chapters 6–8 elementary facts from complex analysis
are used occasionally. In Chapter 8 in addition it is important to know basic facts on
Hardy spaces. There are two relatively new and very well written books on Hardy
spaces: Garnett (1982) and Koosis (1998).

I wish to thank a number of people and organizations supporting me in one or
another way during the work on this project. First of all I express deep gratitude to my
aunt Galina Kreidtner. She was not a mathematician, she was an architect and artist.
Nonetheless she enthusiastically and helpfully discussed with me the idea of this book
in Almaty. She died at the age of 80 in 2000 and so I lost one of the best friends in
my life. I dedicate this book to her memory.

Another very good friend, Paul Nevai from the Ohio State University, made a right
choice in favor of orthogonal polynomials at the very beginning of his mathematical
career in St Petersburg University, where we were fellow students. His support was
also extremely valuable and sincere.

My special thanks to Purdue University, Indiana, which played a significant role in
my career in mathematics at least twice. I am particularly grateful to David Drasin
and Carl Cowen.

I am very grateful also to Atilim University, Ankara, which has created very good
conditions for my research in mathematics and supported all my scientific projects.

I express my sincere and deep gratitude to Barry Simon (Caltech, Pasadena) who
provided very important personal support for this book.

The book turned out to be so much influenced by Wallis’ Arithmetica Infinitorum
(1656) that I cannot avoid a temptation to finish this preface with a citation from its
very end:

There remains this: we beseech the skilled in these things, that what we thought worth
showing, they will think worth openly receiving, and whatever it hides, worth imparting
more properly by themselves to the wider mathematical community.

PRAISE BE TO GOD

Almaty–Ankara (1998–2007)
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Continued fractions: real numbers

1.1 Historical background

1 Euclidean algorithm. Any pair x0 > x1 of positive integers generates a decreas-
ing sequence x0 > x1 > x2 > · · · in the set N of all positive integers:

x0 = b0x1+x2


x1 = b1x2+x3


x2 = b2x3+x4


��� (1.1)

xn−2 = bn−2xn−1+xn

xn−1 = bn−1xn


with bj ∈ N, j = 0
1
 � � � Since any decreasing sequence in N is finite, there exists
n ∈ N such that for xn−1 = bn−1xn the algorithm stops at this line.

Reading the equations in (1.1) from the top to xn−2 = bn−2xn−1+xn, which precedes
the last equation xn−1 = bn−1xn, we obtain that any common divisor of x0 and x1

divides xn. Reading the same equations from the bottom to the top, we obtain that xn
is a common divisor of x0 and x1. Hence xn is the greatest common divisor d= �x0
 x1�

for x0 and x1. This is the standard form of the Euclidean algorithm, which provides a
foundation for multiplicative number theory.

To explain the role played by the coefficients bk in (1.1) we will consider (1.1) as a
system of linear algebraic equations with integer coefficients b0
 b1
 b2
 � � � Eliminating
the unknowns xk from (1.1) we obtain

xk−1

xk
= bk−1+

1
xk/xk+1


 k= 1
2
 � � � 


1
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which obviously yields the development of x0/x1 into a finite regular continued
fraction

x0

x1

= b0+
1

b1+ 1

b2+� � �+ 1
bn

To save space, Rogers (1907) proposed that the following notation could be used, in
which the continued fraction is written in line form:

x0

x1

= b0+
1
b1 +

1
b2 + · · · +

1
bn−1

� (1.2)

This shows that any rational number equals the value of a regular continued fraction
(1.2), where b0 is an integer (b0 ∈ Z) and b1
 b2
 � � � 
 bn−1 are positive integers. The
advantage of such a representation compared with popular decimal or dyadic repre-
sentations is that it is universal and does not reflect particular properties of the base.
Thus the continuum R of real numbers can be parameterized by a sequence of integer
parameters �bk�k�0 restricted to b0 ∈ Z and bk ∈ N if k� 1.

2 Hippasus of Metapontum. The algebraic construction of continued fractions
discussed above originates in one important problem of geometry solved by the
Pythagorean Hippasus of Metapontum in the fifth century BC. By the way, this problem
is related to the notion of orthogonality; namely, given AB⊥AD, x1 = �AB� = �AD�,
prove that BD, �BD� = x0 and AD have no common unit of measurement.

Hippasus’ geometrical construction is remarkably similar to the construction of
continued fractions (see Fig. 1.1). First, x0 > x1 > x2 = �ED�, where E is defined so

B C

O

E

DFA

C1B1

A1

Fig. 1.1. Hippasus’ construction for x1 = 2x2+x3.
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that �AB� = �BE�. Computations with the angles in �ABE, �AEF and �FED show
that �AF � = �FE� = �ED�. Hence

x0 = x1+x2�

x1 = 2x2+x3
 �A1D� = x3 < x2�

Observing that �ABD∼ �EFD, we have x2 = 2x3+x4. The construction can now be
run by induction and it will never stop (notice that An never equals D). The result is
that x0/x1 can be represented by an infinite continued fraction:

x0

x1

= 1+ 1
2 +

1
2 +

1
2 +

1
2 + · · · � (1.3)

Since rational numbers are values of finite regular continued fractions and the de-
velopment into a regular continued fraction is unique, this, by the way, shows that√

2= �BD�/�AD� is an irrational number.

3 Bombelli’s method. In L’algebra R. Bombelli (1572) considered a method of
computation of square roots

√
N , where N is a positive integer which is not a perfect

square. Let a be the greatest positive integer satisfying a2 <N . Then N = a2+ r with
r > 0 and √

a2+ r = a+x⇔ x = r

2a+x 

implying that

√
N = a+ r

2a +
r

2a +
r

2a +· · · �

In particular for N = 13 we obtain

√
13= 3+ 4

6 +
4
6 +

4
6 +· · · = 3+ 2

3 +
1
3 +

1
3 +

1
3 +· · · �

4 Ascending continued fractions. It is easy to see that any finite regular continued
fraction represents a rational number. To find the rational number corresponding to
the continued fraction

2+ 1
3 +

1
2 +

1
1 +

1
4 +

1
2 +

1
3

we rewrite it, starting from the right-hand side of the above expression, in the form of
an ascending continued fraction

1
1

1
3
+2

+4
+ · · · 


which in six steps of elementary arithmetic operations results in 825/359.
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5 Huygens’ method. The theory of regular continued fractions originates in the
practical problem of the approximation in the lowest terms of rational numbers with
large numerators and denominators by rational numbers with much smaller ones. The
first such problem was considered systematically by Huygens (1698). In this book
Huygens studied a planetarium problem. For a planetarium to work accurately one
should arrange the gear ratio to be

77 708 431
2 640 858

�

Since it was impossible to arrange this ratio in practice, Huygens developed the ratio
into the continued fraction

29+ 1
2 +

1
2 +

1
1 +

1
5 +

1
1 +

1
4 +

1
1 +

1
1 +

1
2 +

1
1 +

1
6 +

1
1 +

1
10 +

1
2 +

1
2 +

1
3



and studied the successive approximations

P−1

Q−1

= 1
0
=+�


P0

Q0

= 29
1
= 29


P1

Q1

= 29+ 1
2
= 59

2
= 29�5


P2

Q2

= 29+ 1
2 +

1
2
= 147

5
= 29�4


P3

Q3

= 29+ 1
2 +

1
2 +

1
1
= 206

7
= 29�428 571 43 � � � 


P4

Q4

= 29+ 1
2 +

1
2 +

1
1 +

1
5
= 1177

40
= 29�425


P5

Q5

= 29+ 1
2 +

1
2 +

1
1 +

1
5 +

1
1
= 1383

47
= 29�425 531 91 � � � 


P6

Q6

= 29+ 1
2 +

1
2 +

1
1 +

1
5 +

1
1 +

1
4
= 6709

228
= 29�425 438 60 � � �

(1.4)
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A simple analysis of (1.2) shows that the value of the continued fraction lies between
its consecutive convergents Pk/Qk. Therefore to estimate the approximation error one
can simply find the following differences:

59
2
− 29

1
= 1

2×1



59
2
− 147

5
= 1

2×5



206
7
− 147

5
= 1

7×147



206
7
− 1177

40
= 1

7×40

 (1.5)

1383
47

− 1177
40

= 1
47×40



1383
47

− 6709
228

= 1
47×228

= 1
10 716

�

The fact that all these differences are aliquot fractions, i.e. fractions with unit numer-
ators and integer denominators, cannot be accidental. Basically it is this fact which
yields a good rational approximation, 6709/228, to Huygens’ fraction.

6 Continued fractions and the Gregorian calendar. Following Euler (1748),
we consider an application of continued fractions to the calendar problem.

Problem 1.1 Precise astronomical observations show that one year lasts

365d5h48m55s�

Find a calendar that will not accumulate a noticeable error for a long interval of time.

The assumption that one year lasts 365 days leads to an error of 5 hours per year.
The error accumulates fairly fast and in 100 years results in a noticeable shift of the
seasons. If we assume that one year lasts 366 days the disagreement with the seasons
will be observed much earlier.

To solve this problem we first express the duration of one year in days:

1 year= 365+ 5
24
+ 48

60
× 1

24
+ 55

60
× 1

60
× 1

24
days= 365+ 20 935

86 400
days.

This is itself, of course, an approximate duration but the error is so small that it will
not be noticeable for more than 10 000 years.

To find a good approximation to 20 935/86 400 we develop this rational number
into a regular continued fraction. It is clear that the numbers 20 935 and 86 400 are
both divisible by 5, so that

20 935
86 400

= 4187
17 280

�

One can easily prove that the last fraction is in the lowest terms. Indeed 20 935 =
5×53×79, whereas 86400= 27×33×52, which implies that 5 is the greatest common
divisor.
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We have

4187

17 280
= 1

4 +
532
4187

= 1
4 +

1
7 +

463
532

= 1
4 +

1
7 +

1
1 +

69
463

= 1
4 +

1
7 +

1
1 +

1
6 +

49
69
= 1

4 +
1
7 +

1
1 +

1
6 +

1
1 +

20
49

= 1
4 +

1
7 +

1
1 +

1
6 +

1
1 +

1
2 +

1
2 +

2
9

= 1
4 +

1
7 +

1
1 +

1
6 +

1
1 +

1
2 +

1
2 +

1
4 +

1
2
�

The convergents to this continued fraction can be arranged into the following table:

0 4 7 1 6 1 2 2 · · ·
1
0

0
1

l 1
4

g 7
29

l 8
33

g 55
227

l 63
260

g 181
747

l

· · ·
(1.6)

The first row of this table contains the partial denominators of the continued fractions.
The second row consists of the corresponding convergents, shifted to the right by 1.
This convenient notation is due to Euler and is explained below, in the paragraph
before Theorem 1.5. The index l means that the convergent is less than the value
of the continued fraction. The index g means that the convergent is greater than this
value. It follows that every four years contribute a little bit less than 1 extra day. This
gives rise to the Julian Calendar, which adds one extra day (29 February) every leap
year (i.e. each year that is divisible by 4).

It should also be clear from (1.6) that every 33 years contribute a little bit less than
eight days. Since

100= 3×33+1


we obtain that every 400= 4×3×33+4 years contribute a little bit less than 4×3×
8+1= 97 extra days. To arrange a convenient compensation, the Gregorian Calendar
converts 3 = 100− 97 leap years within the range of every 400 years into ordinary
years. Thus 1700, 1800, 1900 were ordinary years (to remove the three extra days
contributed by the Julian Calendar). However, 1600 and 2000 were leap years. Since

97

400
− 4187

17 280
= 0�000 197 456 � � � 


the Gregorian Calendar contributes about two extra days every 10 000 years.

The Gregorian Calendar was introduced in 1582 by Pope Gregory. By that time the difference between the
two calendars was already 10 days. The new calendar was introduced on 5 October 1582 and, to compensate
the difference of 10 days, the day of 5 October 1582 was announced to be 15 October 1582 (Kiselev 1915,
§97). It is interesting to notice that although the Gregorian calendar, as shown above, is closely related to
continued fractions it was one of the contributors to the field at this time, Wallis, who advised the British
authorities to reject it in Great Britain (Zeuthen 1903).
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7 The well-tempered clavier. Here is an impressive application of continued
fractions to music. The Weber–Fechner law states that the response of human beings
to physical phenomena obeys a logarithmic law (see Maor 1994, pp. 111–12). This
ability of human beings makes them less sensitive to the changes of the outside world
by converting outside impulses with exponential growth into a linear response scale
and so reduces our reaction to the most significant ones. In particular, our ear registers
not the direct frequency ratio of two sounds but its logarithm. The main problem in
music is to arrange a system of sounds which will create an impression of harmony
under this logarithmic law of response. In practice this means that the frequencies in
a musical scale should correspond to a linear set of logarithmic responses, i.e. these
responses should divide up the logarithmic image of the scale into a number of equal
parts. If a string of length l creates a sound of frequency �= 512 Hz then a string of
length l/2 doubles the frequency to 2�. The logarithmic base a is then chosen so as
to normalize the following number to unity:

loga �2� � ��= loga 2= 1


which implies that a= 2. The ratio 2� � �= 2 determines an interval ��
2��, called
an octave. The ratio 3�/2 � � corresponding to half the interval ��
2�� (the frequency
3�/2 is generated by a string of length 2l/3) is called a perfect fifth; the ear hears this
ratio as

log2

(
3
2� � �

)= log2 3−1�

Our ear hears a perfect fifth best, and therefore one should divide the logarithmic image
of an octave into a number of equal parts in such a way that the above logarithmic
image of a perfect fifth is well approximated. It can be shown that

log2 3−1= 0�584 962 500 721 � � �= 1
1 +

1
1 +

1
2 +

1
2 +

1
3 +

1
1 +

1
5 +

1
2 +

1
23 + · · ·

The convergents to the continued fraction of log2 3−1 form the series

1

1
2



3
5



7
12



24
41

 � � � (1.7)

and represent successive ways of dividing up the image of the octave. The approxi-
mations 1 and 1/2 are too inexact. The approximation 3/5 is used in eastern music.
The approximation 7/12 is the best. It divides the octave into 12 semitones and seven
such semitones correspond to a fifth. To study what happens at other frequencies we
observe that the distance between two notes measured as the ratio of their frequencies
is called an interval. If the interval between two notes is a ratio of small integers these
two notes are called consonant. Otherwise they are called dissonant.1 There are seven

1 An original theory of sound classification by the “degree of pleasure” was developed by Euler in his
monograph (1739).
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intervals that are commonly considered as consonant (they had appeared already in
Descartes’ table; see Brouncker 1653, p. 13):

2/1 �octave� 5/4 �major third�

3/2 �perfect fifth� 6/5 �minor third�

4/3 �perfect fourth� 5/3 �major sixth�

8/5 �minor sixth�

The analysis of these numbers shows that they form the sequence

1<
6

5
<

5
4
<

4
3
<

3
2
<

8
5
<

5
3
< 2 (1.8)

satisfying the relations

5
3
× 6

5
= 5

4
× 8

5
= 3

2
× 4

3
= 2


5
4
× 6

5
= 3

2
�

This implies that the binary logarithms of these intervals are linear combinations
of 1, log2 3/2 and log2 5/4 with coefficients in �0
1
−1�. Hence the error in the
approximation by a uniform scale is completely determined by the errors for log2 3/2
and log2 5/4 and cannot exceed the maximum of the two. Now

log2

(
5
4

)
= 0�321 928 094 887 362 347 87 � � �= 1

3 +
1
9 +

1
2 +

1
2 +

1
4 +

1
6 + · · ·

shows that 1/3 = 4/12 is a convergent to log2 5/4. This guarantees that the equal-
temperament system of 12 uniform semitones gives a good rational approximation to
the two basic intervals 3/2 and 5/4, and hence to all seven consonant intervals.

See Dunne and McConnell (1999) for a more detailed discussion. Excellent comments on this topic can
also be found in the appendix by V. G. Boltyanskii to the Russian translation of Klein (1932).

8 Quadrature of the unit circle. The unit circle T is the boundary of the unit
disc D centered at zero. The area of D is denoted by �. Having been introduced by
W. Jones in (1706), the notation � became standard only after Euler published his
monograph (1748). According to Cajori (1916, p. 32), in introducing � Jones was
probably motivated by Oughtred’s notation �/� for the ratio of the circumference and
the diameter of a circle; Oughtred was Wallis’ teacher.

Theorem 1.2 (Archimedes) The length of T is 2�.

Proof Let us inscribe a regular n-polygon Pn in T. Then its sides of equal length ln
make small triangles with the origin of area ln�1−o�1��/2. Hence the area of Pn is
n× ln�1−o�1��/2. It approaches � as n→+�, whereas nln approaches the length
of T, which proves the theorem. �
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Problem 1.3 (The quadrature problem) Find a good rational approximation to the
length of T.

The quadrature (squaring) of the circle was one of the most difficult ancient mathe-
matical problems. Attempts to solve it resulted in significant progress in mathematical
analysis and especially in the theory of continued fractions. The meaning of the prob-
lem has been changing in mathematics with time. In Archimedes’ time the practical
side of the problem was to construct with ruler and compass the side of a square
having area �. The theoretical side of the problem was to either prove that � ∈Q or
at least find a good rational approximation to �. Now with Wolfram’s Mathematica
program2 everybody can find thousands of digits of �:

� = 3�141 592 653 589 793 238 462 643 383 279 � � � 


but originally the calculation of the correct decimal places of � was a difficult problem.
The first important contribution to the quadrature problem was made by Archimedes,
who developed the method of inscribed and superscribed regular n-polygons with
n = 6, 12, 24, 48, 96
 � � � 
3× 2k. For instance, consideration of a regular hexagon
inscribed in a circle shows that 3< �.

Archimedes method looks especially beautiful in the form of Gregory (1667); see O’Connor and Robertson
(2004). Let ak be the semiperimeter of a regular n-polygon (n= 3×2k) inscribed in T. In Fig. 1.2 its side
is AC (k= 1), AP = AC/2 and AB is half the side of a superscribed regular n-polygon with semiperimeter
bk. It follows that ∠AOB = �/n. Since �OAB is similar to �OAP, we obtain that �AB� = tan�/n and
�AP� = sin�/n. Hence

ak = n sin
�

n
< � < bk = n tan

�

n
�

X

Y

O

A

B

C

P

Fig. 1.2. Archimedes’ construction to find an approximation to �.

2 www.wolfram.research.com.
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Clearly a1 = 3, b1 = 2
√

3= 3�464101615 � � � Obvious trigonometry,

1

tan 	
+ 1

sin 	
= 1

tan�	/2�

 2 tan

	

2
sin 	 =

(
2 sin

	

2

)2




results in the recurrence relations

bn+1 =
2anbn
an+bn


 an+1 =
√
anbn+1�

Archimedes obtained his inequalities 3�1410 < � < 3�1427 by calculating a5 and b5. His method was
considerably improved by Huygens (see Rudio 1892).

The first algebraic algorithm for the calculation of an arbitrary number of places of
� was proposed by Brouncker in 1656;3 see §63 in Section 3.2. Although Brouncker’s
simple calculations remained unnoticed,4 the more complicated calculations of Huygens
resulted in significant progress in the rational approximation of �. In particular, it was
shown that

� = 3+ 1

7 +
1
15 +

1
1 +

1
292 +

1
1 +

1
1 +

1
1 +

1
2 +

1
1 +

1
3 +

1
1 +

1
14 +

1
2 +

1
1 +· · · �

In a similar way to (1.6), the convergents to the continued fraction of � can be arranged
in the following table:

3 7 15 1 292 1 � � �

1

0

g 3
1

l 22
7

g 333
106

l 355
113

g 103 993
33 102

l

� � �
(1.9)

The approximation 355/113 is called Metius’ approximation. The error in Metius’
approximation is less than

0<
355
113

−� < 355
113

− 103 993
33 102

= 11 751 210−11 751 209
113×33 102

= 1
113×33 102

= 1
3 740 526

= 0�000 000 267 � � �

One can easily check with Wolfram’s Mathematica program that there is another
dramatic jump in the series of moderately small values of partial denominators for �.
It happens at n= 431: b431 = 20 776, whereas b430 = 4 and b432 = 1.

By Corollary 1.16 the continued fraction for � is finite if and only if � ∈Q. If � were a rational number
then the quadrature of the circle would have a positive solution. Indeed, using ruler and compass one can
easily construct any rational number a on the number axis. Then

√
a is the length of the diagonal of the

square with side a. Using a continued fraction for the cotangent of an angle, discovered by Euler, Lambert
in (1761) proved that � � Q. Later Legendre gave a simpler proof. We discuss this in more detail later
in §113 at the start of Section 5.3. The quadrature problem in the most general form was solved in 1882
by Lindemann, who showed that � does not satisfy any algebraic equation with integer coefficients; for

3 According to a letter from Wallis to Digby sent on 6 June 1657.
4 See §63, noting that Huygens was informed about Brouncker’s calculations at his request.
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a proof, see for instance LeVeque (1996, §9.7). On the contrary, the length of any segment that can be
constructed with ruler and compass must satisfy just such an equation.

9 Euler’s example (1744). In the following example, Euler computed the con-
vergents of Hippasus’ continued fraction (1.3) each decreased by unity. For further
purposes we list the convergents to

√
2 itself:

1 2 2 2 2 2 2 2 � � �

1
0

1
1

3
2

7
5

17
12

41
29

99
70

239
169

� � �
(1.10)

It follows from (1.3) that the even convergents are smaller than the odd convergents.
Therefore 239/169 <

√
2 < 99/70 and the error in representing

√
2 by the fifth

convergent 99/70 cannot exceed

99
70
− 239

169
= 169×99−70×239

70×169
= 16 731−16 730

11 830
< 10−4�

Computations now show that
√

2= 1�414 213 562 37 � � � 


1+ 29
70
= 1�414 285 714 28 � � �

The identity 169×99−70×239= 1 is explained by Euler’s theory, discussed below.

1.2 Euler’s theory of continued fractions

10 The Euler–Wallis formulas. Replacing the 1’s multiplying the xj+1 on the
right-hand side of (1.1) by nonzero coefficients aj and letting the number of equations
be infinite, we obtain

x0 = b0x1+a1x2


x1 = b1x2+a2x3
 (1.11)

x2 = b2x3+a3x4


���

Eliminating the unknowns xk, we get a general continued fraction:

b0+
a1

b1 +
a2

b2 +· · · = b0+
�
K
k=1

(
ak
bk

)
� (1.12)
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The numbers ak are called the kth partial numerators, and the bk are called the kth
partial denominators, of (1.12).

We will consider (1.12) just as an algorithm for obtaining rational approximants.
More precisely, for every positive integer n we can stop the process in (1.12) at the
term an/bn and perform all algebraic operations without cancellations. Then

Pn
Qn

≡ b0+
n

K
k=1

(
ak
bk

)
(1.13)

is called the nth convergent to the continued fraction (1.12). By (1.16) below, Pn and
Qn cannot both vanish, so one can always assign a value, finite or infinite, to (1.13).
This is the reason for the requirement ak 	= 0.

Theorem 1.4 (Brounker: Euler 1748 and Wallis 1656) Let

� = b0+
�
K
k=1

(
ak
bk

)
= b0+

a1

b1 +· · · +
an
bn +

an+1

�n+1

(1.14)

be a formal continued fraction with convergents �Pn/Qn�n�1. Let

P−1 = 1
 P0 = b0


Q−1 = 0
 Q0 = 1�

Then �Pn�n�0 and �Qn�n�0 satisfy the Euler–Wallis formulas

Pn = bnPn−1+anPn−2


Qn = bnQn−1+anQn−2

(1.15)

PnQn−1−Pn−1Qn = �−1�n−1a1 · · ·an
 (1.16)

� = �n+1Pn+an+1Pn−1

�n+1Qn+an+1Qn−1

� (1.17)

Proof We have P0/Q0 = b0, b0+a1/b1 = �b0b1+a1�/b1 = P1/Q1, which by defini-
tion implies that

P1 = b0b1+a1 = b1P0+a1P−1
 Q1 = b1 = b1Q0+a1Q−1�

In other words (1.15) holds for n = 1. The proof is now completed by induction.
Assuming that (1.15) holds for a given n for any formal continued fraction, we will
prove that it holds for n+1. If bn+1 = 0, then

· · · +
an−1

bn−1 +
an
bn +

an+1

bn+1 +
= · · · +

an−1

bn−1
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since an+1/bn+1 = �. Hence Pn+1 = an+1Pn−1 and Qn+1 = an+1Qn−1, in complete
correspondence with (1.15). If bn+1 	= 0 then, observing that

an
bn+an+1/bn+1

= anbn+1

bnbn+1+an+1




we put a′n = anbn+1, b′n = bnbn+1+ an+1 and consider an auxiliary finite continued
fraction with n terms:

b0+
a1

b1 +
a2

b2 +· · · +
an−1

bn−1 +
a
′
n

b′n
�

By the definition of Pn+1 and induction on the auxiliary continued fraction, we obtain

Pn+1 = P ′n = b′nPn−1+a′nPn−2

= bnbn+1Pn−1+an+1Pn−1+bn+1anPn−2

= bn+1�bnPn−1+anPn−2�+an+1Pn−1

= bn+1Pn+an+1Pn−1�

This implies (1.15) for Pn+1. Similarly, (1.15) holds for Qn+1.

To prove (1.16) we observe that P1Q0−P0Q1 = a1. Assuming that (1.16) holds for
n, we apply (1.15) to show that

Pn+1Qn−PnQn+1 = �bn+1Pn+an+1Pn−1�Qn

−Pn�bn+1Qn+an+1Qn−1�

=−an+1�PnQn−1−Pn−1Qn�


which completes the proof of (1.16). To prove (1.17) we put a′n+1 = an+1, b′n+1 = �n+1

and notice that by (1.15)

P ′n+1 = ��n+1�Pn+an+1Pn−1


Q′n+1 = ��n+1�Qn+an+1Qn−1


which proves (1.17) since � = P ′n+1/Q
′
n+1. �

The story of these formulas goes back to Brouncker, when in March 1655 on a request of Wallis he found
a beautiful continued fraction for the quadrature problem; see §59 in Section 3.2. The important formula
(1.17) is due to Euler. It was Euler who systematically applied these formulas and moreover stated them
explicitly (1748). The choice of the first convergents 1/0 and b0/1 is also due to Euler and was motivated
by Brouncker’s theorem 1.7; see (1.21) below. Theorem 1.4 is very useful in converting the convergents
of continued fractions into fractions in their lowest terms. Compared with the straightforward method of
ascendant continued fractions presented in §4, formulas (1.15) simplify the calculations considerably. As
we have seen, Euler found (see Euler 1744) a convenient way to arrange the calculations of convergents in
tables; see (1.6), (1.9) and (1.10). Euler’s idea is well demonstrated by (1.9):

333+292×355
106+292×113

= 103 993
33 102

�
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Theorem 1.5 The numerators Pn and denominators Qn of (1.13) satisfy

Pn
Pn−1

= bn+
an
bn−1 +

an−1

bn−2 +· · · +
a1

b0




Qn
Qn−1

= bn+
an
bn−1 +

an−1

bn−2 +· · · +
a2

b1

�

(1.18)

Proof Apply (1.15) to the left-hand sides of (1.18) iteratively. �

Corollary 1.6 A sequence of positive integers �bn�n�0 satisfies, for k� 2,

�b1
 b2
 � � � bk�= �bk
 bk−1
 � � � b1� (1.19)

if and only if Pk =Qk−1, where �Pn/Qn�n�0 are convergents to K
n�1
�1/bn�.

Proof By (1.18) and by the uniqueness of representation by regular continued fractions,

Qk−1

Qk
= 1
bk +

1
bk−1 +· · ·

1
b1

is the convergent Pk/Qk if and only if (1.19) holds. �

The interlacing property of convergents for continued fractions with positive terms
was first discovered by Brouncker; see §60 in Section 3.2.

Theorem 1.7 (Brouncker 1655) Let b0+K�
k=1�ak/bk� be a formal continued fraction

with positive terms. Then

Pn
Qn
− Pn−1

Qn−1

= �−1�n−1a1 · · ·an
QnQn−1


 n= 1
2
 � � � 
 (1.20)

P0

Q0

< · · ·< P2k

Q2k

< · · ·< P2k+1

Q2k+1

< · · ·< P1

Q1

<
P−1

Q−1

=+�� (1.21)

Proof To obtain (1.20) we divide both sides of (1.16) by QnQn−1. Adding formulas
(1.20) for consecutive values of n, we obtain

Pn
Qn
− Pn−2

Qn−2

= �−1�n−1a1 · · ·an
QnQn−1

+ �−1�n−2a1 · · ·an−1

Qn−1Qn−2

= �−1�na1 · · ·an−1

Qn−1

(
1
Qn−2

− an
Qn

)

= �−1�na1 · · ·an−1

Qn−1

Qn−anQn−2

Qn−2Qn
= �−1�na1 · · ·an−1bn

QnQn−2


 (1.22)

since Qn−anQn−2 = bnQn−1 by (1.15). It follows that the even convergents increase
whereas the odd convergents decrease. Putting n= 2k+1 in (1.20) results in

P2k+1

Q2k+1

− P2k

Q2k

= 1
Q2k+1Q2k






1.2 Euler’s theory of continued fractions 15

which implies that the �2k+1�th convergent is always greater than the 2kth convergent
and hence than any even convergent. �

11 The Euler–Mindingen formulas (Perron 1954). According to the Euler–
Wallis formulas (1.15)–(1.17), the numerators Pn and denominators Qn of the conver-
gents Pn/Qn to a general continued fraction (1.12) are polynomials in a0
 a1
 � � � 
 an
and b0
 b1
 � � � 
 bn. We are going to obtain formulas for these polynomials. Let

An = b0b1 · · ·bn
(

1+ a1

b0b1

)(
1+ a2

b1b2

)
· · ·

(
1+ an

bn−1bn

)
� (1.23)

Multiplying out the factors shows that An contains terms of “integer” type,

b0b1 · · ·bn
a1

b0b1

= b2 · · ·bna1
 b0b1 · · ·bn
a1

b0b1

a3

b2b3

= b4 · · ·bna1a3


and also terms of “fractional” type,

b0b1 · · ·bn
a1

b0b1

a2

b1b2

= b3 · · ·bn
b1

a1a2�

Let us split An into a sum ��An

 of the “integer” terms and a sum ��An�� of the
“fractional” terms:

An = ��An

+ ��An���
Theorem 1.8 (Euler) For every integer n,

Pn = ��An

� (1.24)

Proof By definition A0 = b0 = P0 and A1 = b0b1+a1 = P1. Hence (1.24) holds for
n= 0 and n= 1 and the proof will be complete if we can establish the Euler–Wallis
formula for ��An

:

��An

= bn��An−1

+an��An−2

�

By the definition of An we have

An = bn
(

1+ an
bn−1bn

)
An−1 = bnAn−1+

an
bn−1

An−1� (1.25)

Let us write this formula again but with n replaced by n−1:

An−1 = bn−1An−2+
an−1

bn−2

An−2�

Substituting this formula for An−1 into the last term of (1.25), we get

An = bnAn−1+anAn−2+
anan−1

bn−1bn−2

An−2� (1.26)

Now An−1 depends neither on bn nor on an, which implies that ��bnAn−1

 = bnAn−1.
We also have ��anAn−2

= anAn−2, since an does not enter the denominators of An−2.
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Finally, since An−2 does not depend on bn−1, the last term in (1.26) is obviously
fractional. �

Formulas (1.23) and (1.24) imply an explicit formula for Pn:

Pn = b0b1 · · ·bn
(

1 +
0
n−1∑
i

ai+1

bibi+1

+
0
n−2∑
i<k

ai+1

bibi+1

ak+2

bk+1bk+2

+
0
n−3∑
i<k<l

ai+1

bibi+1

ak+2

bk+1bk+2

al+3

bl+2bl+3

+· · ·
)

(1.27)

Similarly, we define

Bn = b1b2 · · ·bn
(

1+ a2

b1b2

)(
1+ a3

b2b3

)
· · ·

(
1+ an

bn−1bn

)



and obtain that

Qn = ��Bn

= b1b2 · · ·bn
(

1+
1
n−1∑
i

ai+1

bibi+1

+
1
n−2∑
i<k

ai+1

bibi+1

ak+2

bk+1bk+2

+
1
n−3∑
i<k<l

ai+1

bibi+1

ak+2

bk+1bk+2

al+3

bl+2bl+3

+ � � �
)

(1.28)

12 Continuants. The Euler–Wallis formulas (1.15)–(1.17) can be considered as a
system of linear equations in the unknowns Pk, k= 0, � � � , n:

−P0 = −b0


b1P0 −P1 =−a1


a2P0 +b2P1 −P2 = 0

a3P1 +b3P2 −P3 = 0


���

anPn−2 +bnPn−1 −Pn = 0�

Applying Cramer’s rule and moving the last column to the first place, we obtain the
formula

Pn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

b0 −1
a1 b1 −1

a2 b2 −1
���

an−1 bn−1 −1
an bn

∣∣∣∣∣∣∣∣∣∣∣∣∣
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This determinant is called a continuant. Since the formulas for Qk in this form are
shifted by one, we obtain a continuant formula for Qn:

Qn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 −1
a2 b2 −1

a3 b3 −1
���

an−1 bn−1 −1
an bn

∣∣∣∣∣∣∣∣∣∣∣∣∣
Applying the cofactor expansion of Pn with respect to the first row and differentiating
in b0, we obtain the interesting formula

Qn =
�Pn
�b0

� (1.29)

Applying the cofactor expansion to the last rows in the above formulas for Pn and Qn,
we obtain (1.15).

1.3 Rational approximations

13 Algorithm of regular fractions. Every irrational � can be easily developed
into a regular continued fraction with the help of the following algorithm. For � ∈R let
��
 be the greatest integer satisfying n� � and 0 � �− ��
= ����� < 1 be the fractional
part of �. The function x→ �x
 is called the integer part or the floor function. The
latter term originates in the form of the graph of �→ ��
 resembling a flight of stairs.
The following simple formulas are useful in operations involving ��
:

� = ��
+ ������
for every integer n,

�n+�
= n+ ��

 ��n+���= �����


�−�
=
{
−��
 if � ∈ Z


−��
−1 if � � Z�
(1.30)

for every real x and y,

�x
+ �y
� �x+y
� �x
+ �y
+1� (1.31)

Euclid’s algorithm n=mq+ r, where n
m
q
 r are integers and 0 � r < q, can be
written as

n= q
[
n

q

]
+ r
 r = q

{{
n

q

}}
�
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We define the sequence ��n�n�0 by

�0 = � 
 �n+1 =
1
���n��


 n= 0
1
 � � �

By induction �n is irrational, which implies that �n > 1 for every n. Now the algorithm
is as follows:

� = ��0
+
1

1/���0��
= ��0
+

1
�1

= ��0
+
1
��1
 +

1
1/���1��

= ��0
+
1
��1
 +

1
��2
 +

1
��3
 +· · · +

1
��n
 +· · ·

�

(1.32)

Two other useful functions are closely related to the integer and fractional parts
of �. The first is the shift of the integer part, ��+1/2
; it determines the closest integer
to �. The second is

����� =min���−n� � n ∈ Z�= ��− ��+1/2
� = ���x+1/2��−1/2�
 (1.33)

the distance from � to Z.

14 Golden ratio. The ancient problem of the golden ratio is to find a rectangle
(called golden) with sides a and a� such that cutting a square of size a×a results
in a rectangle similar to the initial rectangle. The number � is called the golden ratio
and can be found from the proportion

�−1
1

= 1
�
⇔ �2−�−1= 0�

The quadratic equation for � yields its regular continued fraction:

�= 1+ 1
�
= 1+ 1

1 +
1
�
= · · · = 1+√5

2
= 1�618 � � � �

By Theorem 1.14 below the convergents to� have the very special structure Pn=Qn+1,
Qn+1 =Qn+Qn−1. Hence Qn = un, n= 0
1
 � � �, is the sequence of Fibonacci:

u0 = 1
 u1 = 1
 u2 = 2
 u3 = 3
 u4 = 5


u5 = 8
 u6 = 13
 u7 = 21
 � � � 


and Pn =Qn+1 is the shifted Fibonacci sequence. It follows that

lim
n

un+1

un
= ��

Historically the golden ratio appeared in the proportions of the regular pentagon ABCDE (see Fig. 1.3) in-
scribed into the unit circle (Timerding 1918). The diagonals AC
AD
BE
BD
EC make a regular five-point
star. Since the arcs�ED
�DC
�CB are equal, the corresponding inscribed angles ∠EAD
∠DAC
∠CAB
with vertices at A are equal to 360�/10 = 36�. Since this holds for every vertex of ABCDE, the triangles
�AFB and �BGC are equal and therefore AF = FB=BG=GC = y. Since the sum of the angles of �BGC
is 180�, we obtain ∠BGC = 180� −2×36�. It follows that ∠BGA= 72�. Furthermore, ∠DBA= 72� also,
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y

z

G
y

y  + z

BF

J

K

A

H

CD

E

Fig. 1.3. The golden ratio.

which implies that �AG� = �AB� = y+ z, where y = �AF �
 z= �FG�. Considering the angles of �AGB and
�BFG, we obtain

∠BGA= 72� = 2×36� = ∠ABG
 ∠GAB = 36� = ∠FBG


implying that �AGB ��BFG. It follows that

1
1+ z/y =

y

y+ z =
z

y
= x�

Hence x is the positive root of x2+x−1= 0 and x = 1/�.

15 Huygens’ theory of real numbers. The following corollary explains why all
the fractions in (1.3) are in their lowest terms.

Corollary 1.9 (Huygens 1698) Any convergent Pn/Qn, with n�1, of a formal regular
continued fraction is a fraction in its lowest terms.

Proof Indeed, by (1.16) any common divisor of Pn and Qn must divide �−1�n−1, which
implies that Pn and Qn are relatively prime. �

The basic properties of regular continued fractions, indicated in (1.4) and (1.5), are
summarized in Brouncker’s theorem 1.7 with ak = 1. Let us mention that inequalities
(1.21) determine the Dedekind section corresponding to �. Therefore this observation
can be used as a guidance to Dedekind’s theory of real numbers (for this theory, see
Rudin 1964).

Lemma 1.10 The denominators Qn of the convergents for a formal infinite regular
continued fraction satisfy

Qn > Qn−1 � un−1
 n= 2
3
 � � � (1.34)

Proof Let u−1 = 0. Then Q−1 = u−1 = 0, Q0 = u0 = 1, Q1 = b1 � 1= u1. Assuming
that Qk � uk for 1� k< n and n� 2, we obtain from (1.15) that Qn= bnQn−1+Qn−2 �

Qn−1+Qn−2 � un−1+un−2 = un, which proves the lemma. �

Since �> 1, un = ��n+1− �−1�n+1/�n+1�/
√

5 � �n/
√

5−→+�.
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Theorem 1.11 Any infinite regular continued fraction converges.

Proof By (1.20), (1.21) and (1.34)

0<
P2n+1

Q2n+1

− P2n

Q2n

= 1
Q2nQ2n+1

�
1

u2nu2n+1

−→ 0 as n−→+�


which obviously implies the result. �

The following two lemmas are very useful in the study of convergents.

Lemma 1.12 Let a
b
 c
d be integers satisfying b > 0, d > 0, bc−ad = 1 and let
a/b < s/t < c/d, t > 0. Then t >max�b
d�.

Proof

1
tb

�
bs− ta
tb

= s
t
− a
b
<
c

d
− a
b
= 1
bd
⇒ t > d


1
td

�
ct− sd
td

= c
d
− s
t
<
c

d
− a
b
= 1
bd
⇒ t > b�

�

Lemma 1.13 Let a
b
 c
d be integers satisfying b > 0, d > 0, bc−ad = ±1. Then
the continuous function

��x�= ax+ c
bx+d

increases on �0
+�� from c/d to a/b if bc−ad = −1 and decreases from c/d to
a/b if bc−ad = 1.

Proof We have �′�x�= �ad−bc��bx+d�−2. �

Huygens (1698) proved that the distance of Pn−1/Qn−1 to the set of all fractions p/q
with 1 � q �Qn excluding Pn−1/Qn−1, is attained at Pn/Qn.

Theorem 1.14 (Huygens 1698) Let b0+K�
k=1�1/bk� be a formal regular continued

fraction and 1 � q < Qn, n� 1. Then, for every integer p with p/q 	= Pn−1/Qn−1,∣∣∣∣pq − Pn−1

Qn−1

∣∣∣∣>
∣∣∣∣ PnQn −

Pn−1

Qn−1

∣∣∣∣ � (1.35)

In particular, such a p/q cannot be between Pn/Qn and Pn−1/Qn−1.

Proof Since p/q 	= Pn−1/Qn−1, we see that �pQn−1−qPn−1�� 1. It follows that∣∣∣∣pq − Pn−1

Qn−1

∣∣∣∣� 1
qQn−1

>
1

QnQn−1

=
∣∣∣∣ PnQn −

Pn−1

Qn−1

∣∣∣∣ � (1.36)

�
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Huygens’ theorem can be strengthened to include the case q =Qn.
Lemma 1.15 If Qn−1 > 2 then (1.35) holds for any fraction p/q with p/q 	= Pn−1/Qn−1, p/q 	= Pn/Qn,
1 � q �Qn. If Qn−1 is 1 or 2 then the equality in (1.35) is possible.

Proof The proof reduces to a revision of (1.36) for the case q = Qn. If �pQn−1− qPn−1� > 1 then (1.35)
holds with strict inequality. Otherwise we have the two equations

PnQn−1−QnPn−1 = �−1�n−1


pQn−1−QnPn−1 =−�−1�n−1�

Now subtraction leads to the identity Pn−p= 2�−1�n−1/Qn−1, which can only hold if Qn−1 is either 1 or
2. In this case (1.36) applies with the possibility of equality. �

Corollary 1.16 Any infinite continued fraction converges to an irrational number.

Proof By Theorem 1.11 the limit limn Pn/Qn exists. By Theorem 1.14 this limit equals
an irrational number. �

By Corollary 1.16 the golden ratio � as well as
√

2 are irrational numbers.

Definition 1.17 A simple fraction P/Q is called a best Huygens approximation to a
real number � if

��−P/Q�< ��−p/q�
for any fraction p/q 	= P/Q with 1 � q �Q.

Theorem 1.18 Every convergent Pn/Qn to � with n � 1 is a best Huygens approx-
imation. In this case we apply (1.36) under the condition that p/q may be equal to
Pn/Qn.

Proof Let Pn/Qn be a noninteger convergent to �, i.e. Qn > 1, and let p/q be a fraction
with 1 � q �Qn. Suppose that n is odd. If p/q > Pn/Qn then there is nothing to prove.
Otherwise, by Lemma 1.12,

p

q
�
Pn−1

Qn−1

<
Pn+1

Qn+1

� � <
Pn
Qn
�

Notice that Qn =Qn−1 implies n= 1, b1 = 1, contradicting the assumption that Pn/Qn
is noninteger. Hence Qn > Qn−1. By (1.22),∣∣∣∣pq −�

∣∣∣∣�
∣∣∣∣ Pn−1

Qn−1

− Pn+1

Qn+1

∣∣∣∣= bn+1

Qn+1Qn−1

>
1

Qn+1Qn
�

∣∣∣∣ PnQn −�
∣∣∣∣ �

The case of even n is considered similarly. If Qn = 1 then n= 1 and b1 = 1. Hence

� = b0+
1
1 +

1
x
= b0+

x

1+x 
 x > 1


and P1/Q1 = b0+1 is a best approximation to �. �

In the case n= 0 we have � = b0+1/x, where x > 1. Then P0/Q0 is a best integer
approximation to � if and only if x > 2.



22 Continued fractions: real numbers

16 Lagrange’s theory. By Huygens’ theory, convergents to irrational numbers are
their best rational approximations. Lagrange observed that the sense in which this
statement is true can be strengthened.

Definition 1.19 A simple fraction P/Q is called a best Lagrange approximation to a
real number � if

�Q�−P�< �q�−p� (1.37)

for any fraction p/q 	= P/Q with 1 � q �Q.

Lemma 1.20 Every best Lagrange approximation P/Q is a best Huygens approximation.

Proof If 1 � q �Q and p/q 	= P/Q then∣∣∣∣�− PQ
∣∣∣∣� Qq

∣∣∣∣�− PQ
∣∣∣∣= ��Q−P�

q
<
��q−p�
q

=
∣∣∣∣�− pq

∣∣∣∣ 

which proves the lemma. �

Theorem 1.21 Let � ∈ R. Then every convergent Pn/Qn with n� 1 satisfies

�Qn�−Pn�< �Qn−1�−Pn−1�
 (1.38)

�Qn�−Pn�+ �Qn−1�−Pn−1� = �q�−p �
 (1.39)

if p= Pn−Pn−1, q =Qn−Qn−1, and

�Qn�−Pn�+ �Qn−1�−Pn−1�< �q�−p � (1.40)

for any integers p and q such that 0 < q � Qn, p/q 	= Pn/Qn, p/q 	= �Pn−Pn−1�/

�Qn−Qn−1�.

Proof Let us prove (1.38) first. By Euler’s formula (1.17)

Qn�−Pn =
�−1�n

�n+1Qn+Qn−1


 (1.41)

which implies (notice that 1< �n+1)

�Qn�−Pn� =
1

��n+1bn+1�Qn−1+�n+1Qn−2

�
1

��n+1bn+1�Qn−1+Qn−2

<
1

�nQn−1+Qn−2

= �Qn−1�−Pn−1��
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Formula (1.39) is proved by a direct computation.
By (1.16) the system of linear equations

p= xPn+yPn−1


q = xQn+yQn−1


has a unique solution for integer x and y. It follows that

p−q � = x�Pn−Qn��+y�Pn−1−Qn−1���

By (1.21) the differences within the parentheses have opposite signs. If x and y are
nonzero and also have opposite signs then (1.39) holds, provided at least one of
x and y is not ±1. The case when ±1 = x = −y corresponds to (1.39). If x and
y are nonzero and have equal signs then q = xQn+ yQn−1 cannot satisfy 0 < q <
Qn. The case x = 0 contradicts (1.38). The case y = 0 contradicts the assumption
p/q 	= Pn/Qn. �

Corollary 1.22 (Lagrange 1789) Every convergent Pn/Qn to � ∈ R with n � 1 is a
best Lagrange approximation to �.

Corollary 1.23 (Lagrange [1789]) If P/Q, Q> 1, is a best Lagrange approximation
to � then P/Q is a convergent to �.

Proof Let P/Q be a best Lagrange approximation that is not a convergent to �. Then
there exists n� 1 such that Qn−1 <Q�Qn. By (1.39) and (1.40)

�Qn−1�−Pn−1�< �Q�−P �


which contradicts the assumption that P/Q is a best Lagrange approximation to �.
�

17 Nonprincipal convergents. We begin with a citation from Euler (1744, 16):

If the ratio of circumference to diameter is computed more exactly by continued division, just
as before, the following sequence of quotients appears: 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14
etc. from which simple fractions5 are brought to light in the following way:

5 2
1 = 3−1

1−0 , 19
6 = 22−3

7−1 , 311
99 = 333−22

106−7 , 103 638
32 989 = 103 993−355

33 102−113 etc.; 1
1 = 2−1

1−0 , 16
5 = 19−3

6−1 etc.
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3 7 15 1 292 1
1
0



3
1



22
7



333
106



355
113



103 993
33 102

principal convergents

2
1



19
6



311
99



103 638
32 989

nonprincipal convergents

1
1



16
5



289
92



103 283
32 876

13
4



267
85



102 928
32 763

10
3



245
78

 etc.

7
2



223
71



4
1



201
64



Therefore, in this way two kinds of fraction are obtained, of which one is too large and the
other is too small. Namely, those that are too large are written under the indices6 3, 15, 292
etc., and the rest are too small. From this it is easy to establish the whole table of Wallis, which
is composed of all fractions approximating the true ratio of circumference to diameter more
closely than would be possible with smaller or equal numbers.

An analysis of the columns in Euler’s table shows that the column under partial
denominator 15 satisfies

22
7
<

19
6
<

16
5
<

13
4
<

10
3
<

7
2
<

4
1
<

1
0

�n= 2�


whereas its right-hand neighbor under 1 satisfies the opposite inequalities

333
106

>
311
99
>

289
92

>
267
85
>

245
78
>

223
71
>

201
64
> · · ·> 3

1
�n= 3��

Calculations and the above remark of Euler, implying in particular that Euler considered
nonprincipal convergents as equally satisfactory, suggest that by the term nonprincipal
convergents7 Euler understood the quotients

Pn
k
Qn
k

= Pn+1−kPn
Qn+1−kQn

= �bn+1−k�Pn+Pn−1

�bn+1−k�Qn+Qn−1


 (1.42)

where 0<k<bn+1. It is clear from (1.42) that the nonprincipal convergents lie between
neighboring pairs of principal convergents. Easy algebra with (1.16) shows that

Pn
k+1Qn
k−Pn
kQn
k+1 = �−1�n�

6 What Euler calls indices are in fact partial denominators of the regular continued fraction for �; see
§§8, 10 above.

7 Nowadays they are called intermediate convergents; see Lang (1966).
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It follows that for even n

Pn+1

Qn+1

< · · ·< Pn
k
Qn
k

<
Pn
k+1

Qn
k+1

< · · ·< Pn−1

Qn−1


 (1.43)

whereas for odd n

Pn+1

Qn+1

> · · ·> Pn
k
Qn
k

>
Pn
k+1

Qn
k+1

> · · ·> Pn−1

Qn−1

� (1.44)

Theorem 1.24 Either a nonprincipal convergent Pn
k/Qn
k to � is a best Huygens
approximation or only Pn/Qn can give a better or the same approximation to �.

Proof Let n be odd. Then

Pn−1

Qn−1

<
Pn
k
Qn
k

<
Pn+1

Qn+1

� � <
Pn
Qn
�

If P/Q 	= Pn
k/Qn
k and ∣∣∣∣�− PQ
∣∣∣∣�

∣∣∣∣�− Pn
kQn
k

∣∣∣∣ 
 (1.45)

then Pn
k/Qn
k < P/Q. If P/Q < Pn/Qn then P/Q lies between Pn
k/Qn
k and Pn/Qn,
satisfying

PnQn
k−QnPn
k = PnQn+1−Pn+1Qn =−�−1�n = �−1�n+1
 (1.46)

and hence Q>Qn
k by Lemma 1.12. If Pn/Qn < P/Q then

1
QQn

�
P

Q
− Pn
Qn
<
P

Q
−� � �− Pn
k

Qn
k
<
Pn
Qn
− Pn
k
Qn
k

= 1
QnQn
k




implying Q>Qn
k again. Even values of n are considered similarly. �

Theorem 1.24 shows that principal and nonprincipal convergents are the best one-sided
approximations to �. See a slightly different proof in Perron (1954, §16, II).

Corollary 1.25 (Lagrange 1798) Any simple fraction between � and a principal or
nonprincipal convergent to � has a denominator greater than the denominator of this
convergent.

Best Huygens approximations make a subset in the set of principal and nonprincipal
convergents.

Theorem 1.26 (Perron 1954, §16, II) A fraction P/Q with Q> 0 having the property
that any fraction p/q between � and P/Q satisfies q > Q is either a principal or a
nonprincipal convergent to �.
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Proof Suppose that P/Q is not principal or nonprincipal convergent. If P/Q<�, since
Q0 = 1, we must have P0/Q0 < P/Q. Then there are an odd n and a k, 0 � k < bn+1,
such that

� >
Pn
k
Qn
k

>
P

Q
>
Pn
k+1

Qn
k+1

�

Then Qn
k < Q by Lemma 1.12, which contradicts our choice of P/Q.
If � < P/Q then P/Q < b0+ 1 = �P0+P1�/�Q0+Q1�. Hence there are an even n

and a k such that

� <
Pn
k
Qn
k

<
P

Q
<
Pn
k+1

Qn
k+1

�

Then Qn
k < Q by Lemma 1.12, which again contradicts our choice of P/Q. �

The following theorem specifies those nonprincipal convergents which are best Huy-
gens approximations.

Theorem 1.27 (Perron 1954, §16, III) A nonprincipal convergent Pn
k/Qn
k is a best
Huygens approximation to � if and only if either 2k < bn+1 or 2k= bn+1 and

1
bn +· · · +

1
b1

>
1
bn+2 +

1
bn+3 +· · ·

� (1.47)

Proof By Theorem 1.24 a nonprincipal convergent Pn
k/Qn
k is a best Huygens
approximation if and only if ∣∣∣∣�− Pn
kQn
k

∣∣∣∣<
∣∣∣∣�− PnQn

∣∣∣∣ �
Putting r = bn+1−k for brevity and applying (1.42), we can rewrite this inequality as

�r�Qn�−Pn�+ �Qn−1�−Pn−1��
rQn+Qn−1

<
�Qn�−Pn�
Qn

� (1.48)

Expressing Euler’s formula (1.17) in terms of �n+1 we obtain the proportional relation

Qn−1�−Pn−1 =−�n+1�Qn�−Pn�

reducing (1.48) to ��n+1− r�Qn < rQn+Qn−1, since 0 < r < bn+1 � �n+1. It follows
that (1.48) is equivalent to

�n+1Qn < 2rQn+Qn−1� (1.49)

Since bn+1 � �n+1 < bn+1+ 1, inequality (1.49) holds if bn+1 < 2r = 2bn+1− 2k and
does not hold if 2r < bn+1. In the case 2r = bn+1, (1.49) is equivalent to

�n+1Qn < bn+1Qn+Qn−1 =Qn+1


which is nothing other than (1.47); see (1.18). �
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18 Nonprincipal convergents: applications. Using Theorem 1.27, one can eas-
ily calculate the best Huygens approximations for � (Perron 1954, §16, IV):

3
1

l 13
4

g 16
5

g 19
6

g 22
7

g 179
57

l 201
64

l 223
71

l 245
78

l 267
85

l 289
92

l 311
99

l

333
106

l 355
113

g 52163
16604

l 52518
16717

l 52873
16830

l 53228
16944

l 53583
17057

l 53938
17170

l

· · ·

where the principal convergents are boxed.
Let us consider the regular continued fraction of log2 3−1 used in the construction

of musical scales in §7 above. Euler’s table of principal and nonprincipal convergents
looks as follows:

0 1 1 2 2 3 1 5 2
1
0

0
1

1
1

1
2

3
5

7
12

24
41

31
53

179
306

principal convergents

2
3

4
7

17
29

148
253

nonprincipal convergents

10
17

117
200
86
147
55
94

Since the number of semitones in the scale must be relatively small, Euler’s table
clearly shows that there are two good candidates for the musical scale: the principal
convergent 7/12, corresponding to a scale with 12 equal semitones (frequency ratios)
and the nonprincipal convergent 10/17, corresponding to a scale of 17 equal semitones.
The 12-based scale was studied in detail by Mersenne, who followed Descartes’ paper
‘Musicae compendium’. Brouncker (1655) published its English translation, supplied
with extensive remarks of his own. In these remarks Brouncker analyzed the scale
of 17 equal semitones. By Theorem 1.27 the nonprincipal convergent 10/17 is not a
Huygens approximation to log2 3−1. Clearly

log2

3
2
− 7

12
= 0�001 629 167 387 82 � � � 


10
17
− log2

3
2
= 0�003 272 793 396 49 � � � 


which implies that the scale of 17 equal semitones approximates a perfect fifth with a
double error compared with the scale of 12 equal semitones. As to the approximation
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of log2 5/4, the 17-based scale more than doubles the error compared with the 12-based
scale:

4
12
− log2

5
4
= 0�011 � � � 


log2

5
4
− 5

17
= 0�027 � � �

For the 19-based scale, however the errors is the approximation of both logarithms are
positive and almost equally small:

log2 3/2−11/19= 0�006 015 � � � 


log2 5/4−6/19= 0�006 138 � � � 


whereas for 31 semitones the approximation to log2 5/4 is much better:

log2 3/2−18/31= 0�004 317 339 430 833 600 808 6 � � � 


10/31− log2 5/4= 0�000 652 550 273 927 974 710 33 � � �

The choice of these two last scales is explained by Euler’s table for the regular
continued fraction of log2 5/4:

0 3 9 2 2 4 6
1
0



0
1



1
3



9
28



19
59



47
146



207
643


 principal convergents

1
2

8
25

10
31



28
87



160
497


 nonprincipal convergents

1
1

7
22

113
351




6
19

66
205

5
16

19
59

etc.

By Theorem 1.27 the simple fraction 10/31 is a best Huygens approximation.

19 Farey’s sequences. Rational numbers in (0, 1) in their lowest terms can be
arranged in sequences. These sequences were introduced into mathematics by J. Farey
in 1816. Farey’s sequences provide a good geometrical illustration of the properties
of principal and nonprincipal convergents.

Definition 1.28 Let n be a positive integer. The increasing sequence, including 0/1
and 1/1, of nonnegative fractions p/q in their lowest terms with p � q � n is called
Farey’s sequence Fn of order n.
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The following table lists the first few Farey’s sequences:

F1 �
0
1

1
1

F2 �
0
1

1
2

1
1

F3 �
0
1

1
3

1
2

2
3

1
1

F4 �
0
1

1
4

1
3

1
2

2
3

3
4

1
1

F5 �
0
1

1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

1
1 �

Subtraction of 1 from the consonant intervals in (1.8) results in a subset of Farey’s
series F5, which is in a clear agreement with the requirement of consonance. The
missing values 2/5, 4/5 correspond to the intervals of a tritone (7/5) and a minor
seventh (9/5) (both are dissonant); 3/4 corresponds to 7/4, which is a little bit more
than 7/5.

A simple analysis of the above table shows that any pair a/b < c/d of neighboring
fractions in Farey’s sequence satisfies bc−ad = 1.

Theorem 1.29 If c/d immediately follows a/b in Fm, then cb−ad = 1.

Proof We suppose that d � b and represent the continued fraction of a/b as

a

b
= 1
b1 +· · · +

1
bk
= 1
b1 +· · · +

1
bk−1 +

1
1
�

We use the first continued fraction if k is even and the second if k is odd. Then by
(1.21) the last convergent r/s, r/s 	= a/b, to a/b must be greater than a/b. Since
s < b�m and since r/s is a fraction in its lowest terms, we have r/s ∈ Fm. By Lemma
1.12 this implies that

a

b
<
c

d
�
r

s
�

If r/s = c/d then the result follows from (1.16). If c/d < r/s then by Lemma 1.12
d> b, which contradicts our assumption d� b. The case d> b is considered similarly
by developing c/d into a continued fraction. �

Corollary 1.30 If c/d immediately follows a/b in Fm, m> 1, then b 	= d.

Proof Since bc−ad = 1, the assumption b = d implies b and d are the divisors of 1.
�

Definition 1.31 The fraction �a+ c�/�b+d� is called the mediant of a/b and c/d.

By Lemma 1.13 the mediant of two positive fractions lies between them (put x = 1).
Analyzing Farey’s table we arrive at the conclusion that any fraction in Farey’s
sequence Fm is the mediant of its neighbors.
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Corollary 1.32 If a/b < p/q < c/d are consecutive fractions in Fm then p = a+ c,
q = b+d.

Proof By Theorem 1.29 we have pb− aq = 1 and cq−pd = 1, which implies by
subtraction that p�b+d�= q�a+ c� as stated. �

Corollary 1.32 gives a simple algorithm for constructing Fm+1 from Fm. Namely,
consider in Fm only those pairs a/b < c/d of neighbors that satisfy b+d=m+1 and
insert between them their mediant. The sequence obtained is Fm+1.

Definition 1.33 A pair of fractions a/b < c/d in �0
1� is called a normal pair if
bc−bd = 1.

It is clear that both fractions in any normal pair are fractions in lowest terms. It can
be easily checked that for the mediant p/q of a normal pair a/b < c/d both pairs
a/b < p/q and p/q < c/d are normal.

Theorem 1.34 A pair a/b < c/d is a normal pair if and only if for every s/t ∈
�a/b
 c/d� we have t >max�b
d�.

Proof If a/b < c/d is a normal pair then t >max�b
d� by Lemma 1.12. If for every
fraction s/t ∈ �a/b
 c/d� the inequality t > max�b
d� holds then a/b and c/d are
neighboring elements of Farey’s sequence Fm with m = max�b
d�. Theorem 1.29
implies that bc−ad = 1. �

Corollary 1.35 A pair a/b < c/d is a normal pair if and only if a/b and c/d are
neighbors in the smallest Farey’s sequence containing a/b and c/d.

20 Convergents: quadratic theory. In the approximation theory of irrational
numbers by their convergents an important role is played by Lagrange’s formula
(1774): ∣∣∣∣�− PnQn

∣∣∣∣= 1
Q2
n

1
Qn−1/Qn+�n+1

= 1
Q2
n

1
Qn+1/Qn+1/�n+2

� (1.50)

The proof of (1.50) is easy. By Euler’s formula and (1.15),∣∣∣∣�− PnQn
∣∣∣∣=

∣∣∣∣ �n+1Pn+Pn−1

�n+1Qn+Qn−1

− Pn
Qn

∣∣∣∣= 1
Q2
n

1
Qn+1/Qn+1/�n+2

� (1.51)

Theorem 1.36 (Lagrange 1774) For every positive irrational � the convergents
Pn/Qn satisfy

1
Q2
n�1+Qn+1/Qn�

<

∣∣∣∣�− PnQn
∣∣∣∣< 1

Q2
n


 n= 0
1
2
 � � � (1.52)

Proof The first inequality follows from Qn < �n+1Qn+Qn−1 and (1.51), since �n+1 =
bn+1+1/�n+2 > 1. The second inequality follows from �n+2 = bn+2+1/�n+3 > 1. �
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By (1.50) most convergents approximate � better than indicated in the right-hand
inequality of (1.52).

Theorem 1.37 (Legendre) If q > 0 and∣∣∣∣pq −�
∣∣∣∣< 1

2q2
(1.53)

then p/q is a convergent to �.

Proof If p and q satisfy (1.53) then �p− q�� < 1/2q. Assuming that x and y are
integers such that �x−y��< �p−q��< 1/2q, we obtain that

1
yq

�

∣∣∣∣xy − pq
∣∣∣∣�

∣∣∣∣xy −�
∣∣∣∣+

∣∣∣∣�− pq
∣∣∣∣< 1

2yq
+ 1

2q2
�

It follows that y > q and p/q is a convergent to � by Theorem 1.21. �

Theorem 1.38 (Vahlen 1895) From any two consecutive convergents to � at least
one satisfies �1�53�.

Proof The elementary formula

0<
1
2

(
1
a
− 1
b

)2

+ 1
ab
= 1

2a2
+ 1

2b2

shows that∣∣∣∣�− Pk−1

Qk−1

∣∣∣∣+
∣∣∣∣ PkQk −�

∣∣∣∣=
∣∣∣∣ PkQk −

Pk−1

Qk−1

∣∣∣∣= 1
QkQk−1

<
1

2Q2
k

+ 1

2Q2
k−1




which implies that at least one convergent must satisfy (1.53). �

Lemma 1.39 Let � be a real number and p, p 	= 0 and q > 0 be integers satisfying
��−p/q�< 1/q2. Then p/q is a principal or nonprincipal convergent to �.

Proof If q = 1 then either p/q = P0/Q0 or p/q = �P0+P−1�/�Q0+Q−1�. If q > 1,
we assume that p/q > � (the case of the opposite inequality is considered similarly).
On the one hand, if p/q is not a principal or nonprincipal convergent then

� <
P

Q
<
p

q
<
P ′

Q′

for two consecutive nonprincipal convergents, implying by Lemma 1.12 that Q < q,
since P ′Q−PQ′ = 1. On the other hand,

1
q2
>
p

q
−� > p

q
− P
Q

�
1
qQ

⇒ Q> q�

This contradiction proves the lemma. �
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Theorem 1.40 If p, p 	= 0 and q > 0 are integers satisfying ��−p/q� < 1/q2 then
p/q is either a principal convergent to � or a nonprincipal convergent Pn
k/Qn
k with
k= 1 or k= bn+1−1.

Proof By (1.52) we may assume that Pn
k/Qn
k is a nonprincipal convergent, i.e.
0< k < bn+1. Euler’s formula (1.17) and (1.16), (1.22), (1.46) imply, cf. (1.41),

Qn
k�−Pn
k = �−1�n+1 �n+1−bn+1+k
�n+1Qn+Qn−1

� (1.54)

It follows that ∣∣∣∣�− Pn
kQn
k

∣∣∣∣< 1

Q2
n
k

⇔ x

xQn+ rQn+Qn−1

<
1

rQn+Qn−1




where 0< r = bn+1−k < bn+1 and 0< x = �n+1− r.
For r = 1 (k= bn+1−1) the latter inequality holds if and only if

bn+1+
1
bn+2 +· · · < 2+bn+

1
bn−1 +· · · +

1
b1

�

If r > 1 then, putting R= rQn+Qn−1, we can rewrite the inequality as

x = �n+1− r = k+
1
�n+2

<
R

R−Qn
= 1+ 1

r−1+Qn−1/Qn
�

r

r−1



which obviously leaves no choice for k except k= 1. �

The proofs of Lemma 1.39 and of Theorem 1.40 follow Lang (1966, §4) with minor
changes. Theorem 1.40 shows that quadratic approximations similar to Lagrange and
Huygens approximations lie in the set of convergents. However, (1.52) and (1.53)
suggest that the constants 1 and 1/2 multiplying q−2 may not be optimal. Theorem
1.41 below shows that a quadratic speed of approximation is characteristic for quadratic
irrationals. The proof follows Arnold (1939).

Theorem 1.41 Let � be a real quadratic irrational with discriminant � and A>
√
D.

Then the inequality ∣∣∣∣�− pq
∣∣∣∣< 1

Aq2
(1.55)

has only a finite number of solutions.

Proof Let �′ be the number algebraically adjoint to �. Then

f�X�= aX2+bX+ c = a�X−���X−�′�
 D = a2��−�′�2�
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Since f�X� has only irrational roots, the integer q2f�p/q� cannot be zero and hence,
for p/q satisfying (1.55),

1
q2

�

∣∣∣∣f
(
p

q

)∣∣∣∣=
∣∣∣∣�− pq

∣∣∣∣
∣∣∣∣a
(
�′ − p

q

)∣∣∣∣
<

1
Aq2

∣∣∣∣a
(
�′ −�+�− p

q

)∣∣∣∣�
√
D

Aq2
+ �a�
A2q4




which is impossible for large q if A >
√
D. �

21 Ford circles. Theorem 1.37 has a nice geometrical interpretation. A Ford circle
for p/q ∈ Fn is the circle C�p/q� in the upper half-plane C+ of radius 1/2q2 tangent
to R at p/q. Notice that the orthogonal projection of C�p/q� onto R is exactly the
interval described by (1.53). The distance d between the centers of C�p/q� and C�r/s�
is determined by the formula

d2 =
(
p

q
− r
s

)2

+
(

1
2q2

− 1
2s2

)2

= �ps− rq�
2

s2q2
+ �s

2−q2�2

4s4q4
= �ps− rq�

2−1
s2q2

+
(

1
2q2

+ 1
2s2

)2

�

It follows that for any pair p/q and r/s in Fn the Ford circles C�p/q� and C�r/s�
either do not intersect or are tangent. The latter happens if and only if p/q and r/s are
neighbors in the smallest Farey’s sequence to which they both belong (see Corollary
1.35). If p/q and r/s are neighbors in Fn then �p+ r�/�q+ s� ∈ Fn+1 if and only if
C��p+ r�/�q+ s�� is tangent to C�p/q� and C�r/s�.

Take any irrational � ∈ �0
1� and consider the vertical line L��� passing through �.
This line intersects infinitely many Ford circles C�p/q�. By Theorem 1.38 the fact
that L��� intersects C�p/q� at two points (which is equivalent to L���∩C�p/q� 	= �
since � is irrational) implies that p/q is a convergent to �.

22 Approximation by ��n	��. This is an application of Theorem 1.38.

Theorem 1.42 If 	 is irrational then the set of all fractional parts ��n	�� is dense in
�0
1
.

Proof If p/q is a convergent to 	 satisfying (1.53) then

kp

q
− 1

2q
< k	 <

kp

q
+ 1

2q

 �k�< q�

By Euclid’s algorithm, kp=mkq+rk, 1� rk < q, with integermk and rk. It follows that

mk+
rk
q
− 1

2q
< k	 < mk+

rk
q
+ 1

2q

 �k�< q�
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Hence

mk =
[
kp

q

]
= �k	



∣∣∣∣kpq − ��k	��
∣∣∣∣< 1

2q

 �k�< q� (1.56)

Notice that r−k = q− rk and m−k =−mk−1.

No pair i, j of distinct integers in �1
 q� can satisfy ri = rj , since then q would
divide �i− j�p, which is not possible. It follows that �r1
 � � � 
 rq−1� is a permutation of
�1
 � � � 
 q−1�. By Theorem 1.38 there are infinitely many convergents p/q satisfying
(1.53), which proves the theorem. �

23 Parameterization of R. By §1, regular continued fractions parameterize real
numbers using integers. Later this important property will be extended to other classes
of continued fractions by a similar construction. To provide its rigorous background
we consider only those sequences b= �bn� whose domain ��b� is either the set of all
nonnegative integers Z+ or a finite segment �0
 J
∩Z+.

Definition 1.43 A sequence b = �bn� with b0 ∈ Z is included in � if one of the
following conditions holds:

(a) ��b�= Z+ and bn ∈ N for n > 0�

(b) ��b�= �0
 J
∩Z+ for J > 0, bn ∈ N, and 2 � bJ ;

(c) ��b�= �0�.
To unify the notation we put J = J�b�=� if ��b�= Z+.

By Theorem 1.11 the mapping � maps � to R:

b ∈�
�−→ b0+

J

K
k=1

(
1
bk

)
= lim

n

Pn
Qn

= � ∈ R� (1.57)

It determines the correspondence between parameters in � and real numbers � in R.
Parameters with finite domain correspond to rational numbers. The number corre-
sponding to a finite sequence b is often denoted by �b0� b1
 � � � 
 bn
. If ��b�=Z+ then
� in (1.57) is denoted by �b0� b1
 b2 � � �
.

We consider on � the topology of pointwise convergence. Namely, let a ∈ � and
�b�j��j�0 be a sequence in �. If J�a�=� then limj b

�j� = a if for every integer n� 0

there is a Jn such that for every j > Jn we have b�j�k = ak for k= 0, � � � , n.
If J�a� <� then ��a� = �a0� a1
 a2 � � � 
 an
 for some n. We write limj b

�j� = a in

the two following cases: if b�j� = a for j > J0 or if limj b
�j�
n+1 =+� with b�j�k = ak for

k= 0, 1, � � � , n, j > J0.
Any fraction a/b in its lowest terms in (0, 1) is a convergent for some irrational

number � ∈ �0
1�. To find � one can develop a/b into a finite continued fraction and
then continue it arbitrarily up to infinity.
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Lemma 1.44 Let n be a positive integer, a0 be an integer and a1, � � � , an be positive in-
tegers. Let Pn/Qn= �a0� a1
 a2
 � � � 
 an
. Then the set of all real numbers �b0� b1
 b2
 � � �


with bk = ak for 0 � k� n is[
Pn
Qn


Pn+Pn−1

Qn+Qn−1

]
if n is even and

[
Pn+Pn−1

Qn+Qn−1



Pn
Qn

]
if n is odd�

Proof Apply Euler’s formula (1.17) and Lemma 1.13. �

Theorem 1.45 The mapping � in (1.57) is a homeomorphism of the topological space
� onto R equipped with the Euclidean topology.

Proof We first prove that � � � −→ R is one-to-one. Algorithm (1.32) shows that
it is onto. If a
b ∈ � and ��a� = ��b� = x then a0 = b0. Indeed, on the one hand
a0−b0 ∈ Z, but, on the other hand, by (1.57) we have

a0−b0 =
J�b�

K
k=1

(
1
bk

)
−
J�a�

K
k=1

(
1
ak

)
∈ �−1
1��

Hence a0 = b0. If a 	= b then we have the first integer n > 0 with an+1 	= bn+1:

xn+1 = an+1+
�
K

k=n+2

(
1
ak

)
	= yn+1 = bn+1+

�
K

k=n+2

(
1
bk

)
�

Let Pn/Qn = �a0� a1
 a2
 � � � 
 an
. Then by (1.17) and Lemma 1.13

x = ��a�= a0+
1
a1 +· · · +

1
an+1/xn+1

= xn+1Pn+Pn−1

xn+1Qn+Qn−1

	= yn+1Pn+Pn−1

yn+1Qn+Qn−1

= b0+
1
b1 +· · · +

1
bn+1/yn+1

= ��b�= x


resulting in a contradiction.
Now let b�j�→ a in �. If n= J�a� <� then either b�j� stabilizes at some point and

there is nothing to prove or b�j�k = ak for k= 0
1
 � � � 
 n
 j > J0, and limj b
�j�
n+1 =+�.

Then by (1.17)

lim
j
��b�j��= lim

j

��b�j��n+1Pn+Pn−1

��b�j��n+1Qn+Qn−1

= Pn
Qn

= ��a�


since ��b�j��n+1 > b
�j�
n+1 →+�.

If J�a�=� then for every integer n there is an Nn such that bjk = ak for 0 � k� n

and j > Nn. By Lemma 1.44 all numbers ��bj� with j > Nn are placed between the
convergents Pn/Qn and Pn−1/Qn−1. Since by Theorem 1.11 limn Pn/Qn = ��a�, we
obtain that limj ��b

j�= ��a�.
If ��a� � Q then J�a�=�. If Pn/Qn are convergents to ��a� then for every n the

number ��a� is inside the open interval with ends at Pn/Qn and �Pn+Pn−1�/�Qn+
Qn−1� (Lemma 1.44). If ��bj�→ ��a� then the numbers ��bj� for all j > Nn are in the
same open interval, which implies by Lemma 1.44 that bj→ a in �.
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If ��a� ∈Q then ��a�= �a0� a1
 a2
 � � � 
 an
 with an > 1. If n is even then by (1.43)
and (1.44)

Pn−2

Qn−2

<
Pn−1+Pn−2

Qn−1+Qn−2

<
Pn
Qn
<
Pn+Pn−1

Qn+Qn−1

<
Pn−1

Qn−1

�

If ��b�j��→ ��a� = Pn/Qn from the right, then ��b�j�� must be between Pn/Qn and
�Pn+Pn−1�/�Qn+Qn−1� for all j > Jn. Hence by Lemma 1.44 bk = ak for 0 � k� n,
j > Jn. By Lemma 1.13 limj ��b

�j��n+1 =+�, implying limj b
�j�
n+1 =+�. If ��b�j��→

��a�= Pn/Qn from the left, then ��b�j�� must be between �Pn−1+Pn�/�Qn−1+Qn� and
Pn/Qn for all j > Jn. By Lemma 1.13 limj ��b

�j��n = an and therefore either b�j� = a
or limj b

�j�
n+1 =+�. Odd values of n are considered similarly. �

By Theorem 1.45 regular continued fractions have the important property of cor-
respondence. Every real number x ∈ R can be uniquely expanded into the finite or
infinite sum

x = x0+
∑
k�1

xk
10k

 (1.58)

where x0 ∈ Z, 0 � xk < 10 are integers. The case xk = 9 for every k > K is excluded.
If ��b�= x then the continued fraction

b0+ K
k�1

(
1
bk

)
corresponds to the series (1.58) in the sense that Pn/Qn matches the first decimal places
of � if n > Nn. It is this property of correspondence that allows one to compute partial
denominators one by one using more accurate decimal representations of irrational
numbers.

1.4 Jean Bernoulli sequences

24 Periodic Jean Bernoulli sequences. In his book on astronomy (1772), Jean
Bernoulli considered the first differences

rn = rn�	
��= ��n+1�	+�
− �n	+�

 n ∈ Z


of the integer parts of an arithmetic progression �n	+��n∈Z
, where 	 and � are real

numbers.8 Bernoulli observed that for rational 	 these sequences are periodic. Since
�k+�
= k+ ��
 if k ∈ Z and � ∈ R,

rn�	
��= �	
+ rn���	��
 ������� (1.59)

8 In fact Bernoulli actually considered the function F�x� that gives the closest integer to x. Since F�x�=
�x+1/2
 we may consider �x
 instead, including the term 1/2 with in �.
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This simple formula reduces the study of �rn�	
���n∈Z
to that of 	
� ∈ �0
1�. If 	 	= 0

then 0 < �n+ 1�	+ �− n	− � = 	 < 1 and �rn�n∈Z
is a sequence of 0 and 1. For

	= 0 it is the sequence of zeros only. In general �rn�	
���n∈Z
is a sequence of �	
 and

�	
+1; see (1.59).

Theorem 1.46 (Jean Bernoulli) A sequence �rn�	
���n∈Z
is periodic if and only if

	= �	
+p/q, �p
 q�= 1, is rational. Here q is the length of the period of �rn�	
���n∈Z

and p is the number of terms �	
+1 in the period.

Proof Let 	= �	
+p/q, �p
 q�= 1. If p= 0 then �rn�	
���n∈Z
is a constant sequence

by (1.59). If p > 0 then 0 < ��	�� = p/q < 1, implying q > 1. If n ∈ Z then, by the
Euclidean algorithm, n=mq+k, 0 � k < q. Since q	 ∈ Z,

rn = ��n+1�	+�
− �n	+�
= ��k+1�	+�
− �k	+�
= rk

implying the periodicity of �rn�	
���n∈Z

. Let us prove the converse.

Lemma 1.47 For every real 	,

	 = lim
n→+�

1
n

n∑
k=1

rk�	
��� (1.60)

Proof Since

n∑
k=1

rk�	
��= �2	+�
− �	+�
+· · ·+ ��n+1�	+�
− �n	+�


= ��n+1�	+�
− �	+�

= n	+ ��	+���− ���n+1�	+���


(1.60) follows from a direct computation. �

If �rn�	
���n∈Z
is periodic then the sum in (1.60) splits into a sum of equal finite

blocks of period length q plus a finite number of the negligible terms at the beginning
and end. Hence 	 = �	
+p/q, where p is the number of times that �	
+1 occurs in
the period. �

In view of (1.60) the number 	 is called the mean value of r.
To clarify the dependence of �rn�	
���n∈Z

on � in the periodic case let us put
	 = �	
+p/q, �p
 q�= 1.

Lemma 1.48 If n, q, q > 1 are integers and � ∈ �j/q
 �j+1�/q�
, j ∈ Z, then[
n

q
+�

]
=
[
n+ j
q

]
� (1.61)
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Proof By the Euclidean algorithm, n+ j =mq+ s. Since 0 � s < q and �= j/q+�′,
�′ < 1/q, we have s/q+�′ < 1, implying that both sides of (1.61) are equal to m. �

Theorem 1.49 For 	 = �	
+p/q, �p
 q� = 1, all periodic Jean Bernoulli sequences
with mean value 	 are listed by �rn+k�	
0��n∈Z

, k = 0
1
 � � � 
 q− 1. If � ∈ �j/q
 �j+
1�/q�, j = 0
1
 � � � 
 q−1, then

rn�	
��= rn+k�	
0� where

{{
kp

q

}}
= j
q
�

Proof By Lemma 1.48 every sequence �rn�	
���n∈Z
is equal to one of the q se-

quences �rn�	
 j/q��n∈Z
, j = 0
 � � � 
 q− 1. However, the q sequences �rn+k�	
0��n∈Z

,
k= 0
 � � � 
 q−1, also correspond to 	=p/q. Since obviously rn+k�	
0�= rn�	
 ��kp/q���,
the formula kp=mq+ j establishes equality between them. �

Theorem 1.49 implies a simple algorithm, which is called the Jean Bernoulli algorithm,
to determine whether a given sequence of a and a+ 1, a ∈ Z, is a Jean Bernoulli
sequence. First we determine the period q of r and then count the number p of times
that �	
+1 occurs in the period, to find the mean value 	= p/q. If one of the q shifts
�rn+k�	
0��n∈Z

, q = 0
 � � � 
 q− 1 coincides with a tested sequence then it is a Jean
Bernoulli sequence; otherwise it is not.

Another consequence of Theorem 1.49 is that, in theory, when 	 is rational one may
restrict � to �= 0. However, as it is clear from below, it is technically very convenient
to consider all, especially irrational, � in (1, 0).

25 The structure of Jean Bernoulli sequences. If 0 < 	 < 1 then the obvious
identity j = 	�j−��/	+�, j ∈ Z, indicates that the integers

nj =
[
j−�
	

]

 j ∈ Z
 (1.62)

are good candidates for the solutions to the equation rn = 1. Since 1/	 > 1, the
sequence �nj�j∈Z

increases. The sequence (1.62) for j � 1 is also called a Beatty
sequence B�	
��. See Ex. 1.29 for Beatty’s theorem.

Lemma 1.50 For every j ∈ Z,

��nj+1�	+�
= j
 �nj 	+�
=
{
j−1 if ���j−��/	�� > 0


j if ���j−��/	��= 0�

Proof Since �j−��/	 = ��j−��/	
+ ���j−��/	��, we see that

j = nj 	+�+ ���j−��/	��	� (1.63)
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It follows that �nj 	+ �
 = j if ���j−��/	�� = 0.9 If ���j−��/	�� > 0 then 0 <
���j−��/	��	< 1. Hence j−1<nj 	+�< j, implying that �nj 	+�
= j−1. By (1.63),

j = �nj+1�	+�− �1− ���j−��/	��� 	

showing that

���nj+1�	+���− �1− ���j−��/	��� 	 = j− ��nj+1�	+�

is an integer. Since the left-hand side of the above identity is a number in �−1
1�, the
integer right-hand side must be zero. �

Corollary 1.51 For 0< 	 < 1 and 0 � � < 1,

rnj �	
 ��= ��nj+1�	+�
− �nj 	+�
=
{

1 if ���j−��/	�� > 0


0 if ���j−��/	��= 0�
(1.64)

A computation of the sum

nj+1−1∑
k=nj+1

rk�	
��= ��nj+2�	+�
− ��nj+1�	+�
+ ��nj+3�	+�
−· · ·

= �nj+1	+�
− ��nj+1�	+�
=
{

0 if ���j+1−��/	�� > 0


1 if ���j+1−��/	��= 0

(1.65)

shows that rn vanishes in �nj
 nj+1� if ���j+1−��/	�� > 0.
Notice that for an irrational 	 the equality ���j+ 1−��/	�� = 0 may happen only

for one j. If 	 is rational and � irrational then this equality never occurs. By The-
orems 1.46 and 1.49, for every periodic Jean Bernoulli sequence �rn�n∈Z

of period
q there is a unique rational 	 = p/q, p/q ∈ �0
1�, and an irrational � such that
rn = rn�	
�� for every n ∈ Z. Hence we may always assume without loss of generality
that 	 ∈ Q, � � Q. By Corollary 1.51 and by (1.65) rn = 1 if and only if n = nj for
some j.

This method applied with for very small �> 0 allows one to prove a simple formula
for �nj�j∈Z

for �rk�	
0��k∈Z
in the periodic case.

Lemma 1.52 If 	 = p/q ∈ �0
1� then

nj =
[
jq

p

]

 j = 1
 � � � 
 p−1 
 np = q−1�

Proof The lemma follows by (1.62) and Theorem 1.49. �

9 Notice that then nj	+� is an integer.
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Jean Bernoulli sequences with irrational mean value 	 for large values of the
indices contain couples of adjusted arbitrarily long periods of rational Jean Bernoulli
sequences.

Theorem 1.53 Let p/q be a convergent to an irrational number 	 and � be an
arbitrary number in �0
1�. Then there is a nonnegative integer n such that

rn+k�	
��= rk�p/q
0�
 −q+1 � k < q−1� (1.66)

Proof Let us suppose first that 0 < � < 1. By Theorem 1.42 there are infinitely
many positive integers n such that n	 = N + �n, where N is a positive integer,
0< �n = 1−�+�n < 1 and �n is a very small positive number satisfying in addition

���n+k�	+���= ��k	+�n+���= ��k	+�n��= ��k	��+�n
for �k�� q. Then for the integer parts and the same k’s we have

��n+k�	+�
= N +1+ �k	+�n
= N +1+ �k	
�
It follows that rn+k�	
��= rk�	
0�, �k�< q. However

rk�p/q
0�= rk�	
0�
 −q+1 � k < q−1
 (1.67)

by (1.56), completing the proof both for � > 0 and �= 0. �

Notice that if �= 0 then we need n= 0, whereas if 0< � < 1 then n can be taken to
be arbitrary large in modulus.

Periods of periodic Jean Bernoulli sequences have an important symmetry property.

Theorem 1.54 If 	 = �	
+p/q, p/q < 1, �p
 q�= 1 then the part �r1
 r2
 � � � 
 rq−2� of
�rn�	
0��n∈Z

is symmetric:

r−k�	�= rq−k�	�= rk−1�	�
 k= 2
3
 � � � 
 q−1� (1.68)

Proof If 0< 	 < 1 then by (1.30) we have, for j = 1
2
 � � � ,

�−j	
=
{
−�j	
−1 if ��j	�� > 0


−�j	
 if ��j	��= 0�
(1.69)

Since ��j	��= ��jp/q�� > 0 for j = 1
2
 � � � 
 q−1, (1.69) implies that

rq−k = r−k�	�= �−�k−1�	
− �−k	
= �k	
− ��k−1�	
= rk−1�	�

for k= 2
 � � � 
 q−1, by the periodicity of �rn�	
0��n∈Z
. �



1.4 Jean Bernoulli sequences 41

26 Markoff’s algorithm for periodic sequences. This algorithm was discovered
originally by Markoff (1879, 1880) in a slightly different form. Markoff’s algorithm is
applied to periodic sequences to determine whether they are Jean Bernoulli sequences.
It is based on the following theorem.

Definition 1.55 An infinite sequence �rn�n∈Z
of two integers a and a+ 1 is called a

ceiling sequence if all roots of the equation rn = a+ 1 make an increasing infinite
sequence �nk�k∈Z

.

Any periodic sequence of two values is a ceiling sequence.

Theorem 1.56 Given a ceiling sequence r = �rn�n∈Z
of a and a+ 1 let �nj�j∈Z

be
the increasing sequence of the solutions n to the equation rn = a+1. Then �rn�n∈Z

is
periodic if and only if s= �sj�j∈Z

, sj = nj+1−nj , is periodic. The period of s is smaller
than the period of r .

Proof Let L be the period of �rn�n∈Z
and n1 < n2 < · · · < nd be the complete list of

the nj in �0
L�. Since �rn�n∈Z
takes two values, we must have d < L. Since �rn�n∈Z

is
periodic, we have nk+d = nk+L, k ∈ Z. It follows that

� � � 
 s0 = n1−n0 = n1−nd+L= nd+1−nd = sd

s1 = n2−n1 = nd+2−nd+1 = sd+1


s2 = sd+2
 � � � 
 sd = s2d
 � � �
is periodic with period d<L. Suppose that s is periodic with period d. Let us consider
the interval �n0
 nd� containing the numbers nk with k = 0
 · · · 
d− 1. Its length
L= sjd+0+· · ·+ sjd+d−1 does not depend on j, by the periodicity of s. Moreover, the
distance from njd+k to njd equals nk−n0 = s0+· · ·+ sk−1 for the same reason. This
implies that L is the period of r. Since r is a sequence of two values, L > d. �

Markoff’s algorithm (periodic case). This algorithm applies to a periodic sequence
�rn�n∈Z

of 0 and 1 with period L. It has four entries.

Entry 1. The sequence �rn�n∈Z
determines an infinite increasing sequence �nj�j∈Z

of
the solutions n to the equation rn = 1.

Entry 2. If �nj+1− nj�j∈Z
is a nonconstant sequence that is not a sequence of two

integers b > 0 and b+1 then Markoff’s algorithm fails.
Entry 3. If nj+1−nj = b > 0 for every j ∈ Z then Markoff’s algorithm stops.
Entry 4. If nj+1−nj = b+ sj , where �sj�j∈Z

is a sequence of 0 and 1, then �sj�j∈Z
is

periodic with period M< L by Theorem 1.56.

Any sequence of two integers a0 and a0 + 1 has the form �a0 + rn�n∈Z
, where

�rn�j∈Z
is a sequence of 0 and 1. Sending �rn�j∈Z

to entry 1, we obtain an increasing
sequence of integers �nj�j∈Z

. Inspecting the differences nj+1− nj , we send them to
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the corresponding entry of the algorithm. Thus the algorithm may fail, stop or be
continued. In the last case we put r�1�n = rn, n�1�j = nj , a1 = b, r�2�j = sj , j ∈ Z, and
send �r�2�n �n∈Z

to entry 1 by putting rn = r�2�n . This results in a new sequence �nj�j∈Z
,

which is inspected in order to be sent to the corresponding entry. Again at this stage
the algorithm stops or fails or can be continued. If it is continued, we put n�2�j = nj ,
a2 = b, r�3�j = sj , j ∈ Z. In the case where the algorithm can be continued the period of
the outcome sequence strictly drops. Hence in a finite number of steps the algorithm
must either fail or stop. If it stops in d steps then we obtain d sequences �r�k�n �n∈Z

of
0 and 1, d increasing integer sequences �n�k�j �j∈Z

and a finite set of positive integers
a1
 � � � 
 ad. These parameters of Markoff’s algorithm are related by the formulas

n
�k�
j+1−n�k�j = ak+ r�k+1�

j 
 j ∈ Z 
 k= 1
 � � � 
 d 
 (1.70)

with the understanding that r�d+1�
j ≡ 0.

Notice that if Markoff’s algorithm stops then b � 2. Suppose on the contrary that
b = 1. Then �nj�j∈Z

is simply an enumeration of Z, implying that the sequence r, to
which Markoff’s algorithm was applied at the final step is identically 1. But this is
impossible since otherwise the algorithm would have stopped earlier. This reminds us
of the situation with finite regular continued fractions whose last partial denominator
always exceeds 2. This is not just a coincidence, as the following example shows.

Let us apply Markoff’s algorithm to r�1�n = rn�	
��, where 	 ∈Q, 0 < 	 < 1. Then
a0 = 0. Any such 	 is uniquely represented by

	 = 1
a1 +

1
a2 +· · · +

1
ad

 ad � 2�

If d � 2 then 1/	 = 	1 = a1+1/	2. By (1.62) the solutions nj = n�1�j to the equation
r�1�n = 1 are given by

nj =
[
j−�
	

]
=
[
ja1−�a1+

j−�
	2

]
= ja1+

[
j

	2

−�	1

]
�

It follows that

nj+1−nj = a1+ rj�1/	2
−�	1�� (1.71)

If d = 1 then we may formally put 	2 = +� in (1.71) to obtain nj+1 − nj = a1;
then 	 = 1/a1 and Markoff’s algorithm stops. If this is not the case then we put
r
�2�
j = rj�1/	2
−�	1�. By (1.71) the sequence �r�2�j �j∈Z

is periodic since 1/	2 ∈ Q.
Moreover, since the denominator of 	2 is smaller than that of 	 = 1/	1, its period is
less than the period of �rj�	
���j∈Z

by Theorem 1.46, which also follows by Theorem
1.56. Finally −�	1 �Q and Markoff’s algorithm can be continued.
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Hence at step k we obtain positive integers a1, a2, � � � , ak and a periodic sequence
�r
�k+1�
j �j∈Z

of 0’s and 1’s:

r
�k+1�
j = rj

(
1
	k+1


 �−1�k�	1	2 · · ·	k
)



n
�k�
j+1−n�k�j = rj

(
ak+

1
	k+1


 �−1�k�	1	2 · · ·	k
)
�

(1.72)

In d steps, not exceeding the length of the period of �rj�	
���j∈Z
, all partial denomi-

nators a1, a2, � � � , ad of the continued fraction for 	 are determined. At the last step,
nj+1−nj corresponds to entry 3 of the algorithm and it stops. Formula (1.72) holds
even for k= d if one assumes that 	d+1 =�. Theorem 1.56 extends to Jean Bernoulli
sequences.

Theorem 1.57 Given a ceiling sequence r = �rn�n∈Z
of a and a+1, let �nj�j∈Z

be the
increasing sequence of the solutions n to the equation rn = a+ 1. Then �rn�n∈Z

is a
Jean Bernoulli sequence if and only if s = �sj�j∈Z

, sj = nj+1−nj , is a Jean Bernoulli
sequence.

Proof If r is a Jean Bernoulli sequence then s is a Jean Bernoulli sequence by (1.71).

If sj ≡ 0 then �nj�j∈Z
is an arithmetic progression with difference a. It follows that

rk = rk�1/a
��. Suppose now that sk = a+ rk��
��, a > 0, where both � and � are in
�0
1�. We define 	 and � by 	= 1/�a+��, �=−�	. Then 	1 = 1/	, 	2 = 1/�. Since
rj�1/	2
−�	1�= rj��
��, formula (1.71) implies that the indicator of �nj�j∈Z

is a shift
of �rk�	
���k∈Z

�10 The formula rj+k�	
��= rj�	
 k	+�� completes the proof. �

Theorem 1.58 (Markoff’s algorithm) Let �r�1�n �n∈Z
be a periodic sequence of integers

a0 and a0+1 with period L1 such that Markoff’s algorithm never fails. If it stops in d
steps, i.e. n�d�j+1−n�d�j ≡ ad, then �r�1�n �n∈Z

is a Jean Bernoulli sequence corresponding to

	 = 1
a1 +

1
a2 +

1
a3 +· · · +

1
ad



where a1
 a2
 · · · 
 ad are the parameters of Markoff’s algorithm.

Proof Since by the assumption Markoff’s algorithm never fails if started with �r�1�n �n∈Z
,

it must stop in a finite number d of iterations. The parameters of Markoff’s algorithm
are related by (1.70). Applying Theorem 1.57 iteratively in the reversed order k, k= d,
d−1
 � � � 
1, we obtain that �r�1�n �j∈Z

is a Jean Bernoulli sequence corresponding to the
rational number 	 = �0� a1
 � � � 
 ad
. �

10 By the indicator of �ni�j∈Z
is meant the sequence that equals 1 at the point nj and 0 otherwise.
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Let us illustrate this algorithm for the periodic sequence �1
0
1
1
0� with period 5:

r
�1�
j � 1 0 1 1 0 1 0 1 1 0 1 0 1 1

n
�1�
j+1−n�1�j � 2 1 2 2 1 2 2 1 a1 = 1

n
�2�
j+1−n�2�j � 2 1 2 1 2 a2 = 1

n
�3�
j+1−n�3�j � 2 2 2 a3 = 2

r
�4�
j � 0 0 0 stop

Hence

	 = 1
1 +

1
1 +

1
2
= 3

5
�

Markoff’s algorithm can be also applied to nonperiodic Jean Bernoulli sequences
�rn�	
���n∈Z

. In this case it will never stop or fail and will finally recover all partial
denominators of 	 = �0� a1
 a2
 � � �
. Formulas (1.70) and (1.72) are valid in this case
as well and take an especially attractive form for �= 0. Hence if �= 0 then all further
sequences obtained at the steps of Markoff’s algorithm also correspond to �= 0.

27 Markoff conditions for Jean Bernoulli sequences. It looks as though The-
orems 1.46, 1.49 and 1.58 provide an exhaustive description of periodic Jean Bernoulli
sequences. However, they are all indirect and require an application of some algorithm,
which is possible to run in any concrete case but is difficult to apply universally. In his
Master’s thesis A. Markoff (1879, 1880) gave an internal description of periodic Jean
Bernoulli sequences closely related to the regular continued fraction of 	. A special
paper (1882) on this topic was published by him a little later. These results of Markoff
turned out to be very important in the theory of binary quadratic forms having a
positive determinant, see Section 2.5, which is a deep extension of Lagrange’s theory
presented in §20 above.

By Theorem 1.49 every rational 	 essentially determines a unique Jean Bernoulli
sequence (all other sequences corresponding to 	 are obtained by shifts). Therefore a
description of these sequences in terms of their differences may exist. Since �n	+�
=
n	+�− �n, 0 � �n < 1, n ∈ Z,

rn+p+ rn+p−1+· · ·+ rn+2+ rn+1

= ��n+p+1�	+�
− ��n+1�	+�
= p	+ �n+1− �n+p+1

and similarly

rn−p+1+ rn−p+2+· · ·+ rn−1+ rn
= ��n+1�	+�
− ��n−p+1�	+�
= p	+ �n−p+1− �n+1�
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Subtracting the second identity from the first we obtain that the integer

�rn+p− rn−p+1�+· · ·+ �rn+2− rn−1�+ �rn+1− rn�
= 2�n+1− �n+p+1− �n−p+1 (1.73)

is in �−2
2� and hence equals either ±1 or 0.

Definition 1.59 An infinite integer sequence �rn�n∈Z
is called a Markoff sequence if it

satisfies the following properties:

(1) the differences rn− rn+1 may have only the values +1, 0, −1;
(2) if rn− rn+1 =+1 then the first nonzero term rn+1+p− rn−p in

rn+2− rn−1
 rn+3− rn−2
 � � � 
 rn+1+p− rn−p

if it exists, is positive;

(3) if rn− rn+1 =−1 then the first nonzero term rn+1+p− rn−p in

rn+2− rn−1
 rn+3− rn−2
 � � � 
 rn+1+p− rn−p

if it exists, is negative.

Conditions (2) and (3) mean that whenever rn− rn+1 	= 0 the differences rn+1+p− rn−p,
p > 0, of the terms equally distant from �n
n+ 1� remain zero as p increases until
they take the sign opposite to that of rn+1− rn.
Definition 1.60 If rn−rn+1 	= 0 then ln�r� is the number p of terms in the corresponding
Markoff sequence, l�r�= supn ln�r�.

It is clear that ln�r�−1 is the maximal length of the zeros in the Markoff sequences
(2) and (3). The characteristics l�r� play a significant role in Markoff’s theory of
quadratic forms having a positive determinant.

Together with ln�r� we consider the interval �n�r� = �n−p
n+1+p
, p = ln�r�,
containing all indices of r involved in the Markoff series at �n
n+1
. It is clear that
the length of �n�r�= 2ln�r�+1.

Let us observe that if u = �un�n∈Z
is a Markoff sequence of a and a+ 1 then

v= �vn�n∈Z
, vn = 2a+1−un, is also a Markoff sequence of a and a+1. The sequence

v= ∼
u is called the Markoff sequence conjugate to u.

If 	 and � satisfy m	+� � Z for every m ∈ Z then the formula

2�	
+1− rn�	
��= rn �2�	
+1−	
 1−�� (1.74)

shows that the conjugate to �rn�	
���n∈Z
is a Jean Bernoulli sequence too. Theorem

1.49 and (1.74) show that the conjugate to a periodic Jean Bernoulli sequence is a
periodic Jean Bernoulli sequence. In this case 	 = �	
+p/q is rational and � may be
taken as irrational. If 	 � Q then the combination m	+� may be in Z for at most
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one m. If this is the case then the sequence �rn�	
���n∈Z
is a shift of �rn�	��n∈Z

,
rn = rn�	
0�. Suppose that �	
= 0. Then formula (1.74) shows that

rn�	�= 1− rn�1−	�
 n 	= −1
0� (1.75)

Hence the conjugate sequence to �rn�1−	��n∈Z
coincides with �rn�	��n∈Z

for n 	=−1
0.
Theorem 1.61 shows therefore that the conjugate to �rn�	��n∈Z

is not a Jean Bernoulli
sequence.

Theorem 1.61 If rn�	
��= rn�	′
 �′� for n� c then this is true for n < c and 	 = 	′.
Proof The equality 	= 	′ follows by (1.60). If 	 ∈Q, then both sequences are periodic
and therefore coincide for n < c. If 	 is irrational and 0< 	 < 1 then applying a shift
if necessary we may assume that c = 0. We have

n−1∑
k=0

rk�	
��= �n	+�



implying that �n	+ �
 = �n	+ �′
. Suppose that 0 � � < �′ < 1. By Theorem 1.42
there is an integer n and 0 < �n < �

′ − � such that n	 = N + 1− �− �n, N ∈ Z. It
follows that

�n	+�
= �N +1− �n
= N

�n	+�′
= �N +1+�′ −�− �n
= N +1


which is a contradiction. �

Jean Bernoulli sequences constitute a subclass of oscillating Markoff sequences.

Definition 1.62 A sequence �rn�n∈Z
of two integers a and a+1 is called oscillating if

the set �n � rn− rn+1 	= 0� is infinite in both directions.

There are two types of nonoscillating Markoff sequences:

rn =
{
a+1 if n= k

a if n 	= k and rn =

{
a if n= k

a+1 if n 	= k� (1.76)

In both cases rk−1 − rk = ∓1 and rk − rk+1 = ±1, other differences rl − rm being
zero. These sequences are not Jean Bernoulli sequences, see Ex. 1.25, but they are
obviously conjugate to each other. In what follows, sequences defined by (1.76) are
called triangle sequences. More precisely, the left-hand sequences in (1.76) are called
triangle sequences of type �a
a+1� and the right-hand sequences in (1.76) are called
triangle sequences of type �a+1
 a�. Notice that the first parameter in a type indicates
the value taken infinitely often. Any triangle sequence of type �a+1
 a� is a ceiling
sequence, whereas that of type �a
a+1� is not.

Theorem 1.63 Any Jean Bernoulli sequence �rn�n∈Z
is an oscillating Markoff se-

quence.
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Proof Putting p = 1 in (1.73), we obtain that rn − rn+1 can only be 0 or ±1. If
rn− rn+1 = +1 and rn+p− rn+1−p 	= 0, p > 1, is the first nonzero term then �rn+p−
rn−p+1�− 1 is either 0 or ±1 by (1.73). It cannot be −1, since rn+p− rn−p+1 	= 0,
and therefore rn+p− rn−p+1 > 0. The case rn− rn+1 = −1 is considered similarly. It
follows that �rn�n∈Z

is a Markoff sequence. Any constant sequence corresponds to
the Jean Bernoulli sequence ��n+ 1�a+�
− �na+�
 = a with integer 	 = a and is
oscillating by definition. If 	 ∈ Q \Z then �rn�n∈Z

is periodic and is not constant.
Hence rn− rn+1 	= 0 for infinitely many n in both directions. Finally, suppose that 	
is irrational but rn− rn+1 	= 0 for a finite number of n’s in one of the two possible
directions. Replacing 	 by −	 if necessary, we may assume that rn = a ∈ Z for
all n > N . Then 	 = a ∈ Z by Lemma 1.47, contradicting the assumption that 	 is
irrational. �

For triangle Markoff sequences there is obviously an n such that ln�r�= ln+1�r�=
+�. This index n is the first preceding the index of the vertex. We find now l�r� for
periodic sequences.

Theorem 1.64 If �rn�n∈Z
is a periodic Jean Bernoulli sequence of period q then

ln�r� < q for every n such that rn− rn+1 =±1. There exists n such that ln�r�= q−1.
In particular l�r�= q−1.

Proof By Theorem 1.49 any periodic Jean Bernoulli sequence r with period q is a shift
of �rn�p/q
0��n∈Z

for some integer p. Since Markoff’s conditions are shift invariant,
we may assume without loss of generality that r = �rn�p/q
0��n∈Z

. If q = 1 then
�rn�n∈Z

is a constant sequence and therefore rn− rn+1 = ±1 never occurs. If q > 1
then rq−1 = 1 and rq = 0 by Lemma 1.52, implying that r−1 − r0 = rq−1 − rq = 1.
Let rn− rn+1 = 1. Then rn−q = rn and rn+1+q = rn+1 by periodicity. It follows that
rn+1+q− rn−q = rn+1− rn = −1. But �rn�n∈Z

is a Markoff sequence by Theorem 1.63.
Therefore rn+1+p− rn−p > 0 for some p < q. It follows that ln�r�� q−1. However, if
n=−1 then Theorem 1.54 shows that l−1�r�= q−1. The case rn−rn+1 =−1 reduces
to that obtained on replacing p/q by �q−p�/p. �

Theorem 1.65 If r = �rn�	
���n∈Z
is a nonperiodic Jean Bernoulli sequence then

l�r�=�. If n ∈ Z then ln�r�=� if and only if �n+1�	+� ∈ Z.

Proof Equality l�r�=+� follows by Theorems 1.53 and 1.64. For every p� 0,

rn−p = �−p	+ �n+1�	+�
− �−p	−	+ �n+1�	+�


rn+1+p = �p	+	+ �n+1�	+�
− �p	+ �n+1�	+�
�

If �n+ 1�	+ � ∈ Z then on the one hand rn+1+p = rn−p for every p � 1 by (1.30).
On the other hand, putting p= 0 we obtain that rn =−�−	
= 1 and rn+1 = 0. Hence
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rn− rn+1 = 1 and ln�r�=�. Let �′ = ���n+1�	+��� 	= 0. Then

rn = ��′
− �−	+�′
=−�−	+�′
= 1⇔ 0< �′ < 	 


rn+1 = �	+�′
− ��′
= �	+�′
= 0⇔ �′ +	 < 1�

If rn− rn+1 =+1 and rn+1+p = rn−p for every p� 1 then

�p	+	+�′
− �p	+�′
= �p	+	−�′
− �p	−�′
� (1.77)

By Theorem 1.42 any number x ∈ �0
1� can be approximated by fractional parts
��p	��. However, the shifts of �x
 which are present in (1.77) may have altogether not
more than four points of discontinuity. It follows that

�x+	+�′
− �x+�′
= �x+	+�′′
− �x+�′′
 
 (1.78)

where �′′ = 1− �′ ∈ �0
1� for every x ∈ �0
1� except for possibly four values. For
small x > 0 the left-hand side is zero, since both 	+�′ and �′ are in �0
1�. Similarly
�x+�′′
= 0 for small x > 0, since 0< �′′ < 1. However, �′ < 	 and therefore 	+�′′ =
1+ 	−�′ > 1, implying that the right-hand side of (1.78) is 1 for sufficiently small
positive x. It follows that lm�r� <�.

If rm− rm+1 =−1 and rm+1+p = rm−p for every p� 1 then rm = 0, implying 	 � �′

and rm+1 = 1 implying 1 � �′ +	. The equalities if they occur are equivalent to

	 = �′ ⇔ n	+�= ��n+1�	+�
 ∈ Z


1−	 = �′ ⇔ �n+2�	+�= ��n+1�	+�
 ∈ Z�

Either of these cases contradicts the fact that n	+ � with an irrational 	 may be
an integer for at most one value of n. Hence 	 < �′ and 1 < 	+ �′. As above, the
identity (1.78) holds. Since 1< 	+�′ < 2, its right-hand side is 1 for small positive x.
Since 0< 	+�′′ = 1− ��′ −	� < 1, its left-hand side is 0. It follows that in this case
ln�r� <� too. �

It has already been mentioned that �n+1�	+� ∈ Z for some n with irrational 	 if
and only if �rn�	
���n∈Z

is a shift of �rn�	
0��n∈Z
.

Definition 1.66 A Jean Bernoulli sequence �rn�	
���n∈Z
is called regular if either

	 ∈ Q, i.e. it is periodic, or �n+ 1�	+� � Z for every n ∈ Z. Otherwise it is called
singular.

By Theorem 1.65 a Jean Bernoulli sequence is regular if and only if ln�r� <� for
every n. A Jean Bernoulli sequence is singular if and only ln�r�=� for exactly one n.

If r = �rn�	��n∈Z
, rn�	� = rn�	
0�, then l−1�r� = �. The conjugate sequence

∼
r =

�
∼
rn�	��n∈Z

(which is not a Jean Bernoulli sequence) also satisfies ln�
∼
r� =� only at

n=−1.
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1.5 Markoff sequences

28 The structure of Markoff sequences. Now we will establish that any Markoff
sequence takes at most two values.

Lemma 1.67 (Step-down lemma) Let �rn�n∈Z
be a Markoff sequence and let rn =

y+ 1, rn+1 = y. Then rn−1 and rn+2 are both in �y
 y+ 1
 and either rn+2 = rn−1 or
y = rn−1 < rn+2 = y+1.

Proof On the one hand, by Definition 1.59(1), rn−1 ∈ �y
 y+2
 and rn+2 ∈ �y−1
 y+1
.
On the other hand by (2) with p = 1 we have rn−1 � rn+2. Hence both rn−1 and rn+2

are in �y
 y+1
. The rest follows from (2). �

Lemma 1.68 (Step-up lemma) Let �rn�n∈Z
be a Markoff sequence and let rn = x,

rn+1 = x+ 1. Then rn−1 and rn+2 are both in �x
 x+ 1
 and either rn+2 = rn−1 or
x+1= rn−1 > rn+2 = x.

Proof On the one hand, by Definition 1.59(1), rn−1 ∈ �x−1
 x+1
 and rn+2 ∈ �x
 x+2
.
On the other hand by (3) with p = 1 we have rn−1 � rn+2. Hence both rn−1 and rn+2

are in �x
 x+1
. The rest follows from (3). �

Theorem 1.69 Any step down rm− rm+1 = 1 in a Markoff sequence is followed (pre-
ceded) either by a step up rn− rn+1 =−1, possibly separated by a finite flat sequence,
or by an infinite flat sequence. Any step up rm− rm+1 = −1 is followed (preceded)
either by a step down rn− rn+1 =+1, possibly separated by a finite flat sequence, or
by an infinite flat sequence.

Proof Suppose that rm = a+1, rm+1 = a and there is no step up to the right of m+1
separated by a flat sequence. Since m−1 and m+2 are equally distant to �m
m+1
,
condition (2) of Definition 1.59 implies that on the one hand rm−1 � rm+2. On the other
hand rm−1
 rm+2 ∈ �a
a+1
 by Lemma 1.67. Hence there is no option for rm+2 except
for it to equal rm−1 = a.

Suppose that rj = a for m− k � j � m− 1 and for m+ 1 � j � m+ 1+ k. Since
m−k−1 and m+k are equally distant to �m−1
m
 and rm−1−rm = a−�a+1�=−1,
condition (3) of Definition 1.59 implies that a = rm+k � rm−k−1. Since m−k−1 and
m+k+2 are equally distant to �m
m+1
, condition (2) implies that rm−k−1 � rm+k+2.
Since rj = a for j ∈ �m+1
m+1+k
, our assumption forces rm+k+2 to equal a. Hence
rm−k−1 = rm+k+2 = a.

Continuing by induction we obtain a triangle sequence centered at m, i.e. the first
sequence in (1.76). The second case, rm− rm+1 = −1, is considered similarly. Since
the mapping n→−n maps Markoff sequences into Markoff sequences, and steps up
into steps down, the second part of the theorem on the following or preceding jumps
follows from the first. �
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Corollary 1.70 Any Markoff sequence is either constant or takes only two values, a
or a+1.

Proof If �rn�n∈Z
is not constant then there is n such that rn− rn+1 = ±1. Of the two

values rn and rn+1 we denote the smaller by a. Then the other is a+1. By Theorem
1.69 every step down is either followed by a constant sequence a or is followed by a
step up. The step up is followed by a step down. Hence rk oscillates between a and
a+1. The same is true in the left direction. �

Corollary 1.71 Any Markoff sequence �rn�n∈Z
such that rn−rn+1 	= 0 for at least three

n values is oscillating.

Proof Take the middle n value of these three and apply Theorem 1.69 in both direc-
tions. �

We conclude §28 with a technical lemma.

Lemma 1.72 Given any nonconstant Markoff sequence �rn�n∈Z
and any integer m

there is at least one n ∈ Z such that m ∈ �n�r�.
Proof If rm− rm+1 = ±1 then m ∈ �m�r�. If rm−1− rm = ±1 then m ∈ �m−1�r�. So
suppose that rm is surrounded by equal values. If rm = a, there must be a step up to
the left of m or to the right or both. If rk = a for k�m then there must be n to the left
of m such that ln�r�=�. The same is true if rk = a for k�m. If there are k < m< l
with rk = rl = a+1 then m ∈ �k�r� by the Markoff property at �k
 k+1
. �

29 Racing algorithm and Markoff sequences. By Corollaries 1.70 and 1.71
Markoff sequences oscillate between a and a+1, where a ∈Z, if they are not constant
and not triangle sequences.

A triangle sequence of the type �a+ 1
 a� is a ceiling sequence. Any oscillating
sequence of two values a, a+1 is a ceiling sequence too. Our next goal is to restate
Markoff’s properties (2) and (3) in Definition 1.59 for ceiling sequences in more
transparent terms.

Racing algorithm at �n
n+ 1
. Two racers A and B run in opposite directions with
unit speed. Racer A runs from n to −�, racer B from n+1 to +�. The end result of
the algorithm is a winner, who hits a given infinite increasing sequence �nj�j∈Z

first.
If they both hit it simultaneously the race is continued. If the race continues up to
infinity then both are declared to be winners.

Lemma 1.73 Given �rn�n∈Z
a ceiling sequence of two values a and a+1, the solutions

to the equation rn = a+1, make an infinite increasing sequence �nj�j∈Z
. Then �2� of

Definition 1.59 corresponding to rn− rn+1 = 1 holds if and only if either the racing
algorithm at �n
n+1
 claims B as a winner or both A and B win. Condition �3� of
Definition 1.59 for rn−rn+1 =−1 holds if and only if the racing algorithm at �n
n+1

claims A as a winner or both A and B win.
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Proof Suppose that rn− rn+1 = 1. Then rn = a+ 1 and therefore n = nk, n+ 1 =
nk+1 < nk+1. Clearly rn+1+p indicates the position of B with respect to �nj�j∈Z

in p
seconds, whereas rn−p indicates the position of A at the same moment. It follows that
rn+1+p− rn−p > 0 for the first time if and only if B hits �nj�j∈Z

earlier than A. The
case rn− rn+1 =−1 is considered similarly. �

Remark Notice that the slope of the graph of rx at the interval �n
n+1
 always faces
the winner.

In the following lemma r is a sequence of a and a+1.

Lemma 1.74

(a) The Markoff series for r at �n
n+1
 with rn− rn+1 =−1 satisfies Definition 1.59
part (3) if and only if sk− sk+1 = 1, where n = nk+1− 1, and the Markoff series
for s at �k
 k+1
 satisfies �2�.

(b) The Markoff series for r at �n
n+ 1
 with rn− rn+1 = 1 satisfies �2� if and only
if sk − sk+1 = −1, where n = nk+1, and the Markoff series for s at �k
 k+ 1

satisfies �3�.

In both cases lk�s� � ln�r�. If ln�r� <� then lk�s� < ln�r�. The values of r within
the domain �n�r� are uniquely determined by the values of s within the domain �k�s�.

Proof If rn− rn+1 =−1 then rn = a and rn+1 = a+1, implying that nk < n= nk+1−1
for some k.

If sk−sk+1 > 1 then the length sk of �nk
 nk+1� exceeds the length sk+1 of �nk+1
 nk+2�

by at least 2. Since A and B compete with equal speeds they cover equal distances in
equal times. Therefore the racing algorithm at �n
n+ 1
 assigns the victory to racer
B, since B will reach nk+2 first. By Lemma 1.73 this contradicts the assumption that
�rn�n∈Z

is a Markoff sequence and implies that the case sk− sk+1 > 1 is impossible.
Similarly the symmetric case sk− sk+1 <−1 is also impossible.

If sk−sk+1 = 1 then the length sk of �nk
 nk+1� exceeds the length sk+1 of �nk+1
 nk+2�

by exactly 1. Let us apply the racing algorithm at �k
 k+1
. Then, since sk = sk+1+1
and n= nk+1−1 ∈ �nk
 nk+1�, racers A and B reach nk and nk+2 simultaneously so that
the race continues. While racer A passes through intervals of length sk−p � 1, racer
B passes through intervals of length sk+1+p � 1. Lemma 1.73 applied to a Markoff
sequence �rn�n∈Z

claims that there are two options. Either A hits nk−p for some p > 1
first, which implies that B is at this moment somewhere in �nk+1+p
 nk+2+p� and hence
the first nonzero difference sk+1+p− sk−p is positive, or both win the race, so that all
differences are zero. Since sk−p � 1 and sk+1+p � 1 for every p= 1, � � � , lk�s�, we see
that lk�s�� ln�r�. Hence if ln�r� <� then lk�s� < ln�r� if and only if there is at least
one sj , j ∈ �k�s�, j 	= k, such that sj > 1. But sk+1+p− sk−p > 0 for p = lk�s�. Hence
such a j always exists. The formula

nj+1−nj = sj
 j ∈ �k�s�
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recovers the values of r in �n�r� as soon as the relationship n = nk+1−1 between n
and k is fixed.

The case sk− sk+1 =−1 is considered similarly.
Suppose now that sk−sk+1 = 1, n= nk+1−1 and the Markoff series for s at �k
 k+1


satisfies the Markoff property (2) of Definition 1.59. The adjusting intervals �nk
 nk+1�,
�nk+1
 nk+2� have lengths sk and sk+1 respectively. Since nk < n = nk+1− 1, we have
rn− rn+1 = a− �a+1�=−1. It follows also that sk > 1. Then rn−p = 1, p > 0, for the
first time at p= sk−1> 0 and rn+1+p = 1, p> 0, for the first time at p= sk+1 = sk−1.
Therefore racers A and B in the racing algorithm, having started at �n
n+ 1
, reach
nk and nk+2 simultaneously. Again by property (2) of Definition 1.59, in the series at
�k
 k+1
 for s the first nonzero difference sk+p+1−sk−p, p> 0, must be positive. Before
that (j < p) racers A and B hit nk−j and nk+2+j simultaneously. Since sk+p+1 > sk−p, at
the moment when A hits nk−p racer B will be somewhere in �nk+1+p
 nk+2+p�. Hence
A wins the race and Lemma 1.73 implies that the Markoff series at �n
n+ 1
 for r
satisfies (3). Part (b) is considered similarly. �

Theorems 1.56 and 1.57 extend to Markoff sequences.

Theorem 1.75 Let �rn�n∈Z
be a ceiling sequence of two integers a and a+1 �nk�k∈Z

the increasing sequence of all solutions to rn = a+ 1 and �sk�k∈Z
the sequence of

the first differences sk = nk+1−nk. Then �rn�n∈Z
is a Markoff sequence if and only if

�sk�k∈Z
is a positive Markoff sequence.

Proof Suppose first that �rn�n∈Z
is a Markoff sequence and check that �sk�k∈Z

is a
Markoff sequence too. We establish first that

�sk− sk+1�� 1�

If sk−sk+1 > 1 then the length sk of �nk
 nk+1� exceeds the length sk+1 of �nk+1
 nk+2�

by at least 2. Therefore if n = nk+1− 1 then rn = a and rn+1 = a+ 1. It follows that
rn− rn+1 = −1. By part (a) of Lemma 1.74 we must have sk− sk+1 = 1, which is
a contradiction. The case sk− sk+1 < 1 is considered similarly. Now if sk− sk+1 = 1
then nk < nk+1− 1 = n. It follows that rn− rn+1 = −1. By part (a) of Lemma 1.74
the Markoff sequence at �k
 k+1
 satisfies (2). The case sk− sk+1 =−1 is considered
similarly.

Suppose now that �sk�k∈Z
is a positive Markoff sequence and check that �rn�n∈Z

is
a Markoff sequence. Since �rn�n∈Z

is a ceiling sequence with two integer values a
and a+ 1 such that the set �nk � k ∈ Z� lists all solutions to the equation rn = a+ 1,
Markoff property (1) for �rn�n∈Z

is obvious.
Consider the Markoff conditions (2), (3) for �rn�n∈Z

. If rn− rn+1 = 1 then n= nk+1

and n+1 < nk+2. The adjusting intervals �nk
 nk+1�, �nk+1
 nk+2� have lengths sk and
sk+1 respectively. Since rn+1 = 0, we have sk+1 > 1. Then rn+1+p = 1, p > 0, for the
first time at p= sk+1−1> 0 and rn−p = 1, p> 0, for the first time at p= sk. It follows
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that B wins the race at the moment p = sk+1−1 if sk+1−1 < sk, i.e. −1 < sk− sk+1.
The case sk− sk+1 <−1 is excluded by (1) for the Markoff sequence �sj�j∈Z

. If now
sk−sk+1 =−1, the race runs up since rn+1+p = rnk+2

= 1, rn−p = rnk = 1 for p= sk+1−1.
Markoff property (3) of �sj�j∈Z

says that the first nonzero difference sk+l− sk−1−l must
be negative. It follows that B has to cover a smaller distance than A and therefore
wins the race. If sk+l− sk−1−l = 0 for every l > 0 then both A and B win and condition
(2) holds also. The case rn− rn+1 =−1 is considered similarly. �

The following theorem is proved similarly to Theorem 1.75 and is useful in the
evaluation of the number of k values satisfying lk�r�=�.

Theorem 1.76 Let r = �rn�n∈Z
be a ceiling Markoff sequence and s = �sk�k∈Z

, sk =
nk+1−nk. Then

(a) rk− rk+1 =−1 and lk�r�=� if and only if sm− sm+1 =+1 and lm�s�=�, where
k+1= nm+1;

(b) rk− rk+1 = 1 and lk�r� =� if and only if sm− sm+1 = −1 and lm�s� =�, where
k= nm+1.

Different indices k with lk�r�=� correspond to the different indicesm with lm�s�=��
Proof If rk− rk+1 = −1 then rk+1 = a+ 1 and therefore k+ 1 = nm+1 for some m.
If lk�r� = +� then the racing algorithm at �k
 k+ 1
 will continue up to infinity. It
follows that sm− sm+1 = 1 and that sm−p = sm+1+p for every p� 1. Hence lm�s�=+�.
If rk− rk+1 = 1 then rk = a+ 1 and therefore k = nm+1 for some m. If lk�r� = +�
then the racing algorithm at �k
 k+ 1
 will continue up to infinity. It follows that
sm− sm+1 =−1 and that sm−p = sm+1+p for every p� 1. Hence lm�s�=+�. It is clear
that these arguments are reversible.

To prove the last statement let us observe that if �k
 k+ 1
 and �k′
 k′ + 1
 do not
intersect then the m 	= m′. If on the contrary k+ 1 = k′ then by Theorem 1.69 the
differences rk− rk+1 and rk′ − rk′+1 have opposite signs and hence the corresponding
nm+1 cannot be equal. �

30 The derivatives and integrals of Markoff sequences. The relationship
between a ceiling sequence r = �rn�n∈Z

and a positive sequence s = �sk�k∈Z
,

rn = a+1 ⇔ n= nk
 nk+1−nk = sk
 k ∈ Z
 (1.79)

recalls the relationship between a function and its derivative. Adding a constant to
r does not change s. Similarly shifts of r do not influence s. Therefore we will call
s = �r the derivative of r. To make this definition consistent with classical calculus
we define the derivative of any constant sequence to be a zero sequence.

If r0 is fixed then there still remains a freedom in enumeration of the solutions to
rn = a+ 1. Any such an enumeration, as is clear from (1.79), corresponds to a shift
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in s. Therefore �r determines not a particular sequence but the class of sequences
which differ by a shift.

If �sk�k∈Z
is any positive sequence then

nj =

⎧⎪⎪⎨
⎪⎪⎩
s0+· · ·+ sj−1 if j 	= 1


0 if j = 0


−s−1−· · ·− sj if j < 0


(1.80)

is an increasing sequence infinite in both directions. For any integer a we may define
a ceiling sequence rn assigning the value a+ 1 if n = nk and the value a otherwise.
Then clearly s = �r . The class of all shifts in these sequences is called the integral of
s and is denoted by

∫
s. The constant a is called a constant of integration.

In this terminology Theorem 1.56 claims that a ceiling sequence is periodic if and
only if its derivative is a positive periodic sequence. Theorem 1.57 says that a ceiling
sequence is a Jean Bernoulli sequence if and only if its derivative is a positive Jean
Bernoulli sequence. Finally, Theorem 1.75 states that a ceiling sequence is a Markoff
sequence if and only if its derivative is a positive Markoff sequence. The derivative
of a triangle sequence of type �a+1
 a� is a triangle sequence of type �1
2�. Triangle
sequences of type �a
a+1� are nondifferentiable.

Another good example of differentiation is provide by Jean Bernoulli sequences:

r = �rn�	
0��n∈Z

 	 = 1

a1 +
1
	2

�

By (1.71) and (1.72) the derivative s = �r is

a1+ rn�1/	2
0�
 n ∈ Z�

In the calculus of sequences the racing algorithm gives a dynamic interpretation of
differentiation and integration.

Corollary 1.77 There are three mutually exclusive possibilities for the derivative
s = �r of an oscillating Markoff sequence r: s is a triangle sequence, or it is a
constant sequence, or it is an oscillating sequence.

Proof By Theorem 1.75, r = �s is a Markoff sequence. By Corollary 1.70, r is either
a constant or takes two values a and a+ 1. If r takes two values then by Theorem
1.69 it either oscillates or equals a triangle sequence. �

Corollary 1.78 A Markoff sequence r = �rn�n∈Z
oscillates if and only if r is differen-

tiable and its derivative is not equal to a nondifferentiable triangle sequence of the
type �1
2�.

Proof There are two types of positive triangle sequence. The first is a triangle sequence
s = �sk�k∈Z

of type �1
2�. Applying a suitable shift to s we may assume that s0 = 2.
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Then (1.80) shows that r = ∫
s contains a sequence r = �rn�n∈Z

such that rn = a+ 1
for n 	= 1 and r1 = a. This sequence as well as its shifts is not oscillating.

The second is a triangle sequence �sk�k∈Z
of type �a
a± 1�, a > 1; then there

are infinitely many gaps between a value rn = b+ 1 and the value rn = b, implying
oscillation.

If sk = 1 for every k then rn = a+1 for every n and hence �rn�n∈Z
, being a constant

sequence, oscillates by definition. If sk = a> 1, k ∈Z, then r = ∫
s has infinitely many

gaps between two values in both directions and hence r oscillates.
By Corollary 1.71 the last possibility for s is a positive oscillating Markoff sequence.

Hence in both directions it must have infinitely many values exceeding 1. By (1.80)
this implies that r = ∫

s oscillates. �

31 Jean Bernoulli and Markoff periods. If 	 ∈ Q \Z then �rn�	��n∈Z
is a

periodic sequence of a= �	
 and a+1 with p numbers a+1 in a period of length q,
where ��	��= p/q. The period

JB�r�= JB � a+1
 a
 r1
 r2
 · · · 
 rq−2
 (1.81)

corresponding to n = −1
 � � � 
 q − 2 is called the Jean Bernoulli period of r =
�rn�	��n∈Z

. Notice that by Theorem 1.54 its part �r1
 r2
 � � � 
 rq−2� is symmetric. In
his thesis (1880) Markoff introduced two other important periods:

 1 � a+1
 r1
 r2
 · · · 
 rq−2
 a


 2 � a
 r1
 r2
 · · · 
 rq−2
 a+1�
(1.82)

We call period  1 the first Markoff period and  2 the second Markoff period. Both
Markoff periods are easily obtained from the Jean Bernoulli period (1.81). It is clear
that  2 is obtained from JB by a one-step shift along r to the right. Hence  2 is also
a period of r . This period has the following extremal property discovered by Markoff.

Lemma 1.79 If 0 < 	 ∈Q\Z then  2 is the only period of r = �rn�	��n∈II such that
for any other period r∗0 
 r

∗
1 
 � � � 
 r

∗
q−1 the first nonzero term in

a− r∗0 
 r1− r∗1 
 � � � 
 a+1− r∗q−1 (1.83)

is −1 and the last nonzero term is +1.

Proof Any other period of r equals �rj
 � � � 
 rj+q−1� for some j = 1, � � � , q−1. Let k
be the first positive number such that rk−1 	= rj+k−1. Since

r0+· · ·+ rk−1 = �k	


rj+· · ·+ rj+k−1 = ��k+ j�	
− �j	



subtraction of the second equality from the first followed by the use of (1.31) implies

0 	= rk−1− rj+k−1 = �k	
+ �j	
− �k	+ j	
=−1�
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Let us consider the “tail” of (1.83). Since q	 = p ∈ Z, we obtain by (1.30) that

rq−k+· · ·+ rq−1 = �q	
− ��q−k�	
= �k	
+1


rj+q−k+· · ·+ rj+q−1 = �j	
− ��j−k�	
�
Hence by (1.31)

0 	= rq−k− rj+q−k = 1+ �k	
+ ��j−k�	
− �j	
=+1


where k is the first positive integer with rq−k− rj+q−k 	= 0. �

There is exactly one period with the extremal property of  2 stated in Lemma 1.79.
Indeed, if both r and r∗ were such periods the change of their places in (1.83) would
lead to a contradiction.

The fact that  1 is a period of r is not so obvious. For instance for 	 = 26/19 it
begins at the marked place of JB:

JB= �2
1
1
2
1
1
2
1
1
2•
1
2
1
1
2
1
1
2
1
 �


 2 = �1
1
2
1
1
2
1
1
2
1
2
1
1
2
1
1
2
1
2
 �

 1 = �2
1
2
1
1
2
1
1
2
1
2
1
1
2
1
1
2
1
1
 ��

However,  2 is clearly a one-step shift of JB to the right, as explained earlier. By
Lemma 1.79  2 has an extremal property. So if we can prove that  1 satisfies an
extremal property symmetric to that of  2 then it becomes possible to relate this period
to JB. This can be done with Markoff’s integration techniques presented in §30 above.
For 	 ∈ Q we denote by n�	� the number of partial denominators in the continued
fraction of 	.

Theorem 1.80 (Markoff 1880) If 0< 	 ∈Q\Z then the period  1 related to  2 by
�1�82� is a period of r . Period  1 is the only period such that for any other period
r∗0 
 r

∗
1 
 � � � 
 r

∗
q−1 the first nonzero term in

�a+1�− r∗0 
 r1− r∗1 
 � � � 
 a− r∗q−1 (1.84)

is +1, whereas the last nonzero term is −1.

Proof As in case of  2 there is at most one period with the extremal property specified
in (1.84).

If n�	�= 0 then 	 ∈ Z and hence r is a constant sequence. If n�	�= 1 then p = 1
and q > 1. If q = 2 then the symmetric part of the Jean Bernoulli period is empty,
implying that  1 = �a+1
 a� and  2 = �a
a+1�. Hence  1 = JB and  2 is the shift
of  1. Since q = 2, there are only two periods in total so that the series in (1.84) is
�1
−1� and that in (1.83) is �−1
1�. If q > 2 then

 1 � a+1
 a
 · · · 
 a
 a


 2 � a
 a
 · · · a
 a+1
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so that the first nonzero term in (1.84) is +1 whereas the last is −1. Similarly, the
first nonzero term in (1.83) is −1 and the last is +1. Again  1 is the Jean Bernoulli
period and  2 is its shift.

Suppose that the theorem is true for every 	> 1 with n�	� < n. If �= b+1/	, b� 0,
then n���= n�	�+1. By the induction hypothesis  1 is the period of r satisfying the
extremal property indicated in (1.84). To complete the induction we must establish the
same property for t = �rn����n∈Z

, which is the integral of r made up by b and b+1.
Let us consider two periods

P1 � b+1 b︸︷︷︸
a−1

b+1 b︸︷︷︸
r1−1

· · · b︸︷︷︸
rq−2−1

b+1 b︸︷︷︸
a

�

P2 � b︸︷︷︸
a

b+1 b︸︷︷︸
r1−1

b+1 · · · b︸︷︷︸
rq−2−1

b+1 b︸︷︷︸
a−1

b+1


where the second term in P1 is repeated a− 1 times, etc.; P1 is constructed by
 2 = 2�r� and P2 by 1 = 1�r�. Extending P1 and P2 periodically in both directions,
we obtain two infinite periodic sequences t1 and t2 of terms b and b+ 1. It is clear
that the derivative of t2 is a periodic sequence with period  1�r� and hence by the
induction hypothesis it is simply r. Similarly �t1 = r. It follows that t1 and t2 differ
from t by a shift and that P2 and P1 are the periods of t. Elementary calculations show
that the length of both periods is

�a+1�+a+ r1+· · ·+ rq−2 = aq+p�
Any period P of t begins either with b+ 1 or with b. If it begins with b+ 1 then it
must be of the form

P � b+1 b︸︷︷︸
r∗0−1

b+1 b︸︷︷︸
r∗1−1

· · · b︸︷︷︸
r∗q−2−1

b+1 b︸︷︷︸
r∗q−1−1


 (1.85)

where �r∗0 
 r
∗
1 
 � � � 
 r

∗
q−1� is a period of r. By the induction hypothesis the first nonzero

term in (1.83) is −1 and the last is 1. Since P1 is constructed from  2 and the first
nonzero difference in (1.83) is −1, the first nonzero difference for P1 and P must occur
within the first block of b’s in P, which is longer than the corresponding block of b’s
in P1. Hence it is b+1−b = 1. The case of the last nonzero difference is considered
similarly. Similarly one many check that the first nonzero difference in (1.83) for P2

and P is −1 and the last is 1.
If P begins with b then the very first difference between P1 and P is b+1−b = 1.

To investigate the last difference we may assume that this P begins at the first group
of b’s in (1.85). Since P1 and P are the periods of r, the difference between r∗0 and
a cannot exceed 1. Therefore if a group b+1
 b
 � � � 
 b at the head of P is moved to
the tail of P then the number of b’s thus borrowed is strictly less than r∗0 −1. But the
tail of P1 consists of a equal b’s, which exceeds the number of borrowed b’s by more
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than 1. It follows that the first nonzero difference is b− �b+1�=−1 as stated above.
The pair P2 and P for this case is investigated similarly.

By Lemma 1.79 we obtain that P2 = 2�t�. Comparing the formulas for P1 and P2,
we see that P1 = 1�t�, which proves the theorem. �

32 Markoff’s algorithm for oscillating Markoff sequences. Let �rn�n∈Z
be

an oscillating nonconstant Markoff sequence. By Corollaries 1.70 and 1.71 it takes
both the values a and a+1 infinitely often, implying in particular that it is a ceiling
sequence and therefore differentiable. Corollary 1.77 allows one to extend Markoff’s
algorithm as presented in §26 in Section 1.4 to oscillating Markoff sequences.
Markoff’s algorithm (oscillating case). Markoff’s algorithm will now be applied to
oscillating Markoff sequences �rj�j∈Z

.

Entry 1. Since r = �rn�n∈Z
is differentiable the derivative s = �r exists.

Entry 2. If s = �r is a triangle sequence then Markoff’s algorithm fails.
Entry 3. If s = �r is a positive constant sequence then Markoff’s algorithm stops.
Entry 4. If s = �r is a positive oscillating sequence then Markoff’s algorithm can

continue.

By Corollary 1.77 the result of each application of this algorithm fits exactly one
of the entries 2–4. By Theorem 1.75, entry 2 of the Markoff algorithm for periodic
sequences (see the text after the proof of Theorem 1.56) cannot occur if one runs the
Markoff algorithm in the oscillating case.

As in the periodic case, the oscillating version of Markoff’s algorithm when applied
to Jean Bernoulli sequences corresponding to an irrational number recovers its regular
continued fraction. In this case Markoff’s algorithm never stops or fails.

Definition 1.81 A Markoff sequence is called singular if either it is a triangle sequence
or Markoff’s algorithm fails in a finite number of steps. Otherwise it is called regular.

An important class of regular Markoff sequences is the class of periodic Markoff
sequences.

Lemma 1.82 If r is a periodic Markoff sequence then s = �r is a periodic Markoff
sequence with a smaller period.

Proof By Theorem 1.56 s is periodic with a smaller period than r. By Theorem 1.75
s is a Markoff sequence. �

Theorem 1.83 (Markoff 1880) Any periodic Markoff sequence is a periodic Jean
Bernoulli sequence.

Proof A nonconstant periodic Markoff sequence oscillates. By Lemma 1.82 both
versions of Markoff’s algorithm give the same results and can be continued until a
constant sequence is obtained. The use of Theorem 1.58 completes the proof. �
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For regular Markoff sequences, on the one hand, the first option in Corollary 1.77
never occurs. Therefore if we apply Markoff’s algorithm to such sequences, nj+1−nj
always has two integer values, a and a+ 1, as Corollary 1.70 shows. For instance
this is the case for Jean Bernoulli sequences with irrational mean values. By Ex. 1.28
Markoff’s algorithm recovers the mean value 	 of a regular Markoff sequence.

On the other hand there are many oscillating singular Markoff sequences. Just
consider integrals of positive triangle sequences of the type �a
a+1�, a> 1. Integrating
the sequences obtained we arrive at new ones. The process can be continued up to
infinity.

33 The classification of Markoff sequences. If applied to any regular Markoff
sequence Markoff’s algorithm never fails. By Theorem 1.83 it stops if and only if r is
a periodic Jean Bernoulli sequence. We are going to study the case when Markoff’s
algorithm neither stops nor fails. Any nonperiodic regular Markoff sequence can be
represented in the form r = �a0+ r�1�j �j∈Z

, where a0 ∈ Z and r�1�j is either 0 or 1.

Lemma 1.84 For any nonperiodic regular Markoff sequence �r�1�j �j∈Z
of 0 and 1 and

for any positive integer J there is a periodic Jean Bernoulli sequence �rn�	J 
 �J ��n∈Z

such that

r
�1�
j = rj�	J 
 �J � for �j�� J� (1.86)

The rational number 	J is either a convergent to the irrational mean value

	 = 1
a1 +

1
a2 +

1
a3 +· · ·

of �r�1�j �j∈Z
or the mediant of two consecutive convergents.

Proof Let �n�1�k �k∈Z
be the increasing sequence of solutions to the equation r�1�n = 1

enumerated so that n�1�0 �−1< 0 � n
�1�
1 . This uniquely determines the enumeration of

�r
�2�
k �k∈Z

by the identity

n
�1�
k+1−n�1�k = a1+ r�2�k 
 a1 > 0�

Hence the choice of r�2�0 is fixed. To insert the enumeration of solutions to r�2�n = 1
into �n�2�k �k∈Z

, we demand that n�2�0 � 0< 1 � n
�2�
1 . Proceeding by induction, we obtain

for every s � 1

n
�s�
k+1−n�s�k = as+ r�s+1�

k (1.87)

and

n
�s�
0 �−1< 0 � n

�s�
1 if s is odd ,

n
�s�
0 � 0< 1 � n

�s�
1 if s is even.

(1.88)
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If s = 2j+1 is a large odd number then by (1.88)

l2j+1
def= n�2j+1�

0 �−1
 m2j+1
def= n�2j+1�

1 � 0�

It follows that �−1
0
⊂ �l2j+1
m2j+1
.

We apply (1.87) with s= 2j to k∈ �l2j+1
m2j+1
. Clearly r�2j+1�
k = 1 at the ends of this

interval. Hence for k= l2j+1 �−1 the index l2j
def= n�2j�k is less than n�2j�k+1 � n

�2j�
0 � 0 by at

least a2j+1 � 2, implying l2j �−2. However, for k=m2j+1 � 0 the index m2j
def= n�2j�k+1

cannot be smaller than n�2j�1 � 1 by (1.88). It follows that �−2
1
⊂ �l2j
m2j
.

Now we apply (1.87) with s = 2j − 1 to k ∈ �l2j
m2j
. Again r�2j�k = 1 at the

ends of this interval. Hence for k = l2j � −2 the index l2j−1
def= n�2j−1�

k is less than

n
�2j−1�
k+1 � n

�2j−1�
−1 �−2 by at least a2j−1+1 � 2. Therefore l2j−1 = n�2j−1�

k �−4. On the

other hand for k=m2j � 1 the index m2j−1
def= n�2j−1�

k+1 must be greater than n�2j−1�
1 � 0

by at least 2, see (1.87). It follows that �−4
2
⊂ �l2j−1
m2j−1
.

Lemma 1.85 For u= 1
2
 � � � 
 j

l2j+1−�2u−1� � 1−3u <−2+3u�m2j+1−�2u−1�
 (1.89)

l2j+1−2u �−1−3u <−1+3u�m2j+1−2u� (1.90)

Proof We will prove the lemma by induction. For u = 1 (1.89) is equivalent to the
already proved inclusion �−2
1
⊂ �l2j
m2j
, whereas (1.90) is equivalent to �−4
2
⊂
�l2j−1
m2j−1
.

Suppose that (1.89) holds for some u, 1 � u� j. We apply (1.87) with

s = 2j+1− �2u−1�−1= 2j+1−2u

to k ∈ �l2j+1−�2u−1�
m2j+1−�2u−1�
. We have r�s+1�
k = 1 at the ends of this interval. Hence

if k= l2j+1−�2u−1� � 1−3u then

l2j+1−2u
def= n�2j+1−2u�

k � n
�2j+1−2u�
k+1 −2

� n
�2j+1−2u�
2−3u −2

� 2−3u−1−2=−1−3u�

If k=m2j+1−�2u−1� �−2+3u then

m2j+1−2u
def= n�2j+1−2u�

k+1 � n
�2j+1−2u�
k +2

� n
�2j+1−2u�
−2+3u +2

� 2+3u−2−1=−1+3u�
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This implies (1.90). Suppose now that (1.90) holds for some u < j. We apply
(1.87) with

s = 2j+1−2u−1= 2j−2u

to k ∈ �l2j+1−2u
m2j+1−2u
. We have r�s+1�
k = 1 at the ends of this interval. Hence if

k= l2j+1−2u �−1−3u then

l2j+1−�2u+1�
def= n�2j−2u�

k � n
�2j−2u�
k+1 −2

� n
�2j−2u�
−3u −2

�−2−3u= 1−3�u+1��

If k=m2j+1−2u �−1+3u then

m2j+1−�2u+1�
def= n�2j−2u�

k+1 � n
�2j−2u�
k +2

� n
�2j−2u�
−1+3u +2

� 2−1+3u= 1+3u=−2+3�u+1��

�

By Lemma 1.85 we obtain that

l1 �−1−3j <−1+3j �m1� (1.91)

The sequence r�2j+1� vanishes inside �l2j+1
m2j+1
 if there are integer points within
the interval and equals 1 at the ends of this interval, whose positive length is a =
a2j+1 + r�2j+2�

0 > 0. Repeating the same interval periodically in both directions, we
obtain either a constant sequence (in the case a= 1) or a Jean Bernoulli sequence of
two values with mean value 1/a. Let us denote this sequence by e�2j+1�. The important
property of e�2j+1� is

e
�2j+1�
k = r�2j+1�

k 
 k ∈ �l2j+1
m2j+1
� (1.92)

By (1.87) r�2j� is the integral of r�2j+1� with constant of integration a2j . Let e�2j� be the
integral of e�2j+1� with the same constant of integration. Then e�2j� is defined uniquely
up to a shift in some increasing sequence �pk�k∈Z

of the solutions to e�2j�p = 1:

p
�2j�
k+1−p�2j�k = a2j+ e�2j+1�

k �

We fix the choice of �pk�k∈Z
by setting

p
�2j�
k = n�2j�k for k= l2j+1 = n�2j+1�

0 �

Applying (1.87) with s = 2j to r and e, we obtain by (1.92) that

e
�2j�
k = r�2j�k 
 k ∈ �l2j
m2j
�
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By Theorem 1.56 e�2j� is a periodic sequence with mean value

1
a2j +

1

a2j+1+ r�2j+2�
0

�

Moving up by induction in 2j steps we construct a periodic Jean Bernoulli sequence
e�1� with mean value

1
a1 +· · · +

1

a2j+1+ r�2j+2�
0




which satisfies e�1�k = r�1�k , k ∈ �l1
m1
. Now apply (1.91). �

Theorem 1.86 A nonperiodic regular Markoff sequence r with mean value 	 is either
a Jean Bernoulli sequence r = �rn�	
���n∈Z

or the conjugate to a Jean Bernoulli
sequence �rn�1−	
0��n∈Z

.

Proof Assuming that r�s�0 = 0 for s� 1, we obtain by Lemma 1.84 a sequence of ratio-
nals 	J → 	 and of �J ∈ �0
1� satisfying (1.86). Passing if necessary to subsequences,
we may assume that �J → �. Then for every integer n and for sufficiently large J ,

rn = ��n+1�	J +�J 
− �n	J +�J 

= ��n+1�	+�+ ��n+1�

J 
− �n	+�+ ��n�J 


where ��n�J = n�	J −	�+�J −�→ 0 if J→+�. Hence rn = rn�	
�� if neither n	+�
nor �n+ 1�	+ � are integers. If n	+ � � Z for every integer n, then the proof is
completed. Otherwise, since 	 �Q there is only one m ∈ Z with m	+� ∈ Z. Then

rm�	
��= ��m	+��+	
− �m	+�
= 0


rm−1�	
��= �m	+�
− �m	+�−	
= 1�

Since m	+� ∈ Z,

rm+ rm−1 =
[
m	+�+	+ ��m+1�

J

]
−
[
m	+�−	+ ��m−1�

J

]
= �	+ ��m+1�

J 
−
[
−	+ ��m−1�

J

]
= 0− �−1�= 1

for sufficiently large J . Hence rm 	= rm−1. Now the sequences �rn�n∈Z
and �rn�	
���n∈Z

coincide for n 	=m
m−1, both are Markoff sequences and both take different values at
n=m
m−1. Then they either coincide at indices m−1 and m or take opposite values.
Hence either r = �rn�	
0��n∈Z

or r is the conjugate to �rn�1−	
0��n∈Z
; see (1.75). �

Theorem 1.86 shows that Markoff sequences are separated into two nonintersecting
classes, the class of Jean Bernoulli sequences and their conjugates, corresponding to
regular Markoff sequences, and the class of singular Markoff sequences obtained by
finite integration of triangular sequences.
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It is useful to note that singular Jean Bernoulli sequences (see Definition 1.66) are
regular Markoff sequences.

Definition 1.87 We say that a sequence r = �rn�n∈Z
is a finite perturbation of a

periodic sequence if it is obtained from a periodic sequence by splitting the latter up
at some point into two parts, moving them a finite distance in opposite directions and
filling the gap by some values.

Theorem 1.88 Any singular Markoff sequence is a finite perturbation of a periodic
Jean Bernoulli sequence.

Proof The proof goes by induction in the number of integrations. Any triangle sequence
is a one-term perturbation of a constant sequence. The integral of a triangle sequence
of type �1
2� is a triangle sequence of type �1
0�, which cannot be further integrated
but which is a finite perturbation of a constant sequence. If r is the integral of a
triangle sequence of type �a
a±1�, a > 1, then the integral is a finite perturbation of
�r�1/a
0��n∈Z

. Let s= �sn�n∈Z
be a finite perturbation of �rn�	��n∈Z

, so that s coincides
with a shift in �rn�	��n∈Z

to the left of some c < d and with possibly another shift to
the right of d. By the integration formula (1.79) the integral r = ∫

s with constant of
integration a> 0 coincides to the left of c−1 with �rn����n∈Z

, where �= 1/�a+1/	�.
A finite number of applications of (1.79) to the indices in �c
d
 moves the right-hand
part of �rn����n∈Z

by a finite distance to the right. Hence r is a finite perturbation of
a periodic sequence. �

Theorem 1.89 For any singular Markoff sequence r = �rn�n∈Z
there are exactly two

different m1 <m2 with rmi − rmi+1 =±1 and lmi �r�=�, i= 1
2.

Proof Any triangle sequence is a one-term perturbation of a constant sequence. If
r is a triangle Markoff sequence then the statement of the theorem is obvious. By
definition any singular Markoff sequence is obtained from a triangle sequence by a
finite number of integrations. It follows that we can complete the proof by induction
in a number of integrations. By Theorem 1.76 any integration keeps the number of
such exceptional indices invariant. �

Theorem 1.65 shows that sequences r = �rn�	
0��n∈Z
with irrational 	 behave in

this respect similarly to singular Markoff sequences. An important difference is that
the number of such exceptional indices is 1. Notice that this class of sequences is also
invariant under integration.

Theorem 1.90 A Markoff sequence r = �rn�n∈Z
is periodic if and only if l�r� <�. If

l�r� <� then r is a Jean Bernoulli sequence.

Proof By Theorem 1.83 a periodic Markoff sequence is a periodic Jean Bernoulli
sequence. By Theorem 1.64 l�r� = q− 1, where q is the period of r . Let l�r� <�.
By definition r is either singular or regular. By Theorem 1.76 there are exactly two
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indices m with lm�r� = � if r is singular. It follows that r is regular. By Theorem
1.86 the sequence r is either a Jean Bernoulli sequence or is a conjugate to a Jean
Bernoulli sequence �rn�	��n∈Z

. In the latter case l−1�r�=�. The same is true if r is the
sequence �rn�	��n∈Z

; see Theorem 1.65. By Theorem 1.65 the sequence r cannot be a
nonperiodic Jean Bernoulli sequence, since otherwise l�r�=�. Hence r is a periodic
Jean Bernoulli sequence. �

Remark There is another proof of Theorem 1.90, which does not use the classification of Markoff sequences.
Suppose that r = �rn�n∈Z

satisfies l�r� <�. By Lemma 1.72 the set of integers is a union of finite intervals
�n�r�, where n ∈ E ⊂ Z. Clearly the length of each �n�r� does not exceed 2l�r�+1. By Lemma 1.74 we
have l�s� < l�r�, where s = �r. Differentiating step by step we arrive at a constant sequence s. Integrating
back to r we obtain that r is a periodic Jean Bernoulli sequence.

Scholium 1.91 For any Markoff sequence r = �rn�n∈Z
the limit

lim
n→+�

1
n

n∑
k=1

rk = 	�r�

exists.

Any Markoff sequence is either singular or regular.

It is singular if and only if either of the two following equivalent conditions is
satisfied:

(a) 	�r� ∈Q and r is not periodic;

(b) there are two integers m1 <m2 such that lmi �r�=�, i= 1
2.

Any regular Markoff sequence is either periodic or nonperiodic.

It is periodic if and only if l�r� <�. In this case 	�r� ∈Q.

It is nonperiodic if and only if r is one of the following types:

(c) r = �rn�	
���n∈Z
, where m	+� � Z for m ∈ Z, 	 = 	�r� �Q;

(d) r is a shift in �rn�	��n∈Z
, 	 = 	�r� �Q ;

(e) r is conjugate to a sequence in (d).

A regular nonperiodic Markoff sequence is of type (c) if and only if ln�r� <� for
every n ∈ Z with rn− rn+1 	= 0.

A regular nonperiodic Markoff sequence is of type (d) if and only if ln�r� <� for
all but one index n.

Proof By Theorem 1.88 any singular Markoff sequence is a finite perturbation of a
periodic Jean Bernoulli sequence.

By Lemma 1.47 a limit exists for every Jean Bernoulli sequence. By Theorems
1.86 and 1.88 every Markoff sequence is a Jean Bernoulli sequence or the conjugate
to a Jean Bernoulli sequence or a finite perturbation of a periodic Jean Bernoulli
sequence. Hence a limit exists for every Markoff sequence. The rest follows from the
classification of Markoff sequences. �
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Exercises
1.1 Using the Euclidean algorithm, develop 177/233 into Schwenter’s continued

fraction (1636):
177
233

= 1
1 +

1
3 +

1
6 +

1
4 +

1
2

and write down all its convergents.
1.2 Prove that

1461
59

= 24+ 1
1 +

1
3 +

1
4 +

1
1 +

1
2

(see Euler 1748, §361).
1.3 For arbitrary positive integers p
q
 r find all solutions to the Diophantine equa-

tion (M. Bachet 1612)

px−qy = r�
Hint: Develop p/q into a continued fraction and consider the last convergent
which is not equal to p/q (see Perron 1954, §10).

1.4 Prove that a rational number p/q > 1 in its lowest terms is represented by a
symmetric regular continued fraction

p

q
= b0+

1
b1 +

1
b2 +· · · +

1
b2 +

1
b1 +

1
b0

if and only if either q2+1 or q2−1 is divisible by p (Serret’s theorem, Perron
1954, §11).

1.5 Prove that every divisor of a sum of two squares is a sum of two squares (Euler
and Serret, see Perron [1954, §11]).
Hint: If p > q is a divisor of q2+1 then by Ex. 1.4 the continued fraction of
p/q is symmetric with 2k+2 terms. Show that p = P2k+1 = P2

k +P2
k−1. If p is

a divisor of q2+1 such that p ≤ q then p is a divisor of �q− sp�2+1 for any
integer s. Finally, if �a
 b�= 1 then there are integers x
 y such that ax−by= 1.
It follows that any divisor p of a2 + b2 is a divisor of �a2 + b2��x2 + y2� =
�ay+bx�2+ �ax−by�2 = �ay+bx�2+1.

1.6 Justify Staudt’s construction (Fig. 1.4) of a regular pentagon inscribed into the
unit circle (see Weber 1913, §106, Section 5).

• Draw two perpendicular diameters AB and CD and three lines tangent to
the circle at points A, C and D.

• Choose a point c on the tangent through C such that �Cc� = 2�AB� and
connect S and c by a line.

• The line cS intersects the circle at N and N1.
• Draw lines through C, N and through C, N1.
• The tangent line at D intersects CN at Q and CN1 at Q1.
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• Finally draw the perpendiculars to AB at n and n1; the perpendiculars
intersect the circle at P
P1
P3
P2.

DQ

A
n n1

P3

P1 C c

N1

P2P
N

O
B

Q1

Fig. 1.4. Staudt’s construction.

Then the pentagon AP1P3P2P is regular.
Hint: Use �SNQ � �cNC11 to prove that �SQ�/�Cc� = �NQ�/NC�. Apply
�QD�2 = �NQ� �QC� to show that �SQ�/�QD� = �Cc� �QD�/��Nc� �Qc��. Since
�DC�2 = �NC� �QC� (�CND � �CQD) and �Cc� = 2 �DC� = 4 �SD�, this im-
plies that �SQ�/�QD� = �QD�/SD�. Assuming that �SD� = 1, obtain from here
that

�On� = 1
2
�QD� = −1+√5

4
= cos

2�
5
�

1.7 Given a1>a2> 1 define a sequence �ak�k�1 of positive numbers and a sequence
�nk�k�1 of positive integers by ankk+1 < ak < a

nk+1
k+1 , ak+2 = ak/ankk+1. Prove that

loga1
a2 =

1
n1 +

1
n2 +

1
n2 +· · ·

�

see Boltyanskii’s addendum to the Russian translation of Klein (1932).
1.8 Two graduated rulers have their zero points coincident, and the 100th graduation

of one coincides exactly with the 63th of the other. Show that the 27th and 17th
coincide more nearly than any other two graduations (Smith 1888, Examples
XXXVI, p. 453).

1.9 Ascending continued fractions are defined by

b1+
b2+

b3+· · ·
a3

a2

a1

def= b1

a1

+ b2

a2

+ b3

a3

+ · · · �

Prove that
b1

a1

+ b2

a2

+ b3

a3

+ · · · = b1

a1

+ b2

a1a2

+ b3

a1a2a3

+· · ·

(Smith 1888, Examples XXXVI, 9, p. 454).
11 The symbol � means that the triangles are similar.
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1.10 Find the value of

xn =
n

n+
n−1
n−1+

n−2
n−2+cdots+

2
2+

1
1+

1
2

(Smith 1888, Examples XXXVI, 7, p. 454).

Hint: Observe that x0 = 1/2, x1 = 2/3, x2 = 3/4, x3 = 4/5. Prove by induction
that xn = �n+1�/�n+2�.

1.11 Show that
1
1−

1
4−

1
1−

1
4−···−

1
4︸ ︷︷ ︸

n

= 2n
n+1

(Smith 1888, Examples XXXVI, 8, p. 454).

Hint: Let xn be the nth convergent of the continued fraction. Check that x1 = 1,
x2 = 4/3 satisfy the formula for n = 1 and n = 2. Now assuming that n > 2,
observe that

xn =
1
1−

1
4−xn

= 4−xn
3−xn−2

�

Apply induction.

1.12 Prove that Pn, Qn in Theorem 1.4 satisfy

PnQn−2−Pn−2Qn = �−1�na1 · · ·an−1bn�

1.13 Prove that Pn, Qn in Theorem 1.4 satisfy

PnQn−3−Pn−3Qn = �−1�n−1a1 · · ·an−2�bnbn−1+an��

1.14 Prove that ��
+ �!
� ��+!
 and 0 � ��
−2��/2
� 1.

1.15 Check that continued fractions for b/�2b+1� and �b+1�/�2b+1�, where b is
a positive integer, correspond to the exceptional case in Lemma 1.15.

1.16 Check Lagrange’s identity

1
2 +

1
b
+ 1

1 +
1
1 +

1
b
= 1
 b 	= −1

2
�

1.17 Prove that the mediant �a+b�/�c+d� of two positive nonequal fractions a/b
and c/d must lie between them.

1.18 If � is an irrational number and Pn/Qn are its convergents then, for every integer
k,

lim
n

Pn+1−kPn
Qn+1−kQn

= ��



68 Continued fractions: real numbers

Hint:

Pn+1−kPn
Qn+1−kQn

−� = 1
Qn+1/Qn−k

{(
Pn+1

Qn+1

−�
)
Qn+1

Qn
−k

(
Pn
Qn
−�

)}
�

By Theorems 1.5 and 1.7

bn+1+
bn−1

bnbn−1+1
<
Qn+1

Qn
< bn+1+

1

bn+
bn−2

bn−1bn−2+1

�

Observe that the function x→ x�bx+ 1�−1 increases on �1
+��, and deduce
from this that �Qn+1/Qn− k� > 1/3. For k = 1 this exercise hints at Stolz’s
theorem 5.2.

1.19 (Markoff) Prove that, for any regular continued fraction,

∣∣∣ 1
b1 +· · · +

1
bn
− 1
b1 +· · · +

1
bn−1

∣∣∣� ∣∣∣1
1 +· · · +

1
1︸ ︷︷ ︸

n

− 1
1 +· · · +

1
1︸ ︷︷ ︸

n−1

∣∣∣�

Hint: Combine (1.20) with (1.34).

1.20 Check Lagrange’s observation (1774) that the fraction 97/400 corresponding
to the Gregorian calender is neither principal nor nonprincipal convergent to
4187/17 280. However,

97
400

= 13P3−P2

13Q3−Q2

�

1.21 A simple fraction P/Q is a best Lagrange approximation to a real irrational
number � if and only if for every q, 1 � q < Q,

��Q���< ��q���
 P = �Q�+1/2
� (E1.1)

Hint: Apply (1.37) with q = Q to show that P is the closest integer to Q�.
Hence P = �Q�+1/2
, �Q�−P� = ��Q��� and the inequality of (E1.1) follows
by (1.37). If P and Q satisfy (E1.1) then (E1.1) implies (1.37) for 1 � q < Q.
Since � is irrational, there is only one best approximation of Q� by integers,
P = �Q�+1/2
. Hence (1.37) holds also for q =Q, p/q 	= P/Q.

1.22 The number of positive integers m such that 1 � m � n and �m
n� = 1 is
denoted by ��n�. The function n→ ��n� is called Euler’s phi function. Prove
that the number of elements in Fn is 1+��1�+��2�+· · ·+��n�.



Exercises 69

1.23 Check that for 	= 3/2
4/3
5/3
6/5
7/4
7/5
7/6 the sequences �rn�	
0��n∈Z

are given by (n� 1):

3/2→ �2
1
2
1
2
1
2
1
2
1
2
1
 � � ��= �2
1


4/3→ �1
2
1
1
2
1
1
2
1
1
2
1
 � � ��= �1
2
12



5/3→ �2
2
1
2
2
1
2
2
1
2
2
1
 � � ��= �22
1



6/5→ �1
1
1
2
1
1
1
1
2
1
1
1
1
2
1
 � � ��= �1
1
1
2
14



7/4→ �2
2
2
1
2
2
2
1
2
2
2
1
 � � ��= �23
1



7/5→ �1
2
1
2
1
1
2
1
2
1
1
2
1
2
1
 � � ��= �1
2
1
2
12



7/6→ �1
1
1
1
2
1
1
1
1
1
2
1
1
1
1
1
2
1
 � � ��= �14
2
15
�

1.24 Check that the periods for 	 = 3/5 and 	 = 7/12 (�= 0) are

� 1
0
1
 1
0�
 � 1
0
1
0
1
1
0
1
0
1
 1
0��

the boxed parts are symmetric in agreement with Theorem 1.54.
1.25 Prove that the sequence �rn�n∈Z

, where r0 = 1 and rn = 0 for n 	= 0, is not a
Jean Bernoulli sequence.
Hint: Apply Lemma 1.47.

1.26 Prove (Markoff [1882]) that, for any periodic �rn�p/q
0��n�0,

r1+· · ·+ rq
q

= a0+
1
a1 +

1
a2 +· · · +

1
ad
= p
q
�

1.27 If �r�1�j �j∈Z
is a periodic Markoff sequence of 0’s and 1’s, then

lim
k→+�

r
�1�
1 +· · ·+ r�1�k

k
= 1

a1+ limk→+�
r
�2�
1 +· · ·+ r�2�k

k

Deduce from here the existence of the limit limk→+��r1+· · ·+ rk�/k for any
Markoff sequence �rk�k∈Z

and find the value of the limit.
Hint: Apply (1.71) and use the identity

k= n1+ �n2−n1�+· · ·+ �njk −njk−1�+k−njk

where n1, � � � , njk is the complete list of nj’s in �0
 k�.

1.28 If �r�1�j �j∈Z
is a regular Markoff sequence of 0’s and 1’s then prove that

lim
k→+�

r
�1�
1 +· · ·+ r�1�k

k
= 1
a1 +

1
a2 +· · · �
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1.29 Prove that the sequences B��
0� and B�"
0�, see (1.62), partition the set of
all positive integers N if and only if �+" = 1 and � ∈ �0
1� is irrational (a
theorem of Beatty, 1926).
Hint: Notice that

fx�z�
def=

�∑
n=1

z�n/x
 =
�∑
k=1

rk�x
0�z
k = �1− z�

�∑
k=1

�kx
zk�

Using this and k�+k"= k, prove that f��z�+f"�z�= z�1−z�−1; see O’Bryant
(2002) for details.

1.30 Recall that a sequence �xn�n�0 of real numbers is called fundamental if for
every � > 0 there is a positive integer N��� such that �xn− xm� < � provided
that n
m > N���. Prove that partial denominators of any given index of any
fundamental sequence stabilize, and deduce from this that every fundamental
sequence in R converges.



2
Continued fractions: algebra

2.1 Euler’s algorithm

34 Euler’s theorem. In (1685) Wallis proved that common fractions with denomi-
nators 2p5q expand into finite decimal fractions. He also showed that the length of the
period of the decimal expansion of a common fraction m/n cannot exceed n−1. Later
Lambert proved that a real number has a periodic decimal expansion (starting from
some place) if and only if it is rational. Since rational numbers correspond to finite
continued fractions a question arises: what are the rational numbers corresponding to
periodic continued fractions?

Definition 2.1 A continued fraction b0+K�
k=1 �1/bk� is called periodic if there are

h� 0 and d> 0 such that bj+d = bj 
 j = 0
1
 � � � for j � h. If h= 0 then the continued
fraction is called pure periodic.

Since bk � 1 if k � 1, any pure periodic continued fraction satisfies b0 � 1. Thus the
regular continued fraction of

√
2 is periodic (h= 1, d = 1) and of �= �√5+1�/2 is

pure periodic.

Theorem 2.2 (Euler) Any periodic regular continued fraction represents a quadratic
irrational.

Proof If � = b0+K�
k=1�1/bk� is a pure periodic continued fraction with period d then

an application of (1.17) with n= d−1,

� = �Pd−1+Pd−2

�Qd−1+Qd−2




shows that � satisfies the quadratic equation

Qd−1X
2+ �Qd−2−Pd−1�X−Pd−2 = 0 � (2.1)

If � is periodic with h > 0 then (1.17) for n = h− 1 shows that � is a Mobius
transformation with integer coefficients of a pure periodic continued fraction. Hence
it is a quadratic irrational too. �

71
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35 Theoretical form of Euler’s algorithm. A natural question is whether the
converse to Euler’s theorem is true. This question seemingly appeared owing to
Brouncker’s answer to Fermat’s question on the Diophantine equation x2−y2D = 1
(see §43 in Section 2.3). Attacking this problem Euler discovered a convenient algo-
rithm for the development of quadratic surds

√
D of integers D that are not perfect

squares into regular continued fractions. The idea is to apply algorithm (1.32) to
� =√D. If r1 = �

√
D
 then

√
D = r1+

√
D− r1 = r1+

1√
D+ r1
D− r2

1

�

Let s1 =D− r2
1 and b1 = ��

√
D+ r1�/s1
. Then

√
D+ r1
D− r2

1

=
√
D+ r1
s1

=b1+
1

s1�
√
D+ �b1s1− r1��

D− �b1s1− r1�2

=b1+
1√
D+ r2
s2




where r2 = b1s1− r1 and

D− r2
2

s1
= D− r

2
1 −b2

1s
2
1+2b1s1

s1
= 1−b2

1s1+2b1 = s2 ∈ Z �

Induction yields three sequences �rn�n�0, �bn�n�0, �sn�n�0:

rn+1 = bnsn− rn
 snsn+1 =D− r2
n+1


bn+1 =
[√
D+ rn+1

sn+1

]



(2.2)

with initial conditions

r0 = 0
 s0 = 1
 b0 =
[√
D+ r0
s0

]
= �√D
� (2.3)

Algorithm (2.2), (2.3) is known as Euler’s algorithm. It can be run not only for
quadratic surds, corresponding to the initial conditions r0 = 0, s0 = 1, but for any
integers r0, s0, s0 	= 0, such that s0 is a divisor of D− r2

0 . Notice that any quadratic
irrational � can be represented as

� =
√
D+ r0
s0

(2.4)
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with integer r0, s0 and �D− r2
0 �/s0. Indeed, a quadratic irrational � satisfies the

irreducible quadratic equation

aX2+bX+ c = 0 
 � = −b±√D
2a


 D = b2−4ac


with integer coefficients a, b, c having greatest common divisor 1. Changing the signs
of a
b
 c, if necessary, we may assume that

� =
√
D+ �−b�

2a

and may put r0 =−b, s0 = 2a. For instance, for �= �√5+1�/2 the parameters rn = 1,
bn = 1, sn = 2 of Euler’s algorithm do not depend on n and are positive integers. The
basic properties of the parameters of Euler’s algorithm are summarized in the following
theorem.

Theorem 2.3 Let � be a quadratic irrational �2�4� such that s0 divides D− r2
0 . Then

(a) the parameters rn, bn and sn of Euler’s algorithm for � are integers, sn 	= 0 and
bn � 1 for n > 0;

(b) if r2
0 <D, s0 > 0, then bn, sn are positive for n= 1
2
 � � � , r2

n < D and rn > 0 for
n� 2.

Proof (a) We apply induction. Since s−1 = �D− r2
0 �/s0 and b0 are integers by defini-

tion, r1 = b0s0− r0 is integer. Assuming that sk, rk are integers for k � n, we obtain
from (2.2) that rn+1 is integer. Next, the identity

sn+1 =
D− �bnsn− rn�2

sn
= sn−1+bn�rn− rn+1� (2.5)

shows that sn+1 is integer. Since
√
D is irrational and rn is integer, sn 	= 0. It follows

from

bn =
[√
D+ rn
sn

]
< bn+

√
D− rn+1

sn

= bn+
1√

D+ rn+1

sn+1

(2.6)

that

0<

√
D− rn+1

sn
= sn+1√

D+ rn+1

< 1� (2.7)

Therefore �
√
D+ rn+1�/sn+1 > 1, implying bn+1 � 1.
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(b) Suppose now that r2
0 < D and s0 > 0. Then b0 � 0 and bn � 1 for n � 1; see

part (a). Suppose that sn > 0 and r2
n < D. Then on the one hand the first inequality in

(2.7) implies that
√
D− rn+1 > 0. On the other hand,

√
D+ rn+1 =

√
D+bnsn− rn = sn

{√
D− rn
sn

+bn
}

shows that
√
D+ rn+1 > 0. Hence r2

n+1 <D. Finally

sn+1 =
D− r2

n+1

sn
> 0�

Let n� 1. Since sn > 0, we have by the definition of bn

bnsn <
√
D+ rn < bnsn+ sn �

Therefore the inequality rn � bnsn implies that sn >
√
D > �rn�, which contradicts the

assumption that rn � bnsn � sn, since bn � 1. Hence rn < bnsn and rn+1 = bnsn−rn > 0.
�

The proof of the above theorem follows Smith (1888). The condition n � 2 in (b) is
essential: if � = �√5+1�/4 then r1 =−1.

The parameters rn and sn of Euler’s algorithm are related by the remainders �n of
the continued fraction for �.

Lemma 2.4 For every n� 0,

�n =
√
D+ rn
sn

�

Proof Assuming that the formula is true for n, we obtain

1
�n+1

= �n−bn =
√
D+ rn
sn

−bn =
D− r2

n+1

sn�
√
D+ rn+1�

= sn+1√
D+ rn+1

and thus that it is true for n+1. �

36 Computational form of Euler’s algorithm. Euler’s algorithm is very con-
venient for developing quadratic surds

√
D into regular continued fractions. This is

provided by Euler’s observation that

bn =
[√
D+ rn
sn

]
=
[
b0+ rn
sn

]
(2.8)

if sn > 0. Indeed, since b0 = �
√
D
, we see from

b0+ rn <
√
D+ rn < b0+ rn+1

that there are no integers between the expressions in these inequalities. Since sn � 1
is integer, no integer may appear after division by sn, which implies (2.8). Another
useful formula for these computations is (2.5).
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We illustrate Euler’s computations from (1765, §14) for D = 31:

r1 = 5 s1 = 6 b1 =
[

10
6

]
= 1

r2 = 6−5= 1 s2 = 1+1×4= 5 b2 =
[

6
5

]
= 1

r3 = 5−1= 4 s3 = 6−1×3= 3 b3 =
[

9
3

]
= 3

r4 = 9−4= 5 s4 = 5−3×1= 2 b4 =
[

10
2

]
= 5

r5 = 10−5= 5 s5 = 3+5×0= 3 b5 =
[

10
3

]
= 3

r6 = 9−5= 4 s6 = 2+3×1= 5 b6 =
[

9
5

]
= 1

r7 = 5−4= 1 s7 = 3+1×3= 6 b7 =
[

6
6

]
= 1

r8 = 6−1= 5 s8 = 5−1×4= 1 b8 =
[

10
1

]
= 10

One can easily see that Euler’s algorithm repeats periodically rows already obtained. Hence

√
31= 5+ 1

1 +
1
1 +

1
3 +

1
5 +

1
3 +

1
1 +

1
1 +

1
10 +

1
1 + · · · � (2.9)

In (1765) Euler found continued fractions for
√
D for all D up to D = 120.

37 Periodicity. We consider first what Euler’s algorithm can do.

Theorem 2.5 Let

� =
√
D+ r
s




whereD
s ∈N,D is not a perfect square and r ∈Z satisfies r2<D. Then the continued
fraction of � is periodic.

Proof The following identity,
√
D+ r
s

=
√
s2D+ sr
s2




shows that we may assume that s divides D− r2. By Theorem 2.3 for n � 2 the
parameters rn in Euler’s algorithm for � satisfy 0 < rn <

√
D. Hence there are at

most �
√
D
 possible values for rn. It follows from rn+1 + rn = bnsn that sn cannot

exceed 2�
√
D
. These gives not more than 2D possible choices for the remainders

�k = �
√
D+ rk�/sk of the regular continued fraction for �. It follows that �k = �l for

some pair of positive integers k < l� 2D+1, implying that � is periodic. �
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Corollary 2.6 The continued fraction of any surd �=√R, 1<R∈Q\Q2 is periodic.

Proof Let R = p/q be the representation of R in lowest terms. Then
√
R =√D/q,

where D= pq is a positive integer. Since q divides D, we may apply Theorem 2.5 by
putting s0 = q, r0 = 0. �

38 Quadratic surds. A simple analysis of (2.9) shows that the last bd = 10 in
Euler’s table given above is 2×5= 2×b0. Also the part 1, 1, 3, 5, 3, 1, 1, between b0

and 2b0 is symmetric; this is true for other examples of Euler’s withD� 120. The proof
of this fact follows from a property of real quadratic fields Q�

√
R�, where R ∈Q\Q2.

By definition Q�
√
R� is the set of all �= �p+q√R�/r, where p
q
 r ∈Z
 r 	= 0. There

is a Galois automorphism acting on Q�
√
R� with Q as a fixed field that sends � to the

algebraically conjugate element � ∗:

� ∗ = p−q
√
R

r
�

Lemma 2.7 Let the regular continued fraction b0+Kk�1 �1/bk� of
√
R, 1 < R ∈ Q,

have period d. Then �1 = �d+1.

Proof By Euler’s formula (1.17) �k ∈Q�
√
R�, k= 0
1
 � � � Applying the Galois auto-

morphism to �n = bn+�−1
n+1, we obtain that

�∗n = bn+
1
�∗n+1

� (2.10)

This together with bn � 1 shows that the inclusion �∗n ∈ �−1
0� implies �∗n+1 ∈ �−1
0�.
However, �∗1 =−�

√
R+b0�

−1 ∈ �−1
0�. It follows that �∗n ∈ �−1
0� for n= 1
2
 � � �
In addition (2.10) implies that

bn =−
[

1
� ∗n+1

]

 n= 1
2
 � � � (2.11)

By the assumption of the lemma, �k = �k+d for some k � 1. Let k be the minimal k
with this property. If k > 1 then (2.11) with n= k−1 shows that bk−1 = bl−1. Hence
�k−1 = �l−1, contradicting the choice of k. �

Theorem 2.8 A periodic regular continued fraction �b0� b1
 b2
 � � � 
 with period
�b1
 � � � 
 bd� satisfies

bd = 2b0
 �b1
 b2
 � � � 
 bd−1�= �bd−1
 � � � 
 b2
 b1� (2.12)

if and only if it is the regular continued fraction of
√
R, 1< R ∈Q\Q2.

Proof Comparing the second formula of (1.18) with

2b0+
1
b1 +

1
b2 + · · · +

1
bd−1

= Pd−1

Qd−1

+b0
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we obtain that (2.12) is equivalent to

Pd−1+b0Qd−1 =Qd � (2.13)

Let 1<R ∈Q,
√
R �Q. By Corollary 2.6 the continued fraction of

√
R has period d.

By Lemma 2.7 �d+1 = �1 = 1/�
√
R−b0�. Hence by (1.17)

√
R= Pd+ �

√
R−b0�Pd−1

Qd+ �
√
R−b0�Qd−1

�

Comparing the coefficients for
√
R �Q in this formula, we obtain (2.13).

If the regular continued fraction of � ∈R satisfies (2.12) then �d = b0+�. By (1.17)

� = Pd−1��+b0�+Pd−2

Qd−1��+b0�+Qd−2




which is equivalent to the quadratic equation

Qd−1�
2+ �b0Qd−1+Qd−2−Pd−1��− �b0Pd−1+Pd−2�= 0�

By (2.13) and (1.15),

b0Qd−1+Qd−2−Pd−1 = b0Qd−1+Qd−2− �Qd−b0Qd−1�= 0� (2.14)

Hence

1 � b0

Pd−1

Qd−1

<
b0Pd−1+Pd−2

Qd−1

= �2 ∈Q
 (2.15)

since Pk > 0 for every k. �

Theorem 2.8 leaves open the question for which b0 and symmetric sequences
b1, b2, � � � , bd−1 the number R=D is integer. In (1765) Euler proposed an interesting
method to answer this question for d � 8. We present here Euler’s result in a general
form, following Perron (1954, Theorem 3.17). Applications of Euler’s method to
solutions of Pell’s equation will be discussed later in §§43, 44 in Section 2.3.

To begin with, the b0 are exactly those integers which make integer the right-hand
side of (2.15). To write down formulas showing the dependence of Pd−1 and Pd−2 on
b0 we consider the finite continued fraction with convergents

b1+
1
b2 + · · · +

1
bk
≡ Pk−1

Qk−1


 k= 1
 � � � 
 d−1� (2.16)

Since
Pk
Qk

= b0+
Qk−1

Pk−1

= b0Pk−1+Qk−1

Pk−1




we obtain that
Pk = b0Pk−1+Qk−1


Qk =Pk−1

k= 1
 � � � 
 d−1� (2.17)
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Combining (2.17) with (2.15), we get the formula

�2 = b2
0+
b0�Qd−2+Pd−3�+Qd−3

Pd−2

� (2.18)

Lemma 2.9 Pd−3 =Qd−2.

Proof By (2.14), b0Qd−1+Qd−2 = Pd−1, which implies by (2.17) that

b0Pd−2+Pd−3 = Pd−1� (2.19)

The proof is completed by comparing this equation with the first equation in (2.17)
for k= d−1. �

Theorem 2.10 (Euler 1765) Let �b1
 b2
 � � � 
 bd−1� be a symmetric sequence of posi-
tive integers. Let Pk and Qk be the numerators and denominators of the convergents to

b1+
1
b2 + · · · +

1
bd−1

�

Then the square of
√
D = b0+

1
b1 + · · · +

1
b1 +

1
2b0 +

1
b1 + · · ·

is a positive integer if and only if there is an integer m such that both the numbers

b0 = 1
2

(
mPd−2− �−1�dQd−3Pd−3

)

 D−b2

0 =mPd−3− �−1�dQ2
d−3

are positive integers.

Proof Applying Lemma 2.9 to (2.18) and (1.16) to (2.16), we obtain the system

�D2−b2
0�Pd−2−2b0Qd−2 =Qd−3


Qd−3Pd−2−Pd−3Qd−2 = �−1�d−3�
(2.20)

Multiplying the second equation in (2.20) by �−1�d−3Qd−3, we see that the pair
x = �−1�d−3Q2

d−3, y = �−1�d−3Qd−3Pd−3 is a solution to

xPd−2−yQd−2 =Qd−3�

It follows that

u= �D2 − b2
0� − �−1�d−3

Q
2
d−3
 v= 2b0− �−1�d−3

Qd−3Pd−3

is a solution to the homogeneous equation

uPd−2−vQd−2 = 0�
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Hence u=mQd−2 and v=mPd−2, where m is an integer. Thus

2b0 =mPd−2− �−1�dQd−3Pd−3


D−b2
0 =mQd−2− �−1�dQ2

d−3

=mPd−3− �−1�dQ2
d−3

by Lemma 2.9. �

Let us illustrate Theorem 2.10 by the examples of the symmetric sequence 1, 1, 3, 5, 3, 1, 1 corresponding
to
√

31 and 1, 1, 1, 1 corresponding to
√

13. By the Euler–Wallis formulas (1.15),

P0 = 1
 P1 = 2
 P2 = 7
 P3 = 37
 P4 = 118
 P5 = 155
 P6 = 273


Q0 = 1
 Q1 = 1
 Q2 = 4
 Q3 = 21
 Q4 = 67
 Q5 = 88
 Q6 = 155�

We have d = 8. Notice that Q6 = 155=P5, confirming Lemma 2.9. Now

b0 = 273k+5
 D = 74 529k2+3040k+31
 k= 0
1
2
 � � �

In the case D = 13, we have d = 5 and

P0 = 1
 P1 = 1
 P2 = 3
 P3 = 5


Q0 = 1
 Q1 = 1
 Q2 = 2
 Q3 = 3�

By Euler’s formulas,

b0 = 5k+3
 D = 25k2+36k+13� k= 0
1
2
 � � �

Using Euler’s method one can easily obtain continued fractions for squared surds
of integers starting from any symmetric sequence.

39 Some identities for Euler’s parameters. The parameters rk and sk from §35
have a simple algebraic meaning.

Lemma 2.11 Let D > 1 be an integer that is not a perfect square and let � be a
quadratic irrational �2�4� such that s0 divides D− r2

0 . Let � = b0+Kk�1 �1/bk� be the
regular continued fraction for �. Let �rk�, �sk� be the parameters of Euler’s algorithm
(2.2). Then the remainders �k of the continued fraction for

√
D satisfy

pk�X�= skX2−2rkX− sk−1 = 0� (2.21)

Proof If � ∗k is the algebraic conjugate to �k then Viète’s formulas show that

�k+� ∗k =
√
D+ rk
sk

+ −
√
D+ rk
sk

= 2rk
sk

,

�k�
∗
k =

√
D+ rk
sk

−√D+ rk
sk

= −sk−1

sk



which imply (2.21). �

Corollary 2.12 The discriminant of �2�21� is 4D.
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Proof By (2.2) the discriminant of (2.21) is 4r2
k +4sksk−1 = 4D. �

Euler’s algorithm (2.2) can be stated in terms of the quadratic polynomials pk�x�, see
(2.21). To see this we substitute the recursion formula for rn+1 from (2.2) into (2.5),
and rewrite the recursion formula for rn+1 from (2.2). This yields

rn+1 = 1
2p

′
n�bn� ,

sn+1 =−pn�bn�

(2.22)

where pn is defined by (2.21). There are also simple formulas relating rn, sn to the
numerators Pn and denominatorsQn of the convergents Pn/Qn to �=√D. We consider
a more general case, R ∈Q\Q2, R> 1. If R= p/q then

√
R=√D/q where D= pq

is an integer. It follows that we may apply Euler’s algorithm with r0 = 0 and s0 = q.

Lemma 2.13 (Euler 1765, §23) For n= 0, 1, � � � we have

q�QnQn−1R−PnPn−1�= �−1�n+1rn+1


q�P2
n−Q2

nR�= �−1�n+1sn+1�

Proof By (1.17),
√
R= �n+1Pn+Pn−1

�n+1Qn+Qn−1

�

Solving this equation in �n+1, we obtain

�n+1 =−
Pn−1−Qn−1

√
R

Pn−Qn
√
R

=− �Pn−1−Qn−1

√
R��Pn+Qn

√
R�

P2
n−Q2

nR

= QnQn−1R−PnPn−1+ �−1�n−1
√
R

P2
n−Q2

nR
=
√
D+ rn+1

sn+1

(2.23)

by Lemma 2.4. Since
√
R=√D/q is irrational, this proves the lemma. �

Compare these formulas for q = 1 with Brouncker’s formulas in the proof of Lemma
2.21 below. Applying the Galois automorphism to (2.23), we obtain

Pn+Qn
√
R

Pn−1+Qn−1

√
R
= rn+1+

√
D

sn



which results in a beautiful identity,

Pn+Qn
√
R= �r1+

√
D� · · · �rn+1+

√
D�

s0 · · · sn
� (2.24)
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Corollary 2.14 Let 1< R ∈Q\Q2 and let d be the period of the regular continued
fraction for

√
R. Let Pk/Qk be its convergents. Then

P2
d−1−Q2

d−1R= �−1�d� (2.25)

Proof By Lemma 2.7 �1 = �d+1. By (2.12) bd = 2b0. Assuming that R= p/q, D= pq,
we obtain

√
D

q
= b0+

1
�1

= b0−bd+bd+
1
�d+1

=+�d =−b0+
√
D+ rd
sd

�

It follows that sd = q, rd = b0q. Substituting these values into (2.23), we obtain (2.25).
�

For instance, for p= 3, q = 2, √
3
2
=
√

6
2
= 1+ 1

4 +
1
2 +

1
4 + · · · �

Thus d = 2, P1 = 5, Q1 = 4 and 52−42× 3
2 = 25−8×3= 1 as Corollary 2.14 claims.

2.2 Lagrange’s theorem

40 Lagrange’s theorem. Euler’s theorem, 2.2, raises the question of existing
quadratic irrationals with nonperiodic regular continued fractions. This question is
answered in the negative by Lagrange’s theorem. The crucial role in Lagrange’s proof
is played by reduced quadratic irrationals, which in fact we have already used in the
proof of Lemma 2.7.

Definition 2.15 A quadratic irrational � is called reduced if �> 1 and the algebraically
conjugate irrational � ∗ satisfies −1< � ∗ < 0.

The golden ratio is a reduced quadratic irrational. By the following lemma, Euler’s
algorithm eventually leads to reduced quadratic irrationals.

Lemma 2.16 For any real quadratic irrational � there is an integer N� such that �n
is reduced if n > N� .

Proof Applying Galois’ automorphism to Euler’ formula (1.17), we obtain

� ∗ = Pn−1�
∗
n +Pn−2

Qn−1�
∗
n +Qn−2




or equivalently

� ∗n =−
� ∗Qn−2−Pn−2

� ∗Qn−1−Pn−1

=−Qn−2

Qn−1

� ∗ −Pn−2/Qn−2

� ∗ −Pn−1/Qn−1

�
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By Theorem 1.11, limn Pn−2/Qn−2 = limn Pn−1/Qn−1 = �. Therefore

� ∗n =−
Qn−2

Qn−1

�1+�n�


where limn �n = 0. It follows that � ∗n < 0 for n�N� . Hence (2.10) can hold for n�N�
only if −1< � ∗n+1 < 0. �

Lemma 2.17 Let 0 < D, D ∈ Z, D 	= P2, P ∈ Z. Then there are not more than D
reduced quadratic irrationals with discriminant D.

Proof Any reduced � with discriminant D satisfies the quadratic equation

aX2+bX+ c = 0
 D = b2−4ac


where 0< a ∈ Z, b
 c ∈ Z and the greatest common divisor of a, b, c is 1. Substituting
the formulas

� = −b+ �√D
2a


 �∗ = −b− �√D
2a


 �=±1

into −1< �∗ < 0< 1< �, we see that �= 1 and

0< b+√D < 2a <−b+√D� (2.26)

It follows that b < −b and therefore b < 0. Then the first inequality in (2.26) shows
that 0< �b�<√D, whereas the second shows that 0< a <

√
D. Any choice of a and

b determines c. Hence there are not more than D equations with discriminant D. �

Corollary 2.18 A quadratic irrational � = �√D+ r�/s, where r , s are integer, is
reduced if and only if

0<
√
D− r < s <√D+ r� (2.27)

Theorem 2.19 (Lagrange) The regular continued fraction of a quadratic irrational
is periodic.

Proof By Lemma 2.16 �n for any n > N� is a reduced quadratic irrational. By
Lemma 2.11 �n and � ∗n are the roots of (2.21). By Corollary 2.12 the discriminant
4r2
n + 4snsn−1 = 4D of �n does not depend on n. By Corollary 2.18 for n > N� ,

0 < rn <
√
D and 0 < sn < 2

√
D. Hence in not more than 2D steps �n will coincide

with some �m, m> n. �
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41 Ballieu’s approach. It turned out that Lagrange’s theorem could also be proved
in the framework of Euler’s algorithm (Perron 1954, Chapter III, §22). The following
arguments, which could have been used by Euler, were discovered only by Ballieu
(1942). Recall that the parameters of Euler’s algorithm are integer coefficients of
quadratic equations (2.21). If snsn−1 > 0 for some n then by Viète’s formula � ∗n <
0. Since �n > bn � 1, we must have 0
 bn ∈ �� ∗n 
 �n�. Therefore pn�0� = −sn−1 and
pn�bn�=−sn+1 (see (2.22)) have the same sign. It follows that

0< pn�0�pn�bn�= sn−1sn+1 =
sn−1sn
s2
n

snsn+1 �

Hence sk−1sk > 0 for every integer k � n, which implies that r2
k = D− sk−1sk < D.

This and
√
D+ rk/sk > bk � 1 imply that sk > 0 for k = n
n+ 1
 � � � Since r2

k < D

and sk−1sk < D, this gives at most 2�
√
D
+ 1 possibilities for rk and at most D− 1

possibilities for sk. Therefore �k = �l for some pair n� k < l� n+D+2D
√
D. Hence

the continued fraction of �0 is periodic.
To complete the proof we need only show that it is not possible that sk−1sk < 0

for every k. Assuming the contrary, we obtain that � ∗k = −sk−1/sk�k > 0. It follows
that 2rk/sk = � ∗k + �k > 0 or that sk and rk have the same sign. Hence all terms in
rk = bksk+ �−rk+1� have the same sign. Iterating we obtain

�r1� = b1�s1�+ �r2� = b1�s1�+b2�s2�+ �r3� = · · ·
= b1�s1�+ · · · +bn�sn�+ �rn�


which is obviously impossible for large n.

42 Galois’ theorem. This theorem describes continued fractions of reduced quadratic
irrationals.

Theorem 2.20 (Galois) A quadratic irrational � can be the value of a pure periodic
continued fraction if and only if it is reduced. If the continued fraction of � is pure
periodic with period d and with the first few partial denominators b0
 b1
 � � � 
 bd−1, then
−1/� ∗ is also pure periodic with the same period d and the first partial denominators
bd−1, bd−2, � � � ,b0.

Proof If the continued fraction of � is pure periodic then � = b0+1/�1 > 1 and � is a
root of a polynomial p�X� in (2.1). Since P−1 = 1, P0 = b0 � 1, we see that Pn
Qn > 0
for all n and the sequences �Pn�, �Qn� increase. Therefore

p�0�=−Pd−2 < 0 
 p�−1�=Qd−1−Qd−2+Pd−1−Pd−2 > 0

imply that p�x� must vanish in �−1
0� by the intermediate value theorem. Hence � is
a reduced quadratic irrational. Since � is reduced, −1< � ∗ < 0 and −� ∗ = b0+1/� ∗1 .
Then � ∗ ∈ �−1
0� and b0 � 1 imply � ∗1 ∈ �−1
0�. By induction we obtain that �n is
a reduced quadratic irrational for every n.
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By Lagrange’s theorem there exists a minimal n such that �n = �n+d for some d> 0.
If n= 0 then � is pure periodic. Suppose that n > 0. Then

�n−1−�n+d−1 = bn−1+
1
�n
−bn+d−1−

1
�n+d

= bn−1−bn+d−1 �

Passing to the algebraically conjugate irrationals, we obtain that

� ∗n−1−� ∗n+d−1 = bn−1−bn+d−1


which is only possible if bn−1 = bn+d−1, since both � ∗n−1 and � ∗n+d−1 are in �−1
0�. It
follows that �n−1 = �n+d−1, which contradicts the choice of n.

Let � = �0 be a pure periodic quadratic irrational. Then

�0 = b0+
1
�1


 � � � 
 �d−2 = bd−2+
1
�d−1


 �d−1 = bd−1+
1
�d
� (2.28)

If d is the period of � then �0 = �d. Applying the Galois automorphism to the last
equality of (2.28), we obtain that

− 1
� ∗0
= bd−1+

1
−1/� ∗d−1

�

Moving from the right to the left in (2.28) , we obtain

− 1
� ∗0
= bd−1+

1
bd−2 + · · ·

1
b0 +

1
−1/� ∗0




implying the second statement of the theorem since −1/� ∗0 > 1. �

2.3 Pell’s equation

43 Brouncker’s solution to Fermat’s question. By 1657 John Wallis’ Arith-
metica Infinitorum had reached Pierre de Fermat in Toulouse, Italy. Fermat, interested
in number theory, addressed to Wallis the challenge of solving the Diophantine
equation

x2 = 1+y2D
 (2.29)

in positive integers x and y. Here D is a positive integer that is not a square. If D
were a perfect square then (2.29) would not have positive-integer solutions. In general
squared factors of D can be incorporated in y2. Here we will pass by the details of the
initial misunderstanding of this problem on the part of Brouncker and Wallis. They
may be found in an interesting paper by Stedall (2000a) and in Edwards (1977).

Naturally Brouncker examined first the simplest case D= 2 and found the following
solutions:

x = 3 17 99
y = 2 12 70

� (2.30)
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The story of Wallis’ product, which is discussed in §60, Section 3.2, shows that
Brouncker, as the great expert in continued fractions in his time, developed the theory of
positive continued fractions, which he successfully applied to the quadrature problem.
Therefore he almost certainly must have known the series (1.10), in which the quotients
x/y from (2.30) occur at the odd positions. Using his formulas (1.15) Brouncker could
easily find the next pair in (1.10):

x= 2×239+99= 577


y = 2×169+70= 408�

Now easy calculations show that

1+2×4082 = 332 929= 5772�

The only conclusion which one may derive from this is that the solutions to (2.29) are
given by the numerators and denominators of the odd convergents to

√
D, at least for

D = 2.
There is no direct evidence that Brouncker argued in this way. However, the form

in which he sent his solution to Wallis (see Stedall 2000a, pp. 321–2) indicates that it
is likely that he found it by continued fractions:

2×Q � 2×5
1

1
= 12
 12×5

5
6
= 70
 70×5

29
35
= 408 · · · 
 (2.31)

2×Q � 2×5
1
1
×5

5
6
×5

29
35
×5

169
204

×· · · (2.32)

To break the code of (2.32) let Qn be the denominator of the nth convergent to
√

2.
Then Q1 = 2, Q3 = 12, Q5 = 70
 � � � Clearly (2.31) relates Qn and Qn+2. Then (2.32)
represents the solutions y as partial products of an infinite product of the Wallis type:

Q1

Q3

Q1

Q5

Q3

Q7

Q5

Q9

Q7

· · ·

The repeated constant 5 in (2.32) is explained by an elementary lemma.

Lemma 2.21 The recurrence Qn+2 = 6Qn−Qn−2 holds for n� 1.

Proof Consider

Qn+2 = 2Qn+1+Qn

2Qn+1 = 4Qn+2Qn−1


−Qn =−2Qn−1−Qn−2�

(2.33)

The proof follows by adding the three applications of (1.15) in (2.33). �
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Adding the first two equations in (2.33) results in Qn+2 = 5Qn+2Qn−1, which together
with Lemma 2.21 imply that 5<Qn+2/Qn < 6, as is clearly indicated in (2.32). Now
Lemma 2.21 hints that

Qn+2

Qn
= 6− 1

6 −
1
6 −

1
6 −

1
6 − · · · −→ a


where a ∈ �5
6� is the solution to the quadratic equation

X = 6− 1
X
�⇒ X = 3+2

√
2= 5�828 427 124 746 19 � � �

Notice that 3= x and 2= y is the minimal solution to (2.29) with D= 2, whereas the
decimal values of the fractions in (2.32) are

5
6
= 0�83 � � � 


29
35
= 0�828 57 � � � 


169
204

= 0�828 431 � � �

One can be fairly sure that these facts did not escape Brouncker’s attention.
Using Lemma 2.21 we now can prove that odd convergents to

√
2 give solutions to

equation (2.29) with D = 2. Let us assume that this is true for all indices 2k−1 with
k� n. Then by Lemma 2.21

P2
2n+1−2Q2

2n+1 = �6P2n−1−P2n−3�
2−2�6Q2n−1−Q2n−3�

2

= 1+36−12�P2n−1P2n−3−2Q2n−1Q2n−3��

For the first few values of n the combination within the parentheses is

P2n−1P2n−3−2Q2n−1Q2n−3 = 3� (2.34)

Compare, by the way, (2.34) with (3.36). So, we may include (2.34) in the induction
hypotheses and obtain that

P2n+1P2n−1−2Q2n+1Q2n−1

= �6P2n−1−P2n−3�P2n−1−2�6Q2n−1−Q2n−3�Q2n−1

= 6− �P2n−1P2n−3−2Q2n−1Q2n−3�= 3


which completes Brouncker’s construction.
For D = 3 Brouncker gives the following solution:

3×Q � 1×3
1
1
×3

3
4
×3

11
15
×3

41
56
× · · ·

By Euler’s algorithm (2.2) we find that

√
3= 1+ 1

1 +
1
2 +

1
1 +

1
2 +

1
1 +

1
2 + · · · 
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and the convergents with odd indices,

x = 2 7 26 97

y = 1 4 15 56


(2.35)

again satisfy the equation x2−y2D = 1. In this case

Qn
Qn−2

= 4− 1
4 −

1
4 − · · · −→ 2+1

√
3= 3�732 050 807 568 877 � � �

and

3
3
4
= 3�75
 3

11
15
= 3�733 � � � 
 3

41
56
= 3�732 142 857 14 � � � 


since Qn+2 = 4Qn−Qn−2.
For D = 7 this law must be modified since x/y = 3/1= P1/Q1 is not a solution to

x2−y2D = 1. However, P3/Q3 = x/y = 8/3 is a solution; see Ex. 2.1.
If x1, y1 is a solution to equation (2.29) then xn and yn in

xn+yn
√
D = �x1+y1

√
D�n (2.36)

are also solutions. Indeed, since
√
D is irrational, (2.36) is still valid with + replaced

by −. One can also obtain this by an application of the Galois automorphism of
Q�
√
D� to (2.36). Then

x2
n−y2

nD = �x1+y1

√
D�n�x1−y1

√
D�n = �x2

1−y2
1D�

n = 1�

We put x0 = 1, y0 = 0, which is also a solution to (2.29).

Theorem 2.22 (Brouncker 16571) The solutions ��xn
 yn��n�1 to equation �2�29�
satisfy

xn+1 = �2x1�xn−xn−1
 xo = 1


yn+1 = �2x1�yn−yn−1
 yo = 0�
(2.37)

and the fractions �yn/xn�n�0 are the convergents to the continued fraction

1√
D
= y1

x1 −
1

2x1 −
1

2x1 −
1

2x1 − · · · � (2.38)

Proof By (2.36) for n= 0, 1, � � � ,

xn+1 = x1xn+y1Dyn
 yn+1 = y1xn+x1yn�

1 Whitford (1912, pp. 51–2).
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Iterating these formulas, we obtain

xn+1 = x1xn+y2
1Dxn−1+x1y1yn−1D

= x1xn+x2
1xn−1+x1y1yn−1D−xn−1

= x1xn+x1�x1xn−1+y1Dyn−1�−xn−1

= �2x1�xn−xn−1


which proves the first identity in (2.37). Similar calculations prove the second. Now
(2.37) implies that yn/xn are the convergents to the continued fraction (2.38), which
converge to 1/

√
D according to

1√
D
− yn
xn
= 1

xn�xn+yn
√
D�

= 1

xn�x1+y1

√
D�n

−→
n→� 0�

�

Theorem 2.22 shows that Brouncker’s method works not only for particular values of
D such as D= 2, 3, 7 but for any D. Indeed, we may write, following Brouncker,

D×Q � y1×
y2

y1

× y3

y2

× y4

y3

× y5

y4

× · · ·

By (2.37) yn+1 = x1yn+y1xn, which implies that

yn+1

yn
= x1+y1

xn
yn
−→ x1+y1

√
D�

The application of (2.37), as in the case D= 2, leads to the same conclusion.
Brouncker’s formulas (2.37) conveniently list infinitely many solutions provided

one solution is known. By (2.38) y1 divides every yn. However, the question remains
whether this algorithm lists all positive solutions.

Basing his work on Brouncker’s hints, Wallis found his own solution to Fermat’s problem, which is now
called the English method; see Edwards (1977) and Stedall (2000a) for details. In spite of his comments on
continued fractions in (1656, §191) Wallis did not follow the lines indicated above. This is further evidence
that everything written in Section 191 of Wallis (1656) on continued fractions belongs to Brouncker. By
the way, Wallis did not credit this part to himself and moreover, he clearly states this at the beginning of
Section 191. See §60, Section 3.2.

Euler named equation (2.29) after Pell even in his first papers on this subject, see for instance Euler (1738,
§15) or Euler’s letter to Goldbach on August 10, 1730.2 Since Euler (1738) also mentions Fermat and Wallis,
it looks probable that Euler could in fact have meant Brouncker and not Pell. However, there is an opinion
(Whitford 1912) that Euler mentioned Pell since Pell included the Diophantine equation x = 12y2− z2 in
the English translation of Rahn’s Algebra (1668, p. 134). There is some evidence that the first appearance
of this problem goes back to Archimedes’ cattle problem, which reduces to the Pell equation

x2−4729494y2 = 1


whose minimal solution has thousands of digits. It is not clear how Archimedes could have written the
minimal positive solution himself. See Edwards (1977), Koch (2000, p. 3], Vardi (1998) and Whitford
(1912) for the history of Pell’s equation.

2 OO723 in the Euler Archive.
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44 Euler’s method. The fact that Brouncker listed all possible positive solutions
to (2.29) may be deduced from the following theorem due to Lagrange (1774, §38,
Corollary 4) and from Euler’s method, which we describe below. We will follow
Arnold (1939) in our proof of Lagrange’s theorem, which is a slight modification of
original Lagrange’s arguments.

Theorem 2.23 (Lagrange 1789) Let D be a positive integer that is not a perfect
square and L be an integer satisfying �L�<√D. Then any positive solution x
 y to

x2−y2D = L (2.39)

determines an odd convergent x/y to the continued fraction of
√
D if L > 0 and an

even convergent if L < 0.

Proof For L= 0 there are no positive solutions. If 0< L<
√
D then

x

y
−√D= L

y2
(
x/y+√D

) > 0

shows that x/y >
√
D. Combining this with L <

√
D, we obtain that

0<
x

y
−√D <

√
D

2y2
√
D
= 1

2y2
�

By Theorems 1.38 and 1.7 x/y is an odd convergent. If −√D < L< 0 then

0<
y

x
− 1√

D
= −L/D
x2
(
y/x+ 1√

D

) < 1

x2
(

1+√Dy/x
) < 1

2x2



since y
√
D/x > 1. By Theorems 1.38 and 1.7 y/x is an odd convergent. Now

√
D= b0+

1
b1 +

1
b2 +

1
b3 + · · ·

1√
D
= 0+ 1

b0 +
1
b1 +

1
b2 + · · ·

show that the convergents of
√
D and 1/

√
D are shifted and reciprocal:

b0

1
P1

Q1

P2

Q2

P3

Q3

� � �

0
1

1
b0

Q1

P1

Q2

P2

� � �

It follows that x/y is an even convergent to
√
D. �

On the basis of numerical experiments Euler (1765) discovered the important role of
the parameters sk in finding solutions to Pell’s equations. For instance in the example
considered in §36, Section 2.1 (D = 31) the values of sk are s1 = 6, s2 = 5, s3 = 3,
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s4 = 2, s5 = 3, s6 = 5, s7 = 6, s8 = 1. Euler computed sk for all
√
D, D � 120, and it

turns out that sd = 1 and sk > 1 for 1 � k� d−1.

Lemma 2.24 (Euler 1765) If d is the period of
√
D then sk = 1 if and only if k=md,

m= 0, 1, 2, � � �

Proof If sk = 1 then �k =
√
D+ rk = �0+ rk and therefore bk = b0+ rk. Hence

rk+1 = bksk− rk = b0 = r1
 sk+1 = �D− r2
k+1�/sk =D−b2

0 = s1
and �1 = �k+1. Since d is the period of

√
D, k+ 1 = 1+md, where m � 1. Now if

k=md then smd = s0, since the period of �sk� is also d. �

Theorem 2.25 If the period d of
√
D is even then the smallest positive solution to

Pell’s equation �2�29� is x1 = Pd−1, y1 =Qd−1. If the period d is odd then x1 = P2d−1,
y1 =Q2d−1.

Proof By Lemma 2.13

P2
n−Q2

nD = �−1�n+1sn+1�

By Lemma 2.24 sn+1 = 1 if and only if d divides n+1. If d is even then �−1�n+1 = 1.
If d is odd then �−1�n+1 = 1 for n+1= 2d. �

By Theorem 2.3 both rn+1 and sn+1 are positive, rn+1 <
√
D and sn+1 = �rn+2 +

rn+1�/bn+1 < 2
√
D. By Lemma 2.7 the sequence �sn�n�1 is periodic with period d

equal to the period of
√
D. Then the sequence ��−1�nsn�n�1 is also periodic. Thus

using Euler’s algorithm, one can easily obtain a list of all L for which the equation
(2.39) has positive solutions.

Let us consider the example D = 31 (d = 8). Then P7 = 1520 and Q7 = 273; see (2.17). So 15202 =
31×2732+1. If D= 13 (d= 5) then similarly P4 = 18, Q4 = 5 and 182−13×52 =−1. Then by Theorem
2.29 below x1 = 182+13×52 = 649, y1 = 2×18×5= 180.

Corollary 2.26 Pell’s equation (2.29) always has positive integer solutions.

To prove that Brouncker’s xn, yn, defined by (2.36) starting with the minimal positive
solution x1, y1, list all solutions to Pell’s equation we need some technical lemmas.

Lemma 2.27 If d is the period of
√
D then

Q�n+1�d−1 =QdQnd−1+Qd−1Qnd−2


P�n+1�d−1 =QdPnd−1+Qd−1Pnd−2�
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Proof Since by Theorem 2.8 the period is symmetric, we obtain by the Euler–Wallis
formulas

Q�n+1�d−1 = b1Q�n+1�d−2+Q�n+1�d−3


b1Q�n+1�d−2 = b1b2Q�n+1�d−3+b1Q�n+1�d−4


Observing that b1 = Q1, 1= Q0 and applying the Euler–Wallis formulas again to the
sum of the above equations, we have

Q�n+1�d−1 =Q2Q�n+1�d−3+Q1Q�n+1�d−4�

Arguing by induction we obtain the first formula and in the same way the second.
�

Lemma 2.28 If d is the period of
√
D then

Pnd−1 = b0Qnd−1+Qnd−2


DQnd−1 = b0Pnd−1+Pnd−2�

Proof Comparing the coefficients of the polynomials of the first degree in
√
D

obtained from the identity

√
D = Pnd+ �

√
D−b0�Pnd−1

Qnd+ �
√
D−b0�Qnd−1




we see that

Pnd−1+b0Qnd−1 =Qnd = 2b0Qnd−1+Qnd−2


DQnd+b0Pnd−1 = Pnd = 2b0Pnd−1+Pnd−2


which proves the lemma. �

Theorem 2.29 (Euler–Lagrange) Let d be the period of
√
D. Then for any n ∈ N

�Pd−1+Qd−1

√
D�n = Pnd−1+Qnd−1

√
D�

Proof The theorem is obvious for n = 1. Assuming that it is valid for n we can
complete the proof if

P�n+1�d−1 = Pd−1Pnd−1+Qd−1DQnd−1


Q�n+1�d−1 = Pd−1Qnd−1+Qd−1Pnd−1�

By Lemmas 2.27 and 2.28

P�n+1�d−1 =QdPnd−1+Qd−1�DQnd−1−b0Pnd−1�

= �Qd−b0Qd−1�Pnd−1+Qd−1DQnd−1

= Pd−1Pnd−1+Qd−1DQnd−1
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and similarly

Q�n+1�d−1 =QdQnd−1+Qd−1�Pnd−1−b0Qnd−1�

= �Qd−b0Qd−1�Qnd−1+Qd−1Pnd−1

= Pd−1Qnd−1+Qd−1Pnd−1


which proves the theorem. �

Corollary 2.30 If x1, y1 is the minimal positive solution to Pell’s equation, then all
other solutions are given by the formula �2�36�.

Let us demonstrate the Brouncker–Euler method for the example D= 61. Then d= 11; see Ex. 2.2 for the
continued fraction of

√
61. To find P10 and Q10 Euler uses the symmetry of the period (see Lemma 2.27):

Pd−1 =QkPd−k−1+Qk−1Pd−k−2
 Qd−1 =QkQd−k−1+Qk−1Qd−k−2


where k < d. The choice k= 5 leads to the simple formulas

x = P10 =Q5P5+Q4P4 = 58×453+21×164= 29 718


y =Q10 =Q5Q5+Q4Q4 = 58×58+21×21= 3805�

Since d = 11 is odd, x2−61y2 =−1. By Theorem 2.29 the minimal solution to x2−61y2 = 1 is given by
x1 = 2x2+1= 1766319049, y1 = 2xy = 226153980, implying that

lim
n

yn+1

yn
= 3 532 638 097�999 999 999 7 � � �

The importance of Pell’s equation in algebra is explained by the fact that it is closely
related to the description of the units in the quadratic field Q�

√
D�; for details see

Lang (1966).

2.4 Equivalent irrationals

45 Möbius transformations and matrices. Any general continued fraction b0+
K�
k=1 �ak/bk� generates a sequence of Möbius transformations

s0�w�= b0+w
 sn�w�=
an

bn+w

 n= 1
2
 � � �

of the Riemann sphere Ĉ. By (1.12) an 	= 0 for every n. Hence the transformations sn
are one-to-one mappings of Ĉ. Let

Sn�w�= s0 � s1 � · · · � sn�w� (2.40)

be the composition of the first n+1 Möbius transformations. Then

Pn
Qn

= Sn�0�

Pn−1

Qn−1

= Sn���


where Pn/Qn are the convergents to (1.12). By Euler’s formula (1.17),

Sn�w�=
Pn+Pn−1w

Qn+Qn−1w
, n= 0
1
2
 � � � (2.41)
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Notice that the fractions (2.41) with w = 1/k, k= 1, � � � , bn+1−1 are Euler’s non-
principal convergents (see §17 in Section 1.4), which nowadays are called intermediate
fractions (see Lang 1966). Lagrange (1798) paid a great deal of attention to these
fractions.

By (2.41) Sn+1�w�= Sn�sn+1�w�� is equivalent to the matrix identity(
Pn Pn+1

Qn Qn+1

)
=
(
Pn−1 Pn
Qn−1 Qn

)(
0 an+1

1 bn+1

)
�

This can also be proved by the Euler–Wallis formulas. Iterating, we obtain a matrix
version of the Euler–Mindingen formulas for Pn and Qn:(

Pn−1 Pn
Qn−1 Qn

)
=
(

1 b0

0 1

)(
0 a1

1 b1

)
· · ·

(
0 an
1 bn

)
� (2.42)

Passing to the transpose of this matrix formula results in(
Pn−1 Qn−1

Pn Qn

)
=
(

0 1
an bn

)
· · ·

(
0 1
a1 b1

)(
1 0
b0 1

)
� (2.43)

An application of the multiplicative functional C −→ detC to (2.43) proves (1.16).
By (2.40), formula (2.43) can be written as

Pn−1w+Qn−1

Pnw+Qn
= tn � · · · � t1 � t0�w�
 (2.44)

where

tk�w�=
1

akw+bk

 t0�w�=

w

b0w+1
�

Hence (2.44) can be written in the form of continued fractions:

Pn−1w+Qn−1

Pnw+Qn
= 1
bn +

an
bn−1 +

an−1

bn−2 + · · · +
a2

b1 +
a1w

b0w+1
� (2.45)

In particular, for w = 0 we obtain from (2.45) the first formula of (1.18) and for
w→� the second. Both formulas are extensively used in the convergence theory of
continued fractions; see Jones and Thron (1980, Chapter 4).

By the definition of continued fractions, an 	= 0 and therefore by (1.16) Sn in (2.41) is a homeomorphism
of the Riemann sphere Ĉ. In particular the equation Sn�w�=K has a unique solution wn =wn�K� for every
K ∈ Ĉ.

Lemma 2.31 Let K ∈ Ĉ and Sk�wk�= K for k= 1, 2, � � � , n. Then

Pn+Pn−1wn =
n∏
k=0

�bk+wk�


Qn+Qn−1wn =
n∏
k=1

�bk+wk��
(2.46)
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Proof Observing that sk�wk�= wk−1, we obtain from (1.15)

Pn+Pn−1wn = �bn+wn�Pn−1+anPn−2

= �bn+wn��Pn−1+Pn−2wn−1�= · · ·
= �bn+wn� · · · �P0+P1w0��

The second identity is proved similarly. �

Theorem 2.32 In the notation of Lemma 2�31,

Pn =
1
1 +

wn
bn +

an
bn−1 + · · · +

a1

b0

n∏
k=0

�bk+wk�


Qn =
1
1 +

wn
bn +

an
bn−1 + · · · +

a2

b1

n∏
k=1

�bk+wk��
(2.47)

Proof Combining the first identity in (2.46) with the first formula in (1.18), we obtain the first identity in
(2.47). The second identity is proved similarly. �

46 Generators of GL2�Z�. By Euler’s formula (1.17) � is the Mobius transforma-
tion of �n+1 corresponding to the matrix (2.42) having determinant PnQn−1−Pn−1Qn =
�−1�n−1. The set of all matrices(

a c

b d

)

 ad−bc =±1

with integer entries a
b
 c
d is called the general linear group over Z and is denoted
by GL2�Z�.

Theorem 2.33 Let a
b
 c
d be integers such that ad−bc =±1, 0< d < b, and let
� and ", " > 1, be irrational numbers satisfying

�= a"+ c
b"+d �

Then there is a positive integer n such that a= Pn, b=Qn, c= Pn−1, d=Qn−1, where
Pn/Qn and Pn−1/Qn−1 are convergents for the continued fraction of � and "= �n+1.

Proof Since ad−bc =±1 the greatest common divisor of a and b is unity. Then

a

b
= b0+

1
b1 + · · · +

1
bk
= b0+

1
b1 + · · · +

1
bk−1 +

1
1
�

Hence we have two choices of n for a = Pn, b = Qn. We will choose n so that
PnQn−1−QnPn−1 = �−1�n−1 = ad−bc. It follows that

Pn�Qn−1−d�=Qn�Pn−1− c� �
Now on the one hand �Pn
Qn� = 1 implies that Qn divides Qn−1−d. On the other
hand 0 < d < b = Qn implies that �Qn−1−d� < Qn and therefore Qn−1−d must be
zero. Hence Pn−1 = c. �
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Definition 2.34 Two irrational numbers � and " are called equivalent, �∼ ", if there
is a matrix in GL2�Z� with entries a
b
 c
d, such that

�= a"+ c
b"+d �

By (1.17) an irrational number � is equivalent to any its remainders �n.

Theorem 2.35 (Serret) Two irrational numbers � and " are equivalent if and only
if �n = "m for some n
m ∈ Z+.

Proof If �∼ �n, "∼ "m and �n = "m then �∼ ", since GL2�Z� is a group. Suppose
now that �∼ ". Multiplying the entries of

M =
(
a c

b d

)
by (−1), if necessary, we may assume that b"+d > 0. By (1.17)

"= "nPn−1+Pn−2

"nQn−1+Qn−2

=
(
Pn−1 Pn−2

Qn−1 Qn−2

)(
"n
1

)
def= Fn

(
"n
1

)
�

Since

MFn =
(
aPn−1+ cQn−1 aPn−2+ cQn−2

bPn−1+dQn−1 bPn−2+dQn−2

)
=
(
a ′ c ′

b ′ d ′

)



we may write

b ′ = bPn−1+dQn−1 =Qn−1

(
b
Pn−1

Qn−1

+d
)



d ′ = bPn−2+dQn−2 =Qn−2

(
b
Pn−2

Qn−2

+d
)
�

Since limn Pn/Qn = ", we conclude that b ′
d ′ > 0 for n > N . Since Qn−2 <Qn−1 and
the signs of Pn/Qn−" alternate infinitely often,

b ′ −d ′ =�Qn−1−Qn−2� �b"+d�

+b
{
Qn−1

(
Pn−1

Qn−1

−"
)
−Qn−2

(
Pn−2

Qn−2

−"
)}
> 0�

By Theorem 2.33 "n is the remainder of � for some n. �

47 Discriminants of equivalent irrationals. First we recall the definitions of
quadratic, and more generally algebraic, irrationals.

Definition 2.36 A number � is called an algebraic irrational (over Q) if � �Q and �
is a root of a polynomial equation with integer coefficients

p�X�= c0X
n+ c1X

n−1+ · · · +cn = 0 � (2.48)

An algebraic irrational � is called quadratic if in (2.48) n= 2.
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The set Z�X
 of all polynomials with integer coefficients is a commutative ring. More
generally one may consider the commutative ring R�X
 of all polynomials in X with
coefficients in some commutative ring R. A polynomial p ∈R�X
 is called irreducible
if p= ab, with a
b ∈R�X
, implies that either a or b is invertible in R�X
. In fact this
means that either a or b is an invertible element of R. This terminology, in particular,
allows one to distinguish between irreducible polynomials in Z�X
 and Q�X
. If p�X�
is an irreducible polynomial in Z�X
 then the greatest common divisor of its integer
coefficients must be 1. It is not so for irreducible polynomials in Q�X
 with integer
coefficients.

Since Z has only two invertible elements, ±1, for every algebraic irrational � there
exist exactly two irreducible polynomials in Z�X
 with root �. The polynomial with
positive leading coefficient is called the minimal polynomial of �. The degree of the
minimal polynomial of � is called the degree of the algebraic number �.

The main purpose of this section is to prove that equivalent algebraic irrationals
have equal discriminants.

Theorem 2.37 If � and " are two equivalent quadratic irrationals such that

�= a"+ c
b"+d


where a
b
 c
d ∈ Z, ad− bc = ±1 and p�X� = e′X2 + f ′X+ g′ is an irreducible
polynomial in Z�X
 for �, then

q�X�= e′�aX+ c�2+f ′�aX+ c��bX+d�+g′�bX+d�2

= eX2+fX+g
is an irreducible polynomial in Z�X
 for ". The discriminants of p�X� and q�X� are
equal:

f
′2−4e′f ′ = f 2−4ef �

Proof One can simply say that the results stated in the theorem can be proved by a
direct calculation. However, such a proof does not explain why the statement is true.
The following matrix identities(

a c

b d

)(−1 0
0 1

)
=

(−a c

−b d

)



(
a c

b d

)(−1 0
0 −1

)
=

(−a −c
−b −d

)



(
a c

b d

)
·
(

0 1
1 0

)
=

(
c a

d b

)
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show that right multiplication of the initial matrix by the indicated elements of GL2�Z�

reduces the general matrix to a matrix with 0 < d < b. By Theorem 2.33 this new
matrix equals matrix (2.42). However, the last of the above matrix identities and (1.15)
show that (

Pn Pn−1

Qn Qn−1

)
=
(
Pn−1 Pn−2

Qn−1 Qn−2

)(
0 1
1 0

)(
0 1
1 bn

)(
0 1
1 0

)
�

The correspondence (−1 0
0 1

)
−→−z


(−1 0
0 −1

)
−→ z


(
0 1
1 0

)
−→ 1

z



(
0 1
1 bn

)
−→ 1

z+bn



shows that � is obtained from " by a finite composition of the three following
operations: z→−z, z→ 1/z, z→ z+ 1. It remains therefore to consider only three
possibilities.

If " is a root of eX2+fX+g = 0 then −" is the root of eX2−fX+g = 0, which
is also irreducible and has the same discriminant.

If " is a root of eX2+fX+g = 0 then 1/" is the root of gX2+fX+e= 0, which
is also irreducible and has the same discriminant.

If " is a root of eX2+fX+g = 0 then "+1 is the root of

e�X−1�2+f�X−1�+g = eX2+ �f −2e�X+ �e−f +g�= 0�

If d > 0 divides e and f − 2e then d divides both e and f . If in addition it divides
e− f + g, then it divides g, which implies that d = 1. Now the discriminant of the
equation is

�f −2e�2−4e�e−f +g�= f 2−4eg � �

The discriminant of (2.21), 4r2
k + 4sksk−1 = 4D, equals the discriminant of the irre-

ducible polynomial x2−D. Hence by Theorem 2.37 the quadratic polynomials (2.21)
are irreducible in Z�X
 and in particular the greatest common divisor of sk, rk, sk−1 for
k= 1
2
 � � � is 1.

Theorem 2.37 extends to algebraic numbers. Recall (see Lang 1965) that the discriminant � of a
polynomial

q�X�= c0X
n+ c1X

n−1+ · · · +cn−1X+ cn = c0�X− t1� · · · �X− tn�
is defined by

� = c2n−2
0

∏
i<j

�ti− tj�2
 (2.49)

which is in agreement with the discriminant formula in the case n = 2. By the fundamental theorem on
symmetric polynomials (see Lang 1965), � belongs to the coefficient field of q�X�.
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Corollary 2.38 Equivalent algebraic irrationals have equal determinants.

Proof If q�X�= c0X
n+c1X

n−1+ · · · +cn is an irreducible polynomial of " then the irreducible polynomial
of −" is c0�−1�nXn+ c1�−1�n−1Xn−1+ · · · + cn. Since all its roots are symmetric to the roots of q�X�,
formula (2.49) shows that the discriminant is not changed.

Similarly, the transformation X −→ X+1 does not change the discriminant.
The third transformation X −→ 1/X sends the roots t1
 t2
 � � � 
 tn of q�X� to sj = 1/tj , j = 1
2
 � � � 
 n.

Using Viète’s formula t1t2 · · · tn = �−1�ncn/c0, we obtain that

c2n−2
0

∏
i<j

�ti− tj�2 = c2n−2
n

(
c0

cn

)2n−2 ∏
i<j

�ti− tj�2

= c2n−2
n

(
1

t1t2 · · · tn

)2n−2 ∏
i<j

�ti− tj�2

= c2n−2
n

∏
i<j

(
1
ti
− 1
tj

)2

�

Hence the discriminants of q�X� and Xnq�1/X� are equal. �

2.5 Markoff’s theory

48 Motivation. By Legendre’s theorem, 1.37, for every irrational � any solution in
integers p, q, q > 0 to the inequality∣∣∣∣pq −�

∣∣∣∣< 1
2q2

(2.50)

determines a convergent p/q to �. By Vahlen’s theorem 1.38, of any two consecutive
convergents to � at least one satisfies (2.50). Therefore (2.50) has infinitely many
solutions in integers p, q, q > 0 and all solutions are convergents to �. Using the
functional �→ ����� we can eliminate p from (2.50).3 This p is nothing other than the
best approximation of q� in Z. Since � is irrational p is unique. It follows that (2.50)
is equivalent to

q��q���< 1
2

 p=

[
q�+ 1

2

]
� (2.51)

Lemma 2.39 Let � be an irrational number. Then the supremum ���� of c > 0 such
that ∣∣∣∣pq −�

∣∣∣∣< 1
cq2

(2.52)

has infinitely many solutions in integers p, q, q > 0 is given by

����=
(

lim inf
q→+� q��q���

)−1

� (2.53)

3 Recall that ����� = dist��
Z�.
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Proof By (2.51) inequality (2.52) is equivalent to q��q���< 1/c. If this is true for an
infinite number of values of q then L= lim infq→+� q��q���� 1/c for every c<���� and
hence for c=����. If now L<����−1 then there is � > 0 such that L< �����+��−1.
Then q��q��� < 1/�����+�� must have infinitely many solutions for q, contradicting
the definition of ����. �

On the one hand, by Theorem 1.37 every irrational � satisfies ���� � 2. On the
other hand by Theorem 1.41, for any real quadratic irrational � with discriminant D
and any � > 0, the inequality ∣∣∣∣�− pq

∣∣∣∣< 1

�
√
D+��q2

(2.54)

has only a finite number of solutions in integers p, q, q> 0. It follows that �����
√
D.

Since the minimal discriminant D of real quadratic irrationals is 5, see Ex. 2.13, it is
natural to ask whether

√
5 is the smallest value of ����. The following lemma, which

summarizes the observations made above, is useful in the calculation of ����.

Lemma 2.40 For any real �

����−1 = lim inf
n

Qn�Pn−Qn���
1
2



where Pn/Qn are convergents of the continued fraction for �.

Proof Since of two consecutive convergents to � at least one satisfies (2.50), ����� 2.
If ����� 2 then the limit inferior in (2.53) is attained along the denominators of the
convergents to �. �

Lemma 2.41 For any irrational �

����= lim sup
n

{(
1
bn + · · · +

1
b1

)
+bn+1+

(
1
bn+2 +

1
bn+3 + · · ·

)}
� (2.55)

Proof Combine (1.50) with Lemma 2.40 and (1.18). �

The following lemma is helpful for estimating ����.

Lemma 2.42 An irrational � considered as a function of its parameters �bn� increases
in b2n and decreases in b2n+1.

Proof Apply Lemma 1.13. �

Lemma 2.43 If ���� < 3 and both the values 1 and 2 are taken by bn infinitely often
then

√
8< ����.
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Proof Since ���� < 3, formula (2.55) shows that for n� N either bn = 1 or bn = 2.
If for n� N the sequence �bn� is 1 2 1 2 � � � then by (2.55)

�����

(
1
1 +

1
2 + · · ·

)
+2+

(
1
1 +

1
2 + · · ·

)
= 2

√
3> 3
 (2.56)

which contradicts the assumption ���� < 3. Let �bn� contains infinitely many groups
2 2 1. Putting bn = bn+1 = 2, bn+2 = 1, we obtain by (2.55) and Lemma 2.42 that

�����

(
1
2 +

1
1 + · · ·

)
+2+

(
1
1 +

1
1 +

1
2 + · · ·

)
= 9+5

√
3

6
>
√

8�

If �bn� does not contain the group 2 2 1 infinitely often then for n > N it contains
only groups with an isolated 2 separated by 1’s. Since ���� < 3, by (2.56) there must
be infinitely many groups 1 1 2 1 in �bn�. Then by (2.55)

�����

(
1
1 +

1
1 +

1
2 + · · ·

)
+2+

(
1
1 +

1
1 +

1
2 + · · ·

)
= 2

(
1+ 1√

3

)
> 3


which cannot be the case happen. This proves the lemma. �

Theorem 2.44 (Markoff 1879, 1880) For an irrational �, either ���� >
√

8 or
�����

√
8. In the latter case, either ����=√8 and then � ∼√2 or ����=√5 and

then � ∼ �.

Proof For � = � all the parameters bn are 1 and by (2.55)

����=
(

1
1 +

1
1 + · · ·

)
+1+

(
1
1 +

1
1 + · · ·

)
=√5� (2.57)

So, if bn = 1 for n� N then � ∼ � and ����=√5.
For � = 1+√2 all the parameters bn are 2 and by (2.55)

����=
(

1
2 +

1
2 + · · ·

)
+2+

(
1
2 +

1
2 + · · ·

)
=√2+1+√2−1=√8� (2.58)

So, if bn = 2 for n� N then � ∼√2 and ����=√8>
√

5. Thus ���� >
√

5 if � ��
and ���� >

√
8 if � �

√
2. �

Theorems 1.41 and 2.44 may create an impression that quadratic irrationals are exactly
those numbers � satisfying ���� <+�. This is not the case as the following theorem
due to A. Markoff shows.

Theorem 2.45 (Markoff 1879, 1880) There are uncountably many � with ����= 3.

Proof Any increasing sequence r = �rk�k�1 of positive integers determines a real
irrational

��r� = �1�1
 � � � 
1︸ ︷︷ ︸
r1


2
2
1
1
 � � � 
1︸ ︷︷ ︸
r2


2
2
1
 � � �
= �b0� b1
 � � � 
 bn
 � � �
�
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If bn+1 = bn+2 = 2 then

bn+1+
(

1
bn+2 +

1
bn+3 + · · · 


)
+ 1
bn + · · · +

1
b1

= 2+ 1
2 +

1
1 + · · · +

1
1 + · · · +

1
1

→ 2+ 1

2+ �√5−1�/2
+
√

5−1
2

= 3
 n→+�
 (2.59)

since limk rk =+�. Similarly, if bn = bn+1 = 2 then

bn+1+
1
bn+2 +

1
bn+3 + · · ·

+ 1
bn + · · · +

1
b1

= 2+ 1
1 +

1
1 + · · · +

1
2 + · · · +

1
1

→ 2+ 1

�1+√5�/2
+ 1

2+ �√5−1�/2
= 3
 n→+��

Finally, if bn+1 = 1 then ��r�n+1 < 2 and

bn+1+
1
bn+2 +

1
bn+3 + · · ·

+ 1
bn + · · · +

1
b1

< 3


which proves that ����r��= 3 for every r. To prove that there are uncountably many
��r�, we observe that every irrational number x in �0
1� has a unique infinite binary
expansion x= 0 �1�2 � � � �n � � � , where the �n are either 0 or 1. If we put rk = �1+ · · · +
�k+k then r = �rk�k�1 is an increasing integer sequence. Since obviously rk+1− rk =
�k+1 + 1, the sequence r = �rk�k�1 recovers x, implying that the number of such
sequences is uncountable. �

Corollary 2.46 There is an uncountable set of transcendental numbers � satisfying
����= 3.

Proof Since algebraic numbers are the roots of irreducible polynomials with integer
coefficients they make a countable set, implying that its complement in the uncountable
set considered is also uncountable. �

In his thesis Markoff found the first ten values of ����, which are arranged as
Table 2.1. This table indicates that ���� below 3 may take only discrete values
corresponding to quadratic irrationals.

Definition 2.47 The set of all values of ���� defined on irrational � is called the
Lagrange spectrum.
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Table 2.1. First points of the Lagrange spectrum

� ����

�1

√

5 = 2�236 067 977 � � �

�2

√

8 = 2�828 427 125 � � �

�22
12

√

221
5 = 2�973 213 749 � � �

�22
14

√

1517
13 = 2�996 052 630 � � �

�24
12

√

7565
29 = 2�999 207 188 � � �

�22
16

√

2600
17 = 2�999 423 243 � � �

�22
18

√

71 285
89 = 2�999 915 834 � � �

�26
12

√

257 045
169 = 2�999 976 658 � � �

�22
12
22
14

√

84 680
97 = 2�999 982 286 � � �

�22
110

√

488 597
233 = 2�999 987 720 � � �

49 The Lagrange spectrum: motivation. By Lagrange’s theorem 2.19 every
quadratic irrational is periodic. By Serret’s theorem 2.35 every periodic irrational
is equivalent to a pure periodic irrational, i.e. a reduced quadratic irrational. Then
formula (2.55) hints that instead of studying limits at +� it is useful to con-
sider two-sided periodic sequences � = �bn�n∈Z

of 1’s and 2’s satisfying for every
n ∈ Z

mn���=
(

1
bn−1 +

1
bn−2 + · · ·

)
+bn+

(
1
bn+1 +

1
bn+2 + · · ·

)
< 3� (2.60)

Then the periodicity guarantees ���+� < 3 for �+ = �b0� b1
 b2
 � � �
.
Let J be the set of all infinite sequences � = �bn�n∈Z

of 1’s and 2’s satisfying

m���
def= sup

n∈Z

mn���� 3
 (2.61)

and J0 ⊂ J be the set of � such that mn��� < 3 for n ∈ Z.
The entries of the first column of Table 2.1 contain 1’s and 2’s with multiplicity

two. Reducing the multiplicity to one, we obtain periodic sequences of 1’s and 2’s. As
it is clear from Markoff’s reference to Jean Bernoulli’s book (1772), he knew that Jean
Bernoulli sequences corresponding to rational 	 in �1
2�, see Section 1.4, are periodic
sequence of 1’s and 2’s. Therefore it is worthy of our attention to check whether
the reduced periodic sequences in the first column of Table 2.1 are Jean Bernoulli
sequences.
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Table 2.2. Jean Bernoulli sequences

� = r∗ → r 	 �rn�	
0��n∈Z

�1
 	 = 1 �1


�2
 	 = 2 �2


�2
1
 	 = 1+ 1
2 �2
1


�2
12
 	 = 1+ 1
3 �2
12


�22
1
 	 = 1+ 2
3 �22
1


�2
13
 	 = 1+ 1
4 �2
13


�2
14
 	 = 1+ 1
5 �2
14


�23
1
 	 = 1+ 3
4 �23
1


�2
1
2
12
 	 = 1+ 2
5 �2
1
2
12


�2
15
 	 = 1+ 1
6 �2
15


The parameter 	 = p/q of any periodic Jean Bernoulli sequence can be recovered
by (1.60). Recall that p is the total number of 2’s and q is the length of the period.
By Theorem 1.49 all other periodic Jean Bernoulli sequences corresponding to the
same 	 are obtained by simple shifts. The calculation of �rn�p/q
0��n∈Z

following the
stated rules completes the test. We arrange its results in Table 2.2 (see Ex. 1.23). It is
unlikely that the remarkable control of the discrete part of the Lagrange spectrum by
periodic Jean Bernoulli sequences demonstrated in Table (2.2) is an coincidence. And
in fact it is not!

There is one more observation based on analysis of the second column in Table 2.1.
To simplify the notation we put for any � = �bn�n∈Z

and n ∈ Z:

�n = bn+
1
bn+1 +

1
bn+2 + · · · 
 !n = bn+

1
bn−1 +

1
bn−2 + · · · � (2.62)

Then

mn���=
1
!n−1

+�n =
1
!n−1

+bn+
1
�n+1

� (2.63)

If � is periodic with period q then �n is a pure periodic quadratic irrational by Euler’s
theorem 2.2. By Galois’ theorem 2.20 the �∗n algebraically conjugate to �n is −1/!n−1.
It follows that

mn���= �n−�∗n =
√
D

an

 (2.64)

where D is the discriminant of the irreducible quadratic equation

anX
2+bnX+ cn = 0 (2.65)
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for �n. By Serret’s theorem 2.35 any two �k and �l are equivalent irrationals and
therefore their discriminants are equal by Theorem 2.37. Hence D does not depend
on n. Thus the problem of findingm��� is equivalent to finding the irreducible equation
(2.65) for the minimal an > 0. If � has period q then the number of coefficients to
investigate does not exceed q.

For instance, for � = �22
12
 we easily obtain that

�2 = 2+ 1
1 +

1
1 +

1
2 +

1
�2

satisfies the quadratic equation 5X2 − 11X− 5 = 0 with discriminant D = 221 and
a1 = 5. Similarly, for

�2 = 2+ 1
1 +

1
1 +

1
1 +

1
1 +

1
2 +

1
�2

the quadratic equation is 13X2−29X−13= 0 with D= 1517, a2 = 13. Theorem 2.37
hints at a way to find the minimal leading coefficient. By this theorem the coefficients
an and am are related by the formula

am = anx2+bnxy+ cny2


where x, y are integers such that xu− yv = 1 for some integer u and v. On the one
hand this Diophantine equation in u and v has a solution if and only if �x
 y�= 1. On
the other hand if am is the minimal value, then clearly the latter is the case. Now if
we write

min fn =min��fn�x
 y�� � x
 y ∈ Z
 �x�+ �y�> 0�


fn�x
 y�= anx2+bnxy+ cny2


where min fn is the minimal value of the quadratic form fn on the subset of the lattice
Z×Z obtained by dropping the origin �0
0�, then (2.64) implies

1
m���

= min fn√
D
� (2.66)

Indeed the minimal integer �min fn� is taken on a relatively prime pair x and y. Hence
the evaluation of m��� reduces to the problem of finding the minimal value of a
quadratic form for a given discriminant D. This approach to the problem was the
original point of view taken by Markoff in his thesis.

50 Markoff sequences and J. Since J is defined by (2.61), it is natural first to
specify an exceptional subset E= E��� in Z such that

mn���� 3
 n � E����⇒mn���� 3
 n ∈ Z� (2.67)

To indicate such an E��� we clarify the structure of J.
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Lemma 2.48 If � ∈ J then it does not have isolated 1’s or isolated 2’s. Neither of the
sequences �2�
1�
= �� � � 
2
2
2
2
1
1
1
1
 � � �� and �1�
2�
= �� � � 
1
1
1
1
2
2

2
2
 � � �� belongs to J.

Proof If each 1 were separated by 2’s in �, then there would be an integer n such
that bn = 2
 bn+1 = 1
 bn+2 = 2. Choosing this n in (2.60) and applying Lemma 2.42,
we obtain that

mn��� > 2+
(

1
1 +

1
2

)
+ 1

3
= 3�

If each 2 were separated by 1’s, we put bn−1 = 1
 bn = 2
 bn+1 = 1. Then

mn��� > 2+ 1
2
+ 1

2
= 3�

Hence in both cases � � J. A simple calculation,(
2+ 1

2 +
1
2 + · · ·

)
+ 1

1 +
1
1+ · · ·

= √2+1+
√

5−1
2

= 3�032 247 551 � � � > 3

proves the second part of the lemma. �

If � = �bn�n∈Z
is an infinite sequence of 1’s and 2’s, then n ∈ E��� if either bn = 1

or bn−1 = 2, bn = 2, bn+1 = 2.

Lemma 2.49 If � = �bn�n∈Z
is a sequence of 1’s and 2’s then

sup
n∈E���

mn��� < 2�85�

Proof If bn is surrounded by 2’s then by Lemma 2.42

mn���=
1

2+x +2+ 1
2+y � 2+ 2

2 +
1
2 +

1
1 +

1
2 +

1
1 + · · ·

= 2+ 4

3+√3
= 4− 2√

3
= 2�845 299 462 · · ·

If bn = 1 then

mn���� 1+ 2
1 +

1
2 +

1
1 +

1
2 + · · · = 2

√
3−2= 2�464 101 615 � � � �

Notice that 2�85 is smaller than the third value of ���� in Table 2.1. �

Corollary 2.50 Both the sequences 1= �1�
 and 2= �2�
 are in J.

Proof For these sequences E= Z. �
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Corollary 2.51 If � = �bn�n∈Z
is a sequence of 1 and 2, and n � E���, then one of

the following two possibilities holds:

bn−2 = bn−1 = 1
 bn = bn+1 = 2 � (2.68)

bn−1 = bn = 2
 bn+1 = bn+2 = 1� (2.69)

Proof By Lemma 2.49, if n � E��� then bn = 2 and either bn−1 = 1 or bn+1 = 1. By
Lemma 2.48 there are no isolated 1’s or 2’s. �

If n � E��� then for both cases (2.68) and (2.69),

mn���= 2+ 1
2 +

1
X
+ 1

1 +
1
1 +

1
Y
� (2.70)

Recall that �n and !n are defined in (2.62). Then in the case (2.68) X = �n+2, Y = !n−3

whereas in the case (2.69) X = !n−2, Y = �n+3. The following elementary lemma plays
a central role in Markoff’s arguments.

Lemma 2.52 For positive X and Y the inequality

1
2 +

1
X
+ 1

1 +
1
1 +

1
Y

� 1 (2.71)

holds if and only if X � Y . Equality in (2.71) corresponds to X=Y.

Proof Markoff obtained this lemma by Lagrange’s identity (see Ex. 1.16)

1
2+g +

1
1 +

1
1+g = 1� (2.72)

If X � 1/g � Y then (2.72) implies (2.71) by Lemma 2.42. This can also be easily
checked by a direct calculation. �

Let r = �rn�n∈Z
be an infinite sequence of 1 and 2. Then, r∗ the double of r, is

defined by

r∗ = �rn
 rn�n∈Z
= �� � � 
 r−n
 r−n
 � � � 
 r0
 r0
 � � � 
 rn
 rn
 � � �� �

Theorem 2.53 If r is a regular Jean Bernoulli sequence of 1’s and 2’s then r∗ ∈ J0.
If r is a singular Markoff or singular Jean Bernoulli sequence of 1’s and 2’s or its
conjugate then r∗ ∈ J \J0.

Proof If r is a constant Markoff sequence then r∗ is either 1 or 2, which are both in
J by Corollary 2.50.

Let r be a nonconstant regular Jean Bernoulli sequence and n�E�r∗�. By Corollary
2.51 we have two cases for n. If n satisfies (2.69), then there is a k such that
rk = bn−1 = bn = 2 and rk+1 = bn+1 = bn+2 = 1. It follows that rk − rk+1 = 1. By
Theorems 1.64 and 1.65 the length lk�r�= p of Markoff’s series

rk+2− rk−1 = · · · = rk+1+p− rk−p = 0
 rk+2+p− rk−p−1 = 1 (2.73)
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is finite, implying that rk+2+p = 2 and rk−p−1 = 1. By (2.70) mn�r
∗� is a sum of three

terms, in which by (2.73)

1
X
= 1
rk−1 +

1
rk−1 + · · · +

1
rk−p +

1
rk−p+x


 (2.74)

1
Y
= 1
rk+2 +

1
rk+2 + · · · +

1
rk+1+p +

1
rk+1+p+y


 (2.75)

are equal rational functions of x and y. By Lemma 2.42 they are increasing functions
of x and y respectively. Since rk−p−1 = 1 and rk+2+p = 2, the parameters x and y have
a special form:

x = 1
1 +

1
1+x′ ⇒ 1

2
< x <

2
3

 (2.76)

y = 1
2 +

1
2+y′ ⇒ 2

5
< y <

3
7
� (2.77)

Since 3/7 < 1/2 we have y < x and hence X < Y . By (2.70) and Lemma 2.52 this
shows that mn�r

∗� < 3 for every n � E�r∗� and therefore r∗ ∈ J0. The case of (2.68) is
considered similarly.

Let r be a singular Markoff sequence of 1’s and 2’s. If n � E�r∗� then there
are two cases for n. As above we consider the case (2.69). Then rk− rk+1 = 1. If
lk�r� < +� then mn�r

∗� < 3 by arguments already presented. Since r is a singular
Markoff sequence, by Theorem 1.89 there must be a k such that lk�r�=+�. Then both
the continued fractions (2.74) and (2.75) are infinite and equal, implying mn�r

∗�= 3
by (2.72). The case of a singular Jean Bernoulli sequence or its conjugate is considered
similarly. �

Corollary 2.54 Let r be a Markoff sequence of 1’s and 2’s, and let r∗ be its double
sequence. Then for every n � E�r∗�

1
560

�1+√2�−4lk�r� < 3−mn�r∗� <
5
4
�−4lk�r�
 (2.78)

where k and n are related by rk = r∗n .

Proof By Theorem 2.53 we may assume that lk�r� <+�. Suppose that rk− rk+1 = 1.
Then rk = 2 and rk+1 = 1. Let p= lk�r�, so that

rk+2− rk−1 = 0
 � � � 
 rk+p+1− rk−p = 0
 rk+p+2− rk−p−1 > 0�

We consider the two continued fractions

1
X
= 1
rk−1 +

1
rk−1 + · · · +

1
rk−p +

1
rk−p+x

= P2p+xP2p−1

Q2p+xQ2p−1




1
Y
= 1
rk+2 +

1
rk+2 + · · · +

1
rk+p+1 +

1
rk+p+1+y

= P2p+yP2p−1

Q2p+yQ2p−1






108 Continued fractions: algebra

where x satisfies (2.76) and y satisfies (2.77). Then 0< y< 3/7< 1/2< x< 1, which
implies by Lemma 2.42 that X < Y . Hence by (1.16)

1
X
− 1
Y
= x−y
�Q2p+xQ2p−1��Q2p+yQ2p−1�

�

It follows that (1> x−y > 1/2−3/7= 1/14
 14×2×2= 56)

1

56Q2
2p

<
1
X
− 1
Y
<

1

Q2
2p

�

By (2.70) with A= 1/X, B = 1/Y

1

560Q2
2p

< 3−mn�r∗�=
A−B

�2+A��2+B� <
1

4Q2
2p

�

The proof is completed by the following elementary inequality, which is valid for
the denominators of the convergents of regular continued fractions whose partial
denominators are either 1 or 2:

�n√
5
<Qn < �1+

√
2�n� (2.79)

The left-hand inequality of (2.79) follows by Lemma 1.10. The right-hand equality is
obtained on by induction

Qn+1 � 2Qn+Qn−1 < 2�1+√2�n+ �1+√2�n−1 = �1+√2�n+1�

�

Table 2.2 strongly supports the conjecture that the converse to Theorem 2.53 may
be true. It is clear from the proof of Theorem 2.53 that the crucial step in this direction
is to prove that every sequence in J is a double of some sequence of 1’s and 2’s.

Theorem 2.55 (Markoff 1879, 1880) If � ∈ J then there are five mutually exceptional
options for �:

(a) � = 1= �1�
;
(b) � = 2= �2�
;
(c) � = �1�
2
2
1�
;
(d) � = �2�
1
1
2�
;
(e) � = �� � � 
2
2
 1︸︷︷︸

2t−2


2
2
 1︸︷︷︸
2t−1


2
2
 1︸︷︷︸
2t0


2
2
 1︸︷︷︸
2t1


2
2
 1︸︷︷︸
2t2


2
2
 
 � � �
, where

�tn�n∈Z
is a sequence of nonnegative integers of which at least two are nonzero.

It is useful to notice that if � = r∗ for a Markoff sequence r then t = �r− 1 and
therefore t is a Markoff sequence too. Leaving the full proof of this theorem until after
the proof of corollary 2.58, we first deduce from it the following theorem.

Theorem 2.56 If � ∈ J then � = r∗ for some Markoff sequence r.
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Proof In cases (a) and (b) � is a constant Markoff sequence. It is a triangle sequence
of type �1
2� in case (c) and a triangle sequence of type �2
1� in case (d).

Obviously any � of type (e) is represented as r∗ for some sequence r of 1’s and
2’s. Hence rk− rk+1 may take only the values 0 and ±1, in agreement with property
(1) of Markoff sequences; see Definition (1.59)

If rk− rk+1 = 1 for some k then rk = 2 and rk+1 = 1. Since � = r∗, there is an n
such that rk = bn−1 = bn = 2 and rk+1 = bn+1 = bn+2 = 1. Clearly n � E���. Let us
consider Markoff’s series (2.73) for r at k. Suppose first that there is a p such that
u = rk+2+p 	= rk−p−1 = v. To establish Markoff’s property at k (u− v > 0) we must
prove that u= 2 and v= 1. Since mn���=mn�r∗�� 3, (2.70) and Lemma 2.52 show
that X � Y , implying y � x. The inequality

y = 1
u +

1
u+y′ �

1
v +

1
v+y′ = x

is equivalent to

v+ 1
v+y′ � u+

1
u+y′ �

Since u
 v = 1
2 this may happen only if either u = v or v < u. The first option is
excluded by the assumption that u 	= v. It follows that u− v > 0 in agreement with
property (2) of Markoff’s sequences. If Markoff’s series is infinite at k then condition
(2) holds automatically. The case rk− rk+1 =−1 (property (3) of Markoff sequences)
is considered similarly. �

Corollary 2.57 If � ∈ J and mn��� < 3− � for some � > 0 for every n � E��� then
there is a periodic Jean Bernoulli sequence r of 1’s and 2’s such that � = r∗.
Proof By Theorem 2.56 � = r∗ for a Markoff sequence r , which is a regular Jean
Bernoulli sequence by Theorem 2.53. The right-hand inequality in (2.78) implies that
supk lk�r� <�. Hence r is a periodic Jean Bernoulli sequence by Theorem 1.65. �

Corollary 2.58 If r is a non-periodic regular Jean Bernoulli sequence then r∗ ∈ J0

but

lim sup
�n�→+�

mn�r
∗�= 3�

Proof The inclusion r∗ ∈ J0 follows by Theorem 2.53. The right-hand inequality in
(2.78) and Theorem 1.65 complete the proof. �

Proof of Theorem 2.55 Excluding options (a) and (b), we assume that � = �bn�n∈Z
is a

nonconstant sequence in J. By Lemma 2.48 there is an n satisfying (2.69). By Lemma
2.52 and (2.70) the condition mn���� 3 is equivalent to

!n−2 � �n+3� (2.80)
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Similarly mn−1���� 3 is equivalent to

mn−1���−2= 1
2 +

1
1 +

1
1 +

1
�n+3

+ 1
!n−2

� 1�

Observing that

1− 1

2+g =
1
1 +

1
1+g 


we obtain that mn−1���� 3 is equivalent to

1+ 1

1 +
1
1 +

1
1 +

1
�n+3

� !n−2� (2.81)

By Lemma 2.42 inequalities (2.80) and (2.81) imply that

1+ 1

1 +
1
1 +

1
1 +

1
!n−2

� !n−2
 1+ 1
1 +

1
1 +

1
1 +

1
�n+3

� �n+3� (2.82)

Now if � ∈ J and equality holds for one of the relations (2.82) equality holds for the
other relation also then implying that �n+3 = !n−2 =�; see §14, in Section 1.3. In this
case � = r∗, where r is a triangle Markoff sequence of type �1
2� in agreement with
option (c). Excluding option (c) we assume in what follows that both the inequalities
in (2.82) are strict:

1+ 1
1 +

1
1 +

1
1 +

1
!n−2

< !n−2
 1+ 1
1 +

1
1 +

1
1 +

1
�n+3

< �n+3� (2.83)

If bn+3 = ��n+3
= 1 then the substitution of �n+3 = 1+1/�n+4 into the second inequality
of (2.83) implies after a trivial reduction that bn+4 = ��n+4
 = 1. By (2.80) we must
have bn−2 = �!n−2
= 1, and similarly the first inequality of (2.83) implies that bn−3 =
��n−3
= 1. Substituting

!n−2 = 1+ 1
1 +

1
!n−4


 �n+3 = 1+ 1
1 +

1
�n+5




into (2.80) and (2.83), we obtain

!n−4 � �n+5


1+ 1
1 +

1
1 +

1
1 +

1
!n−4

< !n−4
 1+ 1
1 +

1
1 +

1
1 +

1
�n+5

< �n+5�

Since �n+3 	= � this process cannot be continued up to infinity and it will stop when
�n+2s+1 > 2 for some integer s= t0 � 1. Then the space between bn = 2 and bn+2s+1 = 2
is filled with 2t0 1’s and to the left of bn−1 there will be 2�t0−1� 1’s. We have

!n−2s � �n+2s+1


1+ 1
1 +

1
1 +

1
1 +

1
!n−2s

< !n−2s
 1+ 1
1 +

1
1 +

1
1 +

1
�n+2s+1

< �n+2s+1�
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Since �n+2s+1> 2, the last inequality does not provide any new information. In contrast,
the first inequality shows that if bn−2s = �!n−2s
= 1 then bn−2s−1 = �!n−2s−1
= 1 and
the process can be continued to the left. Since !n−2 	= �, it must finish in a finite
number of steps provided that there is an even number 2t−1 � 2�t0−1� of 1’s to the
left of bn−1 until the first 2 appears. If t−1 > 0, then by Lemma 2.48 this 2 is preceded
by 2 and therefore the above arguments can now be run in the left direction starting
with the new combination 2 2 1 1. We may then observe that

�n+3 = 1+ 1
1 + · · · +

1
1︸ ︷︷ ︸

2�t0−1�

+
1

�n+2t0+1�>2�




!n−2 = 1+ 1
1 + · · · +

1
1︸ ︷︷ ︸

2t−1

+
1

!n−2t−1−2�>2�

�

substituting these formulas into (2.81) we arrive at

1+ 1
1 + · · · +

1
1︸ ︷︷ ︸

2�t0+1�

+
1

�n+2t0+1�>2�

� !n−2 = 1+ 1
1 + · · · +

1
1︸ ︷︷ ︸

2t−1

+
1

!n−2t−1−2�>2�




Noting that the expression ‘�> 2�’ in the long subscripts of � and ! means that the
value of the subscript must be greater than 2. Any reduction by an even number of
1’s on both sides does not change the inequality. Therefore, if t−1 > t0+1 then after
removing 2�t0+1� 1’s from each side we arrive at a contradiction:

2< �n+2t0+1 � 1+ 1
1 + · · · +

1
1︸ ︷︷ ︸

2�t−1−t0−1�

+
1

!n−2t−1−2�>2�

�

It follows that the integers (t0 � 1, t−1 � 0) satisfy �t0− t−1�� 1 and that inequalities
(2.80) and (2.81) hold only in the following cases:

(1) t0 = t−1+1 and �n+2t0+1 � !n−2t−1−1;
(2) t0 = t−1;
(3) t0 = t−1−1 and �n+2t0+1 � !n−2t−1−1.

If t−1 = 0 then bn−2 = �!n−2
 = bn−3 = �!n−3
 = 2. Since t0 � 1, there is only one
option for t0, namely t0 = 1. We have

�n+3 = 2+ 1
2 +

1
�n+5


 !n+2 = 1+ 1
1 +

1
2 +

1
2 +

1
!n−2

� (2.84)

By Lemma 2.52 and (2.70) the condition mn+3���� 3 is equivalent to

�n+5 � 2+ 1
2 +

1
!n−2

� (2.85)
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Since !n−2 � �n+3, substitution of (2.85) into the first equality (2.84) results in

�n+3 � 2+ 1
2 +

1
2 +

1
2 +

1
�n+3

� (2.86)

Substituting the first formula of (2.84) into the inequality !n−2 � �n+3 and combining
the result with (2.85), we obtain that

!n−2 � 2+ 1
2 +

1
2 +

1
2 +

1
!n−2

� (2.87)

Inequalities (2.86) and (2.87) and !n−2 � �n+3 show that either

!n−2 = 2+ 1
2 +

1
2 +

1
2 + · · · = 1+√2= �n+3


implying that �= r∗ where r is a triangle Markoff sequence of type �2
1� in agreement
with option (d) of Theorem 2.55, or

�n+3 = 2+ 1
2 + · · · +

1
2︸ ︷︷ ︸

2#

+
1

�n+2#+3�<2�




!n−2 = 2+ 1
2 + · · · +

1
2︸ ︷︷ ︸

2#1

+
1

!n−2#1−2�<2�




where # > 0 and #1 are integers. This implies that, when option (d) is excluded and
t−1 = 0, a nonzero even number of 2’s is added on the left to bn−1 and on the right to
bn+1 = bn+2 = 1, both followed by 1 1.

If t−1 � 1 and t0 � 1 then to the right of bn = 2 there is the combination 1 1 2 2,
which is symmetric to the combination 2 2 1 1 investigated in detail at the beginning.
Therefore if in the case of 2 2 1 1 one can essentially move to 1 1 2 2 in the left direction,
in the case of 1 1 2 2 one can do the same in the right direction until a new 2 2 1 1
appears. Continuing by induction we prove the theorem. �

It was Theorem 2.55 which led Markoff to the discovery of his characterization of
Jean Bernoulli sequences; see Definition 1.59 in §27. Namely, using the arguments
used in the proof of Theorem 2.55 he established that the sequence �tn�n∈Z

satisfies
Definition 1.59.

51 The recovery problem for Markoff sequences. Our analysis of Markoff
sequences summarized in Scholium 1.91 together with Theorem 1.61 indicate the
possibility of a recovery of regular Markoff sequences from sequences whose posi-
tive indices satisfy Markoff conditions from some point. As the example of triangle
sequences shows, the assumption of regularity is necessary.
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Definition 2.59 A sequence �rn�n�0 of integers is called a semi-infinite Markoff
sequence if there is an integer M�r�� 0 such that for every n >M�r�:

(a) rn− rn+1 =±1
0;
(b) if rn−rn+1 =±1 then the Markoff series at �n
n+1
 ends up by satisfying rn+1+p−

rn−p = rn− rn+1, p
def= ln�r�.

Since rn is not defined for n < 0 the length ln�r� of the Markoff series at �n
n+1

satisfies n− ln�r� � 0 for every n > M�r�. The infimum of n− ln�r� is denoted by
I�r�. It is clear that 0 � I�r��M�r�. For any singular Markoff sequence there are two
indices k <m with lk = lm =�; these indices restrict the perturbed part of the singular
sequence. If one restricts this sequence to the domain n � 0 then for the sequence
obtained r one has m�M�r�.

In contrast with infinite Markoff sequences, Markoff series in the semi-infinite case
are always finite. Therefore Theorem 1.69 applied in the forward direction shows that
every step down in the domain �n >M�r�� is followed by a step up and every step up
by a step down. Hence �rn�n�0 oscillates between a and a+1 as soon as there is one
n, n > M�r� such that rn− rn+1 	= 0. Moreover, by Markoff’s property rn = a
a+ 1
also for n� I�r�.

We consider now the derivative of r. Let �nk�k�0 be the increasing sequence of all
solutions to the equation rn = a+1 with n � 0. Since sk = nk+1−nk � 1, k � 0 and
n0 � 0, we obtain that nk � k.

Lemma 2.60 If r is a semi-infinite Markoff sequence then s = �r is a semi-infinite
Markoff sequence with M�s��M�r�.

Proof If n >M�r� and rn− rn+1 =−1 then rn = a and rn+1 = a+1. By the definition
of semi-infinite Markoff sequence all integers in �n�r� are nonnegative. If j is the
left-hand end of �n�r� then rj = a+1. It follows that j � n0 and therefore there is a
k� 0 such that n= nk+1−1.

If n >M�r� and rn− rn+1 = 1 then rn = a+1 and rn+1 = a. If there is a k� 0 such
that n = nk+1 then we fix it. If such a k does not exist then rj 	= a+ 1 for j < n. If
n > M�r�+ 1 then n− 1 >M�r� and rn−1− rn = −1. But then at the left-hand end j
of �n−1�r� we must have rj = a+1 by the Markoff condition at �n−1
 n
. Since this
contradicts our assumption we must have n�M�r�+1. Hence n0 = n. It follows that
in any case n0 ∈ �0
M�r�+1
.

Suppose that k >M�r� and sk− sk+1 > 1. Then the length of �nk
 nk+1� exceeds the
length of �nk+1
 nk+2� by at least 2. Hence for n = nk+1− 1 > nk we have rn = a,
rn+1 = a+ 1, implying that rn− rn+1 = −1. Since n > nk � k > M�r�, the Markoff
condition for r at �n
n+ 1
 says that racer A wins (see the racing algorithm, dis-
cussed in §29 of section 1.5. But this is not possible since the distance from nk to n
exceeds that from n+ 1 to nk+2 by at least 1. The case sk− sk+1 < −1 is considered
similarly.
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If sk− sk+1 = 1 and k >M�r� then n= nk+1−1 � k >M�r�. The distance from n to
nk is now equal to the distance from n+1 to nk+2. Therefore the Markoff conditions
imply that lj�r� > sk− 1. Since rn− rn+1 = −1, racer A in the racing algorithm at
�n
n+1
 for r hits some nk−p � Im�r� first, implying that sm+1+p− sm−p > 0. The case
sk−sk+1 =−1 is considered similarly. It follows that �sk�k�0 is a semi-infinite Markoff
sequence and 0 � I�s��M�s��M�r�. �

Theorem 2.61 Any semi-infinite Markoff sequence �rn�n�0 of two integers a and a+1
extends either to a Jean Bernoulli sequence �en�n∈Z

or to its conjugate sequence.

Proof Let J > M�r� be a large number. Then by Lemma 1.72 the segment �M�r�
 J

can be covered by a finite number of finite intervals �n�r�. Differentiating r, we
obtain an s such that lk�s� < ln�s� for every n. The interval �k�s� covers a smaller
segment �M�r�
 J1
. Proceeding by induction in a finite number of steps we let the
derivative be identically 1 on some �M�r�
 Jq
. Let us extend this sequence so that it
is identically 1 in both directions. Integrating the latter sequence back with the same
constants of integration, we obtain finally a periodic sequence coinciding with r on
�M�r�
 J
. Passing to the limit as in Theorem 1.86, we complete the proof. �

On the one hand the set J consists of a two-sided infinite sequence. On the other
hand any irrational � with ����� 3 determines a one-sided sequence �b�n�1 of partial
denominators of the regular continued fraction for �.

Theorem 2.62 If � = �b0� b1
 b2
 � � �
 is an irrational such that mn��� < 3 for every
n > N then there is a Jean Bernoulli sequence r of 1’s and 2’s such that �n = r∗n for
all sufficiently large n.

Proof Applying the algorithm used in the proof of Theorem 2.56, we obtain that,
starting from some particular point, � is the double of some semi-infinite sequence
r. Applying the inequalities (2.78), we derive that r is a semi-infinite Markoff se-
quence. Applying Theorem 2.61, we obtain that r uniquely extends to a Jean Bernoulli
sequence e. �

Theorem 2.63 Any irrational � with ����< 3 is a quadratic irrational. The Lagrange
spectrum below 3 is discreet, accumulating to 3.

Proof By Theorem 2.62 there is a double r∗ of a Jean Bernoulli sequence r coinciding
with the partial denominators of the regular continued fraction for �, starting from some
point in the latter. By Corollary 2.57 the sequence r is periodic. It follows that � is a
quadratic irrational. By (2.78) the values of ���� approach 3 when the length of the
period increases. Since there is only a finite number of sequences of 1’s and 2’2s for
a given length of period, the theorem is proved. �
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52 Calculations of the Lagrange spectrum. Theorem 2.63 obviously implies
that one has

����=m��� (2.88)

if ���� < 3. This important formula, discovered by Markoff, allows one to compute
the Lagrange spectrum below 3. For n ∈ E��� Lemma 2.49 implies mn��� < 2�85.
Theorem 1.64 claims that l�r�= q−1 for any Jean Bernoulli sequence r with period q.
By Corollary 2.54 we have

q = 1
 1�75<m���


q = 2
 2�817 627 458<m���


q = 3
 2�973 392 205<m���


q = 4
 2�996 117 975<m���


q = 5
 2�999 433 620<m����

The third inequality shows that the first three lines in Table 2.1 do indeed represent the
three first values of ����. Proceeding by induction, theoretically one can locate with
these inequalities the whole Lagrange spectrum below 3. There is however another
approach, based on the theory of Markoff’s periods of Jean Bernoulli sequences
presented in §31 in Section 1.5. If ���� < 3 and � is not constant, then � = r∗ for
some nonconstant Jean Bernoulli sequence r by Corollary 2.57. Since the number 2�85
is smaller than the third value of ����, Lemma 2.49 says that in the evaluation of m���
we need consider only n � E���. For such an n we have bn = 2, bn+1 = 1 or bn−1 = 1,
bn = 2; see Corollary 2.51. Let us consider the first Markoff period of r:

 1 = ��1
 �2
 � � � 
 �q−1
 �q�
 �1 = 2
 �q = 1�

Recall that �2 = �q−1, �3 = �q−2, � � �, i.e. the middle part of  1 is symmetric. Let
 = �"1
 "2
 � � � 
 "q−1
 "q� be any other period of r which is just a shift of  1. To
simplify the notation we introduce the following continued fractions:

x= 1

�q +
1
�q +

1
�q−1 +

1
�q−1 + · · · +

1
�2 +

1
�2 +

1
�1 +

1
�1+x


 (2.89)

u= 1
"q +

1
"q +

1
"q−1 +

1
"q−1 + · · · +

1
"2 +

1
"2 +

1
"1 +

1
"1+u


 (2.90)

y = 1
�2 +

1
�2 +

1
�3 +

1
�3 + · · · +

1
�q +

1
�q +

1
�1 +

1
�1+y


 (2.91)

v= 1
"2 +

1
"2 +

1
"3 +

1
"3 + · · · +

1
"q +

1
"q +

1
"1 +

1
"1+v

� (2.92)
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Theorem 2.64 (Markoff 1880) For any nonconstant Jean Bernoulli sequence r,

m�r∗�= x+�1+
1

�1+y
� (2.93)

Proof There are two types of period of r∗. We consider first the image �"1
"1
 � � � "q


"q� of  in r∗. Let n be any index in r∗ corresponding to the first "1 in this double
period. Since r is not constant, m�r∗� > 2�85. We may assume that "1 = 2 and "q = 1.
Indeed, otherwise either bn is 1, or bn is 2 and has a 2 on each side in r∗, implying
that mn�r

∗� < 2�85 by Lemma 2.49. Since �1 = "1 and �q = "q, by Theorem 1.80 the
first nonzero difference �i−"i is +1. Hence �i = 2, "i = 1 for 1< i < q and

"i+
1

"i+ si
= 1+ 1

1+ si
< 2+ 1

2+ ti
= �i+

1
�i+ ti

�

By Lemma 2.42, (2.91) and (2.92) show that y < v and hence 1/�"1+ v� is smaller
than 1/��1+y�. By Theorem 1.80 the last nonzero difference �j−"j is −1, implying
that �j = 1, "j = 2 for some i < j < q. Hence

�j+
1

�j+ sj
= 1+ 1

1+ sj
< 2+ 1

2+ tj
= "j+

1
"j+ tj

�

By Lemma 2.42, (2.89) and (2.90) show that u < x. It follows that

u+"1+
1

"1+v
< x+�1+

1
�1+y

�

To complete the proof we must also test one-step shifts �"1
"2
"2 � � � "q
"q
"1� in
r∗ of the periods considered above. In other words that we must check

1
"1+u

+"1+v < x+�1+
1

�1+v
� (2.94)

The central part of the period  1 is symmetric. Therefore the symmetry of Z with
respect to its center transforms  1 onto  2. It follows that the sequence obtained is a
shift in r∗. However, the transformation of the left-hand side of (2.94) is of the form
already considered. This completes the proof. �

Using Euler’s formula (2.1) for quadratic irrationals, Markoff simplified the right-
hand side of (2.93). Let

P

Q
= �1+

1
�q +

1
�q +

1
�q−1 +

1
�q−1 + · · · +

1
�2 +

1
�2 +

1
�1




P ′

Q′
= �1+

1
�q +

1
�q +

1
�q−1 +

1
�q−1 + · · · +

1
�2 +

1
�2

be odd and even convergents to � = x+�1. It follows that

PQ′ −P ′Q= 1� (2.95)
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By (2.1)

Q�2− �P−Q′��−P ′ = 0


implying that

�−�∗ =
√
�P−Q′�2+4QP ′

Q
�

If we write �1 = 2= 1+1/1 then

P−2Q
Q

= 1
�q +

1
�q +

1
�q−1 +

1
�q−1 + · · · +

1
�2 +

1
�2 +

1
1 +

1
1

is symmetric since �q = 1. Hence by Corollary 1.6

Pk = P−2Q=Qk−1 =Q−Q′ �⇒Q′ = 3Q−P� (2.96)

Combining (2.95) and (2.96), we obtain the formula

QP ′ = PQ′ −1= 3PQ−P2−1�

It follows that

�P−Q′�2+4QP ′ = �2P−3Q�2+12PQ−4P2−4= 9Q2−4


and hence

m�r∗�=
√

9− 4
Q2
� (2.97)

This formula of Markoff formula parameterizes the Lagrange spectrum by Q, which
depends on the parameters of the first Markoff period  1. By (1.81), (1.82) the
parameters �j of  1 are simply related to the Jean Bernoulli period JB�r� of r. It
follows that the Lagrange spectrum is parameterized by the rational numbers p/q in
�1
2
:

p

q
→ P

Q
= 2+ 1

1 +
1
1 +

1
r1 +

1
r1 + · · · +

1
rq−2 +

1
rq−2 +

1
2

 (2.98)

where rj = rj�p/q
0�. By (2.96) the above formula for P/Q can be simplified:

P

Q
= 3− Q

′

Q
= 3− 1

2 +
1
r1 +

1
r1 + · · · +

1
rq−2 +

1
rq−2 +

1
2
� (2.99)

If we formally put Q = 1 in (2.97) then we obtain m =√5. If we put Q = 2 then
m=√8.

Let us order simple fractions p/q in �1
2
 lexicographically. In other words we
write p/q ≺ r/s if either p < r holds or both p = r and q < s hold. Using this order
and (2.97) with (2.98), we can easily find the first points of the Lagrange spectra.
Table 2.3 demonstrates that the mapping p/q→ m�r∗� increases up to the simple
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Table 2.3. Calculation of the Lagrange spectrum

p/q JB P/Q m�r∗�

1/1 �1� 1/1 2�236 067 977 499 78 � � �
2/1 �2� 5/2 2�828 427 124 746 19 � � �
3/2 �2
1� 13/5 2�973 213 749 463 70 � � �
4/3 �2
1
1� 34/13 2�996 052 629 869 29 � � �
5/3 �2
1
2� 75/29 2�999 207 188 146 83 � � �
5/4 �2
1
1
1� 89/34 2�999 423 243 289 87 � � �
6/5 �2
1
1
1
1� 233/89 2�999 915 834 362 00 � � �
7/4 �2
1
2
2� 437/169 2�999 976 658 056 08 � � �
7/5 �2
1
1
2
1� 507/194 2�999 982 286 411 02 � � �
7/6 �2
1
1
1
1
1� 610/233 2�999 987 720 016 37 � � �
8/5 �2
1
2
1
2� 1120/433 2�999 996 444 233 73 � � �
8/7 �2
1
1
1
1
1
1� 1597/610 2�999 998 208 366 39 � � �
9/5 �2
1
2
2
2� 2547/985 2�999 999 312 874 08 � � �
9/7 �2
1
1
1
2
1
1� 3468/1325 2�999 999 620 268 16 � � �
9/8 �2
1
1
1
1
1
1
1� 4181/1597 2�999 999 738 604 00 � � �
10/7 �2
1
1
2
1
2
1� 7571/2897 2�999 999 920 565 02 � � �
10/9 �2
1
1
1
1
1
1
1
1� 10 946/4181 2�999 999 961 862 83 � � �
11/6 �2
1
2
2
2
2� 14 845/5741 2�999 999 979 772 89 � � �
11/7 �2
1
2
1
2
1
2� 10 946/6466 2�999 999 984 054 52 � � �
11/8 �2
1
1
2
1
1
2
1� 19 760/7561 2�999 999 988 338 61 � � �
11/9 �2
1
1
1
1
2
1
1
1� 23 763/9077 2�999 999 991 908 59 � � �
11/10 �2
1
1
1
1
1
1
1
1
1� 28 657/10 946 2�999 999 994 435 86 � � �
12/7 �2
1
2
2
1
2
2� 38 014/14 701 2�999 999 996 915 28 � � �
12/11 �2
1
1
1
1
1
1
1
1
1
1� 75 025/28 657 2�999 999 999 188 20 � � �
13/7 �2
1
2
2
2
2
2� 86 523/33 461 2�999 999 999 404 56 � � �
13/8 �2
1
2
1
2
2
1
2� 97 427/37 666 2�999 999 999 530 09 � � �
13/9 �2
1
2
2
1
2
1
2
1� 113 058/43 261 2�999 999 999 643 78 � � �
13/10 �2
1
1
1
2
1
1
2
1
1� 135 163/51 641 2�999 999 999 750 01 � � �
13/11 �2
1
1
1
1
1
2
1
1
1
1� 162 867/62 210 2�999 999 999 827 73 � � �
13/12 �2
1
1
1
1
1
1
1
1
1
1
1� 196 418/75 025 2�999 999 999 881 56 � � �
14/9 �2
1
2
1
2
1
2
1
2� 249 755/96 557 2�999 999 999 928 49 � � �
14/13 �2
1
1
1
1
1
1
1
1
1
1
1
1� 514 229/196 418 2�999 999 999 982 71 � � �
15/8 �2
1
2
2
2
2
2
2� 504 293/195 025 2�999 999 999 982 47 � � �
15/11 �2
1
1
2
1
1
2
1
1
2
1� 770 133/294 685 2�999 999 999 992 32 � � �
15/13 �2
1
1
1
1
1
1
2
1
1
1
1
1� 1 116 300/426 389 2�999 999 999 996 33 � � �
15/14 �2
1
1
1
1
1
1
1
1
1
1
1
1
1� 1 346 269/514 229 2�999 999 999 997 47 � � �
16/9 �2
1
2
2
2
1
2
2
2� 1 291 324/499 493 2�999 999 999 997 32 � � �
16/11 �2
1
1
2
1
2
1
2
1
2
1� 1 688 299/646 018 2�999 999 999 998 40 � � �
16/13 �2
1
1
1
1
2
1
1
1
2
1
1
1� 2 423 593/925 765 2�999 999 999 999 22 � � �
16/15 �2
1
1
1
1
2
1
1
1
2
1
1
1� 3 524 578/1 346 269 2�999 999 999 999 63 � � �
17/9 �2
1
2
2
2
2
2
2
2� 2 939 235/1 136 689 2�999 999 999 999 48 � � �
17/10 �2
1
2
2
1
2
2
1
2
2� 3 306 781/1 278 818 2�999 999 999 999 59 � � �
17/11 �2
1
2
1
2
1
2
1
2
1
2� 3 729 600/1 441 889 2�999 999 999 999 67 � � �
17/12 �2
1
1
2
1
2
1
1
2
1
2
1� 4 406 309/1 686 049 2�999 999 999 999 76 � � �
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fraction 15/8. For further fractions one notices a shift in blocks having the same p
value. Nevertheless this method allows one to arrange the calculations very easily.

Theorem 2.45 can be strengthened. Nonperiodic Jean Bernoulli sequences have
the form r = �rn�	
���n∈Z

, where 	 ∈ �1
2� is irrational. By Theorem 1.61 any such
sequence determines a unique irrational number � ∈ �0
1�:

��	
��= 1
r1 +

1
r1 +

1
r2 +

1
r2 +

1
r3 +

1
r3 + · · · +

1
rn +

1
rn + · · ·

These numbers make up an important class of irrational numbers satisfying ����= 3.
Since the irrational 	 values make a continuum, there must be irrational 	 such
that the numbers ��	
0� are transcendental. This example of transcendental numbers
is interesting since there is an explicit formula for rn = ��n+ 1�	
− �n	
. These
transcendental numbers ��	
�� are also interesting since they are approximated by
rational numbers the most poorly. They are in a sense the first transcendental numbers
one finds in studying the functional ����. In contrast, ���� = +� in a well-known
example of Liouville; Liouville’s numbers can be approximated by rational numbers
very well. So, the classes of algebraic and transcendental numbers have a huge overlap
from the point of view of rational approximation. The set of quadratic irrationals with
���� < 3 lies within the symmetric difference.

Theorem 2.65 (Markoff 1879, 1880) A number smaller than 3 is a point of the
Markoff spectrum if and only if it is of the form√

9− 4
m2



where m is a positive integer such that the Diophantine equation

x2+y2+ z2 = 3xyz

has a solution in positive integers x = k, y = l, z=m satisfying k�m, l�m.

For instance, the case m= 1 (then k= l= 1) corresponds to ����=√5 and the case
m = 2 (then k = l = 1) corresponds to ���� =√8; these are considered in Theorem
2.44. The next point of the Lagrange spectrum is

√
221/5, corresponding to m = 5

(k = l, l = 2). We refer the interested reader to Cusick and Flahive (1989) or to the
original publications of Markoff (1879, 1880) for the proof of this theorem.

Exercises

2.1 Apply Euler’s algorithm to prove that
√

7= 2+ 1
1 +

1
1 +

1
1 +

1
4 +

1
1 +

1
1 +

1
1 +

1
4 + · · · �
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2.2 Apply Euler’s algorithm to prove that

√
61= 7+ 1

1 +
1
4 +

1
3 +

1
1 +

1
2 +

1
2 +

1
1 +

1
3 +

1
4 +

1
1 +

1
14 + · · · �

2.3 Show that

7+ 1
14 +

1
14 + · · · = 5

(
1+ 1

2 +
1
2 + · · ·

)
�

2.4 Prove that every mixed regular periodic continued fraction with more than one
nonperiodic elements (h � 2) is a root of a quadratic equation with integer
coefficients. The other root has the same sign (Smith 1888, §364).

2.5 Prove that 1< p/q, �p
 q�= 1, satisfies

p

q
= b0+

1
b1 +

1
b2 + · · · +

1
b2 +

1
b1 +

1
b0

if and only if either q2+1 or q2−1 is divisible by p (Serret’s theorem, Perron
1954, Section 1, §11]).

2.6 Prove that every divisor of a sum of two squares is also a sum of two squares
(Euler and Serret, see Perron 1954, Section 1, §11]). Hints: If p> q is a divisor
of q2+1 then by Ex. 2.5 the continued fraction of p/q is symmetric in 2k+2
terms. Show that p = P2k+1 = P2

k +P2
k−1. If p is a divisor of q2+ 1 such that

p≤ q then p is a divisor of �q− sp�2+1 for any integer s. Finally, if �a
 b�= 1
then there are integers x
 y such that ax− by = 1. It follows that any divisor
p of a2 + b2 is a divisor of �a2 + b2��x2 + y2� = �ay+ bx�2 + �ax− by�2 =
�ay+bx�2+1.

2.7 If m ∈ Z and n is a positive integer then m≡ r �mod n� means that n divides
m− r . Prove Euler’s theorem, which says that

a��n� ≡ 1 �mod n�

for every a with �a
n�= 1.

Hints: Let �r1
 � � � 
 rs� be the set of all elements in �1
 � � � 
 n� with �rj
 n�= 1,
j = 1
2
 � � � 
 s. Notice that s = ��n� and that
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ar1 ≡ r�1 �mod n�
 � � � 
 ars ≡ r�s �mod n�


where � is a one-to-one mapping of the set �1
2
 � � � 
 s� onto itself. Multiply
the above identities.

2.8 Prove that ��mn� = ��m���n� for every pair of m and n with �m
n� = 1.
Applying this formula, show that

��n�= n
(

1− 1
p1

)
· · ·

(
1− 1

pr

)
,

where p1 < � � � < pr is the complete list of prime divisors of n.

2.9 Following Euler’s arguments prove that any prime number of the form p =
4n+ 1, where n is an integer, can be represented as a sum of two squares
(Fermat’s statement).
Hints: If p = 4n+1 is prime then k4n ≡ 1 �mod p� by Ex. 2.7, k = 1, � � � ,4n.
Then 24n−1, 34n−24n, � � � , �4n�4n−�4n−1�4n are all divisible by p. Observing
that each of the above differences equals a4n− b4n = �a2n+ b2n��a2n− b2n�,
deduce that either p is the sum of two squares by Ex. 2.6, or p is the divisor of
each of the differences

22n−1
 32n−22n
 � � � 
 �4n�2n− �4n−1�2n .

Taking consecutive differences of the above series, show that �2n�! is divisible
by a prime number of the form p= 4n+1.

2.10 Prove Jirard’s theorem: a positive integer is a sum of two integer squares if and
only if it is a finite product of multipliers each of which is 2, the square of an
integer or a prime number of the form 4n+1.

2.11 Prove Euler’s formula, Euler (1755, p. 280):

√
2= 7

5

(
1+ 1

100
+ 1×3

100×200
+ 1×3×5

100×200×300
+ · · ·

)
�

Hint: Combine the binomial formula

�1−x�−1/2 = 1+
(x

2

)
+ 1×3

2!
(x

2

)2+ · · · + 1×3 × · · · �2n−1�
n!

(x
2

)n+ · · ·
with the Pell equation P2−Q2D =−1 to get

√
D = P

Q

(
1− 1

P2+1

)−1/2

= P
Q

(
1+

(
1

2Q2D

)
+ 1×3

2!
(

1
2Q2D

)2

+ 1×3×5
3!

(
1

2Q2D

)3

+· · ·
)



and put P = 7, Q= 5, D = 2 to get 72−52×2=−1.
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2.12 Prove that for any positive solution to Pell’s equation P2−Q2D = 1

√
D = P

Q

(
1−

(
1

2P2

)
− 1

2!
(

1
2P2

)2

− 1×3
3!

(
1

2P2

)3

−· · ·
)
�

2.13 Prove that the minimal value of the discriminants of real quadratic irrationals
is 5.
Hint: If b = 2b1 then D = 4�b2

1−ac� � 5, since
√
D � Q. If b = 2b1+1 then

D = 4�b2
1+b1−ac�+1 � 5.

2.14 (Markoff). For every irrational � show that there exist infinitely many rational
numbers p/q such that

�− p
q
<

1√
5q2

�

Hint: Notice that, for � = �,

�− p
q
= 1
q2�2�−1+�n�

= 1

q2�
√

5+�� �
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Continued fractions: analysis

3.1 Convergence: elementary methods

53 Paradox of Sofronov (1729–60). This was published in Smirnov and Kulyabko
(1954). Sofronov was a student of Euler. Applying Bombelli’s method, see §3 in Sec-
tion 1.1, we obtain

√−a= b+√−a−√b2 = b+ −a−b2

b+√−a = b+
−a−b2

2b +
−a−b2

2b + · · · �

The choice b= 1, a= 1 suggests that i=√−1 corresponds to a real continued fraction:

i= 1− 2
2 −

2
2 −

2
2 −· · · !

Clearly this identity cannot hold since the left-hand side is purely imaginary. To explain
this paradox let us observe that i+1 is a continued fraction of the form

m+ n
m +

n

m + · · · ≈m+
1
m/n +

1
m +

n

m + · · · ≈ �+
1
" +

1
� +

1
" + · · · 
 (3.1)

where �=m, "=m/n (n=−2, m= 2). The symbol ≈ means that the convergents
of two continued fractions coincide.

Definition 3.1 A continued fraction K�
n=1�pn/qn� is called convergent if its convergents

�dn�n�0 have finite or infinite limit.

Let

Q�z�=
�∑
n=0

Qnz
n

be the power series whose coefficients are the denominators of (3.1). The Euler–Wallis
formulas say

Q2k+1 = "Q2k+Q2k−1 , k= 0
1
2
 � � � ;

Q2k = �Q2k−1+Q2k−2 , k= 1
2
 � � �

123
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Now the first recurrence implies that

Qodd
def=

�∑
k=0

Q2k+1z
2k+1 = "z

�∑
k=0

Q2kz
2k+ z2

�∑
k=0

Q2k+1z
2k+1 


whereas the second that

Qeven
def=

�∑
k=0

Q2kz
2k = 1+�z

�∑
k=0

Q2k+1z
2k+1+ z2

�∑
k=0

Q2kz
2k �

It follows that
�1− z2�Qodd = "zQeven 


�1− z2�Qeven = 1+�zQodd �

Solving this linear system, we obtain

Qeven =
1− z2

�1− z2�2−�"z2

 Qodd =

"z

�1− z2�2−�"z2
�

It is clear that the roots of the denominators of Qeven and Qodd are

±
√
�"

2
±
√
�"

4
+1

In Sofronov’s case �=m=2b, "=m/n=−2b/�a+b2��. Therefore �"= 4b2/�a+b2�,
which shows that the poles of Qeven, Qodd and therefore Q are on T. The function Q,
being a linear combination of rational fractions of the form �1− �z�−1 where ��� = 1,
must have uniformly bounded Taylor coefficients. Therefore all numbers Qn are uni-
formly bounded. Now the formula

Pn
Qn
− Pn−1

Qn−1

= �−1�n−1

QnQn−1

implies that Sofronov’s fraction diverges. Indeed, its right-hand side does not tend to
zero. See other details in Smirnov and Kulyabko (1954).

54 Paradox of quadratic equations. Following Markoff, let us consider the
quadratic equation

z2−2z−1= 0 ⇐⇒ z= 2+ 1
z



which has two roots, z1 = 1+√2, z2 = 1−√2. Iterating, we obtain

z1
2 = 2+ 1
2 +

1
2 +

1
2 + · · · +

1
2+1/z1
2

� (3.2)

By Theorem 1.11 the infinite continued fraction 2+K�
n=1 �1/2� converges to one of

the roots z1
2 = 1±√2 of the quadratic equation considered. Since all convergents of
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the continued fraction are positive, it is clear that it converges to z1 = 1+√2, which
implies that

√
2= 1+ 1

2 +
1
2 +

1
2 + · · · �

However, for z2 we have

−√2= 1+ 1
2 +

1
2 +

1
2 + · · · +

1

2+1/�1−√2�
�

The situation is clarified by the following theorem due to Markoff.

Theorem 3.2 (Markoff 1948) Let b0+K�
n=1�an/bn� be a positive continued fraction

and let zn+1, defined by

z1 = b0+
a1

b1 +
a2

b2 + · · · +
an

bn+ zn+1




be positive infinitely often. Then if the continued fraction converges it converges to z1.

Proof Let s0�w�= b0+w, sk�w�= ak/�bk+w�. Then

z1 = Sn�zn+1�= s0 � s1 � · · · � sn�zn+1�

with zn+1 � 0 infinitely often. All the functions sk�z� are monotonic and continuous
on �0
+��. Hence the same is true for their composition Sn. Picking two limit values
w= 0 andw=+�, we obtain that z1 must be in the interval with end-points at Pn/Qn=
Sn�0� and Pn−1/Qn−1 = Sn�+��. Since the continued fraction converges, the proof is
complete. �

55 Koch’s and Seidel’s theorems. These theorems are simple convergent tests
for continued fractions with positive terms. Koch’s theorem considers more general
continued fractions K�

n=1�1/bn� with complex bn.

Theorem 3.3 (Koch 1895) If
∑�
n=1 �bn�<� then the limits

lim
n
P2n = P 
 lim

n
P2n+1 = P ′ 
 (3.3)

lim
n
Q2n =Q
 lim

n
Q2n+1 =Q′ (3.4)

exist, are finite and satisfy P ′Q− PQ′ = 1. In particular, the continued fraction
K�
n=1�1/bn� diverges.
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Proof Assuming that P0 = b0 = 1 (notice that P1 = 1) we obtain, by the Euler–Wallis
formulas,

�P1�� �b1��P0�+ �P−1� = �1+�b1�� ,

�P2�� �b2��P1�+ �P0�� �b2��1+�b1��+1 � �1+�b2���1+�b1�� ,

���

�Pn�� �bn��Pn−1�+ �Pn−2�� �1+�b1�� · · · �1+�bn−2��
× ��bn��1+�bn−1��+1�� �1+�b1�� · · · �1+�bn�� 


showing that �Pn�n�0 is bounded. Similarly, �Qn�n�0 is also bounded. Now the existence
of the limits follows from

P2n = b2nP2n−1+P2n−2 = b2nP2n−1+b2n−2P2n−3+· · ·+b2P1+P0 


Q2n = b2nQ2n−1+Q2n−2 = b2nQ2n−1+b2n−2Q2n−3+· · ·+b2Q1+Q0 �

Finally

lim
n

P2n

Q2n

= P
Q
	= P

′

Q′
= lim

n

P2n+1

Q2n+1




since P ′Q−PQ′ = 1 by (1.16). �

Remark Notice that although the continued fraction in Koch’s theorem diverges, its even and odd conver-
gents converge – but to different limits.

Theorem 3.4 (Seidel 1846) If bn > 0 for n> 1 then the continued fraction K�
n=1�1/bn�

converges if and only if the series
∑�
n=1 bn diverges.

Proof By (1.18) we have

Qn
Qn−2

= Qn
Qn−1

Qn−1

Qn−2

=
(
bn+

1
bn−1 + · · · +

1
b1

)

×
(
bn−1+

1
bn−2 + · · · +

1
b1

)

= 1+bn
(
bn−1+

1
bn−2 + · · · +

1
b1

)
> 1 �

Consequently

Q2n > Q2n−2 > · · ·>Q2 > 1 ;

Q2n+1 >Q2n−1 > · · ·>Q3 >Q1 = b1 �
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The Euler–Wallis formulas imply that

Q2n = b2nQ2n−1+Q2n−2 > b1b2n+Q2n−2 > b1�b2+· · ·+b2n� ,

Q2n+1 = b2n+1Q2n+Q2n−1 > b1+b3+· · ·+b2n+1 �

Hence if
∑
bn =+� then either limn Q2n =+� or limn Q2n+1 =+�. The identity

P2n+1

Q2n+1

− P2n

Q2n

= 1
Q2nQ2n+1

implies the equality of the limits of the even and odd convergents provided that they
exist. By Brouncker’s theorem (see Theorem 1.7) the even convergents increase and
are bounded from above by the odd convergents, which form a decreasing sequence.
It follows that the continued fraction converges.

If
∑
bn <+� then K�

n=1�1/bn� diverges by Koch’s theorem. �

56 The equivalence transform. The transformations applied to the continued
fractions in (3.1) changed the partial numerators and denominators but did not affect
the convergents.

Definition 3.5 Two continued fractions

q0+
�
K
n=1

(
pn
qn

)
and q∗0 +

�
K
n=1

(
p∗n
q∗n

)
with convergents �dn�n�0 and �d∗n�n�0 are called equivalent if dn = d∗n for n= 0
1
 � � �
In this case we write

q0+
�
K
n=1

(
pn
qn

)
≈ q∗0 +

�
K
n=1

(
p∗n
q∗n

)
�

Notice that since the convergents of equivalent continued fractions coincide they
converge or diverge simultaneously. Hence before studying the convergence problem
we must clarify the problem of equivalence.

Theorem 3.6 Two continued fractions are equivalent if and only if there exists a
sequence of nonzero constants �rn�n�0 with r0 = 1 such that

p∗n = rnrn−1pn , n= 1
2
 � � � 


q∗n = rnqn , n= 0
1
2
 � � �
(3.5)

Proof The sufficiency follows from the formula

q0+
p1

q1 +
p2

q2 + · · · +
pn
qn + · · ·

≈ r0q0+
r1r0p1

r1q1 +
r2r1p2

r2q2 + · · · +
rnrn−1pn
rnqn + · · · 
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which is obtained by consecutive multiplications. If two continued fractions are equiv-
alent then all Mobius transforms S∗−1

n �Sn�w� have two fixed points at 0 and �, as
can easily be seen from

Pn
Qn

= Sn�0�= S∗n�0�=
P∗n
Q∗n



Pn−1

Qn−1

= Sn���= S∗n���=
P∗n−1

Q∗n−1




and hence are a multiple of w. It follows that

S∗−1
n �w�= rnS∗−1

n �w� , n= 0
1
 � � �

where r0 = 1 and rn 	= 0, n= 1
2
 � � � Using this formula, we obtain

p∗n
q∗n
= s∗n�0�= S∗−1

n−1 �S∗n�0�= rn−1S
−1
n−1 �S∗n�0�

= rn−1S
−1
n−1 �Sn�0�= rn−1sn�0�=

rn−1pn
qn




which shows that q∗n+1 and qn+1 may vanish only simultaneously. Next,

S∗−1
n �w�= s∗−1

n �S∗−1
n−1�w�=−q∗n+

p∗n
rn−1S

−1
n−1�w�

=−q∗n+
p∗n

rn−1pn
�S−1
n �w�+qn�

=−q∗n+
p∗nqn
rn−1pn

+ p∗n
rn−1pn

S−1
n �w�=

p∗n
rn−1pn

S−1
n �w� 


which proves the first formula in (3.5). Then the second follows from the already
proved identity p∗n = rn−1�q

∗
n/qn�pn and the observation that qn and q∗n may vanish

only together. �

The above proof follows Jones and Thron (1980). Theorem 3.6gives two important
representatives in any class of equivalent continued fractions.

Corollary 3.7 If qn 	= 0 for n= 1
2
 � � � then

q0+
�
K
n=1

(
pn
qn

)
≈ q0+

�
K
n=1

(
p∗n
1

)



where

p∗1 =
p1

q1

, p∗n =
pn

qnqn−1

, n= 2
3
 � � �
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Proof The proof uses the following argument:

q0+
p1

q1 +
p2

q2 +
p3

q3 +
p4

q4 + · · · ≈ q0+
p1/q1

1 +
p2/q1

q2 +
p3

q3 +
p4

q4 + · · ·

≈ q0+
p1/q1

1 +
p2/�q1q2�

1 +
p3/q2

q3 +
p4

q4 + · · · ≈ · · ·

≈ q0+
p1/q1

1 +
p2/�q1q2�

1 +
p3/�q2q3�

1 +
p4/�q3q4�

1 + · · · 


which were used in Sofronov’s example; see §53 at the start of this chapter. �

Corollary 3.8 For every continued fraction we have

�
K
n=1

(
pn
qn

)
≈ �

K
n=1

(
1
q∗n

)



where

q∗2k−1 =
p2p4 · · ·p2k−2q2k−1

p1p3 · · ·p2k−1


 q∗2k =
p1p3 · · ·p2k−1q2k

p2p4 · · ·p2k

Proof By Theorem 3.6 there must be rn such that

rn−1rnpn = 1 
 rnqn = q∗n 
 n= 1
2
 � � � (3.6)

By induction we obtain that

r1 =
1
p1


 r2 =
p1

p2


 r3 =
p2

p1p3


 r4 =
p1p3

p2p4


 � � � 


r2n−1 =
p2p4 · · ·p2n−2

p1p3 · · ·p2n−1


 r2n =
p1p3 · · ·p2n−1

p2p4 · · ·p2n


 � � �

Now the corollary follows from the second formula of (3.6). �

In Corollary 3.7 the partial denominators must be nonzero, whereas in Corollary 3.8
the partial numerators are nonzero by the definition of a continued fraction. Corollary
3.8 gives a representation similar to that for a regular continued fraction. However,
in this case the formulas for partial denominators look more complicated than in
Corollary 3.7.

Equivalence transforms provide very useful convergence tests for continued fractions
with positive terms, which we will often use in what follows.

Corollary 3.9 A continued fraction q0+K�
n=1�pn/qn� with positive pn and qn con-

verges if and only if

�∑
n=1

p1p3 · · ·p2n−1q2n

p2p4 · · ·p2n

+
�∑
n=1

p2p4 · · ·p2nq2n+1

p1p3 · · ·p2n+1

=+� �

Proof The result follows by Corollary 3.8 and Theorem 3.4. �
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Corollary 3.10 If pn > 0, qn > 0 and
∑�
n=1�qn−1qn/pn�

1/2=+� then q0+K�
n=1�pn/qn�

converges.

Proof By an elementary inequality, 2
√
unvn� un+vn, the divergence of

∑�
n=1
√
unvn=

+� implies that
∑�
n=1 un +

∑�
n=1 vn = +� and the corollary then follows from

Corollary 3.9. �

Corollary 3.11 If cn > 0 and
∑�
n=1 c

−1/2
n =+� then K�

n=1�cn/s� converges for every
s > 0.

Proof Put qn = s in Corollary 3.10. �

57 Convergence of general continued fractions. Unlike the convergence the-
ory of series, in which the convergence is completely determined by the asymptotic
properties of their terms, the convergence of continued fractions depends on the early
terms as well. The reason is that if the convergents Pn/Qn of a continued fraction

q0+
�
K
n=1

(
pn
qn

)
(3.7)

tend to � then the convergents Qn/Pn of the continued fraction

1

q0+
�
K
n=1
�pn/qn�

converge to 0. This difficulty may be resolved by introducing the spherical metric on
the extended complex plane Ĉ via the standard stereographic projection of the sphere
onto Ĉ. Then the convergence of continued fractions may be understood in the spherical
metric. However, in practice it is important to distinguish between the convergence of
a continued fraction to finite and to infinite values. Therefore Pringsheim introduced
the notion of an unconditionally convergent continued fraction. A continued fraction
(3.7) is said to be unconditionally convergent if all the continued fractions

�
K
n=m

(
pn
qn

)

 m= 1
2
 � � �

converge to finite values. In many cases pn and qn in (3.7) are functions of some
parameters. Therefore our assumption pn 	= 0 turns out to be restrictive. However,
if one allows pn to vanish, there may be cases when both Pn and Qn are zero and
therefore the convergent Pn/Qn cannot be defined. To eliminate such cases Perron
(1957) introduced the term sinnlos (meaningless). A finite continued fraction

Pm
Qm

= q0+
m

K
n=1

(
pn
qn

)
is called sinnlos if Qm = 0.
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As in series theory one can consider absolutely convergent continued fractions.
These are continued fractions satisfying∣∣∣∣ P0

Q0

∣∣∣∣+ �∑
n=0

∣∣∣∣ Pn+1

Qn+1

− Pn
Qn

∣∣∣∣<+� � (3.8)

As explained above all terms must be included in this series. By (1.16), condition (3.8)
is equivalent to ∣∣∣∣ P0

Q0

∣∣∣∣+ �∑
n=0

∣∣∣∣p1 · · ·pn+1

Qn+1Qn

∣∣∣∣<+� �
Any regular continued fraction converges absolutely by (1.34).

3.2 Contribution of Brouncker and Wallis

58 Wallis’ product (1656). The first formula for the infinite product

2
�
=
√

2
2

√
2+√2

2

√
2+

√
2+√2

2
· · · (3.9)

was found by Viète (1593). The modern proof, which is due to Euler (1763), is easy.
Iterating the formula sin 2�= 2 sin� cos�, we have

cos
�

4
cos
�

8
· · · cos

�

2n
= 2
�

� / 2n

sin� / 2n
�

Therefore limx→0 sin x/x = 1 implies that

2
�
= cos

�

4
cos
�

8
cos

�

16
cos

�

32
· · ·

Since cos��/4�=√2/2, cos�/2=√
�1+ cos��/2, we get (3.9).

The original proof is very similar to that of Euler on the one hand and to that
of Archimedes’s theorem 1.2 on the other. Let Sn be the area of a right n-polygon
inscribed into the unit circle and let rn be the radius of the circle inscribed in this
polygon. Then by elementary geometry Sn � S2n = rn = cos ��/n�. It follows that

S4

S8

= cos
�

4



S8

S16

= cos
�

8



S16

S32

= cos
�

16

 � � �

Since S4 = 2 and Sn→ �, multiplication of the equalities results in (3.9).
A disadvantage of Viète’s formula is that it represents � as an infinite product of

algebraic irrationals. In his classical treatise Wallis (1656) obtained another formula,

2
�
= 1×3

2×2
3×5
4×4

5×7
6×6

· · · �2n−1��2n+1�
2n×2n

· · · 
 (3.10)
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in which all multipliers are rational. It was a really great achievement; furthermore
Wallis’ formula was helpful for the quadrature problem. In fact, owing to Euler’s efforts
the ideas generated by Wallis’ formula finally resulted in the Lambert–Legendre proof
of the irrationality of �. Euler’s analysis of Wallis’ proof led him to formulas for the
gamma and beta functions, see Andrews, Askey and Roy (1999, p. 4), as well as to
other important discoveries especially in the theory of continued fractions. We will
discuss these topics later.

Nowadays the proof of Wallis’ formula can be shortened to a few lines. Integration
by parts shows that∫ �/2

0
sin2n 	 d	 = �

2
1×3×5×· · ·× �2n−1�

2×4×6×· · ·×2n
= �

2
un 
∫ �/2

0
sin2n+1 	d	 = 2×4×6×· · ·×2n

3×5×7×· · ·× �2n+1�
= vn �

(3.11)

Combining (3.11) with the trivial inequalities∫ �/2

0
sin2n 	 d	 >

∫ �/2

0
sin2n+1 	dx >

∫ �/2

0
sin2n+2 	d	 (3.12)

(observe that sin2n 	 > sin2n+1 	 > sin2n+2 	 on �0
�/2�), we immediately obtain

un
vn
>

2
�
>
un
vn

(
1− 1

2n+2

)



which shows that

0<
1×3
2×2

3×5
4×4

5×7
6×6

· · · �2n−1��2n+1�
2n×2n

− 2
�
<

3
��2n+2�


 (3.13)

implying (3.10).
This now standard proof is in fact an improvement on Wallis’ original arguments;

the usage of the inequalities (3.12) was Euler’s idea (1768, Chapter IX, §356). Notice
that in 1655–6, when Wallis was working on his book, neither integration by parts
nor the change of variable formula were known. Instead Wallis made his discoveries
using a simple relation of integrals to areas as well as a method of interpolation. Since
y =√1−x2 is the equation of the circular arc in the upper half-plane,

�

4
=
∫ 1

0

√
1−x2 dx

is the formula for the area of one quarter of the unit disc. Motivated by Viète’s formula,
Wallis introduced a family I�p
 q� of reciprocals of these of related integrals, which
he was able to compute:

I�p
 q�= 1∫ 1

0
�1−x1/p�q dx

= �p+1��p+2� · · · �p+q�
1×2×· · ·×q =

(
p+q
p

)
� (3.14)
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Here p and q are positive integers. For p= 1/2, q = n we have

I�1/2
 n�= 1×3×· · · × �2n+1�
2×4×· · ·×2n

= 1
vn
� (3.15)

Clearly vn decreases with growth in n. Since the sequence (3.15) is obtained by a
very simple law, one may hope that it can be naturally interpolated to all positive real
numbers and in particular to n= 1/2. The value of v0 is 1 and that of v1 is 2/3= 0�66 � � �
The value of interest, v1/2 = �/4= 0�78 � � � , is regularly placed between v0 and v1. In
other words the results of this numerical experiment can only be explained by some
simple formula for v1/2. Using these arguments and following essentially the lines of
the proof given above, Wallis found a representation of �1/2�I�1/2
1/2�= 2/� as the
infinite product (3.10) and proved its convergence.

A detailed account of Wallis’ logic in obtaining his formula is presented in Kramer (1961) (see a brief

version in Kolmogorov and Yushkevich 1970). A recent coverage of the history of (3.10) is given in the

English translation of Arithmetica Infinitorum by Stedall (2004, pp. xvii–xx).

It is interesting that later Euler (1748, §158) discovered another proof of Wallis’
formula, which is based on the development of �sin x�/x (which played a crucial role
in the proof of Viète’s formula) into an infinite product:

sin x
x

=
�∏
k=1

(
1− x2

k2�2

)
� (3.16)

Setting x = �/2, Euler (1748, §185) obtains Wallis’ product

2
�
=

�∏
k=1

(
1− 1

2k

)(
1+ 1

2k

)
=

�∏
k=1

�2k−1��2k+1�
2k×2k

�

With this method Euler obtained a Wallis-type formula for the reciprocal of the length
of the side of a square inscribed into the unit circle

1√
2
= 1×3

22

5×7
62

9×11
102

13×15
142

· · · (3.17)

Notice that the infinite product (3.17) is obtained from Wallis’ product (3.10) by
dropping the even multipliers. For the quarter-perimeter of a 2n-polygon inscribed in
the unit circle Euler obtained

n sin
( �

2n

)
= �2n−1��2n+1�

n×3n
�4n−1��4n+1�

3n×5n
· · ·

Also, Euler (1746, §158) proved that, cf. (3.16),

cosx =
�∏
k=0

(
1− 4x2

�2k+1�2�2

)
� (3.18)
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Setting x = �/2j+1, j = 1
2
 � � � , we obtain the formula

cos
( �

2j+1

)
=

�∏
k=0

(
1− 1

�2j�2k+1��2

)



which explains the relationship between Viète’s and Wallis’ formulas.

59 Brouncker’s continued fraction. When Wallis found a proof of (3.10) he
showed it to Brouncker; see Kramer (1961, p. 86). Brouncker responded with a remar-
kable continued fraction,

4
�
= 1+ 12

2 +
32

2 +
52

2 + · · · = 1+ �
K
n=1

(
�2n−1�2

2

)
� (3.19)

On the one hand, according to Stedall (2004, pp. xviii–xix) formula (3.10) appeared
after 28 February 1655. On the other hand, in April 1655 Wallis responded to Hobbes’
threats to reveal a quadrature of the unit circle by publishing some excerpts from Wallis
(1656). Therefore it looks as though both formulas were proved in March 1655.

Brouncker didn’t publish his result. But some of Brouncker’s ideas were included
as comments at the end of Wallis (1656). Though not at all clear, these comments had
at least one positive outcome. They attracted Euler’s attention and two very important
papers (Euler 1744, 1750b) on the analytic properties of continued fractions appeared.
One can therefore say that the analytic theory of continued fractions began from
Brouncker’s formula.

If it is known that formula (3.19) holds, then easy arguments known to Brouncker
lead to a proof. Indeed, by the Euler–Wallis formulas,

Pn = 2Pn−1+ �2n−1�2Pn−2 


Qn = 2Qn−1+ �2n−1�2Qn−2 �

These formulas can be rewritten as follows:

Pn− �2n+1�Pn−1 =−�2n−1��Pn−1− �2n−1�Pn−2� 


Qn− �2n+1�Qn−1 =−�2n−1��Qn−1− �2n−1�Qn−2� �

Since P1 = 3 and P2 = 2×3+9= 15, we obtain from P2−5P1 = 0 by induction that
Pn− �2n+1�Pn−1 = 0. Hence

Pn = 1×3×5×· · ·× �2n+1�= �2n+1�!! 
 (3.20)

since P0 = 1. Now Q2 = 13, Q1 = 2 implying Q2−5Q1 = 3. Therefore

Qn− �2n+1�Qn−1 = �−1�n�2n−1�!! 

or equivalently

Qn
�2n+1�!! −

Qn−1

�2n−1�!! =
�−1�n

�2n+1�
�
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Remembering that Pn = �2n+1�!!, we arrive at the formula

Qn
Pn
=

n∑
k=0

�−1�k

2k+1

 (3.21)

which states that the convergents of Brouncker’s continued fraction coincide with the
reciprocals of partial sums of an alternating series:

�

4
=

�∑
k=0

�−1�k

2k+1
=
∫ 1

0

dx

1+x2
� (3.22)

It is not clear whether Brouncker knew the above formula. However, at least by 1657,
i.e. approximately by the time when Wallis completed his treatise, Brouncker definitely
knew a similar one (see Kolmogorov and Yushkevich 1970, p. 158):

ln 2=
�∑
n=1

1
�2n−1�×2n

=
�∑
k=1

�−1�k−1

k
=
∫ 2

1

dx

x



which he published with a rigorous proof in Brouncker (1668). Moreover, according
to a report of O’Connor and Robertson (2002) there is evidence that Brouncker knew
this formula already in 1654, a year before he learned the problem from Wallis.

The parallel between these two cases becomes more clear if we transform the above
computations into the following theorem.

Theorem 3.12 Let a > 0 and �yn�n�0 be a sequence such that y0 > 0, yn > a for
n= 1
2
 � � � and

∑�
n=1 1/yn =+�. Let pn = �yn−a�yn−1, n= 1
2
 � � � Then

y0+
�
K
n=1

(pn
a

)
= y0

1+∑�
n=1�−1�n�y1−a� · · · �yn−a�/y1 · · ·yn

� (3.23)

Proof By the Euler–Wallis formulas, Pn− ynPn−1 = �a− yn��Pn−1− yn−1Pn−2�. Since
P0−y0P1 = 0, this implies that Pn = ynPn−1. Hence Pn = ynyn−1 · · ·y1y0. Similarly

Qn−ynQn−1 = �a−yn� · · · �a−y1��Q0−y0Q1�= �a−yn� · · · �a−y1� �

It follows that
Qn
Pn
− Qn−1

Pn−1

= �−1�n
�yn−a� · · · �y1−a�
ynyn−1 · · ·y1y0




implying the identity

Qn
Pn
= 1
y0

+ 1
y0

n∑
k=1

�−1�k
(

1− a

yk

)
· · ·

(
1− a

y1

)
� (3.24)

The telescopic series on the right-hand side of (3.24) converges if and only if

lim
n

(
1− a

yn

)
· · ·

(
1− a

y1

)
= 0 


which is the case since
∑
n 1/yn =+�. �
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If a= 2 and y0 = 1, yn = 2n+1 then pn = �yn−a�yn−1 = �2n−1�2 and we obtain
Brouncker’s formula:

1+ �
K
n=1

(
�2n−1�2

2

)
= 1

1+∑�
n=1�−1�n 1×3×···×�2n−1�

3×···×�2n+1�

= 4
�
�

If a= 1, y0 = 1, yn = n+1 then pn = �yn−a�yn−1 = n2 and

1+ �
K
n=1

(
n2

1

)
= 1

1+∑�
n=1�−1�n 1×2×···×n

2×···×�n+1�

= 1
ln 2

� (3.25)

If a= 2, y0 = 2, yn = n+2 then pn = �yn−a�yn−1 = n�n+1� for n= 1
2
 � � � and

2+ �
K
n=1

(
n�n+1�

2

)
= 1

2
∑�
n=0�−1�n

1
�n+1��n+2�

= 1
ln 4−1

� (3.26)

Let us return to (3.22). The left-hand side is �/4, one quarter of the area of a unit disc
or equivalently the area of a disc of diameter 1 (see Fig. 3.1). The right-hand side equals
the area under the curve y= 1/�1+x2� bounded by the coordinate axis OX and the two
vertical lines x= 0 and x= 1 ( Fig. 3.1). The curve y= 1/�1+x2� has a name, the witch
of Agnesi. The Italian mathematician Maria Agnesi included properties of this curve
(see Fig. 3.1) in her famous book (1748) on analytic geometry. Known historical ma-
terials witness that the first study of this curve was in fact made by Fermat (1601–65).
One can easily find many interesting facts on the witch of Agnesi on the Internet.

To prove Brouncker’s formula with the tools available in 1655, we need the equality
of the area of the disc with radius 1/2 to the area under the witch of Agnesi for
0 � x � 1. A direction to take in proving this is given by Archimedes’ theorem 1.2
and the so-called Pythagorean triples, which were well known both to Brouncker and
Fermat; see Edwards (1977).

Definition 3.13 A triple �x
 y
 z� of nonnegative integer numbers is called Pythagorean
if it is a solution to the Diophantine equation

x2+y2 = z2 �

–2 –1 1 2
X

Y

Fig. 3.1. The witch of Agnesi curve, y = 1/�1+x2�.
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A well-known example of a Pythagorean triple is �3
4
5�. Pythagorean triples give a
complete list of points with rational coordinates on the part of the unit circle in the
first quadrant; other rational points are obtained by symmetry. For instance, �3/5
4/5�
is a point on the unit circle. The rational points on a circular arc can be listed by the
rational parametrization of T

x�t�= 2t
1+ t2 
 y�t�= 1− t2

1+ t2 �

The arc of interest corresponds to 0 � t � 1. The formulas

y�t�−y�s�= 1− t2
1+ t2 −

1− s2

1+ s2
= 2

s2− t2
�1+ t2��1+ s2�

�

x�t�−x�s�= 2t
1+ t2 −

2s
1+ s2

= 2
�1− ts��t− s�
�1+ t2��1+ s2�




and the elementary identity �s+ t�2+�1−st�2 = �1+s2��1+ t2� show that the distance
between two points P = P�s� and Q = Q�t� on T corresponding to 0 � s < t � 1 is
given by

dist�P
Q�= 2
t− s√

�1+ t2��1+ s2�
�

It follows that the area of the triangle with vertexes at P�k/n�, Q��k+1�/n� and the
origin equals approximately

Area��OPQ�= 1
n

1+o�1�√
�1+k2/n2��1+ �k+1�2/n2�

= 1+o�1�
1+k2/n2

1
n



the corresponding area of the rectangle under the witch of Agnesi. Passing to the limit,
we obtain the equality of the required areas. The middle part of (3.22) can be treated
using Brouncker’s method (1668).

Only 70 years later Euler (1744) found a proof to Brouncker’s formula seem-
ingly following these lines. In his paper (1750b) Euler indicates several times (see
§§17, 19, 20 in this paper) the importance of finding Brouncker’s original proof (see
especially the end of §17). It can however, be recovered from the notes made by Wallis
(1656, Proposition 191, comment).
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60 A recovery of Brouncker’s proof (March 1655). Two observations play a
key role in the recovery of Brouncker’s proof. The first is the formula

1×3
2×2

3×5
4×4

5×7
6×6

· · · �2n−1��2n+1�
2n×2n

= 1×3
0 +

2×2
0 +

3×5
0 + · · · +

�2n−1��2n+1�
0 +

2n×2n
1


 (3.27)

demonstrating the close relationship of these products to continued fractions. Since any
formal infinite continued fraction with identically zero partial denominators diverges,
something should be done to make them positive. This was known to Brouncker; see
Wallis (1656, p. 169, footnote 79).

The second observation is the following comment by Brouncker; see Wallis (1656,
p. 168). One look at (3.10) is enough to notice that the numerators are the products
of the form s�s+2� = s2+2s = �s+1�2−1, s being odd, whereas the denominators
are whole squares of even numbers. This suggest the idea of increasing s to b�s� and
s+2 to b�s+2� so that

b�s�b�s+2�= �s+1�2 � (3.28)

Then, to keep (3.27) valid, the odd zero partial denominators on the right-hand side of
(3.27) will automatically become positive. That is exactly what we need to complete
the proof. The fact that s+ 1 is even is also helpful since it may provide necessary
cancellations. Now using (3.28) repeatedly, we may write

b�1�= 22

b�3�
= 22

42
b�5�= 22

42

62

b�7�
= 22

42

62

82
b�9�= · · ·

= 22

42

62

82

102

122
· · · �4n−2�2

�4n�2
b�4n+1�

= 12

22

32

42
· · · �2n−1�2

�2n�2
b�4n+1�

= 1×3
22

3×5
42

5×7
62

· · · �2n−1��2n+1�
�2n�2

b�4n+1�
�2n+1�

� (3.29)

Combined with Wallis’ formula this implies

b�1�=
(

2
�
+o�1�

)
b�4n+1�
�2n+1�

� (3.30)

Since s+2< b�s+2� and b�s�b�s+2�= �s+1�2, we have

s < b�s� <
s2+2s+1
s+2

= s+ 1
2+ s 
 (3.31)
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which together with (3.30) imply

b�1�= lim
n

(
2
�
+o�1�

)
b�4n+1�
�2n+1�

= 4
�
� (3.32)

It remains only to find a formula for b�s�.
We thus arrive at the crucial point of Brouncker’s arguments, which by the way

shows that contrary to other mathematicians, see Wallis (1656, p. xxvii], Brouncker
understood very clearly Wallis’ interpolation. Wallis’ main observation was that the
values of functions f�s� represented by analytic formulas can be uniquely recovered
(interpolated) by their values f�n� at integer points. Nowadays the uniqueness theorems
of complex analysis reduce this to more or less routine applications of the uniqueness
principle for analytic functions. But in 1652–5 it was a revolutionary discovery. One
cannot exclude, by the way, that Euler obtained his great formula (3.16) using Wallis’
interpolation, since Arithmetica Infinitorum was always on Euler’s desk.

Motivated by (3.31) one can develop b�s� into a series in positive powers of 1/s,

b�s�= s+ c0+
c1

2s
+ c2

s2
+ c3

s3
+· · · (3.33)

and find the coefficients c0, c1, · · · inductively using (3.28). By (3.31) coefficient c0

vanishes. To find c1 we assume that

b�s�= s+ c1

s
+O

(
1
s2

)

 s −→+�

and then determine c1 from the equation

s2+2s+1= b�s�b�s+2�= s2+2s+2c1+O
(

1
s

)

 s→+� 


implying that c1 = 1/2. It follows that

b�s�= s+ 1
2s
+O

(
1
s2

)

 s→+� �

Similarly, elementary calculations show that c2 = 0, c3 =−9/8, c4 = 0, c5 = 153/16,
c6 = 0 and therefore

b�s�= s+ 8s4−18s2+153
16s5

+O
(

1
s7

)
�
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Applying the Euclidean algorithm to the quotient of polynomials, we have

8s4−18s2+153
16s5

= 1

2s+ 9�4s3−34s�

8s4−18s2+153

= 1

2s+ 9

8s4−18s2+153

4s3−34s

= 1

2s+ 9

2s+ 25�2s2+153/25�

4s3−34s

= 1

2s+ 9

2s+ 25

2s+· · ·

�

A remarkable property of the above calculations is that 12 = 1, 32 = 9, 52 = 25, etc
appear automatically as common divisors of the coefficients of the polynomials in
Euclid’s algorithm. The fraction 153/25 appears only because in c7 we did not include
the term in c7. Increasing the number of terms in (3.33) we arrive naturally at the
conclusion that

b�s�= s+ 12

2s +
32

2s +
52

2s +
72

2s + · · · +
�2n−1�2

2s + · · · � (3.34)

Having obtained (3.34), we may reverse the order of the argument and compute the
differences

P0�s�

Q0�s�

P0�s+2�
Q0�s+2�

− �s+1�2 = s�s+2�− �s+1�2 = �−1�= O�1� ;

P1�s�

Q1�s�

P1�s+2�
Q1�s+2�

− �s+1�2 = 4s4+16s3+20s2+8s+9
4s2+8s

−4s4+16s3+20s2+8s
4s2+8s

= 9
4s2+8s

= O
(

1
s2

)
;

P2�s�

Q2�s�

P2�s+2�
Q2�s+2�

− �s+1�2 = 16s6+96s5+280s4+480s3+649s2+594s
16s4+64s3+136s2+144s+225

− �s+1�2

= −225
16s4+64s3+136s2+144s+225

= O
(

1
s4

)
�

One can find these very formulas in Wallis (1656, pp. 169–70), where Wallis writes
after the last formula: “· · · which is less than the square F 2+2F +1.1 And thus it may
be done as far as one likes; it will form a product which will be (in turn) now greater
than, now less than, the given square (the difference, however, continually decreasing,
as is clear), which was to be proved.”

1 In Wallis’ notation s = F .
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To make Wallis’ comments clearer, we observe that the denominators of the boxed
fractions are polynomials in s with positive coefficients. This can easily be explained,
since they are the products Qn�s�Qn�s+2� of polynomials which have positive coef-
ficients by (1.15). Next, if

Pn�s�Pn�s+2�− �s+1�2Qn�s�Qn�s+2�= bn 
 (3.35)

where bn is a constant, then bn = −�−1�n��2n+ 1�!!
2. We have already seen this
from the formulas presented by Wallis for n= 0
1
2. If (3.35) holds then evaluating
it at s = −1 we obtain Pn�−1�Pn�1� = bn. By (3.20) we have Pn�1� = �2n+ 1�!!
and it remains to observe that Pn�s� is odd for even n and is even for odd n.
Assuming that (3.35) holds for every n with bn = −�−1�n��2n+ 1�!!
2, we obtain
for s > 0

P2k�s�

Q2k�s�

P2k�s+2�
Q2k�s+2�

< �s+1�2 <
P2k+1�s�

Q2k+1�s�

P2k+1�s+2�
Q2k+1�s+2�

�

By Corollary 3.10 the continued fraction (3.34) converges. See Ex. 3.8 (s � 1) and
Ex. 3.21 �s > 0� for elementary proofs. Since all terms in continued fraction (3.34)
are positive, Theorem 1.7 implies that even convergents increase to b�s� and odd
convergents also decrease to b�s�.

Passing to the limit in the above inequalities, we obtain that continued fraction b�s�
satisfies functional equation (3.28). The inequality s < b�s� is clear from (3.34). Thus
the proof is completed by the following lemma.

Lemma 3.14 Let Pn�s�/Qn�s� be the nth convergent to Brouncker’s continued fraction
(3.34). Then

Pn�s�Pn�s+2�− �s+1�2Qn�s�Qn�s+2�= �−1�n+1��2n+1�!!
2 � (3.36)

Proof The Euler–Wallis formulas for the convergents Pn/Qn look as follows:

Pn�s�= 2sPn−1�s�+ �2n−1�2Pn−2�s� , P0�s�= s 
 P−1�s�= 1 ,

Qn�s�= 2sQn−1�s�+ �2n−1�2Qn−2�s� , Q0�s�= 1 
 Q−1�s�= 0 ,

and identity (1.16) can be written as

Pn+1�s�Qn�s�−Pn�s�Qn+1�s�= �−1�n��2n+1�!!
2 � (3.37)
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Assuming that (3.36) holds for n and taking into account (3.37), we obtain

Pn+1�s�

Qn+1�s�

Pn+1�s+2�
Qn+1�s+2�

− �s+1�2 = Pn�s�
Qn�s�

Pn�s+2�
Qn�s+2�

− �s+1�2

+
{
Pn+1�s�

Qn+1�s�
− Pn�s�
Qn�s�

}
Pn+1�s+2�
Qn+1�s+2�

+
{
Pn+1�s+2�
Qn+1�s+2�

− Pn�s+2�
Qn�s+2�

}
Pn�s�

Qn�s�

=− �−1�n��2n+1�!!
2
Qn�s�Qn�s+2�

+ �−1�n��2n+1�!!
2
Qn+1�s�Qn�s�

Pn+1�s+2�
Qn+1�s+2�

+ �−1�n��2n+1�!!
2
Qn+1�s+2�Qn�s+2�

Pn�s�

Qn�s�
� (3.38)

The Euler–Wallis formula for Qn implies that

Qn�s+2�
�2s�n

=
(

1+ 2
s

)
Qn−1�s+2�
�2s�n−1

+O
(

1
s2

)
= · · ·

=
(

1+ 2
s

)n
+O

(
1
s2

)
= 1+ 2n

s
+O

(
1
s2

)



Qn�s�

�2s�n
= 1+O

(
1
s2

)

 s −→� �

By (3.37)

Pn+1�s�

Qn+1�s�
− Pn�s�
Qn�s�

= O
(

1
s2n+1

)



implying that

Pn�s�

Qn�s�
= P1�s�

Q1�s�
= s+ 1

2s
+O

(
1
s2

)



Pn+1�s+2�
Qn+1�s+2�

= P1�s+2�
Q1�s+2�

= s+2+ 1
2s
+O

(
1
s2

)
�
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Combining these formulas with (3.38), we obtain

Pn+1�s�

Qn+1�s�

Pn+1�s+2�
Qn+1�s+2�

− �s+1�2

= �−1�n��2n+1�!!
2
�2s�2n

×
{
−
(

1− 2n
s

)
+ 1

2

(
1+ 2

s

)

+1
2

(
1− 2n+2

s
− 2n
s

)
+O

(
1
s2

)}

= O
(

1
s2n+2

)



which proves the lemma. For another proof, see Ex. 4.20. �

This proof demonstrates a deep understanding of continued fractions by Brouncker.
Since Brouncker did not have much time for his discovery, it is quite likely that by
March 1655 he already had the theory of positive continued fractions to hand. Maybe
it appeared as an outcome of Brouncker’s possible revision of the geometrical proof
of the irrationality of

√
2, see (1.3), in the spirit of Viète’s Algebra Nova (1600).

Taking into account Brouncker’s mathematical interests, see for instance § 43 at the
start of Section 2.3, this looks probable. Or it could have appeared from Brouncker’s
research on musical scales; see §18 in Section 1.3. Unfortunately, there are only
very few of Brounckers papers by which to judge this. But if it were the case, then
many points in the above proof become less mysterious. To begin with, by that time
he could have already known that regular continued fractions can be obtained from
infinite decimal fractions by consecutive division and from quotients of integers by
the Euclidean algorithm. He could also have known that quotients of polynomials can
be developed into continued fractions by long division. Also he could have known
an important analogy between the quotients of polynomials and rational numbers and
have understood that in this correspondence the base 1/10 corresponds to 1/s. This is
exactly the circle of ideas involved in the proof of Brouncker’s formula. A very new
idea here is to consider a continuum of asymptotic series.

Definition 3.15 2 A formal power series

c0+
c1

s
+ c2

s2
+ c3

s3
+· · ·

is called an asymptotic expansion of a function y�s� at � if there exist sequences of
positive numbers �rn�n�0 and �An�n�0 such that∣∣∣∣∣y�s�−

n∑
k=0

ck
sk

∣∣∣∣∣� An
sn+1


 s > rn �

2 This definition is credited to Poincaré (1886).



144 Continued fractions: analysis

In other words for every n

y�s�=
n∑
k=0

ck
sk
+O

(
1
sn+1

)

 s→� �

It is clear from the definition that every function may have at most one asymptotic
expansion:

c0 = lim
s→�y�s� 
 cn = lim

s→� s
n

{
y�s�−

n−1∑
k=0

ck
sk

}

 n= 1
2
 � � �

In contrast with decimal fractions it is not true that an asymptotic expansion determines
a unique function. For instance the zero asymptotic expansion (all ck are 0’s) in 1/s
corresponds to the zero function as well as to e−s.

As soon as the basic lines of the proof are established one can reverse the arguments
and obtain a rigorous proof of Brouncker’s formula. To conclude, let us notice that
Wallis’ formula can be derived from the functional equation (3.28) satisfied by the
continued fraction (3.34). To see this one should just combine (3.29) with the proof of
Brouncker’s formula given in §59 above. Then b�1�= 4/� and by (3.31) we obtain

1×3
22

3×5
42

5×7
62

· · · �2n−1��2n+1�
�2n�2

(
2− 1

2n+1

)

< b�1�= 4
�
<

1×3
22

3×5
42

5×7
62

· · · �2n−1��2n+1�
�2n�2

4n+2
4n+3

×2 


which obviously implies (3.10).

61 Brouncker’s functional equation. In fact Brouncker proved more than (3.19).
His initial idea of constructing a b�s� satisfying s < b�s� and (3.28) eventually turned
into the remarkable and important identity

s2 =
(
�s−1�+ 12

2�s−1� +
32

2�s−1� +
52

2�s−1� + · · ·

)

×
(
�s+1�+ 12

2�s+1� +
32

2�s+1� +
52

2�s+1� + · · ·

)

 (3.39)
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valid for s > 1. The algebraic identity (3.28), which finally resulted in (3.34), can
easily be used to represent b�s� as an infinite product:

b�s�= �s+1�2

�s+3�2
B�s+4�= �s+1�2

�s+3�2
�s+5�2

�s+7�2
b�s+8�

= �s+1�2

�s+3�2
�s+5�2

�s+7�2
· · · �s+4n−3�2

�s+4n−1�2
b�s+4n�

= �s+1�
�s+1��s+5�
�s+3�2

· · · �s+4n−3��s+4n+1�
�s+4n−1�2

b�s+4n�
�s+4n+1�

�

Multipliers are grouped in accordance with Wallis’ formula,

�s+4n−3��s+4n+1�
�s+4n−1�2

= 1− 4
�s+4n−1�2




which provides the convergence of the product at least for s >−3.

Theorem 3.16 (Brouncker) Let y�s� be a function on �0
+�� satisfying (3.28) and
the inequality s < y�s� for s > C, where C is some constant. Then

y�s�= �s+1�
�∏
n=1

�s+4n−3��s+4n+1�
�s+4n−1�2

= s+ �
K
n=1

(
�2n−1�2

2s

)
(3.40)

for every positive s.

This theorem, which Brouncker actually proved, completely corresponds to the ideol-
ogy of Arithmetica Infinitorum and interpolates Wallis’ result �s = 1� to the whole
scale of positive s.

62 Brouncker’s program. Brouncker’s method relates together four different
objects:

(1) the functional equation b�s�b�s+2�= �s+1�2;

(2) the asymptotic series (3.33);

(3) the continued fraction (3.34) corresponding to this series;

(4) the infinite product locating singular points of b�s�.

63 Brouncker’s method for decimal places of �. When Huygens learned of
Wallis’ and Brouncker’s formulas he did not believe them and asked for numerical
confirmation. The rate of convergence of Wallis’ product is very slow. The same is true
for Brouncker’s continued fraction, which is not a great surprise since its convergents
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are partial sums of the telescopic series (3.21). To perform this calculation Brouncker
derived from (3.28) the important formulas

b�4n+1�= 22

1×3
42

3×5
· · · �2n�2

�2n−1��2n+1�
4
�
�2n+1� 


b�4n+3�= 1×3
22

3×5
42

· · · �2n−1��2n+1�
�2n�2

�2n+1�� �

(3.41)

If n = 6 then the continued fraction y�4× 6+ 1� = y�25� has partial denominators
equal to 2× 25 = 50, which considerably improves its convergence. Thus we obtain
the following boundaries for �:

"0

Q2k+1

P2k+1

< �< "0

Q2k

P2k




where

"0 = 4
22×42×62×82×102×122

32×52×72×92×112
= 78�602 424 992 035 381 646 � � � 


and Pj/Qj are convergents to b�25�. Putting k= 0
1
2 in the above formula we find
that

k= 0
 3�141 583 732 695 26< �< 3�144 096 999 681 42 


k= 1
 3�141 592 651 947 82< �< 3�141 592 740 820 66 


k= 2
 3�141 592 653 587 59< �< 3�141 592 653 639 71 �

Notice that even the first convergent to b�25� gives four true places of �. The
fifth convergent gives without tedious calculations 11 true places. This was the first
algebraic calculation of �. Viète in 1593 could not use his formula and instead
applied the traditional method of Archimedes to obtain nine decimal places. In 1596
Ludolph van Ceulen obtained 20 decimal places by using a polygon with 60× 229

sides. The amount of calculations made by Ludolph is incomparably large in relation
to the short and beautiful calculations of Brouncker. A detailed historical report on
Brouncker’s calculations can be found in Stedall (2000a). It looks as though this
achievement of Brouncker remained unnoticed, and even his formulas (3.41) were
only later rediscovered by Euler.

3.3 Brouncker’s method and the gamma function

64 Euler’s gamma function. Daniel Bernoulli and Goldbach posed the problem

of finding a formula extending factorial n
n! def= 1×2×· · ·×n, to real values of n. In
his letter of 13 October 1729 to Goldbach Euler solved this problem. There is no doubt
that Euler’s solution was motivated by Wallis’ interpolation method (1656, p. 133).
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It is stated in Wallis (1656, p. 169) that Brouncker found the continued fraction
(3.34) using the functional equation (3.28). Arguing by analogy one can search for an
extension ��x� to ��n+1�= n! as a solution to

��x+1�= x��x� � (3.42)

Let 0 � x < 1. Iterating (3.42), we obtain

��x�= ��x+n+1�
x�x+1� · · · �x+n� 
 n ∈ Z+ � (3.43)

Now if one can find an asymptotic formula for ��t+1� as t→+� then it can be used
to define ��x� as a limit of elementary functions. The function log��t+1� interpolates
the sequence zk = logk! at t = k.

Definition 3.17 A sequence �cn�n�0 is called convex if 2ck � ck+1+ ck−1 for k� 1.

The sequence �zk�k�0 is convex. Since log��t+1� interpolates it, one may assume that
the graph of log��t+1� is convex too. We compare the slopes of the three chords on
the coordinate plane determined by the following points: �n−1
 zn−1�, �n
 zn�; �n
 zn�,
�x+n
 log��x+n+1��; �n
 zn�, �n+1
 zn+1�. Then we obtain that

logn�
log��x+n+1�− logn!

x
� log�n+1� 


or equivalently

nxn!� ��x+n+1�� �n+1�xn! � (3.44)

Substitution of these inequalities into (3.43) shows that

nxn!
x�x+1� · · · �x+n� � ��x��

nxn!
x�x+1� · · · �x+n�

(
1+ 1

n

)x



which leads to Euler’s definition of the gamma function:

��x�= lim
n→�

nxn!
x�x+1� · · · �x+n� � (3.45)

The above arguments show that if (3.42) has a logarithmic convex solution then it is
defined by (3.45). Next,

nxn!
x�x+1� · · · �x+n� =

1
x

(
n

n+1

)x n∏
j=1

(
1+ x

j

)−1 (
1+ 1

j

)x
(3.46)

implies the existence of the limit in (3.45), since(
1+ x

j

)−1 (
1+ 1

j

)x
= 1+ x�x−1�

2j2
+O

(
1
j3

)
�
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Finally

d2

dx2
log

(
nxn!

x�x+1� · · · �x+n�
)
=

n∑
j=0

1
�x+ j�2 > 0

shows that the limit function ��x� is logarithmic convex and

d2

dx2
log��x�=

�∑
j=0

1
�x+ j�2 � (3.47)

Corollary 3.18 (The Bohr–Mollerup theorem 1922) If f�x� is a positive logarithmic
convex function on x > 0 satisfying f�1�= 1, f�x+1�= xf�x� then f�x�= ��x�.
This completes the first step (the functional equation) of Brouncker’s program, given
in §62.

65 Stirling’s formula. This is the asymptotic formula

��x�=√2�e−xxx−1/2

{
1+ 1

12x
+ 1

288x2
+· · ·+O

(
1
xn

)}

 (3.48)

where x→+�. The inequalities (3.44) can be used to conjecture that

��x�= axx−1/2e−xe��x� (3.49)

where ��x� is some function and a is some constant. We first prove a weak version of
(3.48) established to a great extent by De Moivre and Stirling in 1730; see Andrews,
Askey and Roy (1999, 1.4).

Theorem 3.19 For x > 0,

��x�=√2�xx−1/2e−x+	�x�/12x 
 0< 	�x� < 1 �

Proof It is a matter of routine calculation to show that the function xx−1/2e−xe��x�

satisfies the functional equation (3.42) if and only if

��x�−��x+1�= g�x� 
 (3.50)

where g�x�= �x+1/2� log�1+1/x�−1.

Lemma 3.20 0< g�x� < 1/�12x�x+1�� for x > 0.

Proof For �t�< 1,

1
2

ln
1+ t
1− t =

ln�1+ t�− ln�1− t�
2

=
�∑
k=0

t2k+1

2k+1
�

If t = 1/�2x+1� then

0< g�x�= 1
2t

ln
1+ t
1− t −1=

�∑
k=1

t2k

2k+1
<

1
3

�∑
k=1

t2k = 1
12x�x+1�

� �
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Notice that g�x� decays at the rate indicated because in the exponent xx−c in Stirling’s
formula c is taken as 1/2. The sum of shifted equations (3.50) shows that the only
solution to (3.50) with limx→+���x�= 0 satisfies

0< ��x�=
�∑
n=0

g�x+n� < 1
12

�∑
n=0

(
1

x+n −
1

x+n+1

)
= 1

12x

 (3.51)

see Lemma 3.20. Since, differentiating twice,

(
log�xx−1/2e−x�

)′′ = 1
x
+ 1

2x2

 g′′�x�= 1

2x2�x+1�2



the function on the right-hand side of (3.49) is logarithmic convex. Since it also
satisfies (3.42), Corollary 3.18 implies (3.49). To find a in (3.49) we apply Wallis’
formula

2
�
= lim

n

1×3
22

3×5
42

· · · �2n−1��2n+1�
�2n�2

= lim
n

�2n�!2
24nn!4 �2n+1�

= lim
n

a2�2n+1�4n+1e−4n−4+O�1/n�

a424n�n+1�4n+2e−4n−4+O�1/n� �2n+1�= 4
a2



showing that a=√2�. �

The nth term of the sum in (3.47) equals

1
�x+n�2 =

∫ +�

0
te−t�x+n� dt � (3.52)

Therefore

d2

dx2
log��x�=

∫ +�

0
te−tx

( �∑
j=0

e−tn
)
dt =

∫ +�

0

te−tx

1− e−t dt � (3.53)

The solutions to e−z = 1 are given by z = 2�ni, n ∈ Z. It follows that z/�1− e−z� is
analytic in �z�< 2� and is represented in �z�< 2� by the convergent power series

z

1− e−z =
�∑
n=0

Bn�−1�n

n! zn � (3.54)

The coefficients Bn are called Bernoulli numbers. It is easy to see that B0 = 1 and
B1 =−1/2. Since the function

z

1− e−z −1− z
2

is even, B2k+1 = 0 for k = 1, 2, � � � However, B2 = 1/6, B4 = −1/30, B6 = 1/42,
B8 =−1/30, B10 = 5/66, � � � See Kudryavcev (1936) for an account of the properties
of Bn.
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If we formally substitute the power series (3.54) into the integral in (3.53), we obtain
an asymptotic series for log��x�′′:

d2

dx2
log��x�∼

�∑
n=0

Bn�−1�n

n!
∫ +�

0
tne−tx dt

=
�∑
n=0

Bn�−1�n

xn+1
= 1
x
+ 1

2x2
+

�∑
n=2

Bn�−1�n

xn+1
� (3.55)

This substitution is justified by the following lemma.

Lemma 3.21 (Watson 1918) 3 Let f be a function on �0
+�� such that �f�t�� <M
for t > � and f�t�=∑�

k=0 ckt
k, 0< t < 2�. Then∫ +�

0
f�t�e−st dt ∼

�∑
k=0

k!ck
sk+1


 s→+� (3.56)

is the asymptotic expansion for the Laplace transform of f .

Proof It is clear that ∣∣∣∣∫ +�

�
f�t�e−st dt

∣∣∣∣< M� e−�t �
Next, for a given nonnegative integer k,∫ �

0
tke−st dt = 1

sk+1

∫ �s

0
tke−t dt

= 1
sk+1

∫ �

0
tke−t dt− 1

sk+1

∫ �

s�
tke−t dt

= ��k+1�
sk+1

+O (
e−�s/2

)



which proves (3.56) by Definition 3.15. �

Since
d2

dx2

(
log�xx−1/2e−x�

)= 1
x
+ 1

2x2



formula (3.49) with a=√2� and formula (3.55) imply that

d2�

dx2
�x�∼

�∑
n=2

Bn�−1�n

xn+1
�

Integrating this asymptotic expansion twice from x to +�, we obtain

��x�∼
�∑
k=1

B2k

2k�2k−1�x2k−1
� (3.57)

3 See also Andrews, Askey and Roy (1999, p. 614).
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This implies the important formula

��x�∼√2�xx−1/2e−x exp

{ �∑
k=1

B2k

2k�2k−1�x2k−1

}
� (3.58)

Now any number of terms in (3.48) can be found by (3.58). This formula gives the
asymptotic expansion for ��x�, completing the second step in Brouncker’s program
(§62).

66 The Newman–Schlömilch formula. We have

nxn!
x�x+1� · · · �x+n� = e

−$nx 1
x

n∏
j=1

ex/j

1+x/j 


where (see Ex. 3.13)

$n =
n∑
j=1

1
j
− logn→ $ = 0�577 215 � � �

is the Euler–Mascheroni constant. It follows that

1
��x�

= xe$x
�∏
j=1

{(
1+ x

j

)
e−x/j

}
� (3.59)

Formula (3.59) locates the singularities of the gamma function and corresponds to the
fourth step in Brouncker’s program (§62). Euler found an integral representation for
��x�. Integration by parts shows that

G�x�=
∫ +�

0
tx−1e−t dt 
 x > 0

satisfies (3.42). Clearly G�1�= 1.

Theorem 3.22 4 The sum of two logarithmic convex functions is logarithmic convex.

By Theorem 19 the Riemann sums of G�x� as well as their limit G�x� are logarithmic
convex . Then by Corollary 3.18

��x�=
∫ +�

0
tx−1e−t dt

t=log 1/s=
∫ 1

0

(
log

1
s

)x−1

ds 
 x > 0 
 (3.60)

where the substitution t = log 1/s is made in the first integral.

4 See Ex. 3.16 for a proof.
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67 Ramanujan’s formula for Brouncker’s function. The analogy between the
gamma function and Brouncker’s function can be demonstrated by an explicit formula.

Lemma 3.23 Let g�s� be a monotonic function on �0
+�� vanishing at infinity and
a > 0 a positive number. Then the functional equation

f�s�+f�s+a�= g�s� (3.61)

has a unique solution vanishing at infinity given by the formula

f�s�=
�∑
n=0

�−1�ng�s+na� � (3.62)

Proof Writing (3.61) for s �= s, s �= s+a, s �= s+2a, � � � and taking the alternating
sum of the equations thus obtained we get (3.62). The function f defined by (3.62)
satisfies limx→+� f�s�= 0 since g is monotonic and series (3.62) is telescopic. �

Taking the logarithm of (3.28) shows that f�s� = logb�s� satisfies (3.61) with
g�s�= 2 log�s+1� and a= 2. This g, however, does not vanish at +�. Differentiating
twice, we find that f�s�= �logb�′′�s� satisfies (3.61) with g�s�=−2�s+1�−2.

Theorem 3.24 The functional equation f�s�+ f�s+ 2� = −2�s+1�−2 has a unique
solution satisfying lims→+� f�s�= 0:

f�s�= �logb�′′�s�=
�∑
n=0

2�−1�n+1

�s+2n+1�2
= d2

ds2
log

[
��s+3/4�
��s+1/4�

]2

� (3.63)

Proof By Theorem 3.16

b′

b
�s�= 1

s+1
+

�∑
n=1

8
�s+4n−3��s+4n−1��s+4n+1�

� (3.64)

It follows that lims→+��logb�′′�s�= 0. By Lemma 3.23 �logb�′′�s� equals

−2
�∑
n=0

�−1�n

�s+2n+1�2
=

�∑
n=0

2
�s+4n+3�2

−
�∑
n=0

2
�s+4n+1�2

= 1
8

{
�log��′′

(
s+3

4

)
− �log��′′

(
s+1

4

)}

= d2

ds2
log

(
��s+3/4�
��s+1/4�

)2

�

see (3.47). �

It follows from (3.63) that

b�s�= eas+bR�s� 
 R�s�
def= 4

(
��s+3/4�
��s+1/4�

)2

�
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Hence

R�s�R�s+2�= 42

(
��3+ s/4���1+1+ s/4�
��1+ s/4���3+ s/4�

)2

= �s+1�2 


so R satisfies the same functional equation as y. It follows that a = b = 0. Thus we
obtain the following theorem.

Theorem 3.25 (Ramanujan) For every s > 0

b�s�= s+ �
K
n=1

(
�2n−1�2

2s

)
= 4

[
��3+ s/4�
��1+ s/4�

]2

= R�s� �

Having found Ramanujan’s formula, we can give a short proof of it. By Theorem 3.16
it is sufficient to check that R�s� > s for large s. This is equivalent to

�2�s+1/2�
�2�s�

> s− 1
4
�

Furthermore, Stirling’s formula implies

��s+1/2�
��s�

=√s
(

1− 1
8s
+ 1

128s2
+· · ·

)

 (3.65)

which proves the required inequality if s→+�. See Ex. 3.18 for the third proof of
Theorem 3.25.

Applying Theorem 3.25 to the case s = 1 and observing that, by Brouncker’s
formula, y�1�= 4/� we obtain

��1/2�=√� � (3.66)

Combining Brouncker’s formula with Euler’s definition (3.45) of the gamma func-
tion, we immediately see that the definition of b�s� as an infinite product (3.40)
is completely analogous to Euler’s definition of the gamma function. A difference
between ��x� and b�s� is that whereas ��x� is logarithmic convex, (3.47), b�s� is
logarithmic concave, (3.63).

A good introduction to the theory of the gamma function can be found in Artin
(1931). See Havil (2003) for a nice elementary presentation and Whittaker and Watson
(1902) as well as Andrews, Askey and Roy (1999) for an advanced theory.

Exercises

3.1 Show that the numerator of the nth convergent to the continued fraction

a+ b
c +
b

c +
b

c + · · ·
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is the coefficient of xn in the expansion of

a+bx
1− cx−bx2

= a+P1x+P2x
2+· · · �

Show that the denominators Qn of the nth convergents to this fraction satisfy

1
1− cx−bx2

= 1+Q1x+Q2x
2+· · ·

(Smith 1888, §360, p. 458).

3.2 Assuming that all bk 	= 0 prove Stern’s identity (Perron 1957):

b1

b1 +
b2

b2 +
b3

b3 + · · ·
≈ b0

b0 +
b0

b1 +
b1

b2 +
b2

b3 + · · ·
�

Hint: Apply the equivalence transform with rn= bn−1/bn, n� 1, r0; see Theorem
3.6.

3.3 If �an�n�1 is a sequence such that an 	= 0, r, −1 then the continued fraction

1+ a1

1 +
�a1− r��a1+1�

1 +
a1a2

1 +
�a2− r��a2+1�

1 +
a2a3

1 + · · ·

may converge only either to 0 or to 1+r (Wall 1948; see Perron [1957, Theorem
1.5]).

3.4 Prove that an infinite continued fraction with positive �an�n�1 and �b2n�n�1

b0+
a1

0 +
a2

b2 +
a3

0 +
a4

b4 +
a5

0 +
a6

b6 +
a7

0 + · · ·

always diverges (Broman 1877; see Perron 1957, Theorem 2.4)

3.5 Prove that the continued fraction (s > 0)

1p

s +
2p

s +
3p

s +
4p

s +
5p

s + · · ·

converges if and only if p� 2.

3.6 Show that
√

2= 1+ 1
2 +

1×2
3 +

3×4
3 +

5×6
3 + · · ·

(Smith 1888, Examples XXXVII, 31, p. 457).

Hint: Put a= 3, yn = 2n+2, n= 0
1
 � � � in Theorem 3.12 and combine it with
the binomial formula

√
1+x = 1+ 1

2

(
x− x

2

4
+· · ·+ �−1�n−1 1×3 · · ·× �2n−3�

4×6×· · ·× �2n� x
n+· · ·

)
evaluated at x = 1.
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3.7 Show that

1− 1√
2
= 1

2 +
2×3

1 +
4×5

1 +
6×7

1 + · · ·

(Smith 1888, Examples XXXVII, 32, p. 458). Deduce from here that
√

2= 1+ 1
1 +

2×3
1 +

4×5
1 +

6×7
1 + · · · (E3.1)

Hint: Put a= 1, yn = 2n+2, n= 0
1
 � � � in Theorem 3.12 and combine it with
the binomial formula

1√
1+x =1− 1

2
x+ 1×3

2×4
x2+· · ·

+ �−1�n−1 1×3×· · ·× �2n−1�
2×4× � � �× �2n� xn+· · ·

evaluated at x = 1.
3.8 Apply Theorems 1.4 and 1.7 to prove the convergence of continued fraction

(3.34) for s � 1.
Since Pn�s�� Pn�1�= �2n+1�!! for s � 1, for such an s we have∣∣∣∣Qn−1

Pn−1

− Qn
Pn

∣∣∣∣� �2n−1�!!2
�2n+1�!!�2n−1�!! =

1
2n+1




implying the existence of limn Qn/Pn (and hence of limn Pn/Qn).
3.9 Prove that

b�4n�= 32

1×5
72

5×9
· · · �4n−1�2

�4n−3��4n+1�
�4n+1�b�0� 


b�4n+2�= 1×5
32

5×9
72

· · · �4n−3��4n+1�
�4n−1�2

�4n+1�
b�0�




where b�0�= 1/b�2�.
3.10 Prove that

�

4
= 2×4

32

4×6
52

6×8
72

8×10
92

· · ·
Hint: Rearrange the multipliers in Wallis’ formula.

3.11 Prove that

� = 3+ 12

6 +
32

6 +
52

6 +
72

6 +
92

6 + · · · �

Hint: Apply Brouncker’s formula b�s�b�s+2�= �s+1�2 with s = 1.
3.12 Prove that for any function f�s� defined on �0
2
 there is a unique solution

z�s� to the equation z�s�z�s+ 2� = �s+ 1�2 satisfying z�s� = f�s� on �0
2
. If
f�s� 	= y�s� for at least at one point in �0
2
, then z�s� � s infinitely often on
s > 0.
Hint: Apply Theorem 3.16.
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3.13 Prove that the sequence

$n = 1+ 1
2
+· · ·+ 1

n
− logn

has a positive limit.
Hint: Consider �n = $n−1/n and observe that

$n+1−$n =
1

n+1
− log

(
1+ 1

n

)



�n+1−�n =
1
n
− log

(
1+ 1

n

)
�

Apply the elementary inequality

1
n+1

< log
(

1+ 1
n

)
<

1
n

to deduce that $n monotonically decreases and �n monotonically increases.
Notice that �n < $n.

3.14 Prove that a twice-differentiable function f�x�with continuous second derivative
f ′′�x� on �0
+�� is logarithmic convex if and only if f�x� > 0 and f�x�f ′′�x�−
�f ′�x��2 � 0.
Hint: Compute the second derivative of logf�x�.

3.15 Prove that if ai, bi, ci (i= 1
2) are real numbers satisfying

ai > 0 
 aici−b2
i � 0 


then
a1+a2 > 0 
 �a1+a2��c1+ c2�− �b1+b2�

2 � 0 �

Hint: Consider quadratic polynomials pi�x�= aix2+2bix+ci and observe that
pi�x�� 0. Hence p1�x�+p2�x�� 0.

3.16 Prove Theorem 19.
Hint: Assuming that both functions are smooth, apply Ex. 3.14 and Ex. 3.15;
see Artin (1931) for details. Apply an approximation to cover the general case.

3.17 Let a+ b = c+d. Assuming that no multiplier in the infinite product below
vanishes, prove that

�∏
j=0

�a+nj��b+nj�
�c+nj��d+nj� =

��c/n���d/n�

��a/n���b/n�
�

Hint: Apply (3.59). See Whittaker and Watson (1902, §12.13) for details.
3.18 Deduce Theorem 3.25 from Ex. 3.17 and Theorem 3.16.
3.19 Prove Euler’s functional equation

��s���1− s�= �

sin�s
�
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Hint: Combine (3.16) with (3.59). Apply the identity

1= 1
��1�

= e$
�∏
k=1

(
1+ 1

k

)
e−1/k �

3.20 Check that the first few terms in Stieltjes’ continued fraction for ��x� are
given by

��x�= 1
12x +

2
5x +

53
42x +

1170
53x +

22 999
429x + · · · �

See Khovanskii (1958, Chapter III, §11).
3.21 Prove that Brouncker’s continued fraction converges for every s > 0.

Hint: Put Qn = �2n+1�!!Dn. Convergence occurs if and only if

a1a2 · · ·an
QnQn−1

= �2n−1�!!2
�2n+1�!!�2n−1�!!DnDn−1

= 1
�2n+1�DnDn−1

→ 0�

The Euler–Wallis formulas

Dn =
2s

2n+1
Dn−1+

2n−1
2n+1

Dn−2

imply that �2n+1�DnDn−1 = 2sD2
n−1+ �2n−1�Dn−1Dn−2. Hence

�2n+1�DnDn−1 = 2s
(
D2

0+D2
1+· · ·+D2

n−1

)
�

Next, D2
n > �n+1�−1 for even n. Indeed if D2

n−2 > �n−1�−1 then

D2
n >

(
2n−1
2n+1

)2

D2
n−2 >

(
2n−1
2n+1

)2 1
n−1

>
1

n+1



as elementary algebra shows. It follows that

�2n+1�DnDn−1 > 2s
(

1+ 1
3
+ 1

5
+· · ·+ 1

2m+1

)



where m is the greatest number satisfying 2m� n−1.
3.22 Simplify the proof of Ex. 3.21 for s � 1.

Hint: If s = 1 then Dn lies between Dn−1 and Dn−2, implying the convergence.
If s > 1 then Dn�s� > Dn�1�, again implying the convergence.
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Continued fractions: Euler

4.1 Partial sums

68 Euler’s first approach. Theorem 3.12 says that convergents of some continued
fractions coincide with partial sums of series. This phenomenon was first studied in
detail by Euler (1744). Motivated by Wallis’ product we will slightly modify Euler’s
original arguments and relate them to D. Bernoulli’s inverse problem of reconstructing
continued fractions from their convergents. In what follows Ĉ denotes the extended
complex plane C∪�.

Theorem 4.1 (Bernoulli 1775) A sequence �dn�n�0 in Ĉ is the sequence of con-
vergents to a continued fraction q0+K�

n=1�pn/qn� if and only if d0 	= �, dn 	= dn−1,
n= 1
2
3
 � � �

Proof If dn = Pn/Qn, n = 0
1
 � � � , is a sequence of convergents to a continued
fraction then d0 = q0 	= � and by (1.16)

PnQn−1−Pn−1Qn = �−1�n−1p1 · · ·pn 	= 0 �

Therefore Qn−1 and Qn cannot both vanish. Similarly, if Qn = 0 then Pn 	= 0. This
shows that dn 	= dn−1.

To prove the converse we assume that the numerators of the convergents are dn and
the denominators all equal 1. Let all the dn be finite. Then the Euler–Wallis recurrence
(1.15) takes the form

dn = qndn−1+pndn−2


1= qn+pn�
The determinant of this linear system in two unknowns pn and qn is dn−1−dn−2 	= 0.
It follows that

pn =
dn−1−dn
dn−1−dn−2


 qn =
dn−dn−2

dn−1−dn−2


 n= 2
3
 � � � (4.1)

158
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The initial values are q0 = d0, p1 = d1−d0, q1 = 1. If, say, dn = � then by the
assumption both dn−1 and dn+1 are finite. We put Pn = 1, Qn = 0 and by (1.15) obtain
the system

1= qndn−1+pndn−2


0= qn+pn �
The second equation shows that qn =−pn, and

qn =
1

dn−1−dn−2


 pn =−
1

dn−1−dn−2

follows from the first. �

Without stating Bernoulli’s theorem explicitly, Euler found a continued fraction
with convergents equal to the partial sums of a given series.

Theorem 4.2 (Euler 1744) Let �cn�n�0 be a sequence of nonzero complex numbers.
Then

n∑
k=0

ck =
c0

1 −
c1/c0

1+ c1/c0 −
c2/c1

1+ c2/c1 − · · · −
cn/cn−1

1+ cn/cn−1

� (4.2)

Proof We apply Theorem 4.1 to dn =
∑n
k=0 ck, n� 0. Since cn 	= 0, we have dn 	= dn−1

for n= 1
2
 � � � Next, d0 = c0 	= �. Since dn 	= �, formula (4.1) shows that

pn =
dn−dn−1

dn−2−dn−1

=− cn
cn−1




qn =
dn−dn−2

dn−1−dn−2

= cn+ cn−1

cn−1


 n= 2 
3 
 � � �

Since q0 = d0 = c0, p1 = d1−d0 = c1, q1 = 1, Theorem 4.1 shows that
n∑
k=0

ck = c0+
c1

1 −
c2/c1

1+ c2/c1 −
c3/c2

1+ c3/c2 − · · · −
cn/cn−1

1+ cn/cn−1

� (4.3)

The application to (4.3) of the elementary identity

c0+
c1

1+w =
c0

1 −
c1/c0

1+ c1/c0+w
proves (4.2). �

If we put

#0 = c0
 ck = #0#1 · · ·#k
 k= 1 
2 
 � � � 
 (4.4)

then (4.3) and (4.2) turn into the beautiful formula
n∑
k=0

#0#1 · · ·#k =
#0

1 −
#1

1+#1 − · · · −
#n

1+#n
� (4.5)
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Definition 4.3 The continued fraction (4.5) for which #k satisfies (4.4) is called the
Euler continued fraction for the series

∑
ck.

An interesting Euler continued fraction is obtained from Ex. 4.41. For this convergent Euler’s series we
have #n = �p+ns�/�q+ns+ s�, n= 0
1
 � � � Applying obvious equivalent transforms to (4.5), we obtain

p

q+ s −
�p+ s��q+ s�
p+q+3s −

�p+2s��q+2s�
p+q+5s − · · · =

p

q−p 
 (4.6)

or

p+ s = �p+ s��q+ s�
p+q+3s −

�p+2s��q+2s�
p+q+5s −

�p+3s��q+3s�
p+q+7s − · · · �

Putting s = 0, we see that the periodic continued fraction

pq

p+q −
pq

p+q −
pq

p+q −
pq

p+q − · · ·

converges to the smallest root, X = p, of the quadratic equation

X2− �p+q�X+pq = 0 �

69 Applications. We need a weak version of Abel’s theorem. For Abel’s theorem
see for instance Hairer and Wanner (1996, p. 248) or Rudin (1964, Theorem 8.2).

Lemma 4.4 If 0< un+1 � un, n� 0 and limn un = 0 then

lim
r→1−0

�∑
k=0

�−1�kukr
k =

�∑
k=0

�−1�kuk �

Proof For every even n and 0< r < 1


0< Un�r�
def=

�∑
k=n
�−1�kunr

n

= unrn− �un+1r
n+1−un+2r

n+2�−· · ·� un �

It follow that for every even n

n−1∑
k=0

�−1�kuk � lim inf
r→1−0

U0�r�� lim sup
r→1−0

U0�r��
n−1∑
k=0

�−1�kuk+un �

Passing to the limit in n completes the proof. �
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By Theorem 4.2 every series with nonzero terms corresponds to an Euler continued
fraction. Let us compute the Euler continued fraction for Leibniz’s series

�

4
= arctan x

∣∣∣∣1
0

=
∫ 1

0

dx

1+x2
= lim
r→1−0

∫ r

0

�∑
k=0

�−1�kx2k dx

= lim
r→1−0

�∑
k=0

�−1�k
∫ r

0
x2k dx = lim

r→1−0

�∑
k=0

�−1�kr2k+1

2k+1

= 1− 1
3
+ 1

5
− 1

7
+ 1

9
−· · ·

(see Lemma 4.4). Let c0 = 0 and cn = �−1�n−1/�2n−1� for n� 1. Resolving (4.4) in
#k, we obtain

#1 = c1 = 1
 #2 =
c2

c1

=−1
3

 #3 =−

3
5

, � � � 


#k =−
2k−3
2k−1


 k= 2
3
 � � �

It follows from (4.5) that

�

4
= 1

1 +
1/3

1−1/3 +
3/5

1−3/5 +
5/7

1−5/7 + · · ·

= 1
1 +

1
3−1 +

32

5−3 +
52

7−5 + · · · =
1
1 +

1
2 +

32

2 +
52

2 + · · · 


which is (3.19). Similarly one can obtain (3.25):

ln 2=
∫ 1

0

dx

1+x =
∫ 1

0

�∑
k=0

�−1�kxk dx =
�∑
k=0

�−1�k+1

k+1

= 1
1 +

1/2
1−1/2 +

2/3
1−1/3 +

3/4
1−3/4 + · · · =

1

1+ �
K
n=1

(
n2/1

) �
Another of Euler continued fractions is obtained from the series

1
e
=

�∑
k=0

�−1�k

k! �

By Theorem 4.2

1
e
= 1− 1

1 +
1/2

1−1/2 +
1/3

1−1/3 +
1/4

1−1/4 + · · ·

= 1− 1
1 +

1
2−1 +

2
3−1 +

3
4−1 + · · ·

= 1− 1
1 +

1
1 +

2
2 +

3
3 + · · · +

n

n + · · · 
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which implies that

e= 2+ 2
2 +

3
3 + · · · +

n

n + · · · � (4.7)

70 Continued fractions and sums: general case. Any convergent Pn/Qn of a
continued fraction K�

k=1�pk/qk� can be represented as

Pn
Qn

= P1

Q1

−
(
P1

Q1

− P2

Q2

)
+
(
P3

Q3

− P2

Q2

)
−
(
P3

Q3

− P4

Q4

)
+ · · ·

= p1

Q1

− p1p2

Q1Q2

+ p1p2p3

Q2Q3

− p1p2p3p4

Q3Q4

+· · ·+ �−1�n−1p1 · · ·pn
Qn−1Qn


 (4.8)

see (1.16). By (1.15) qk = �Qk − pkQk−2�Qk−1
−1, which, followed by equivalence

transforms, gives the continued fraction

Pn
Qn

= n

K
k=1

(
pk

Qk−pkQk−2/Qk−1

)

= p1

Q1 +
p2Q1

Q2−p2 +
p3Q1Q2

Q2−p3Q1 + · · · +
pnQn−2Qn−1

Qn−pnQn−2

� (4.9)

In (1750b) Euler applied these formulas to transform the sum

x1

y1

− x2

y2

+ x3

y3

− x4

y4

+ · · · + �−1�n−1 xn
yn

(4.10)

into a continued fraction. Suppose that xk 	= 0. Then p1, � � � , pn can be found by
comparing the numerators in (4.8) and (4.10):

p1 = x1
 p2 =
x2

x1


 p3 =
x3

x2


 � � � 
 pn =
xn
yn
�

Similarly, comparing the denominators in (4.8) and (4.10) we get

Q1 = y1
 Q2 =
y2

y1


 Q3 =
y1y3

y2


 Q4 =
y2y4

y1y3


 Q5 =
y1y3y5

y2y4


 � � �

Substituting these expressions into (4.9) and applying equivalence transforms, we
obtain for n= 5

P5

Q5

= x1

y1 +
y1x2/x1

y2/y1−x2/x1 +
y2x3/x2

y1y3/y2−x3y1/x2

+
y3x4/x3

y2y4/y1y3−x4y2/x3y1 +
y4x5/x4

y1y3y5/y2y4−x5y1y3/x4y2

= x1

y1 +
y2

1x2

y2x1−y1x2 +
x1y

2
2x3

y3x2−y2x3 +
x2y

2
3x4

y4x3−y3x4 +
x3y

2
4x5

y5x4−y4x5

�
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Theorem 4.5 (Euler 1750b, §2) For any nonzero sequences �xn�n�0, �yn�n�1, satis-
fying x0 = 1, and any integer n� 1

n∑
k=1

�−1�k−1 xk
yk
= x1

y1+
n

K
k=2

(
xk−2y

2
k−1xk

ykxk−1−yk−1xk

) �

Proof This follows from Theorem 4.2. Just put ck−1 = �−1�k−1xk/yk for k= 1, 2, � � �
and apply equivalence transforms. �

Integrating by using the Maclaurin series for the denominator shows that∫ 1

0

xn−1 dx

1+xm = 1
n
− 1
m+n +

1
2m+n −

1
3m+n + · · · �

Putting xk = 1, yk = �k−1�m+n in Theorem 4.5 we obtain∫ 1

0

xn−1 dx

1+xm = 1
n +
n2

m +
�m+n�2
m +

�2m+n�2
m + · · · 


which gives Brouncker’s formula if n = 1, m = 2 and (3.25) if n = 1, m = 1. For
m= n= 2 we again obtain (3.25). Other applications of Theorem 4.5 can be found in
Exs. 4.8–4.10.

4.2 Euler’s version of Brouncker’s method

71 Euler’s quadrature formulas. According to elementary geometry, the half-
length S�x� of an arc completing a chord of length 2x on T is

S�x�= arcsin x

(apply sin∠AOB = �AP�/�OA�, see Fig. 1.2 with the x- and y- axes interchanged.
Since S′�x�= �1−x2�−1/2, the binomial theorem followed by integration implies

arcsin x = x+ 1
2
x3

3
+ 1×3

2×4
x5

5
+ 1×3×5

2×4×6
x7

7
+ · · · (4.11)

Hence
�

2
= arcsin�1�= 1+ 1

2
1
3
+ 1×3

2×4
1
5
+ 1×3×5

2×4×6
1
7
+ · · ·

This shows that the coefficients in (4.11) are related in some way to �. To find this
relationship Euler applies the Brouncker–Wallis interpolation method to the Taylor
series of �arcsin x�′ = 1/

√
1−x2, which is given by

1√
1−x2

= 1+ 1
2
x2+ 1×3

2×4
x4+ 1×3×5

2×4×6
x6+ · · · (4.12)
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Namely, he associates with (4.12) a positive sequence �xn�n�0 satisfying

x0x1 =
1
2

 x2x3 =

3
4

 x4x5 =

5
6

 x6x7 =

7
8

 x8x9 =

9
10

, � � �

The choice of such a sequence is not unique. So an extra requirement is that the
intermediate products x1x2, x3x4, x5x6, � � � interpolate the mediants, namely

x1x2 =
2
3
= 1+3

2+4

 x3x4 =

4
5
= 3+5

4+6

 x5x6 =

6
7
= 5+7

6+8

 � � � 


implying that

xnxn+1 =
n+1
n+2


 n= 0
1
2
 � � � (4.13)

Then

x0 =
1

2x1

= 1×3
22
x2 =

1×32

22×4x3

= 1×32×5
22×42

x4 = · · · 


which can be rewritten as follows

x0 =
1×3
2×2

3×5
4×4

· · · �2n−1��2n+1�
2n×2n

x2n


x0 =
1×3
2×2

3×5
4×4

· · · �2n−1��2n+1�
2n×2n

2n+1
2n+2

1
x2n+1

�

(4.14)

By Wallis’ formula (3.10)

x0 =
2
�

lim
n
x2n
 x0 =

2
�

1
limn x2n+1

�

Hence if x0 = 2/�, then limn x2n and limn x2n+1 exist and equal 1. With this method
Euler in (1750b) developed infinite products of the Wallis type into infinite continued
fractions. To pass from the rational numbers in (4.13) to integers Euler considers an
auxiliary sequence yn = �n+1�xn, n� 0, satisfying

y0 =
2
�

 ynyn+1 = �n+1�2
 n= 0
1
2
 � � � (4.15)

Formula (4.15) calls to mind Brouncker’s formula (3.28). Although Euler’s original
calculations were motivated by algebraic identities (1750b, §§38–40), as in Brouncker’s
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case they can be obtained by an asymptotic formula for �yn�n�0. This formula follows
easily from elementary identities known to Euler:

∑
j>k

1
j2
= 1
k
−∑
j>k

{
1

j�j−1�
− 1
j2

}
= 1
k
−∑
j>k

1
j2�j−1�

= 1
k
− 1

2k�k+1�
+ 1

2

∑
j>k

{
1
j−1

+ 1
j+1

− 2
j

}
−∑
j>k

1
j2�j−1�

= 1
k
− 1

2k�k+1�
+∑
j>k

{
1

j�j2−1�
− 1
j2�j−1�

}

= 1
k
− 1

2k�k+1�
−∑
j>k

1
j2�j2−1�

= 1
k
− 1

2k2
+O

(
1
k3

)

 (4.16)

and

log�1−x�=−
∫ x

0

dt

1− t =−x+O
(
x2
)

 x→ 0 


Lemma 4.6 The sequence yn satisfies

yn = n+
1
2
+ 1

8n
+O

(
1
n2

)
�

Proof Formulas (3.13), (4.14) and (4.16) imply

logx2k =
∑
j>k

log
(

1− 1
4j2

)
=− 1

4k
+ 1

8k2
+O

(
1
k3

)
�

It follows that

x2k = exp logx2k = 1− 1
2�2k�

+ 5
8�2k�2

+O
(

1
k3

)
and therefore

x2k+1 =
2k+1
2k+2

1
x2k

= 1− 1
2�2k+1�

+ 5
8�2k+1�2

+O
(

1
k3

)
�

Hence

yn = �n+1�
{

1− 1
2n
+ 5

8n2
+O

(
1
n3

)}
= n+ 1

2
+ 1

8n
+O

(
1
n2

)
as stated. �

Now let �zn�n�0 be defined by

y0 =
1
z0


 yn = n+
1
zn

 n= 1
2
 � � � (4.17)
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Lemma 4.7 (Euler 1750b) The sequence �zn�n�0 in (4.17) satisfies

zn = 1+ 1
1/�n+1�+ zn+1−1


 n= 0 
1 
2 
 � � �

Proof By (4.15)

zn =
1

yn−n
= yn+1

�n+1�2−nyn+1

= �n+1�+1/zn+1

�n+1�−n/zn+1

= �n+1�zn+1+1
�n+1�zn+1−n

= 1+ 1
−n/�n+1�+ zn+1




which proves the lemma. �

Iterating Lemma 4.7, we obtain

2
�
= y0 =

1
z0

= 1
1 +

1
1+ z1−1

= 1
1 +

1
1 +

1
1/2+ z2−1

= 1
1 +

1
1 +

1
1/2 +

1
1/3+ z3−1

= 1
1 +

1
1 +

1
1/2 + · · · +

1
1/n+ zn−1

= 1
1 +

1
1 +

1×2
1 +

2×3
1 +

3×4
1 + · · · +

�n−1�n
1+n�zn−1�

�

By Corollary 3.10 the continued fraction in the above formula converges. Since zn−1>
0 for large n (limn zn = 2 by Lemma 4.6) it converges to 2/� by Markoff’s test
(Theorem 3.2). In fact, one can show that zn−1> 0 for all n. It follows that

�

2
= 1+ 1

1 +
1×2

1 +
2×3

1 +
3×4

1 + · · · +
�n−1�n

1 + · · · � (4.18)

Let us consider another sequence �zn�n�0:

y0 =
1
z0


 yn = n+
1
2
+ 1
zn

 n= 1 
2 
 � � � (4.19)

Then zn = 8n+O�1� by Lemma 4.6.

Lemma 4.8 (Euler 1750b) The sequence �zn�n�0 in (4.19) satisfies

zn = 4n+6+ 16�n+1�2

zn+1− �4n+2�

 n= 0 
1 
2 
 � � �
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Proof By (4.15),

zn =
1

yn− �n+1/2�
= yn+1

�n+1�2− �n+1/2�yn+1

= �n+3/2�+1/zn+1

�n+1�2− �n+1−1/2��n+1+1/2�− �n+1/2�/zn+1

= �n+3/2�zn+1+1
zn+1/4− �n+1/2�

= �4n+6�zn+1+4
zn+1− �4n+2�

= 4n+6+ 4+ �4n+2��4n+6�
zn+1− �4n+2�

�

Observing that 4+ �4n+ 2��4n+ 6� = 4+ �4n+ 4�2− 4 = 16�n+ 1�2, we obtain the
required formula. �

Iterating Lemma 4.8, we obtain

2

�
= y0 =

1
2
+ 1
z0

= 1
2
+ 1

6 +
16
z1−2

= 1
2
+ 1

6 +
16×12

8 +
16×22

z2−6

= 1
2
+ 1

6 +
16×12

8 +
16×22

8 +
16×32

z3−10

= 1
2
+ 1

6 +
16×12

8 +
16×22

8 + · · · +
16×n2

zn− �4n−2�

= 1
2
+ 1

6 +
4×12

2 +
22

2 +
32

2 +
42

2 + · · · +
n2

�zn− �4n−2��/4
�

Since

zn− �4n−2�
4

−2= zn−4n−6
4

> 0

for sufficiently large n (notice that zn = 8n+O�1�), Markoff’s test implies the inter-
esting formula

�
K
n=1

(
n2

2

)
= 2

�−3
4−� (4.20)

relating the proportion determined by � in �3
4
 to a simple continued fraction.
Compare this formula with (3.25). We return to this topic later; see Theorem 4.27. An
extension of this method can be found in Exercise 4.12. See also Exercise 4.16.

72 The equation y�s�y�s+1�= �s+1�2. We now combine Brouncker’s and Euler’s
methods (see §61 in Section 3.2 and §71 above) to obtain analytic formulas for a
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solution to this equation. If s � y�s� then y�s� = �s + 1�2/y�s + 1� � s + 1.
Hence

y�s�= �s+1�2

�s+2�2
y�s+2�= �s+1�2�s+3�2 · · · �s+2n−1�2

�s+2�2�s+4�2 · · · �s+2n�2
y�s+2n�

= �s+1�
�s+1��s+3�
�s+2�2

· · · �s+2n−1��s+2n+1�
�s+2n�2

y�s+2n�
s+2n+1

→ �s+1�
�∏
n=1

�s+2n−1��s+2n+1�
�s+2n�2

= y�s� �

Applying formula (3.59) and Ex. 3.13, we obtain that

2
� 2�s/2+1�
�2��s+1�/2�

= �s+1�2

2
e$

�∏
j=1

{
�s+2j+1�2

�s+2j�2
e−1/j

}

= s+1
2

lim
n→��2n+1+ s�e$−∑n

j=1 1/j
n∏
j=1

�s+2j−1��s+2j+1�
�s+2j�2

= �s+1�
�∏
j=1

�s+2j−1��s+2j+1�
�s+2j�2

= y�s� � (4.21)

Elementary calculations using (3.65) show that

2
�2�s+1/2+1/2�
�2��s+1�/2�

= s+ 1
2
+ 1

8s
+O

(
1
s2

)
(compare this with Lemma 4.6). Therefore the only solution y�s� satisfying s � y�s�
for all sufficiently large s to the functional equation is given by the infinite product
obtained above. If z�s�= 1/�y�s�− s� then

z�s�= 1+ 1

1/�s+1�+ z�s+1�−1
�

Iterations result in the continued fraction

y�s�= s+ 1

1 +
�s+1�

1 +
�s+1��s+2�

1 +
�s+2��s+3�

1 + · · · 


which coincides with (4.18) when s = 1. Similarly,

y�s�= s+ 1

2
+ 1

4s+6 +
4�s+1�2

2 +
�s+2�2

2 +
�s+3�2

2 + · · · �

The function y�s� is closely related to Brouncker’s function b�s�, as the following
formula shows (see Theorem 3.25):

y�s�= 2s2

b�2s−1�

 s > 1/2 � (4.22)

We discuss another continued fraction for y�s� in §95 at the start of Section 4.9.
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4.3 An extension of Wallis’ formula

73 Euler’s form of Wallis’ product. Arithmetica Infinitorum by Wallis was well
known to Euler. It was on his reading list when he studied mathematics under the super-
vision of Johann Bernoulli in Basel; see Calinger (1966). Moreover, A. P. Yushkevich
(see Kramer 1961, p. 84), found in the Archive of the Academy of Sciences of
the USSR Euler’s copy of this book, which contained numerous annotations by Eu-
ler. Therefore the incomplete proof of Brouncker’s formula given in §191 of Wallis
(1656) could not have escaped Euler’s attention. Euler undertook tremendous efforts
to recover Brouncker’s original proof, see Euler (1750b, §§17–20). He failed to do
this but instead made many important discoveries. The first, very natural, idea was to
extend Wallis’ formula to quotients of integrals of the I�p
 q� type. This could give
him some freedom in the manipulations with parameters, in the style of §71 above,
to obtain finally Brouncker’s formula (3.39). This program was realized in Euler’s
dissertation (1750a), which was immediately followed by (1750b), where in §20 Euler
refers to (1750a). The basic ideas had appeared already, in the third letter of Euler
to Goldbach (8 January 1730), OO0717,1 in which Euler obtained his formula (3.45)
for ��x�.

Since he was interested in extensions of (3.14) Euler used the integrals∫ 1

0

xm dx√
1−x2

=
∫ �/2

0
sinm 	d	

in the algebraic, not the trigonometric, form. Euler’s approach leads to interesting
conclusions. To get some guidance on which quotients to consider Euler first observed
that, for every nonnegative integer �, the integrals in (3.11) satisfy

I���
def=
∫ 1

0

x2�

√
1−x2

dx
∫ 1

0

x2�+1

√
1−x2

dx = 1
2�+1

�

2
� (4.23)

We prove now a lemma from Euler (1750b, 1768, Chapter VIII, §332), which Euler
left without a proof.

Lemma 4.9 Formula (4.23) holds for all � satisfying � >−1/2.

Proof If m> 0 then integration by parts,∫ 1

0

xm+1

√
1−x2

dx =−
∫ 1

0
xm d

√
1−x2 =m

∫ 1

0
�1−x2�

xm−1 dx√
1−x2

results in the formula ∫ 1

0

xm+1

√
1−x2

dx = m

m+1

∫ 1

0

xm−1

√
1−x2

dx �

1 This number gives the index in the Euler Archive www.eulerarchive.com.
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Applying this formula for m= 2�+1 and m= 2�+2, we obtain

�2�+3�I��+1�= �2�+3�
∫ 1

0

x2�+2

√
1−x2

dx
∫ 1

0

x2�+3

√
1−x2

dx

= �2�+3�
2�+1
2�+2

∫ 1

0

x2�

√
1−x2

dx
2�+2
2�+3

∫ 1

0

x2�+1

√
1−x2

dx

= �2�+1�I��� �

Hence �→ �2�+1�I��� is periodic on �−1/2
+�� with period 1. Let n= ��
 be the
greatest integer not exceeding �. Since x2n � x2� > x2n+2 and x2n+1 � x2�+1 > x2n+3 if
0< x < 1,

2n+3
2n+1

�

2
� �2�+1�I��� >

2n+1
2n+3

�

2



by (4.23). It follows that lim�→+��2�+ 1�I��� = �/2. Hence the periodic function
�→ �2�+1�I��� must be constant. �

In these terms Wallis’ result looks as follows∫ 1
0 x

2n�1−x2�−1/2dx∫ 1
0 x

2n+1�1−x2�−1/2dx
=
(

1×3×5×· · ·× �2n−1�
2×4×6×· · ·×2n

)2
�

2
�2n+1� 


∫ 1

0

x2n dx√
1−x2

∫ 1

0

x2n+1 dx√
1−x2

= 1
2n+1

�

2
�

(4.24)

Euler’s form of Wallis’ formula has an interesting application, indicated by Euler in
his letter to Stirling (July 27, 1738).

Corollary 4.10

1+ 1
32
+ 1

52
+ 1

72
+ 1

92
+ 1

112
+ · · · = �

2

8
� (4.25)

Proof To get (4.25) Euler multiplied (4.11) by �1−x2�−1/2 and integrated:∫ x

0

arcsin t dt√
1− t2 =

�∑
n=0

1×3× · · · × �2n−1�
2×4× · · · × �2n��2n+1�

∫ x

0

t2n+1 dt√
1− t2 � (4.26)

By (4.24), ∫ 1

0

t2n+1 dt√
1− t2 =

2×4×6× · · · × �2n�
3×5×7× · · · × �2n+1�




which shows that the series in (4.26) converges uniformly on �0
1
. Passing to the
limit (x→ 1−0) in (4.26) and calculating the integral, we obtain (4.25). �
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The change of variables x �= rn/2 in (4.23) followed by substitution of � with
1/n−1/2>−1/2 transforms (4.23) into

∫ 1

0

dr√
1− rn

∫ 1

0

rn/2dr√
1− rn =

�

n
� (4.27)

74 Euler’s products and the lemniscate of Bernoulli (see Fig. 4.1). The fol-
lowing lemma segregates a class of integrals suitable for Wallis’ interpolation. On the
way it generalizes another of Wallis’ formulas (see Zeuthen 1903)2

∫ 1

0

√
x3�1−x�n−1 dx = 2n+5

2n

∫ 1

0

√
x3�1−x�n dx �

Lemma 4.11 (Euler 1768, Chapter IX, §360) For positive m
n
k∫ 1

0
xm−1�1−xn�k/n−1 dx = m+k

m

∫ 1

0
xm+n−1�1−xn�k/n−1 dx �

Proof The formula of the lemma follows from the identity∫ 1

0
xm+n−1�1−xn�k/n−1 dx =−1

k

∫ 1

0
xmd�1−xn�k/n

= m
k

∫ 1

0
xm−1�1−xn�k/n−1 dx− m

k

∫ 1

0
xm+n−1�1−xn�k/n−1 dx �

�

Theorem 4.12 (Euler 1750a) For positive m, �, n and k∫ 1
0 x

m−1�1−xn��k−n�/n dx∫ 1
0 x

�−1�1−xn��k−n�/n dx =
�∏
j=0

��+ jn��m+k+ jn�
��+k+ jn��m+ jn� � (4.28)

–1 –0.5 0.5 1

–0.3
–0.2
–0.1

0.1
0.2
0.3

Fig. 4.1. Lemniscate of Bernoulli.

2 Wallis’ and Euler’s formulas are related by the change of variables x �= 1−x
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Proof The proof of this theorem follows the proof of Wallis’ formula. Iterating
Lemma 4.11, we obtain in s steps that∫ 1

0

xm−1 dx

�1−xn�1−k/n dx = us
s−1∏
j=0

m+k+ jn
m+ jn 


∫ 1

0

x�−1 dx

�1−xn�1−k/n = vs
s−1∏
j=0

�+k+ jn
�+ jn 


where

us =
∫ 1

0

xm+sn−1 dx

�1−xn�1−k/n and vs =
∫ 1

0

x�+sn−1 dx

�1−xn�1−k/n �

If �=m then there is nothing to prove. Since � and m enter the formulas symmetri-
cally, we may assume that � < m. Euler’s trick used in the proof of Wallis’ formula
shows that vs > us > vs+��m−��/n
+1. It follows that

vs
us
> 1>

vs
us

vs+��m−��/n
+1

vs
= vs
us
ws 


where

ws =
s+��m−��/n
+1∏

j=s

�+ jn
�+k+ jn → 1

as s→+�. Hence 0< vs/us−1< 1/ws−1= �1−ws�/ws→ 0. �

Notice that Euler’s theorem gives a formula for any convergent product

�∏
j=0

�a+ jn��b+ jn�
�c+ jn��d+ jn�

with positive a
b
 c
d. Indeed, the identity

�a+ jn��b+ jn�
�c+ jn��d+ jn� = 1+ jn�a+b− c−d�+ab− cd

�c+ jn��d+ jn�
shows that the product converges if and only if a+b= c+d, i.e. c−a= b−d= k. If
k= 0 then each multiplier is 1. The case k < 0 reduces to k > 0 by taking reciprocals.
Hence c = a+k, b = d+k. To find the value of the product it remains to put �= a,
m= d in (4.28).

Remark We are obtaining these formulas in the present analysis with the help of the gamma function,
see Ex. 3.17. In fact they played a crucial role in Euler’s discovery of the gamma function. The change of
variables t = xn on the left-hand side of (4.28) shows that it is the quotient of two beta functions:∫ 1

0
xm−1�1−xn��k−n�/n dx∫ 1

0
x�−1�1−xn��k−n�/n dx

= B�m/n
k/n�
B��/n
k/n�

� (4.29)
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Here the beta function B�p
q� is defined by

B�p
q�=
∫ 1

0
xp−1�1−x�q−1 dx = ��p���q�

��p+q� � (4.30)

see Ex. 4.18 or Andrews, Askey and Roy (1999, Theorem 1.1.4) for another proof.

The correspondence between the pairs of integrals and the products established in
(4.28) is not one-to-one. For instance, putting in (4.28) first �= p, m= p+ r, k= 2q,
n= 2r and then �= p, m= p+2q, k= r, n= 2r, we obtain∫ 1

0 x
p+r−1�1−x2r �q/r−1 dx∫ 1

0 x
p−1�1−x2r �q/r−1 dx

=
�∏
j=0

�p+2jr��p+2q+ r+2jr�
�p+2q+2jr��p+ r+2jr�

, (4.31)

∫ 1
0 x

p+2q−1�1−x2r �−1/2 dx∫ 1
0 x

p−1�1−x2r �−1/2 dx
=

�∏
j=0

�p+2jr��p+2q+ r+2jr�
�p+2q+2jr��p+ r+2jr�

� (4.32)

This immediately implies an important corollary due to Euler.

Corollary 4.13 For every positive p, q, r∫ 1
0 x

p+r−1�1−x2r �q/r−1 dx∫ 1
0 x

p−1�1−x2r �q/r−1 dx
=

∫ 1
0 x

p+2q−1�1−x2r �−1/2 dx∫ 1
0 x

p−1�1−x2r �−1/2 dx
�

Formula (4.32) with p= 1, q = 1/2, r = 1 is Wallis’ formula

2
�
=

∫ 1
0 x�1−x2�−1/2dx∫ 1

0 �1−x2�−1/2dx
= 1×3

2×2
3×5
4×4

5×7
6×6

7×9
8×8

· · · (4.33)

If p= 1, q = 1, r = 2 in (4.32), then∫ 1
0 x

2�1−x4�−1/2dx∫ 1
0 �1−x4�−1/2dx

= 1×5
3×3

5×9
7×7

9×13
11×11

13×17
15×15

· · · (4.34)

is Euler’s infinite product for the moment of inertia of the unit mass uniformly
distributed along the lemniscate of Bernoulli. With n = 4, formula (4.27) turns into
another of Euler’s formulas, see Euler (1750b, 1768, p. 185),∫ 1

0

dx√
1−x4

∫ 1

0

x2dx√
1−x4

= �
4

 (4.35)

called the lemniscate identity (McKean and Moll 1999, p. 69). More generally, for
p= 1, q = n/4, r = n/2 in (4.32) we have∫ 1

0 x
n/2�1−xn�−1/2dx∫ 1

0 �1−xn�−1/2dx
=

�∏
j=0

�1+ jn��1+ �j+1�n�
�1+n/2+ jn�2 � (4.36)
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4.4 Wallis’ formula for sinusoidal spirals

75 Motivation. Formulas (4.33), (4.34) and (4.36) show that the integrals in their
denominators are the lengths of certain curves. Given n > 0 let us find a polar curve
r = r�	� whose element of length ds satisfies

ds =
√

1+
(
r
d	

dr

)2

dr = dr√
1− rn �

This differential equation in 	 can easily be integrated,

	 =±
∫ rn/2−1dr√

1− rn =±
2
n

∫ drn/2√
1− rn =±

2
n

arcsin
(
rn/2

)+C 

to obtain the equation of the corresponding polar curve

rn/2 = cos
(
±n	

2
+A

)

 (4.37)

where the constant A is responsible for rotations and ± indicates the symmetry with
respect to the real axis. With A= 0, n rational and the sign is +, then the curve (4.37)
is known as the sinusoidal spiral. For rational values of n it was first studied by Colin
Maclaurin in 1718.

76 Classical examples. If n= 1, A= 0 then the curve is the cardioid, see Fig. 4.2,√
r = cos�	/2� or equivalently 2r = 1+ cos	.
If n= 2, A= �/2 and the sign is −, then this curve is the circle r = sin 	 inscribed

in the witch of Agnesi; see Fig. 3.1.
If n = 4, A = 0 and the sign is +, then we obtain the equation r2 = cos 2	 of the

lemniscate of Bernoulli presented in Fig. 4.1. It was studied in 1694 by Jakob Bernoulli
and can also be defined by the algebraic equation �x2+y2�2 = x2−y2.

0.2 0.4 0.6 0.8 1
X

Y

Fig. 4.2. The cardioid, found by setting n= 1 and A= 0 in (4.37), which becomes
2r = 1+ cos 	.
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–0.5 –0.25 0.25 0.5 0.75
X

Y

1

Fig. 4.3. The 3-lemniscate (three-pole lemniscate).

If n= 6, A= 0 and the sign is +, then r3 = cos 3	 and we obtain the 3-lemniscate,
see Fig 4.3. If n = 6, A = �/2 and the sign is −, it is called Kiepert’s curve or the
three-pole lemniscate. It looks very similar to the trifolium r = cos 3	.

Since all these curves belong to one family of sinusoidal spirals (4.37), one may
expect that their lengths can be expressed as infinite products similar to (3.10). Since
n will definitely enter these formulas, the choice of n must be rational. In particular,
for a cardioid (n= 1 in (4.37)),

∫ 1
0 x

1/2�1−x�−1/2dx∫ 1
0 �1−x�−1/2dx

= 2×4
32

4×6
52

6×8
72

· · ·

= 1
2

22

1×3
42

3×5
· · · = �

4

 (4.38)

see (3.10). For the 1/4-lemniscate, see Fig 4.4, (n= 1/2 in (4.37)),

9�
32
=

∫ 1
0 x

1/4�1−x−1/2�−1/2dx∫ 1
0 �1−x−1/2�−1/2dx

= 4×6
52

6×8
72

8×10
92

10×12
112

· · · 


which again resembles (3.10). This has a simple explanation.

Lemma 4.14 Let n= 1/m for a positive integer m. Then

∫ 1
0 x

n/2�1−xn�−1/2dx∫ 1
0 �1−xn�−1/2dx

= 1×3
22

3×5
42

· · · �2m−1��2m+1�
�2m�2

2m
2m+1

�

2

= �2m��2m+2�
�2m+1�2

�2m+2��2m+4�
�2m+3�2

�2m+4��2m+6�
�2m+5�2

· · ·



176 Continued fractions: Euler
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Fig. 4.4. The 1/4-lemniscate.

Proof The change of variables x �= x2m and Lemma 4.11 show that∫ 1

0

xn/2dx√
1−xn = 2m

∫ 1

0

x2mdx√
1−x2




∫ 1

0

dx√
1−xn = 2m

∫ 1

0

x2m−1dx√
1−x2

= 2m+1
2m

∫ 1

0

x2m+1dx√
1−x2

�

The proof is completed by the use of (4.24). �

77 Wallis-type formulas. Essentially new formulas arise from the sinusoidal spi-
rals corresponding to integer values of n, n > 2. Identity (4.27) presents the lengths of
sinusoidal spirals as infinite products.

Theorem 4.15 For every r-lemniscate,

1∫ 1
0 �1−x2r �−1/2dx

= 1�2r+1�
2�r+1�

3�4r+1�
4�3r+1�

5�6r+1�
6�5r+1�

· · · (4.39)

Proof If n= 2r then by (4.27) and (4.32)∫ 1

0

dx√
1−x2r

= �/2r∫ 1
0 x

r�1−x2r �−1/2dx
=

∫ 1
0 x

r−1�1−x2r �−1/2dx∫ 1
0 x

r�1−x2r �−1/2dx

=
�∏
j=0

�r+1+2jr��2r+2rj�
�r+2jr��2r+1+2jr�

� (4.40)

�

For example, the lemniscate of Bernoulli (r = 2) consists of four equal arcs (Fig. 4.1)
each of length

L1 =
∫ 1

0

dx√
1−x4

=
�∏
j=0

�3+4j��4+4j�
�2+4j��5+4j�

= 1�311 028 777 � � � (4.41)
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To obtain Wallis’ formula we put r = 1 in (4.39). For the cardioid (r = 1/2) it turns
into the obvious identity

1
2
= 1×2

1×3
3×3
2×5

5×4
3×7

7×5
4×9

9×6
5×11

· · · 


and for the 1/4-lemniscate, Fig. 4.4, it gives the more interesting formula

3
8
= 1×3

1×5
3×4
2×7

5×5
3×9

7×6
4×11

9×7
5×13

11×8
6×15

· · ·

In general for r = 1/2k with integer k

1�1+k�
1�1+2k�

3�2+k�
2�3+2k�

5�3+k�
3�5+2k�

7�4+k�
4�7+2k�

· · · = �2k−1�!!
�2k�!! �

This follows from (4.30) with p = 1/2r, q = 1/2 and the functional equation for the
gamma function.

4.5 An extension of Brouncker’s formula

78 Brouncker’s continued fractions for sinusoidal spirals. Assuming now
that r is a positive integer, let us consider the length of the r-lemniscate as an infinite
product and also as a quotient of two integrals, (4.40). These formulas resemble those
for the unit circle and indicate a possibility of extensions to sinusoidal spirals. Applying
(4.32) to

y�s�= �q+ s�
∫ 1

0 x
r+s+q−1�1−x2r �−1/2 dx∫ 1

0 x
r+s−q−1�1−x2r �−1/2 dx

= �q+ s�
�∏
j=0

�r+ s−q+2jr��2r+ s+q+2jr�
�r+ s+q+2jr��2r+ s−q+2jr�


 (4.42)

we obtain

y�s�= �q+ s� �r+ s−q��2r+ s+q�
�r+ s+q��2r+ s−q�

�3r+ s−q��4r+ s+q�
�3r+ s+q��4r+ s−q� · · ·

= �q+ s� r+ s−q
r+ s+q

{
�r+ �r+ s�−q��2r+ �s+ r�+q�
�r+ �r+ s�+q��2r+ �r+ s�−q�

}−1

� � �

= �q+ s��s+ r−q� 1
y�s+ r� �

It follows that

y�s�y�s+ r�= �s+q��s+ r−q� 
 (4.43)
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which coincides with (3.28) for q = 1, r = 2. Moreover,

s�s+ r�= s2+ sr < s2+ sr+q�r−q�= �s+q��s+ r−q� 

if r > q. Hence the basic principles of Brouncker’s method are valid.

Having arrived at (4.43), for the time being we will forget the formula for y and
assume that y�s� is just a positive function on �0
+�� satisfying (4.43) and s < y�s�
for s > 0. Then

s < y�s�= �s+q��s+ r−q�
y�s+ r� <

�s+q��s+ r−q�
s+ r = s+ q�r−q�

s+ r �

Keeping in mind Brouncker’s experience for the circle (see §60 in section 3.2), we
may directly develop y�s� into a continued fraction, skipping the intermediate step of
asymptotic expansion. Let y�s�= s+a0/y1�s�. To find a1 we substitute this expression
in to (4.43) and obtain

a0�s+ r�
y1�s�

+ a0s

y1�s+ r�
+ a2

0

y1�s�y1�s+ r�
= q�r−q� �

If y1�s�∼ 2s as s→+� then the equation shows that a0 = q�r−q�. We also obtain
the functional equation for y1

y1�s�y1�s+ r�= sy1�s�+ �s+ r�y1�s+ r�+q�r−q� �
Repeating the above arguments with y1�s�= 2s+a1/y2�s�, we find that

a1 = 2r2+q�r−q�= �r+q��2r−q� 

y2�s�y2�s+ r�= �s− r�y2�s�+ �s+2r�y2�s+ r�+ �r+q��2r−q� �

Similarly

yk�s�= 2s+ ak
yk+1�s�


 ak = �kr+q��kr+ r−q� 


yk�s�yk�s+ r�= �s−kr+ r�yk�s�+ �s+kr�yk�s+ r�
+ �kr− r+q��kr−q� �

It follows that for every k we have

y�s�= s+ q�r−q�
2s +

�r+q��2r−q�
2s + · · · +

�kr− r+q��kr−q�
yk�s�

� (4.44)

Leaving the proof to Ex. 4.20 (compare the above calculations with §§38–40 of Euler
1750b), we deduce from (4.44) Euler’s theorem.

Theorem 4.16 (Euler 1750, §47) For s
 q > 0 and r > q

s+ �
K
k=0

(
�kr+q��kr+ r−q�

2s

)
= �q+ s�

∫ 1
0 x

r+s+q−1�1−x2r �−1/2 dx∫ 1
0 x

r+s−q−1�1−x2r �−1/2 dx
� (4.45)
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If r = 2, q = 1 in Theorem 4.16 then

s+ �
K
n=1

(
�2n−1�2

2s

)
= �s+1�

∫ 1
0 x

s+2�1−x4�−1/2 dx∫ 1
0 x

s�1−x4�−1/2 dx
� (4.46)

Notice that (4.46) follows from Theorem 3.25 by (4.30). To see this just make the
substitution x �= x1/4 in (4.46).

Euler’s theorem for s = q = 1/2 combined with (4.40) implies an extension of
Brouncker’s formula for the r-lemniscate,

2∫ 1
0 �1−x2r �−1/2dx

= 1+ �
K
k=1

(
�2�k−1�r+1��2kr−1�

2

)
� (4.47)

For r = 1 we obtain Brouncker’s formula, for r = 2 the formula for the lemniscate of
Bernoulli,

2∫ 1
0 �1−x4�−1/2dx

= 1+ 1×3
2 +

5×7
2 +

9×11
2 +

13×15
2 + · · ·

= 1+ 22−1
2 +

62−1
2 +

102−1
2 +

142−1
2 + · · ·

and for Kiepert’s curve (Fig. 4.3, r = 3) we have

2∫ 1
0 �1−x6�−1/2dx

= 1+ 1×5
2 +

7×11
2 +

13×17
2 +

19×23
2 + · · ·

= 1+ 32−22

2 +
92−22

2 +
152−22

2 +
212−22

2 + · · · �

If y�s
 r
 q� is the continued fraction in (4.45) and the continued fraction y�s
 r� is
defined as 2y�s/2
 r
1/2� then equivalence transforms show that

y�s
 r�= s+ �
K
k=1

(
�2�k−1�r+1��2kr−1�

2s

)
� (4.48)

It follows from (4.43) that

y�s
 r�y�s+2r
 r�= �s+1��s+2r−1� � (4.49)

We can obtain a generalization of Brouncker’s theorem as follows.
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Theorem 4.17 If y�s� is a positive continuous function on �0
+�� such that s < y�s�,
y�s�y�s+2r�= �s+1��s+2r−1�, where 1/2< r , then

y�s�= �s+1�
�∏
k=0

�s+2r−1+4kr��s+4r+1+4kr�
�s+2r+1+4kr��s+4r−1+4kr�

= s+ �
K
k=1

(
�2k−1�2r2− �r−1�2

2s

)

= �s+1�

∫ 1
0 x

r+s/2−1/2�1−x2r �−1/2 dx∫ 1
0 x

r+s/2−3/2�1−x2r �−1/2 dx
�

This reduces to Brouncker’s theorem for r = 1. See Ex. 4.22 for a generalization of
Ramanujan’s formula.

4.6 On the formation of continued fractions

79 Euler’s form of Euclid’s method. In (1782) Euler considered a generalization
of (1.11):

c0x0 = b0x1+a1x2 


c1x1 = b1x2+a2x3 


c2x2 = b2x3+a3x4 
 (4.50)

���

cnxn = bnxn+1+an+1xn+2 


���

All sequences �xn� satisfying (4.50) are assumed to be nonzero. Then

c0x0

x1

= b0+
a1c1

b1 +
a2c2

b2 + · · · +
ancn

bn+an+1xn+2 / xn+1

� (4.51)

80 The evolution equation s = xn��−"x−$x2�. For this equation, s�x� = 0 at
x = 0 and x = � = �√"2+4�$−"�/2$ > 0. We assume that �, ", $ are positive.
Differentiating the evolution equation, we obtain

ds = n�xn−1dx− �n+1�"xndx− �n+2�$xn+1dx 


which implies after integration that

n�
∫ �

0
xn−1dx = �n+1�"

∫ �

0
xndx+ �n+2�$

∫ �

0
xndx �
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Let

xn =
∫ �

0
xndx= �n+1

n+1



cn = �n+1�� 
 bn = �n+2�" 
 an = �n+2�$ 


in (4.50). Then by Markoff’s test (Theorem 3.2) and (4.51)

2�

�
= 2"+ 2×3�$

3" +
3×4�$

4" +
4×5�$

5" + · · · � (4.52)

Observing that
4�$√

"2+4�$−" = "+
√
"2+4�$ 


putting x= �$/"2, and applying an equivalence transform to (4.52) we obtain

√
1+4x= 1+ 2x

1 +
x

1 +
x

1 +
x

1 + · · · 
 x > 0 � (4.53)

81 The evolution equation s= xn�a−x�. To create three terms that depend on n,
n+1 and n+2, we multiply and divide ds by �+"x with positive � and ":

ds = na�x
n−1dx+ �n"a− �n+1���xndx−"�n+1�xn+1dx

�+"x �

This implies after integration

na�
∫ a

0

xn−1dx

�+"x = ��n+1��−n"a�
∫ a

0

xndx

�+"x + �n+1�"
∫ a

0

xn+1dx

�+"x �

Let us put in (4.50)

xn =
∫ a

0

xndx

�+"x 


cn = �n+1�a� 
 bn = �n+2��− �n+1�"a 
 an = �n+1�" 


Assuming that 0 < x = �"a�/� � 1, we see that all terms in (4.51) are positive and
therefore the continued fraction converges to a�x0/x1 by Markoff’s test. Integration
shows that

x0 =
1
"

ln
(

1+ "a
�

)

 x1 =

a

"
− �

"2
ln
(

1+ "a
�

)
�

This leads to the continued fraction

ln�1+x�= x
1 +

12x

2−x +
22x

3−2x +
32x

4−3x +
42x

5−4x + · · ·

 0< x � 1 
 (4.54)

interpolating (3.25) at x= 1.
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82 The evolution equation s = x2n+1�1−x2�. We have

ds = �2n+1��2x2ndx

�2+"2x2

+ ��2n+1�"2− �2n+3��2�x2n+2dx− �2n+3�"2x2n+4dx

�2+"2x2
�

It follows that

�2n+1��2
∫ 1

0

x2ndx

�2+"2x2

= ��2n+3��2− �2n+1�"2�
∫ 1

0

x2n+2dx

�2+"2x2
+ �2n+3�"2

∫ 1

0

x2n+4dx

�2+"2x2
�

Hence we obtain system (4.50) with

xn =
∫ 1

0

x2ndx

�2+"2x2

 cn = �2n+1��2 


bn = �2n+3��2− �2n+1�"2 
 an+1 = �2n+3�"2 �

Therefore

�2x0

x1

= 3�2−"2+ 32�2"2

5�2−3"2 +
52�2"2

7�2−5"2 +
72�2"2

9�2−7"2 + · · · 


provided that "2/�2 � 1. Integrating, we obtain

x1 =
1
"2

(
1−�2x0

)

 x0 =

1
"�

arctan
"

�
�

Putting x = "/� and applying equivalence transforms we arrive at

arctan x
x

= 1
1
+ 12x2

3−1x2 +
32x2

5−3x2 +
52x2

7−5x2 + · · · (4.55)

which is valid for �x�� 1. From (4.55) with x = 1 we obtain (3.19).

83 The evolution equation s= xnetx�1−x�. Differentiating the evolution equation
and then integrating from 0 to 1, we obtain

n
∫ 1

0
xn−1etxdx = �n+1− t�

∫ 1

0
xnetxdx+ t

∫ 1

0
xn+1etxdx �

It is clear that this is (4.50) with

xn =
∫ 1

0
xnetxdx 


cn = n+1 
 bn = n+2− t 
 an = t �
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After elementary transformations we derive the following continued fraction:

t

et−1
= 1− t+ 1t

2− t +
2t

3− t +
3t

4− t +
4t

5− t + · · · � (4.56)

This continued fraction converges for every real t.

84 The evolution equation s = xnezx�1− x�%. Euler’s method results in the
recursion

n
∫ 1

0
xn−1�1−x�%−1ezxdx = �n+%− z�

∫ 1

0
xn�1−x�%−1ezxdx

+ z
∫ 1

0
xn+1�1−x�%−1ezxdx �

Let � > 0 and

x0 =
∫ 1

0
x�−1�1−x�%−1ezxdx 
 x1 =

∫ 1

0
x��1−x�%−1ezxdx �

Then

�x0

x1

= �+%−1+ ��+1�z
�+1+%− z +

��+2�z
�+2+%− z +

��+3�z
�+3+%− z + · · · 
 (4.57)

which for %= �= 1/2 takes the form

1
2

∫ 1
0 e

zx�x−x2�−1/2dx∫ 1
0 xe

zx�x−x2�−1/2dx

= 1− z+ 3z
4−2z +

5z
3− z +

7z
8−2z +

9z
5− z + · · · �

Let

��z�=
∫ 1

0

ezxdx√
x−x2

�

Then applying iteratively Euler’s formula (see Ex. 4.45), we obtain a beautiful relation:

1
2
�

�′
�z�= 1− z+ 3z

4 −
2z
1 +

5
1 −

2z
1 +

7
1 −

2z
1 +

9
1 −

2z
1 + · · · �

4.7 Euler’s differential method

85 The theory. Euler’s differential method reduces to a simple lemma followed by
the solution of an elementary differential equation.
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Lemma 4.18 (Euler 1750b) Let R and P be two positive functions on �0
1� such
that, for n= 0
1
2
 � � � and some positive �
"
$,

�a+n��
∫ 1

0
PRndx= �b+n"�

∫ 1

0
PRn+1dx+ �c+n$�

∫ 1

0
PRn+2dx �

then ∫ 1
0 PRdx∫ 1

0 Pdx
= a
b +
�a+��c
b+" +

�a+2���c+$�
b+2" +

�a+3���c+2$�
b+3" + · · · �

Proof The condition of the lemma can be obviously written as follows:∫ 1
0 PR

ndx∫ 1
0 PR

n+1dx
= b+n"
a+n� +

(
a+n�
c+n$

∫ 1
0 PR

n+1dx∫ 1
0 PR

n+2dx

)−1

�

Iterating this formula and applying elementary transformations, we get the lemma by
Markoff’s test (Theorem 3.2). �

The next brilliant idea of Euler was to search P and R as functions satisfying the
following identity with indefinite integrals:

�a+n��
∫
PRndx+Rn+1S

= �b+n"�
∫
PRn+1dx+ �c+n$�

∫
PRn+2dx �

If Rn+1S vanishes at 0 and 1 then P and R must satisfy the conditions of Lemma 4.18.
Euler’s formula in differentials looks as follows:

�a+n��Pdx+RdS+ �n+1�SdR= �b+n"�PRdx+ �c+n$�PR2dx �

Considering it as a polynomial in n one can replace it with the system

aPdx+RdS+SdR= bPRdx+ cPR2dx 


�Pdx+SdR= "PRdx+$PR2dx �

Solving these equations for Pdx, we find

Pdx= RdS+SdR
bR+ cR2−a =

SdR

"R+$R2−� � (4.58)

It follows from the second equation in (4.58) that

dS

S
= �b−"�RdR+ �c−$�R

2dR− �a−��dR
"R2+$R3−�R

= �a−��dR
�R

+ ��b−"a�dR+ ��c−$a�RdR
��"R+$R2−�� � (4.59)
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86 First example. Formula (4.60) below was obtained by Stieltjes in (1890, 3). In
Khovanskii (1958), for instance, it is derived from Roger’s formulas for the Laplace
transforms of elliptic functions.

1

s+ �
K
n=1
�n�n+1�/s�

=
∫ �

0

e−sx

cosh2 x
dx = s

∫ �

0
e−sx tanh x dx � (4.60)

Euler’s differential method provides a very simple proof of Stieltjes’s formula. In
Lemma 4.18 and (4.59) we put

a= 1 
 b = s 
 c = 1 
 �b−"a= s 

�= 1 
 "= 0 
 $ = 1 
 �c−$a= 0 


dS

S
= s dR

R2−1
�⇒ S = C

∣∣∣∣1−R1+R
∣∣∣∣s/2 �

If R�x� = x then Rn+1S vanishes at x = 0 and x = 1 for n � 0. If C = −1 then by
(4.58) P > 0 and

∫ 1

0
Pdx =

∫ 1

0

(
1−x
1+x

)s/2
dx

1−x2

x=
1− t
1+ t= 1

2

∫ 1

0
ts/2−1dt = 1

s



substituting x = 1− t
1+ t . Similarly,

∫ 1

0
RPdx = 1

2

∫ 1

0
ts/2−1

(
1− t
1+ t

)
dt=

∫ +�

0
e−sx tanh xdx

=−1
s

∫ +�

0
tanh xde−sx = 1

s

∫ �

0

e−sx

cosh2 x
dx 


substituting t = e−x. This proves (4.60). The second integral is obtained from the first
using integration by parts.

Remark It is easy to see that (3.26) and (4.18) follow from (4.60) by putting s = 2
and s = 1 respectively.

Corollary 4.19 For s > 0

y�s�= 1

s+ �
K
n=1
�n�n+1�/s�

= 2s
�∑
k=0

�−1�k

�s+2k��s+2k+2�
�
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Proof We have∫ 1

0
ts/2−1

(
1− t
1+ t

)
dt =

∫ 1

0

ts/2−1− ts/2
1+ t dt

=
�∑
k=0

�−1�k
∫ 1

0
�ts/2−1+k− ts/2+k�dt

= 4
�∑
k=0

�−1�k

�s+2k��s+2k+2�
�

�

Corollary 4.20 The continued fraction y�s� of corollary 4,19 satisfies

y�s�

s
+ y�s+2�

s+2
= 2
s�s+2�

�

Proof Apply Corollary 4.19. �

Notice that (E4.9) in Ex. 4.29 gives the asymptotic expansion at infinity for y�s�. This
completes Brouncker’s program 62 (section 3.2) in this case.

87 Second example. For every s � 0, we have

e
∫ 1

0
xse−x dx= 1

s +
1
s+1 +

2
s+2 +

3
s+3 + · · · +

n

s+n + · · · � (4.61)

Now in Lemma 4.18 and in (4.59) we put

a= 1
 b = s+1
 c = 1
 �b−"a= s

�= 1
 "= 1
 $ = 0
 �c−$a= 1


dS

S
= �s+1�

dR

R−1
+dR �⇒ S = �1−R�s+1eR �

If R�x�= 1−x then Rn+1S = 0 at x= 0 and x= 1. Thus∫ 1

0
Pdx= e

∫ 1

0
xse−x dx 


∫ 1

0
PRdx=−se

∫ 1

0
xse−x dx+1 


which implies (4.61). Passing to the limit s→ 0+, we obtain (4.7).

Corollary 4.21 For s � 0

1

s+ �
K
n=1
�n/�s+n��

=
�∑
n=1

1
�s+1��s+2� · · · �s+n� �
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Proof Integrating by parts, we obtain

e
∫ 1

0
xse−x dx = 1

s+1
+ e

�s+1�

∫ 1

0
xs+1e−x dx

= 1
s+1

+ 1
�s+1��s+2�

+ e

�s+1��s+2�

∫ 1

0
xs+2e−x dx = · · ·

�

Finally,

e
∫ 1

0
xse−x dx = e

∫ �

0
e−ste−e

−t
e−t dt

allows one to obtain an arbitrary number of coefficients in the asymptotic expansion
using Watson’s lemma 3.21.

88 Third example: the arctangent. For every s > 0,

arctan
1
s
= 1
s +

12

3s +
22

5s +
32

7s +
42

9s + · · · +
n2

�2n+1�s + · · ·
� (4.62)

Remark Since all convergents to the continued fraction (4.62) are odd, the equality (4.62) holds for every
real s, s 	= 0.

This time, in Lemma 4.18 and in (4.59) we put

a= 1
 b = 3s
 c = 2
 �b−"a= s

�= 1
 "= 2s
 $ = 1
 �c−$a= 1


dS

S
= �R+ s�dR

2sR+R2−1
�⇒ S =−√1+ s2− �R+ s�2 �

If R�x� = �√1+ s2− s�x then Rn+1S vanishes at x = 0 and x = 1 for every nonneg-
ative n. Notice that the maximum value of R on �0
1
 is

√
1+ s2− s, which implies

that 1+ s2− �R+ s�2 > 0 for 0< x < 1. Next, by (4.58),

∫ 1

0
Pdx = arcsin

R+ s√
1+ s2

∣∣∣∣∣
1

0

= �
2
− arcsin

s√
1+ s2

;

∫ 1

0
PRdx =−√1+ s2− �R+ s�2− s arcsin

R+ s√
1+ s2

∣∣∣∣∣
1

0

= 1− s
(
�

2
− arcsin

s√
1+ s2

)
�

The elementary identity

�

2
− arcsin

s√
1+ s2

= arctan
1
s
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which can be proved by differentiation, completes the proof of (4.62). Putting s = 1
in (4.62), we obtain

�

4
= 1

1 +
12

3 +
22

5 +
32

7 +
42

9 + · · · +
n2

2n+1 + · · · � (4.63)

Differentiation shows that

arctan
1
s
=

�∑
n=0

�−1�n

�2n+1�s2n+1

 (4.64)

where the series converges uniformly in �s� > 1+� for every � > 0. Hence (4.64) is
the asymptotic series for arctangent.

89 Fourth example. Here we establish the following formula:

1

s+ �
K
n=1
�n2/�s+n��

= �√5
∫ 1

0

xs−1+1/� dx

�2+x√5

= �√5
∫ �

0
e−st

e−t/�

�2+ e−t√5
dt 
 (4.65)

where �= �2−1 is the golden ratio. Evaluating the first integral in (4.65) at s = �,
we obtain the beautiful relation

1

�+ �
K
n=1
�n2/��+n��

= � ln
(

1+ 1
�2

)
� (4.66)

Now we put in Lemma 4.18 and in (4.59)

a= 1
 b = s+1
 c = 2
 �b−"a= s

�= 1
 "= 1
 $ = 1
 �c−$a= 1


dS

S
= sdR+RdR
R2+R−1

= �R+1/2�dR+ �s−1/2�dR
�R+1/2�2−5/4

� (4.67)

To simplify the notation we set

�=
(
s− 1

2

)
1√
5
− 1

2
= s−�√

5

 �= �+1 �

Integrating (4.67) and using the factorization

R2+R−1= �R+���R−1/�� 


we obtain S = �R−1/���+1�R+��−�. Hence, if R�x�= x/� then Rn+1S = 0 at x= 0
and x = 1. Then

∫ 1

0
P dx =

∫ 1

0

(
1−x
x+�

)�
dx

x+�
x=

1− t�
1+ t=

∫ 1/�

0

t�

1+ t dt ,
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substituting x = 1− t�
1+ t . Then

∫ 1

0
RP dx = 1

�

∫ 1

0
x

(
1−x
x+�

)�
dx

x+� =
1
�

∫ 1/�

0

t��1− t��
�1+ t�2 dt �

Integration by parts shows that∫ 1/�

0

t��1− t��
�1+ t�2 dt =

∫ 1/�

0

t� dt

1+ t − �1+��
∫ 1/�

0

t�+1 dt

�1+ t�2

= 1
��
− ��1+���1+��−1�

∫ 1/�

0

t� dt

�1+ t� �

Observing that �1+���1+��−1= s�, we obtain

�
K
n=1

(
n2

s+n
)
=

∫ 1
0 RP dx∫ 1

0 P dx
= 1
�

⎧⎪⎪⎨
⎪⎪⎩

1

��
∫ 1/�

0

t� dt

1+ t
− s�

⎫⎪⎪⎬
⎪⎪⎭ 


which completes the proof by the substitution t = x√5.

Corollary 4.22 For s > 0

1

s+ �
K
n=1
�n2 / �s+n��

=
√

5
�

�∑
k=0

1

s+1/�+k√5

�−1�k

�2k
�

90 A special case of Euler’s formula. Let us compare the continued fraction

s+ fh
s +

�f + r��h+ r�
s +

�f +2r��h+2r�
s + · · ·

with

a

∫ 1
0 Pdx∫ 1

0 PRdx
= b+ �a+��c

b+" +
�a+2���c+$�

b+2" +
�a+3���c+2$�

b+3" + · · · �

Then it is clear that
a= f − r
 b = s
 c = h
 �= r
 "= 0
 $ = r


and the differential equation (4.59) for S takes the form

dS

S
= �f −2r�dR

rR
+ s
r

dR

R2−1
+ �h−f + r�RdR

r�R2−1�
�

The integral of this differential equation is given by

lnS = f −2r
r

lnR+ s

2r
ln

∣∣∣∣R−1
R+1

∣∣∣∣+ h−f + r2r
ln �R2−1�+C �
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It follows that

S = CR�f−2r�/r

∣∣∣∣R−1
R+1

∣∣∣∣s/2r �R2−1��h−f + r�/2r �

If R = xr then Rn+1S vanishes at x = 0 and x = 1 for all nonnegative integers n
provided that

0< f − r < h+ s � (4.68)

By (4.58) we obtain a formula for P:

Pdx = Cxf−r−1

(
1−xr
1+xr

)s/2r
�1−x2r ��h−f − r�/2r dx �

In the above C stands for a constant, the value of which is not important for us
since we are interested in the quotients of integrals. By Lemma 4.18, setting ! =
��1−xr�/�1+xr��s/2r , we have

s+ �
K
n=0

(
�f +nr��h+nr�

s

)

= �f − r�
∫ 1

0 x
f−r−1!�1−x2r �−�f+r−h�/2rdx∫ 1

0 x
f−1!�1−x2r �−�f+r−h�/2rdx

� (4.69)

If f = h= g and g > r then (4.69) takes the form

s+ �
K
n=0

(
�g+nr�2

s

)
= �g− r�

∫ 1
0 x

g−r−1!�1−x2r �−1/2dx∫ 1
0 x

g−1!�1−x2r �−1/2dx
�

If g > 0 the above identity with g �= g+ r shows that

�
K
n=0

(
�g+nr�2

s

)
= g

∫ 1
0 x

g−r−1!�1−x2r �−1/2dx∫ 1
0 x

g−1!�1−x2r �−1/2dx
� (4.70)

Corollary 4.23 For s > 0

1

s+ �
K
n=0
��s+n�2/1�

=
�∑
n=0

�−1�n

s+n �

Proof Let us put s = r = 1, g = s in (4.70). Then by Lemma 4.4

�
K
n=0

(
�s+n�2

1

)
= s

∫ 1
0 x

sdx/�1+x�∫ 1
0 x

s−1dx/�1+x�

= s1/s−∑�
k=0

(
�−1�k/�s+k�)∑�

k=0

(
�−1�k/�s+k�) = 1∑�

k=0

(
�−1�k/�s+k�) − s �

�
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4.8 Laplace transform of hyperbolic secant

91 The continued fraction. For s > 0,

1

s+ �
K
n=1
�n2/s�

=
∫ +�

0

e−sx dx
cosh x

� (4.71)

Formula (4.71) is obtained by the substitution x �= e−x from the following theorem by
Euler (1750b, §69). See also Corollary 4.31 below.

Theorem 4.24 For s > 0,

1

s+ �
K
n=1
�n2/s�

= 2
∫ 1

0

xs dx

1+x2
� (4.72)

Proof By (4.70) with g = 1 and r = 1,

�
K
n=1

(
n2

s

)
=

∫ 1
0 x

(
�1−x��1+x�−1

)s/2
�1−x2�−1/2dx∫ 1

0 ��1−x��1+x�−1�s/2 �1−x2�−1/2dx
�

Integration by parts followed by the substitution x �= �1−x�/�1+x� gives∫ 1

0
x

(
1−x
1+x

)s/2
dx√

1−x2

= 1− s
∫ 1

0

(
1−x
1+x

)s/2
dx√

1−x2
= 1− s

∫ 1

0

x�s−1�/2 dx

1+x .

This results in the formula

1

s+ �
K
n=1
�n2/s�

=
∫ 1

0

x�s−1�/2 dx

1+x = 2
∫ 1

0

xs dx

1+x2

 (4.73)

interpolating (3.25) at s = 1 and (4.20) at s = 2. �

Since ∫ 1

0

xs dx

1+x2
=

�∑
k=0

�−1�k
∫ 1

0
x2k+sdx =

�∑
k=0

�−1�k

s+2k+1



we obtain an analogue of Brouncker’s formula (see Theorem 3.16)

y�s�= 1

s+ �
K
n=1
�n2/s�

= 2
�∑
k=0

�−1�k

s+2k+1

 (4.74)

which gives a functional equation for y�s�:

y�s�+y�s+2�= 2
s+1

� (4.75)
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92 The continued fraction and its asymptotic series. Applying Watson’s
lemma 3.21 to (4.71), one can easily obtain the asymptotic expansion for y(s). In-
deed,

1
cosh x

=
�∑
n=0

En
n! x

n 
 (4.76)

where En are the Euler numbers: E0 = 1, E1 = 0, E2 = −1, E3 = 0, E4 = 5, E5 = 0,
E6 =−61, E7 = 0, E8 = 1385, � � � By Lemma 3.21 and (4.71),

1

s+ �
K
n=1
�n2/s�

∼
�∑
k=0

Ek
sk+1


 s→+� � (4.77)

93 The relationship to Brouncker’s continued fraction. It is interesting that
Brouncker’s continued fraction and K�n2/s� are related.

Theorem 4.25 For s > 0,

s+ �
K
n=1

(
�2n−1�2

2s

)
= 8�2

�4 �1/4�
exp

⎧⎪⎨
⎪⎩
∫ s

0

dt

t+ �
K
n=1
�n2/t�

⎫⎪⎬
⎪⎭ � (4.78)

Proof We observe that both the function y�s� defined in (4.74) and the logarithmic
derivative of Brouncker’s function, �logb�′, satisfy the functional equation (4.75). By
(3.64) �logb�′�s�→ 0 as s→+�. The function y�s� vanishes at +� by definition.
Hence by Lemma 3.23 they are equal:

y�s�= 1

s+ �
K
n=1
�n2/s�

= b
′

b
�s� �

Integrating this differential equation and observing that

y�0�= 1
y�2�

= 1
4

(
� �3/4�

� �5/4�

)2

= 4
(
� �3/4� � �1/4�

�2 �1/4�

)2

= � �1/4�
4

8�2



see Ex. 3.19, we get (4.78). �

Corollary 4.26 The following asymptotic relation holds as s→+�:

s+ �
K
n=1

(
�2n−1�2

2s

)
∼ s exp

{
−

�∑
k=1

E2k

2ks2k

}
� (4.79)

Proof By Theorem 3.16 the left-hand side of (4.79) is divisible by s+1. It follows
that Brouncker’s continued fraction y�s� can be written as

y�s�= y�0��s+1� exp
{∫ �

0
$�t�dt

}
exp

{
−
∫ �

s
$�t�dt

}





4.8 Laplace transform of hyperbolic secant 193

where

$�t�= 1

t+ �
K
n=1
�n2/t�

− 1

1+ t ∼
�∑
k=1

Ek− �−1�k

tk+1

 t→+� 


by (4.77). Integrating this over �s
+��, we obtain∫ �

s
$�t�dt ∼

�∑
k=1

Ek− �−1�k

ksk

 t→+� �

Since y�s�∼ s as s→+�, we see that

∫ +�

0

⎛
⎜⎝ 1

t+ �
K
n=1
�n2/t�

− 1

1+ t

⎞
⎟⎠ dt = ln

8�2

� �1/4�4

 (4.80)

and

s+ �
K
n=1

(
�2n−1�2

2s

)
∼ �s+1� exp

{
−

�∑
k=1

Ek− �−1�k

ksk

}
� (4.81)

The proof is completed by observing that

�∑
k=1

�−1�k

ksk
=− ln

(
1+ 1

s

)

 s > 1 �

�

Let us compare (4.81) with Stirling’s formula (3.58) for the gamma function. Easy
computations with the first few Euler numbers show that

s+ �
K
n=1

(
�2n−1�2

2s

)
∼ s exp

{
1

2s2
− 5

4s4
+ 61

6s6
+O

(
1
s8

)}

= s+ 1
2s
− 9

8s3
+ 153

16s5
+O

(
1
s7

)
�

Compare this with the asymptotic series for Brouncker’s continued fraction b�s�,
obtained in §60, Section 3.2, by a different method. See Ex. 4.32 for the relationship
to another continued fraction.

94 Leibnitz’ series. We will now apply (4.74) to Leibnitz’ series.

Theorem 4.27 For every positive integers,

� = 4
s−1∑
k=0

�−1�k

2k+1
+ 2�−1�s

2s+ �
K
n=1
�n2/2s�

� (4.82)
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Proof If 0<s ∈Z then y�2s�= 2�−1�s
∑
k�s��−1�k/�2k+1�� by (4.74). Computations

with integrals show that

2+ �
K
n=1

(
n2

2

)
= 2

4−� 
 4+ �
K
n=1

(
n2

4

)
= 2
�−8/3

;

6+ �
K
n=1

(
n2

6

)
= 2

52/15−� 
 8+ �
K
n=1

(
n2

8

)
= 2
�−105/304

�

Assuming that y�2s�−1 = 2�−1�s�� − 4
∑s−1
k=0��−1�k/�2k+ 1���−1, we deduce from

(4.75) that y�2s+2�= �−1�s+1��/2−2
∑s
k=0��−1�k/�2k+1���. �

Remark If s = 50 then taking the second convergent and adding the first 50 terms of Leibnitz’ series, we
obtain 10 valid places for �. It should also be noticed that by (4.73)

lim
s→0+

(
s+ �

K
n=1

(
n2

s

))
= 2
�
�

4.9 Stieltjes’ continued fractions

95 Quotients of Laplace transforms. In (1890) Stieltjes obtained the expansion

∫ +�
0 sinh"−1 x cosh−� x e−sx dx

�"−1�
∫ +�

0 sinh"−2 x cosh1−� x e−sx dx

= 1
s +
�"

s +
��+1��"+1�

s +
��+2��"+2�

s + · · · � (4.83)

One can easily deduce (4.83) from Euler’s formula (4.69) by putting r = 1, f =
", h = �. Notice that 1 < " < 1+�+ s. Then, as in Section 4.7, §86, we make
two changes of variable, x �= �1− t�/�1+ t� and t �= e−2x, which as can be easily
seen results in (4.83). In fact Stieltjes obtained his formula along lines similar to
those of Euler. However, Euler’s differential method makes these calculations more
motivated.

96 The Hermite–Stieltjes formula. In (1891) Stieltjes deduced from (4.83) an
important continued fraction,

��s�= s
(

��s�

��s+1/2�

)2

= 1+ 2
8s−1 +

1×3
8s +

3×5
8s +

5×7
8s + · · · � (4.84)

This also follows easily from (4.69); see Ex. 4.36. Competely different arguments
are presented in Ex. 5.4. Formula (4.84) conveniently gives as many terms in the
asymptotic expansion (3.65) as are needed. Another application of (4.84) is a continued
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fraction expansion for the solution y�s� to the functional equation of in section 4.2
§72. By (4.21),

y�s�= s�
( s

2

)
= s+ 2s

4s−1 +
1×3

4s +
3×5

4s +
5×7

4s + · · · �

Combining this with (4.22), we obtain (see also Ex. 5.3):

s+1
b�s�

= 1+ 2
2s+1 +

1×3
2�s+1� +

3×5
2�s+1� +

5×7
2�s+1� + · · ·

� (4.85)

Putting s = 1 in (4.85) we get the formula of Euler discussed in Ex. 4.7.
In (1891) Stieltjes mentioned that formula (4.84) can be used to improve an elegant

result of Hermite,

1×3×5×· · ·× �2n−1�
2×4×6×· · ·× �2n� = 1√

��n+ �� 
 0< � < 1/2 �

Stieltjes’ improvement is based on a formula indicated in Euler (1783):

1×3×5×· · ·× �2n−1�

2×4×6×· · ·× �2n� = 1√
�n��n�




which follows from (3.66) by the functional equation (3.42) for the gamma function:

1√
�n��n�

= 1√
�

��n+1/2�

n��n�
= 1√

�

1×3×5×· · ·× �2n−1�

2×4×6×· · ·× �2n� �

(
1
2

)
�

Now (4.84) implies a formula for Hermite’s �:

�= �n =
2n

8n−1 +
1×3

8n +
3×5

8n +
5×7

8n + · · ·

= 1
4
+ 1

32n
− 1

128n2
+O

(
1
n3

)
�

97 Stieltjes’ formulas for quotients of gamma functions. The following con-
tinued fraction of Stieltjes interpolates (4.84) at a= 1/2.

Theorem 4.28 (Stieltjes 1891) For s > 0 and a > 0

1+ 2a
4s−a +

12−a2

4s +
22−a2

4s + · · ·

= ��s−a/2+1/4���s+a/2+3/4�
��s+a/2+1/4���s−a/2+3/4�

� (4.86)

Proof We will derive (4.86) from Euler’s formula (4.69) using Euler’s method. Let
r = 1, f = 1+a, h= 1−a, s �= 4s in (4.69). Then

4s+ �
K
n=0

(
n2−a2

4s

)
= a

∫ 1
0 x

a−1
(
�1−x��1+x�−1

)2s
�1−x2�−a−1/2dx∫ 1

0 x
a ��1−x��1+x�−1�2s �1−x2�−a−1/2dx

�
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The substitutions x= �1−t�/�1+t�, dx=−2dt/�1+t�2, 1−x2 = 4t/�1+t�2 transform
this formula into

4s+ �
K
n=0

(
n2−a2

4s

)
= a

∫ 1
0 �1− t�a−1�1+ t�at$dt∫ 1
0 �1− t�a�1+ t�a−1t$dt


 $ = 2s−a−1/2 �

Observing that �1− t�a−1�1+ t�at$ = �1− t2�a−1�t$+ t$+1�, compare this with the trick
presented in §59 of Euler (1750b), we obtain by (4.30)

∫ 1

0
�1− t�a−1�1+ t�at$ dt =

∫ 1

0
�1− t2�a−1�t$+ t$+1�dt

= 1
2

∫ 1

0
�1− t�a−1t$/2−1/2 dt+ 1

2

∫ 1

0
�1− t�a−1t$/2 dt

= 1
2

{
��a���$/2+1/2�
��a+$/2+1/2�

+ ��a���$/2+1�
��a+$/2+1�

}
�

Similarly

∫ 1

0
�1− t�a−1�1+ t�at$ dt = 1

2

{
��a���$/2+1/2�
��a+$/2+1/2�

− ��a���$/2+1�
��a+$/2+1�

}
�

Hence

4s+ �
K
n=0

(
n2−a2

4s

)
= a 1+ 

1− 
  = ��1+$/2���a+$/2+1/2�
��a+$/2+1���$/2+1/2�

�

The identity 1+2a�a�1+ �/�1− �−a�−1 = −1 completes the proof. �

Theorem 4.29 (Stieltjes 1891) For s > 0 and a > 0,

4
4s +

12−4a2

8s +
32−4a2

8s +
52−4a2

8s + · · ·

= ��s−a/2+1/4���s+a/2+1/4�
��s−a/2+3/4���s+a/2+3/4�

�

Proof Put r = 1, f = 1/2+a, h= 1/2−a, s �= 4s in (4.69). �

98 Laplace transforms of some hyperbolic functions. The following result
was established by Stieltjes (1890, §3) with a tricky calculation which is close to
Euler’s evolution method presented in Section 4.6.
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Theorem 4.30 For s > 0, m� 0, 1 � a� 0,∫ �

0

e−su du
�coshu+a sinhu�m

= 1
s+ma +

m�1−a2�

s+ �m+2�a +

+
2�m+1��1−a2�

s+ �m+4�a +
3�m+2��1−a2�

s+ �m+6�a

+
4�m+3��1−a2�

s+ �m+8�a + · · · �

Proof Stieltjes’ idea, originating in trigonometrical integrals (1890, §1), was to in-
tegrate the definite integral by parts, where for the sake of brevity A�u� = coshu+
a sinhu and n > 0, m> 0:

F�m
n�=
∫ �

0

e−su sinhn udu
A�u�m

=−e
−su

s

sinhn u
A�u�m

∣∣∣∣+�
0

+ 1
s

∫ �

0
e−su

(
n

sinhn−1 u coshu
A�u�m

−m sinhn u�sinhu+a coshu�
A�u�m+1

)
du

= 1
s

∫ �

0
e−su

sinhn−1 u

A�u�m+1

[
nA�u��A�u�−a sinhu�−m sinh2 u

−am�A�u�−a sinhu� sinhu
 du

= n
s
F�m−1
 n−1�− �n+m�a

s
F�m
n�− m�1−a

2�

s
F�m+1
 n+1� �

It follows that

nF�m−1
 n−1�
F�m
n�

= s+ �n+m�a+ m�1−a2��n+1�
�n+1�F�m
n�/F�m+1
 n+1�

�

Let us pass to the limit n→ 0+ in this recursion. We have

nF�m−1
 n−1�=−
∫ +�

0
sinhn ud

e−su

A�u�m−1 coshu
�

The derivative of the function under the differential sign decreases at infinity expo-
nentially fast. Therefore we may pass to the limit under the integral sign to obtain
that

lim
n→0+

nF�m−1
 n−1�=− e−su

A�u�m−1 coshu

∣∣∣∣+�
0

= 1 


which completes the proof by Theorem 3.2 and Corollary 3.10. �
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Corollary 4.31 For any real m and s > 0,∫ +�

0

e−su du
coshm u

= 1
s +
m

s +
2�m+1�

s +
3�m+2�

s + · · · � (4.87)

Compare this corollary with (4.71) and Ex. 4.30.

99 The error function. For every s > 0,

es
2/2

∫ +�

s
e−x

2/2 dx = 1
s +

1
s +

2
s +

3
s +

4
s + · · · +

n

s + · · ·
� (4.88)

see Hardy (1940, p. 8, (1.8)). In fact this formula was first explicitly indicated by Euler
in 1754 (1760, §29), and appeared in a more general form earlier in (1750b, §§71–3).

Remark The function defined by

erfc s = 2√
�

∫ +�

s
e−x

2
dx =

√
2
�

∫ +�

s
√

2
e−x

2/2 dx

is called the complementary error function (see Andrews, Askey and Roy 1999, p. 196). The identity (4.88)
can be used to get good approximations to erfc�s� for large s.

To prove (4.88) we put a = 1, b = s, c = 1, � = 1, " = 0, $ = 0 in Lemma 4.18
and use the limit +� instead of x = 1:∫ +�

0 PRdx∫ +�
0 P dx

= 1
s +

2
s +

3
s +

4
s + · · · +

n

s + · · ·
�

The differential equation (4.59) for S becomes dS/S = −sdR−RdR, which, with
R�x�= x, shows that xS�x�= xe−sx−x2/2 vanishes at x= 0 and x=+�. It follows that
we may put Pdx = e−sx−x2/2dx and RPdx = xe−sx−x2/2dx. Let us consider

��s�=
∫ +�

0
e−sx−x

2/2 dx = es2/2
∫ +�

s
e−x

2/2 dx �

Then � satisfies

�′�s�= s��s�−1=−
∫ +�

0
xe−sx−x

2/2dx � (4.89)

Now (4.88) follows from the elementary identity∫ +�
0 PRdx∫ +�
0 P dx

= 1− s��s�
��s�

= 1
��s�

− s �

If we set s �=√2s in (4.88) and change the variable of integration to x �= x/√2 then
after equivalence transforms we obtain the formula

2es
2
∫ �

s
e−x

2
dx = 2

2s +
2
2s +

4
2s +

6
2s +

8
2s + · · · +

2n
2s + · · ·

� (4.90)
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4.10 Continued fraction of hyperbolic cotangent

100 Euler’s numerical experiments. In (1744) Euler computed the first partial
denominators of the regular continued fraction for

e= 2�718 281 828 459 04 � � �

and discovered the remarkable law:

e= 2+ 1
1 +

1
2 +

1
1 +

1
1 +

1
4 +

1
1 +

1
1 +

1
6 +

1
1 + · · · � (4.91)

It looks no less beautiful than the standard formulas

e= lim
n

(
1+ 1

n

)n
= 1+

�∑
k=1

1
k! 


and in addition immediately proves the irrational of e; see Corollary 1.16. After that
Euler computed the continued fraction for

√
e= 1�648 721 270 7 � � �

= 1+ 1
1 +

1
1 +

1
1 +

1
5 +

1
1 +

1
1 +

1
9 +

1
1 +

1
1 +

1
13 + · · · 


obeying a similar progression law of partial denominators. Next,

3
√
e= 1+ 1

2 +
1
1 +

1
1 +

1
8 +

1
1 +

1
1 +

1
14 +

1
1 +

1
1 +

1
20 + · · ·

confirms this law again. To concentrate on the arithmetic progressions Euler removed
the repeating 1’s by an elementary formula:

a+ 1
m +

1
n +

1
w
= a+ nw+1

mnw+m+w
= a+ n

mn+1
+ nw+1
mnw+m+w −

n

mn+1

= a+ n

mn+1
+ 1
�mn+1�w+m

= 1
mn+1

{
�mn+1�a+n+ 1

�m+n�w+m
}



which shows that

a+ 1
m +

1
n +

1
b +

1
m +

1
n +

1
c + · · ·

= 1
mn+1

{
�mn+1�a+n+ 1

�mn+1�b+n+m + · · ·

}
� (4.92)
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This interesting identity, by the way, implies the beautiful formula

a+ 1
m +

1
n +

1
b +

1
m +

1
n +

1
c + · · ·

−a− 1
n +

1
m +

1
b +

1
n +

1
m +

1
c + · · ·

= n−m
nm+1




calling to mind the addition formula for cotangents. Let us put m = n = 1, a = 2,
b = 4, c = 6, d = 8, etc. in (4.92). Then

2 + 1
1 +

1
1 +

1
4 +

1
1 +

1
1 +

1
6 + · · ·

= 1
2

{
−1+6+ 1

10 +
1

14 +
1
18 + · · ·

}
= �−1

2



where � denotes the continued fraction related to the progression 6
10
14
18
 � � �
Consequently by (4.91)

e= 2+ 1
1+2 / ��−1�

= 2+ �−1
�+1

= 1+ 2
1+1/�




which leads us to

1+ 1
�
= 2
e−1

=−1+ e+1
e−1




and finally to

coth
1
2
= e+1
e−1

= 2+ 1
6 +

1
10 +

1
14 +

1
18 +

1
22 +

1
26 + · · · �

Similarly, Euler obtains

coth
1
4
=
√
e+1√
e−1

=4+ 1
12 +

1
20 +

1
28 + · · · 


coth
1
6
=

3
√
e+1

3
√
e−1

=6+ 1
18 +

1
30 +

1
42 + · · · 


coth�1�= e
2+1
e2−1

=1+ 1
3 +

1
5 +

1
7 + · · · �

A simple analysis of these empirical formulas shows that they can be naturally ex-
plained if the following is true:

q = coth p= 1
p
+ 1

3/p +
1

5/p +
1

7/p + · · · � (4.93)
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101 Continued fraction for hyperbolic cotangent: proof. Euler’s differential
method (see Section 4.7) when applied to (4.93) with s = 1/p corresponds to the
choice

a= 1 
 b = s 
 c = 1 

�= 0 
 "= 2s 
 $ = 0 


dS

S
=−1

2
dR

R
+ 1

2s

(
R+ 1

R

)
⇒ S = 1√

R
e�1/2s��R+1/R��

It is clear from the formula for S that under no choice of a positive function R can
Rn+1S vanish at any point. So, here this method does not work. Historically it appeared
later. However, the first method, which Euler applied in (1744) to develop coth p into
a continued fraction, was also differential. Taking into account that q= coth p satisfies
the differential equation

dq

dp
= 1−q2 ⇐⇒ dq+q2dp= dp 


Euler found by induction the differential equation for the remainders qn.

Theorem 4.32 (Euler 1744, §28) For n= 1
2
 � � � we have

q = coth p= 1
p
+ 1

3/p +
1

5/p +
1

7/p + · · · +
1

�2n−1�/p +
1

1 / x2n/�2n+1�y

 (4.94)

where p= �2n+1�x1/�2n+1� and y satisfies the differential equation

dy

dx
+y2 = x−4n/�2n+1� (4.95)

Proof Let q0 = coth p and �qn�n�0 be defined by

qn =
2n+1
p

+ 1
qn+1

� (4.96)

Then
dqn
dp

= 2n
p
qn+1−q2

n , n= 0
1
 � � � (4.97)

For n = 0 this equation coincides with the differential equation for coth p. The tran-
sition n→ n+1 is made using

d

dp

(
2n+1
p

+ 1
qn+1

)

= 2n
p

(
2n+1
p

+ 1
qn+1

)
+1−

(
2n+1
p

+ 1
qn+1

)2

�
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Now the identities 2n+ 1+ 2n�2n+ 1� = �2n+ 1�2 and 2n− 2�2n+ 1� = −2�n+ 1�
turn it into (4.97) for n+1. Let

y�x�= x−2n/�2n+1�qn
(
�2n+1�x1/�2n+1�

)
� (4.98)

Then

dy

dx
=− 2n

2n+1
x−�4n+1�/�2n+1�qn+x−4n/�2n+1� dqn

dp

=− 2n
2n+1

x−4n+1/�2n+1�qn

+ 2n
2n+1

x−4n+1/�2n+1�qn

+x−4n/�2n+1�−x−4n/�2n+1�q2
n = x−4n/�2n+1�−y2�

�

It looks as though the idea of recruiting Riccati’s equation for this purpose goes back to the first paper
by D. Bernoulli (1724). In the same year, Jacoppo Riccati (1676–1754), in a paper (Riccati 1724) on the
equation

dy+y2dx= axm dx 

had posed the problem of finding those m values for which the equation can be integrated in quadratures. In
the same volume of Acta Eruditorum D. Bernoulli (1726) announced that he had a solution (see the footnote
on p. 245 of Euler 1768). Both Euler and Bernoulli worked in St Petersburg and obviously Bernoulli’s
contribution was known to Euler. In Theorem 4.32 Euler presented it in quite an original way and as a result
discovered very interesting relations, which finally resulted in a complete solution of Riccati’s problem by
Liouville (1839, 1841). We consider this question later.

The continued fraction in (4.93) converges since the partial denominators are positive
and make an arithmetic progression. Since

1

p
+ 1

3/p +
1

5/p +
1

7/p + · · · ≈
1
p
+ p

3 +
p2

5 +
p2

7 + · · · 


we obtain the convergence of (4.93) by Corollary 3.10 with p1 = p, pn = p2, n =
2
3
 � � � , and qn = 2n+1, n = 1
2
 � � � It is therefore tempting to obtain (4.93) from
Theorem 4.32 by passage to the limit in (4.94). However, the paradox of quadratic
equations (see §54 in Section 3.1) urges one to be cautious: in this similar case of
quadratic equations the limit may not be equal to the expanded value. Theorem 3.2
guarantees that (4.93) holds provided that qn > 0 on �0
+�� for every n.

Theorem 4.33 Every qn is positive on �0
+��.
Proof The idea of the proof is obvious from Fig. 4.5. By (4.97) the derivatives of
qn at the zeros of qn equal 1, which forces the graph to cross the p-axis upwards.
Therefore it is not possible for qn to behave like a hyperbola q = c/p, c > 0 in the
vicinity of 0 and at the same time to have positive zeros.



4.10 Continued fraction of hyperbolic cotangent 203

p

q

Fig. 4.5. Illustration of the proof of Theorem 4.33.

By Euler’s formula (1.17) qn�p� is a Möbius transformation of q0 = coth p with
polynomial coefficients in 1/p and therefore is meromorphic in C. Observe now that
if u= qn satisfies (4.97) then v= 1/u satisfies

dv

dp
=−2n

p
v+1−v2 � (4.99)

Therefore poles of u become zeros of v and vice versa. Thus if either u or v vanishes
then its derivative must be 1. It follows that all nonzero zeros and poles of qn are
simple and that

qn�p�=
⎧⎨
⎩

1

p−a + rn�a
p� if a is a pole ,

p−a+ �p−a�2rn�a
p� if a is a zero ,
(4.100)

where rn�a
p� is analytic at p = a. Similar calculations with (4.97) show that if qn
has a pole at p= 0 then

qn =
2n+1
p

+ sn�p� 
 (4.101)

where sn�p� is holomorphic at 0. In fact sn�0� = 0, which leads to the asymptotic
formula

qn�p�=
2n+1
p

+o�1� , p→ 0 � (4.102)

If n = 0 then (4.102) follows from the McLaurin series for e2p. Suppose now that
sn−1�0�= 0; then by (4.96) for n−1

lim
p→0
qn�p�=� 
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showing that qn has a pole at p = 0 and therefore implying (4.101). To prove that
sn�0�= 0 we substitute (4.101) in (4.97):

− 2n+1
p2

+ s′n

= 2n�2n+1�
p2

+ 2nsn
p

+1− �2n+1�2

p2
− 2�2n+1�sn

p
− s2

n �

A calculation of the coefficients at 1/p,

0= �2n−2�2n+1��sn�0�=−2�n+1�sn�0� 


competes the proof of (4.102).
If a poles or zero exists on �0
+�� then it must be the zero or pole of the minimal

value. Let it be p= a. Then qn is positive near the left end of �0
 a� by (4.102) and qn
is negative near the right end of �0
 a� by (4.100). It follows that a continuous function
qn on �0
 a� must have a zero, which contradicts our choice of a. If there are no zeros
or poles for qn on �0
+�� then qn is continuous on �0
+�� and is positive near
0 by (4.102). If qn�a� < 0 for some a
a > 0, then qn must vanish on �0
 a�, which
contradicts our assumption. Hence qn > 0 on �0
+��. �

Having proved (4.93) we obtain that

coth
1
2s
= e

1/s+1
e1/s−1

= 2s+ 1
6s +

1
10s +

1
14s +

1
18s + · · ·

(4.103)

for s = 1
2
 � � �
Reverting to arguments used in the proof of (4.92), we get the following formula:

a+ 1
b +

1
c +

1
d + · · ·

= a−n+ mn+1
m +

1
n +

1
b−m−n / mn+1 +

1
m +

1
n +

1
c−m−n / mn+1 +

1
m + · · · �

(4.104)

In particular, for m= n= 1,

a+ 1
b +

1
c +

1
d + · · · =

= a−1+ 2
1 +

1
1 +

1
b/2−1 +

1
1 +

1
1 +

1
c/2−1 +

1
1 +

1
1 +

1
d/2−1 + · · · 


which implies the remarkable formula of Euler

e1/s = 1+ 1
s−1 +

1
1 +

1
1 +

1
3s−1 +

1
1 +

1
1 +

1
5s−1 +

1
1 + · · · � (4.105)



4.10 Continued fraction of hyperbolic cotangent 205

Passing to the limit s→ 1 in (4.105), we obtain the regular continued fraction (4.91)
for e. Formulas (4.91) and (4.105) coupled with Lagrange’s theorem (see Theorem
2.19) show that neither e nor any of its integer roots satisfies a quadratic equation with
rational coefficients.

102 Comments. In (1744) Euler stated only Theorem 4.32 and just mentioned that the convergence of
the continued fraction implies (4.93). It is not clear whether Euler realized that the paradox of quadratic
equations could occur in this case as well. Let us formally consider this point. In Theorem 4.32 Euler obtains
a formula for qn, which in terms of the independent variable p looks as follows:

qn�p�= x2n/�2n+1�yn�x�=
(

p

2n+1

)2n

yn

((
p

2n+1

)2n+1
)
�

Now yn itself satisfies a differential equation depending on n. Passage to the limit shows that y�x� =
limn yn�x� satisfies

dy

dx
+y2 = 1

x2
�

This differential equation has at least two solutions y = a/x, where a denotes either root of the quadratic
equation a2−a− 1 = 0. Notice that one root is the golden ratio a = � and the other is negative, −1/�.
Therefore we are exactly in the situation of the paradox of quadratic equations. The fact that Euler paid
attention to the transformation of qn to a very special form indicates that seemingly he was aware of this
difficulty. However, he could have done this in relation to Bernoulli’s theorem on Riccati’s equation, which
we discuss later. In any case the asymptotic formula for qn�p� at p = 0 supports the conjecture of the
positiveness of yn at the points (

p

2n+1

)2n+1

−→ 0 


which are essential for the convergence.
The elementary proof of Theorem 4.33 given above looks very much as though it is logically related to

Euler’s ideas. Notice that such computations with series were well known to Euler.
As follows from the correspondence between Euler and Goldbach, Euler’s famous formulas relating

the exponential and trigonometric functions were discovered later (in 1741). The formula cot p= i coth ip
formally leads to the expression

cot p= i coth ip= 1
p
+ i

3/ip +
1

5/ip + · · ·

= 1
p
− 1

3/p −
1

5/p −
1

7/p − · · · � (4.106)

It is not necessary to use Euler’s trigonometric formulas to find this continued fraction, since it can be
obtained similarly to the continued fraction of the hyperbolic cotangent. One can easily prove that the
remainders un for the continued fraction of cot p satisfy the differential equation

dun
dp

= 2n
p
un−1−u2

n , n= 0
1
2
 � � � (4.107)

In 1731–7 Euler did not have any criteria to control the convergence of the continued fraction for cot p and
moreover un will not keep the same sign on �0
+��, since every un has infinitely many poles and zeros on
�0
+��, as cot p itself has. Possibly this is the reason why Euler (1744) did not include the development
of cot p into a continued fraction. Later Euler returned to this problem in his paper (1785b) presented to the
Russian Academy in 1775 and proved the convergence of the continued fraction for cotangent. We consider
this interesting proof later; see Corollary 4.40. Here we mention only that the required tools for this proof
were available already in Euler’s paper (1744, §§31–2).

Theorem 4.33 was proved in (1857) by Schlömilch; see Ex. 4.54. The fact that the qn are positive also
follows from Legendre’s proof; see Rudio (1892) or Lang (1966). Both these proofs completely revised that
of Euler, which resulted in a loss of Euler’s clear logic.
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Euler had these results already in November 1731, almost 45 years before Lagrange (1776) announced
(18 July 1776) a method of solution of differential equations with continued fractions. Moreover, in (1744)
Euler in fact solved in continued fractions Riccati’s equation

dq

dr
+q2 = nrn−2 � (4.108)

4.11 Riccati’s equation

103 Introduction to Riccati’s equation. In 1763 D’Alembert named the differ-
ential equation

dy

dx
= P�x�+Q�x�y+R�x�y2 (4.109)

“Riccati’s (generalized) equation”. It was an attempt to approximate the right-hand
side f�x
 y� of a general differential equation y′ = f�x
 y� by the sum of the first three
terms of its Taylor series in y. Clearly the differential equations (4.97) are Riccati
equations with P�x�≡ 1, Q�x�= 2n/x and R�x�≡−1. The induction step n→ n+1
is based on formula (4.96) in which the first term approaches asymptotically the
solution of Riccati’s equation at the origin. In fact this is a key observation, which
provides necessary cancellations. Since this method was successful in the special case
investigated by Euler, see §101, one can apply it to find an exact (not asymptotic)
solution of (4.109). Thus let y1 satisfy (4.109). Following (4.96) we represent y as

y = y1+
1
y2

and substitute this expression into (4.109). Then y2 satisfies the linear differential
equation

dy2

dx
=− �Q�x�+2y1�x�R�x�� y2−R�x� �

Since any linear differential equation z′ = Lz+M can be solved in quadratures,

z= e
∫
Ldx

∫
M�x�e−

∫
Ldx dx 


the same is true for Riccati’s equation provided that there is a formula for one of its
solutions. Notice that

∫
Ldx enters the above formula twice with the same constant of

integration. Euler discovered this substitution in 1760.
Let us apply this method to a Riccati equation that we have already considered,

dy

dx
+y2 = 1

x2
� (4.110)

It has two explicit solutions,

y1�x�=
a1

x

 y0�x�=

a2

x
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where a1 =� and a2 =−1/� are the solutions to the quadratic equation a2−a−1= 0.
Euler’s substitution corresponding to y1= a1/x results in the linear differential equation

dy2

dx
= 2a1

x
y2+1 �

Hence

y2 = e
∫
�2a1/ x�dx

∫
e−

∫
�2a1/ x�dx dx = x2a1eC

∫
x−2a1e−Cdx

= x

1−2a1

+Ex2a1 =− x√
5
+Dx1+√5 


where D ∈ R. This shows that the general solution to (4.110) is given by

y�x�= 1+√5
2x

−
√

5

x�1+Dx√5�
, D ∈ R � (4.111)

Putting D = 0 we obtain y = a2/x. To make this formula universal we may allow
D = �. Notice that there is only one solution (corresponding to D = �) which is
positive about x = 0+. This is exactly the reason why the continued fraction for
hyperbolic cotangent converges.

Definition 4.34 A differential equation is said to be integrable by quadratures if the
unknown function can be expressed in terms of algebraic functions, exponentials,
logarithms and the operation of integration (see Ritt 1948, p. 69).

Since (4.110) can be integrated in finite terms (and therefore by quadratures), the natu-
ral question arises of how describe those Riccati equations which can be integrated by
quadratures. In Theorem 4.32 explicit solutions to some Riccati equations of the type

dy

dx
= axn+by2 (4.112)

were given. From this point of view it is now clear why Euler rewrote the differential
equations (4.97) in the form (4.95). This resulted in the following beautiful theorem.

Theorem 4.35 (D. Bernoulli–Euler) If ab = 0 or

n=−2 or n=− 4m
2m±1


 m= 0
1
2
 � � � 


then Riccati’s equation (4.112) is integrable by quadratures.

Proof We start with the differential equation for hyperbolic cotangent

dy

dx
= 1−y2 �
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The continued fraction for q = coth p generates a sequence of Riccati equations for its
remainders. Euler’s substitution (4.98) transforms them into differential equations (4.95).
The change of variables z= ky�cx� in (4.95) transforms it to the Riccati equation

dz

dx
= kc−�2n−1�/�2n+1�x−4n/�2n+1�− c

k
z2 �

By taking the sign of k to be opposite to that of b we make c =−bk > 0. Then there
is a unique value of k such that the coefficient kc−�2n−1�/�2n+1� equals a. This covers
the case ab < 0.

If ab > 0 then we consider the differential equations (4.107) for the continued
fraction of q = cot p. Then substitution (4.98) reduces (4.107) to

dy

dx
=−x−4n/�2n+1�−y2

and we can easily handle the case ab > 0 in the way we did for ab < 0.
To cover the remaining case, n=−4m/�2m−1�, we simply continue the equations

(4.97) by the same formulas, allowing n to be negative. This results in the construction
of a so-called ascendant continued fraction and at the same time provides a solution by
quadratures to (4.112) with negative n and ab < 0. The ascendant continued fraction
for q = cot p does the same job for the case ab > 0. �

This theorem was stated and proved in the first mathematical paper by D. Bernoulli
(1724) but it was Euler who discovered the important relationship of this question
to continued fractions. Liouville (1839, 1841) proved that these are the only cases of
integrability by quadratures of Riccati’s equations (4.112). See Ritt (1948).

104 Evaluation of continued fractions by Riccati’s equations. We consider
here the continued fraction

b0+
c

b1 +
c

b2 + · · · +
c

bn + · · ·
(4.113)

where bn = b+nd, bn 	= 0 and n= 0 
1 
 � � � 
 d 	= 0. By the definition of a continued
fraction c 	= 0. By Corollary 3.10 this continued fraction converges if d> 0 and c > 0.
The parameters �bn�n�0 and c define two power series in x,

p �x�= p �x�b
 c
d�= 1+
�∑
k=1

xkd

k!b0 · · ·bk−1

ck

dk



q �x�= q �x�b
 c
d�= 1
b0

+
�∑
k=1

xkd

k!b0 · · ·bk
ck

dk



(4.114)

which obviously converge by the ratio test. For instance, denoting by ak the term of
the series for p, we have

ak
ak−1

= xd c

kd�b+ �k−1�d�
→ 0 
 k→+� � (4.115)
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Theorem 4.36 (Euler 1785b) For any nonzero b, c, d with nonzero b+nd, n =
0
1
2
 � � � the continued fraction �4�113� converges to

b0+
�
K
n=1

(
c

bn

)
= p�1� b
 c
d�
q�1� b
 c
d�

�

Proof Let Pn/Qn be convergents of the continued fraction b0+Kn�1/bn�. Putting �n=
Pn/�b0b1 · · ·bn� and using the Euler–Wallis formulas, we will prove by induction that

�n = 1+
n/2∑
k=0

�n−k� · · · �n−2k� ck+1

�1+k�!b0 · · ·bkbn−k · · ·bn
� (4.116)

Since �0 = 1 and �1 = 1+ c/b0b1, formula (4.116) holds for n = 0 and n = 1. For
n= 2 it turns into

2c
b0b2

= c

b0b1

+ c

b1b2




which is equivalent to the identity 2b1 = b0+b2 satisfied by any arithmetic progression.
The Euler–Wallis formula in terms of the �n takes the form

�n+1 = �n+
c

bnbn+1

�n−1 �

Assuming that (4.116) holds for indices not exceeding n, we may write, grouping
terms,

�n+1 = 1+ c

bn

(
n

b0

+ 1
bn+1

)
+ �n−1� c2

1!b0bn−1bn

(
n−2
2b1

+ 1
bn+1

)

+ �n−2��n−3� c3

2!b0b1bn−2bn−1bn

(
n−4
3b2

+ 1
bn+1

)
+ · · ·

For every j we have

n−2j
�j+1�bj

+ 1
bn+1

= �n−2j�bn+1+ �j+1�bj
�j+1�bjbn+1

= �n− j+1�bn−j
�j+1�bjbn+1




since �bk� is an arithmetic progression. Substituting this into the formula for �n+1, we
obtain (4.116) for n+ 1. Passing now to the limit in (4.116), we see that limn �n =
p�1� b
 c
d�.

Similarly, if !n =Qn/�b0 · · ·bn�, then

!n =
1
b0

+
�n−1�/2∑
k=0

�n−k−1� · · · �n−2k−1� ck+1

�1+k�!b0 · · ·bk+1bn−k · · ·bn
� (4.117)

Passing to the limit in (4.117), we obtain limn !n = q�1� b
 c
d�. �
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The functions p and q in (4.114) satisfy the system of differential equations

q�x�= x
1−d

c

dp

dx

 (4.118)

d�xbq�

dx
= xb−1p � (4.119)

To prove (4.118) we differentiate the first formula of (4.114) with respect to x:

x1−d

c

dp

dx
=

�∑
k=1

kdxkd−1x1−d

k!b0 · · ·bk−1

ck−1

dk
=

�∑
k=1

x�k−1�d

�k−1�!b0 · · ·bk−1

ck−1

dk−1
= q 


whereas (4.119) follows from the second:

d�xbq�

dx
= xb−1+

�∑
k=1

�b+kd�xkd+b−1

k!b0 · · ·bk
ck

dk
= xb−1p 


since b+kd = bk. The system (4.118), (4.119) implies that p satisfies

d2p

dx2
+ b−d+1

x

dp

dx
− c xd−2p�x�= 0 


with the obvious boundary conditions p�0�= 1 and

dp

dx
�0�=

⎧⎨
⎩

0 if d > 1 

1/b if d = 1 

� if d < 1 �

Lemma 4.37 The function z�x�= p�x�/q�x� is a solution to Riccati’s equation

dz

dx
=−1

x
z2+ b

x
z+ c xd−1 (4.120)

satisfying the boundary condition z�0�= b.

Proof Since p= zq and dp= c xd−1qdx by (4.118),

c xd−1dx = dz+ zdq
q

⇒ dq

q
= c x

d−1dx−dz
z

�

Combining this with an equivalent form of (4.119),

pxb−1dx = bxb−1qdx+xbdq

⇐⇒ pdx = bqdx+xdq ⇐⇒ z= b+ x
q

dq

dx



and excluding dq/q, we complete the proof of (4.120). The equality z�0�= b follows
from (4.114) with x = 0. �
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Notice that the substitutions y= zx−b, t= xb transform (4.120) into the Riccati equation

b
dy

dt
+y2 = c td/b−2 � (4.121)

Theorem 4.38 For b > 0, d > 0 and c 	= 0,

b+ �
K
n=1

(
c

b+nd
)
= y�1� 
 (4.122)

where y is the solution of the Riccati equation �4�121� which has the asymptotic value

y�t�∼
b

t

 t −→ 0+ � (4.123)

Proof By Theorem 4.36 and Lemma 4.37, formula (4.122) holds for a solution y1 of
�4�121�. Since q�0�= 1/b 	= 0 in (4.114), elementary computations with power series
show that, for some � > 0 and r = d/b,

y1�t�=
z�t1/b�

t
= b
t
+

�∑
k=1

ckt
kr−1 
 0 � t � � 
 (4.124)

which proves (4.123). We apply Euler’s method (see §103 at the start of Section 4.1)
to equation(4.121) and to its solution y1, which can be represented by Euler’s formulas
(4.114). We have L�t�= 2y1�t�/b, M�t�= 1/b. By (4.124),∫ x

�
L�t�dt = ln x2+C+

�∑
k=1

2ck
kd
xkr = ln x2+C+��x� �

This implies that for 0< x < �∫ x

�

1
t2
e��x�−��t� dt =

∫ x

1

1
t2
dt+O�1�

∫ �

x

���x�−��t��
t2

dt

=−1

x
+C+O�1�

∫ �

x

tr −xr
t2

dt =−1
x
+C+O�xr−1�

∫ �/x

1

tr −1
t2

dt

=−1
x
+C+O�xr−1�+O

(
ln
�

x

)
=−1

x

{
1+O

(
x ln

�

x
+xr

)}

 x→ 0+ �

Since in our case M�x�= 1/b,

y2�x�=
x2

b

{∫ x

1

e��x�−��t�

t2
dt+C

}

=−x
b

{
1+O

(
x ln

�

x
+xr

)}

 x→ 0+ �
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It follows that

y�x�= b
x
− b
x

1
1+O �x ln�/x+xr� = O

(
ln
�

x
+xr−1

)

 x→ 0+ 


which does not allow other solutions to have the same asymptotic expansion at x= 0
as y1�x�. �

The condition that implies d 	= 0 in Theorem 4.38 is essential. We have already found
all solutions to (4.110); see formula (4.111). Equation (4.110) coincides with (4.121)
if b = c = 1 and d = 0. In this case (4.122) with y�t�= �/t turns into the continued
fraction for the golden ratio �.

Corollary 4.39 For every s > 0,

coth
1
s
= s+ 1

3s +
1
5s +

1
7s + · · ·

� (4.125)

Proof Let b= s, c= 1, d= 2s. Then equation (4.121) takes the form s dy/dt+y2 = 1.
This equation can be easily solved in quadratures by Euler’s method, see Ex. 4.48,
to find y�t�= coth�t/s+��, where � is a real constant. Among these solutions there
is only one, y�t� = coth�t/s�, satisfying (4.123). Thus the proof is completed by
Theorem 4.38. �

Equation (4.125) leads to an alternative proof for the continued fraction for hyperbolic
cotangent, see (4.93).

Corollary 4.40 For every s > 0,

cot
1
s
= s− 1

3s −
1
5s −

1
7s − · · ·

�

Proof Let b = s, c = −1, d = 2s. Then equation (4.121) takes the form s dy/dt+
y2 = −1. All solutions to this differential equation are listed by the formula y�t� =
cot�t/s+��, see Ex. 4.49. Among them there is only one, y�t�= cot�t/s�, satisfying
(4.123). �

By (4.115) the functions p�x�b
 c
d� and q�x�b
 c
d� in (4.114) are both meromorphic
functions of their parameters. In particular, in the case of the cotangent,

p �x� s
−1
2s�= 1+
�∑
k=1

�−1�k

k! �2k−1�!!
(
x2s

2s

)k



q �x� s
−1
2s�= 1
s
+

�∑
k=1

�−1�k

k! �2k+1�!!
(
x2s

2s

)k



have at most two (essential) singular points at s = 0 and s =�. Hence p �1� s
−1
2s�
and q �1� s
−1
2s� may have only isolated zeros of finite order, tending to an accumu-
lation point at s = 0. By Theorem 4.36 this implies the convergence of the continued
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fraction for cotangent to the cotangent function everywhere in the complex plane ex-
cept for s = 0. In fact Theorem 4.36 claims that the continued fraction of cotangent
converges to infinity at its poles.

105 Riccati’s equations and continued fractions. The method of Euler lists
all solutions of Riccati equations if one is known. Here we present Euler’s method
of obtaining formulas for such solutions in continued fractions. Following Euler we
consider the Riccati equation

dy+ay2dx = acx2mdx � (4.126)

We may assume that m 	= −1, since otherwise for any $ satisfying aX2−X−ac = 0
there is a rational solution $/x. If 1+ 4a2c < 0 then this solution is complex, but
Euler’s method works in this case as well. We may also exclude the trivial case a= 0
and consider only the case a > 0. The case a < 0 reduces to the latter if y is replaced
by −y. Dividing both sides of (4.126) by a, we arrive at equation (4.121) with b= 1/a,
c = c, 2m= d/b−1. Since m 	= −1, d 	= 0. Moreover, d > 0 if m>−1/2. Hence if
a > 0, m>−1/2 then by Lemma 4.37 equation (4.126) has a meromorphic solution
on �0
+�� given by an explicit formula. This solution satisfies at 0+ the asymptotic
formula

y�x�∼ �ax�−1 
 x→ 0+ �

The change of variables y = tm/�m+1�z�t�, x = t1/�m+1� transforms (4.126) into another
Riccati equation,

dz

dt
−�z

t
+"z2 = "c 
 (4.127)

where �=−m/�m+1�, "= a/�m+1�. It also transforms the solution y to (4.126),
meromorphic on �0
+��, to a meromorphic solution z= z0 of (4.127) satisfying the
same asymptotic condition at 0. Observing that ��+1�/"= 1/a, we represent z0 as

z0 =
�+1
"t

+ c

z1

�

Substituting this expression for z0 in (4.127), we obtain that z1 satisfies

dz1

dt
− ��+2�

z1

t
+"z2

1 = "c �
In general, if

dzn
dt
− ��+2n�

zn
t
+"z2

n = "c (4.128)

then zn+1 defined by

zn =
�+2n+1

"t
+ c

zn+1
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satisfies
dzn+1

dt
− ��+2n+2�

zn+1

t
+"z2

n+1 = "c � (4.129)

As in the case of the hyperbolic cotangent this gives the following finite continued
fraction

z�t�=�+1
"t

+ c

��+3�/"t +
c

��+5�/"t + · · · +
c

��+2n−1�/"t+ c/zn
�

Assuming now that c > 0 and taking into account that " = a/�m+ 1� > 0, we see
that this continued fraction converges. Equation (4.128) shows that the graph of zn
intersects the real axis in the upward direction, which as in the case of the hyperbolic
cotangent leads to the conclusion that the zn are all positive on �0
+��. Hence

z�t�= �+1
"t

+ �
K
n=1

(
c

��+2n+1�/"t

)

and for �= 0, "= c = 1 we again obtain the continued fraction for coth t. Returning
to equation (4.126), we conclude that

y�x�= 1
ax
+ ac x

2m+1

2m+3 +
a2c x2m+2

4m+5 +
a2c x2m+2

6m+7 + · · · (4.130)

is a solution to (4.126) on �0
+��. If here m= 0, a= 1, c= 1 then (4.130) turns into
the continued fraction (4.93) for hyperbolic cotangent. Putting a= 1, c= n, 2m= n−2
we obtain a solution to equation (4.108):

q�r�= 1
r
+ nr

n−1

n+1 +
nrn

2n+1 +
nrn

3n+1 + · · · �

Exercises

4.1 If �bn�n�1 is an increasing positive sequence lim bn =+�, show that

1
b1

− 1
b2

+ 1
b3

− 1
b4

+ · · · = 1
b1 +

b2
1

b2−b1 +
b2

2

b3−b3 +
b2

3

b4−b3 + · · ·

4.2 Prove that

log�1+x�= 1
1 +

12

2−1x +
22

3−2x +
32

4−3x + · · ·
�

4.3 Deduce Theorem 3.12 from Theorem 4.5.
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4.4 Using Euler’s transformation of series to continued fractions prove the following
formula for Catalan’s constant:

C =
�∑
k=0

�−1�k

�2k+1�2
= 1

1 +
14

8 +
34

16 +
54

24 + · · ·

(Bowman and Mc Laughlin 2002).

4.5 Prove that

sin x = x
1 +

x2

2×3−x2 +
2×3x2

4×5−x2 +
4×5x2

6×7−x2 + · · · �

4.6 Investigate the convergence of the formal continued fraction (Euler 1750b, §6)∫ 1

0

xn−1 dx

�1+xm��/& =
1
n +
�n2

&m +
&��+&��m+n�2

�3&−��m+ �&−��n

+
2&��+2&��2m+n�2
�5&−2��m+ �&−��n +

3&��+3&��3m+n�2
�7&−3��m+ �&−��n + · · · �

Hint: Observe that by the binomial theorem (0< r < 1)∫ r

0

xn−1dx

�1+xm��/& =
�∑
k=0

�−1�k
� · · · ��+&�k−1��
k!&k�n+km� rn+km �

Let uk be the modulus of the coefficient at rn+mk. Apply Lemma 4.4 to show
that ∫ 1

0

xn−1 dx

�1+xm��/& =
∑
k�0

�−1�kuk 


if this series converges. Deduce from the identity

uk+1

uk
= 1+ km��−2&�+n�−&�n+m�

�&+k&��n+m+km�
that uk increases if �/& > 2 and lim uk 	= 0 if �/& = 2. Apply Theorem 4.5
to prove that the continued fraction diverges. In the case �/& = 2, separately
indicated in Euler (1750b, 9) prove that for m > n the even convergents and
odd convergents converge to different limits. Prove that lim uk = 0 if � < 2&
and deduce from this that the continued fraction converges.

4.7 Prove Euler’s formula (see Euler 1785a)

4
�−2

= 3+ 1×3
4 +

3×5
4 +

5×7
4 +

7×9
4 + · · · �

Hint: Apply Theorem 3.12 with a= 4, y0 = 3, y1 = 5, y2 = 7, � � � Use formula
(4.64) for s = 1.
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4.8 Justify Euler’s claim (see Euler 1785a, 1750b, §9) that

1+ 1×3×12

1 +
2×4×22

1 +
3×5×32

1 +
4×6×42

1 + · · · =
2

1/2+ log 2
�

Hint: Apply Corollary 3.9 to check that the continued fraction diverges. Notice
that

1
1+ s +

log�1+ s�
s

=
�∑
n=1

�−1�n−1 n+1
n
sn−1

for 0 < s < 1. Apply Theorem 4.5 with xn = �n+1�sn−1, yn = n to prove that
the above expression equals

2
(

1+ �
K
n=2

(
�n−1�3�n+1�s
�1− s�n2+ s

))−1

for 0< s < 1. Check the convergence of this continued fraction using Corollary
3.10. This example shows that even for positive continued fractions there are
cases where summation of a series is possible by an analytic continuation and
may be not possible by the method of continued fractions. Another such example
is given by Brouncker’s continued fraction b�s� at s = 0.

4.9 Prove Euler’s formula (Euler 1785a) for alternating triangular numbers
( 2n

2

)
:

1+ �
K
n=1

((
2n
2

)/
�n+1�

)
=

√
3

2 log
(

1+√3
)/√

2
�

Hint: Observe that

v= 1√
1+ z2

∫ dz√
1+ z2

= log�z+√1+ z2�√
1+ z2

satisfies the differential equation �1+ z2�dv/dz+vz= 1 and hence

z log�z+√1+ z2�√
1+ z2

= z2− 2
3
z4+ 2×4

3×5
z6− 2×4×6

3×5×7
z8+ · · ·

Putting z2 = x/y, obtain the continued fraction
√
x�x+y�

log�
√
x+√x+y�/√y = y+ 1×2xy

3y−2x +
3×4xy
5y−4x +

5×6xy
7y−6x + · · ·

�

Now put x = 1, y = 2.
4.10 Prove that

4
log 3

= 3+ 1×2×3
7 +

3×4×3
11 +

5×6×3
15 +

7×8×3
19 + · · · �

Hint: Put x = 1, y = 3 in Ex. 4.9.
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4.11 Every odd prime number p can be uniquely represented as 4n+ 1 or 4n− 1.
Hence every odd prime is a neighbor of a multiple of four. Prove Euler’s version
of Wallis’ formula for primes:

�

4
= 3

4
× 5

4
× 7

8
× 11

12
× 13

12
× 17

16
× 19

20
× 23

24
× 29

28
×· · ·

Hint: Use Euler’s formula, for s > 1,

∏
p

(
1± 1

ps

)−1

=
�∑
n=0

�−1�n

�2n+1�s



where the positive sign is taken if p= 4k−1 and the negative sign if p= 4k+1;
Landau (1974, vol. 1, §109).

4.12 Prove that for positive p
q
 r

p�p+2q− r�
p+ r

∫ 1
0 x

p+2q−1�1−x2r �
−1/2
dx∫ 1

0 x
p+2r−1�1−x2r �−1/2dx

= p+q− r+ q�r−q�
p+q+ �

K
n=0
��p+nr��p+2q+ �n−1�r�/2r�

� (E4.1)

Hints: Apply the Brouncker–Euler interpolation method to the hypergeometric
series considered in Euler (1750b, §21). Construct xn > 0 satisfying

xnxn+1 =
p+nr

p+2q+nr , n= 0
1
2
 � � � �

Apply Theorem 4.12 to find x0 and prove that

xn = 1− q
r

1
n
+ q�2p+2q− r�

2r2

1
n2
+O

(
1
n3

)
�

Consider yn = �p+2q+ �n−1�r�xn and check that

ynyn+1 = �p+nr��p+2q+ �n−1�r� ,

yn = nr+ �p+q− r�+
q�r−q�

2r
1
n
+O

(
1
n2

)
�

(E4.2)

Define zn by yn = p+q+ �n−1�r+q�r−q�/zn and check that,

zn− �p+q+nr�=
�p+nr��p+2q+ �n−1�r�

2r+ zn+1− �p+q+ �n+1�r�
�

Use (E4.2) to show that zn = 2nr +O�1/n�. Apply Markoff’s test, Corollary
4.13 and Lemma 4.11.
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4.13 Prove that ∫ 1
0 �1−x4�

−1/2
dx∫ 1

0 x
2�1−x4�−1/2dx

= 2+ �
K
n=1

�2n−1�2

4
� (E4.3)

Hint: Put p= q = 1, r = 2 in (E4.1) and apply Lemma 4.11. Notice that this is
Brouncker’s continued fraction for s = 2, which is an analogue of Brouncker’s
continued fraction (3.19) for the lemniscate of Bernoulli.

4.14 Prove that

1×5
3×3

5×9
7×7

9×13
11×11

13×17
15×15

· · · = 1

2+ �
K
n=1
��2n−1�2/4�

� (E4.4)

Hint: Apply Euler’s product (4.34) to (E4.3).

4.15 Consider an alternative proof of (E4.4). Take Brouncker’s sequence yn satisfying
(3.28) and apply Brouncker’s method to prove that y0 equals the infinite product
in (E4.4). Apply Euler’s method presented in Lemma 4.7 to prove that it equals
the value of the continued fraction in (E4.4).

4.16 Prove that

�−3
4−� =

12

4 +
22

1 +
32

4 +
42

1 +
52

4 +
62

1 +
72

4 + · · ·

Hint: Using Lemma 4.11 evaluate the left-hand side of (E4.1) for p= 2, q = 1,
r = 2. Apply an equivalence transform to the right-hand side.

4.17 Prove that, for r > 0 and m> 0,

∫ 1

0

xm−1 dx√
1−x2r

= 1
r

2�m+ r�
3m

4�m+3r�
5�m+2r�

6�m+5r�
7�m+4r�

· · ·

Hint: Apply Theorem 4.12 with �= n.

4.18 Prove Euler’s formula for the beta function (4.30).

Hint: Apply Theorem 4.12 with �= 1, n= 1, m= p, k= q:

B�p
q�= p+q
�1+q�pq

�∏
j=1

�1+1/j� e−1/j �1+ �p+q�/j� e−�p+q�/j
�1+ �1+q�/j� e−�1+q�/j �1+p/j� e−p/j

= p+q
�1+q�pq

�1+q���1+q�p��p�e$�p+1+q�

��1��p+q���p+q�e$�p+1+q� =
��q���p�

��p+q� �

see (3.59) and (3.42).
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4.19 Prove that for positive p, q, r

p+2q− r
p

∫ 1
0 x

p+r−1�1−x2r �q/r−1 dx∫ 1
0 x

p−1�1−x2r �q/r−1 dx

= 1+ 2�q− r�
p+ r+ �

K
n=1

(
�p+nr��p+2q+ �n−2�r�

r

) 

see Euler (1750b, §§21–5).
Hints: Using (4.17) and (4.19) as motivation write down

yn =m+ �n−1�r+ 1
zn

, n= 0
1
 � � � 


with a free parameter m. Apply (E4.2) to prove that

zn =
�m+nr�zn+1+1

�P+nQ�zn+1− �m− r+nr�



with P and Q as defined in §22 of the Appendix. Use the asymptotic formula

�2q−2r�zn = 2+ q

rn
+O

(
1
n2

)



and Markoff’s test to complete the proof of convergence.
4.20 Give a rigorous proof of Theorem 4.16.

Hints: Extend Brouncker’s approach presented in Chapter 3. Namely, let ak =
�kr+q��kr+ r−q� and Pn/Qn be the convergents to (4.45). Using the Euler–
Wallis formulas check that Pn�x� is even for odd n and odd for even n, whereas
Qn is even for even n and odd for odd n. Prove that

Pn�q�= q�q+ r� · · · �q+nr� , (E4.5)

Pn�r−q�= �r−q��2r−q� · · · �nr+ r−q� � (E4.6)

Lemma 4.41 For n= 0
1
 � � �

Pn�s�Pn�s+ r�− �s+q��s+ r−q�Qn�s�Qn�s+ r�= �−1�n+1
n∏
j=0

aj �

Hints: Since Qn+1Pn−Pn+1Qn = �−1�n+1a0 · · ·an, the polynomial on the left-
hand side of the identity to be proved equals Qn+1Pn−Pn+1Qn, which shows
that this identity is equivalent to the formula

Pn�s��Pn�s+ r�−Qn+1�s��

=Qn�s���s+q��s+ r−q�Qn�s+ r�−Pn+1�s�� �
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Since Pn and Qn do not have common factors, we conclude that the above
formula is equivalent to the following two:

Pn�s+ r�=Qn+1�s�+ l+n�s�Qn�s� 

�s+q��s+ r−q�Qn�s+ r�= Pn+1�s�+ ln�s�Pn�s� 


(E4.7)

where ln�s� is a linear polynomial in s. By the Euler–Wallis formulas the
polynomial part ofQn+1/Qn is 2s. However, the polynomial part of Pn�s+r�/Qn
is s+�n+1�r (observe that Pn�s�= 2nsn+1+asn−1+ � � � 
Qn�s�= 2nsn+bsn−2+
· · · ). Hence ln�s�= �n+1�r− s. Now formulas E4.7 are obtained by induction.

The proof can be now completed as in the case of Brounker’s formula by
Lemma 4.41.

4.21 Deduce Ramanujan’s formula, Theorem 3.25, from (4.46).

Hint: Combine (4.29) with (4.30).

4.22 Let y�s� > s for s > 0 be a solution to the functional equation

y�s�y�s+2r�= �s+1��s+2r−1� 
 1/2< r �

Prove a generalization of Ramanujan’s formula

y�s�= 4r
� ��s+2r+1�/4r� � ��s+4r−1�/4r�

� ��s+1�/4r� � ��s+2r−1�/4r�
� (E4.8)

Hint: Apply Theorem 4.17 to locate the poles and zeros of y�s�. Use (3.59)
to combine four gamma functions to have the same poles and zeros in their
totality as y�s�. Check that (E4.8) satisfies this functional equation. Apply
Stirling’s formula to prove that the solution exceeds s.

4.23 Prove that

� = 2+ 16
1×3×5

+ 16
5×7×9

+ 16
9×11×13

+ 16
13×15×17

+ · · ·

Hint: Apply (4.18) and Corollary 4.19.

4.24 Euler (1782, §27). Prove that

2
3
√
e2−1

= 1+ 6
4 +

12
7 +

18
10 +

24
13 + · · · �

Hint: Put t = 2/3 in (4.56).

4.25 Using the evolution equation s = xn�a− bx	 − cx2	�%, find the value of the
continued fraction

�a+%	�b+ �a+	��a+%	�ac
�a+	+%	�b +

�a+2	��a+	+2%	�ac
�a+2	+%	�b + · · ·

(Euler 1782, §29).



Exercises 221

4.26 Prove that

e2 = 5+ 8
2 +

6
3 +

8
4 +

10
5 +

12
6 +

14
7 + · · · �

Hint: In Lemma 4.18 and in (4.59) put

a= 2 
 b = s+1
 c = 1 
 �b−"a= 2s 

�= 2 
 "= 1 
 $ = 0
 �c−$a= 2 


dS

S
= �s+2�

dR

R−2
+dR �⇒ S = �2−R�s+2eR �

Choosing R�x�= 2x, prove that

s+ �
K
n=1

(
2n
s+n

)
= 1

e2
∫ 1

0 x
s+1e−2x dx

�

4.27 Prove that for p > 0 and s > 0

1

s+ �
K
n=1
�pn/�s+n��

=
�∑
n=0

�−1�n
pn

n!
ep

s+p+n �

Hint: Prove that

s+ �
K
n=1

(
pn

s+n
)
= 1

ep
∫ 1

0 x
s+p−1e−px dx

�

4.28 If a, b, �, " are positive numbers and b�−a"> 0 then there are a differentiable
function v and a constant c > 0 such that v�0�= 0, v′ > 0 on �0
 c� and∫ c

0
xn dv=

n∏
k=1

k�+a
k"+b �

Hint: Apply Euler’s differential method in the following form:

��n+a�
∫ x

0
xn−1 dv= �"n+b�

∫ x

0
xn dv+xnQ �

See Euler (1785b) or Kushnir (1957) for details.
4.29 Prove that

1

s+ �
K
n=1
�n�n+1�/s�

∼
�∑
k=1

4k�4k−1�B2k

2k
1
s2k−1

� (E4.9)

Hint: Apply (4.60), Lemma 3.21 and

tanh x =
�∑
k=1

4k�4k−1�B2k

�2k�! x2k−1 
 �x�< �
2
�
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4.30 Prove that∫ +�

0

e−sx dx
cosh3/2�x�

= 1×2
2s +

2×3
2s +

4×5
2s +

6×7
2s + · · · � (E4.10)

Hint: Put f = 4, h = 5, r = 2 in (4.69) and apply the change of variables
x = �1− t�1/2�1+ t�−1/2. Using (E3.1) check (E4.10) by putting s = 1.

4.31 Show that

∫ +�

0

e−sx dx
cosh3/2 x

=
+�∑
n=0

�−1�n
�2n+1�!!

2nn!
4
√

2
2s+4n+3

� (E4.11)

4.32 Prove that

2

s+ �
K
n=1
�n�n+2�/s�

+ s2−1

s+ �
K
n=1
�n2/s�

= s �

Hint: Put r = 1, f = 3, h= 1 in (4.69) and apply Theorem 4.24.

4.33 Prove that lims→0+ K�
n=1 �n�n+2�/s�= 4/�.

4.34 Prove that K�
n=1 �n�n+2�/1�= 1.

4.35 Prove that

1

s+ �
K
n=1
�n�n+2�/s�

∼ 1
2

�∑
k=0

E2k−E2k+2

s2k+1
� (E4.12)

Hint: Apply (4.77) and Ex. 4.32.

4.36 Prove that

1+ 2

2s−1+ �
K
n=0
��2n+1��2n+3�/2s�

= s
4

(
� �s/4�

� �s+2� /4

)2

�

Hints: Apply Euler’s formula (4.69) with f = 3, h = 1, r = 2, s �= 2s. Apply
the substitution from Ex. 4.30 to convert the quotient of Euler integrals into the
quotient of two beta integrals. Apply (4.30). See Perron (1957, p. 34) for an
alternative proof.

4.37 An analytic function may have two different representations by continued frac-
tions, see also (4.6). For s > 0

�
K
n=1

(
�s+n�2

1

)
= s+ �

K
n=1

(
n2

2s+1

)
� (E4.13)
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Hint: By (4.74) and Corollary 4.23,

1

2s+1+ �
K
n=1
�n2/�2s+1��

= 2
�∑
k=0

�−1�k

2s+2k+2
= 1
s
−

�∑
k=0

�−1�k

s+k

= 1
s
− 1
s +

s2

1+ �
K
n=1
��s+n�2/1�

= 1

1+ s+ �
K
n=1
��s+n�2/1�

�

Notice that the right-hand side of (E4.13) interpolates the corresponding asymp-
totic series at infinity, whereas the left-hand part does not.

4.38 Prove that
�
K

n=k+1

(
n2

1

)
= k+ �

K
n=1

(
n2

2k+1

)
�

Hint: Put s = k ∈ N in (E4.13).
4.39 (Ramanujan) For every positive t,√

2
�

∫ +�

0

sin ts ds

s+ �
K
n=1
�n/s�

= 1

t+ �
K
n=1
�n/t�


 (E4.14)

see Levin (1960, p. 369, formula (2)).
Hint: By (4.88) and Fubini’s theorem,∫ +�

0
sin ts ��s�ds =

∫ +�

0
e−x

2/2 dx
∫ +�

0
sin ts e−sx ds�

Integrating by parts, show that∫ +�

0
sin ts e−sx ds = t

t2+x2
�

Hence

'�t�
def=

∫ +�

0
sin ts ��s�ds =

∫ +�

0

1
1+x2

e−x
2t2/2 dx �

Differentiate with respect to t to obtain that '�t� satisfies the differential equa-
tion

'′�t�= t'�t�−
∫ +�

0
e−x

2
dx �

Hence ' is proportional to � and satisfies (4.89) with coefficient∫ +�

0
e−x

2
dx = 1

2

∫ +�

−�
e−x

2
dx =

√
2�
2

=
√
�

2
�
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4.40 Prove another formula of Ramanujan:

1+ 1
1×3

+ 1
1×3×5

+ 1
1×3 ·5×7

+ · · · + 1

1+ �
K
n=1
�n/1�

=
√
�e

2

 (E4.15)

see Levin (1960, p. 370, formula (3)).

Hint: Let y�x� =∑�
n=0 x

2n+1/ �2n+ 1�!!. Then y�0� = 0 and y′�x� = xy�x�+ 1,
which implies that

y�x�= ex2/2
∫ x

0
e−t

2/2 dt �

Formula (E4.15) follows from (4.88) by putting x = 1 in

+�∑
n=1

x2n−1

�2n−1�!! +
1

x+ �
K
n=1
�n/x�

= ex2/2
∫ +�

0
e−t

2/2 dt = ex2/2

√
�

2
�

4.41 Prove that for every s � 0 and q > p > 0 the series on the left-hand side of the
following equation converges and is equal to the right-hand side:

p

q+ s +
p�p+ s�

�q+ s��q+2s�
+ p�p+ s��p+2s�
�q+ s��q+2s��q+3s�

+ · · · = p

q−p
(Euler 1750b, §58).

Hints: (a) Consider the power series in x, where q > p > 0,

y�x�= xq+ px
q+s

q+ s +
p�p+ s�xq+2s

�q+ s��q+2s�
+ p�p+ s��p+2s�xq+3s

�q+ s��q+2s��q+3s�
+ · · ·

Apply Raabe’s test (http://mathworld.wolfram.com) to prove that this series
converges uniformly on �0
1
 in x to a continuous function y�x� on �0
1
 that
is infinitely differentiable on �0
1�. Check that y�x� satisfies∫

xp−q−s dy = qx
p−s

p− s +x
p+ px

p+s

q+ s +· · · =
qxp−s

p− s +x
p−qy�x�+C �

(b) Deduce from (a) that y�x� satisfies the Riccati equation

dy

dx
+ �q−p�x

s−1

1−xs y = qxq−1

1−xs � (E4.16)

(c) Prove that

z�x�= q�1−xs��q−p�/s
∫ x

0

tq−1 dt

�1− ts��q−p+s�/s
satisfies (E4.16), z�0�= 0 and therefore z≡ y.
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(d) Prove that

y�x�

�1−xs��q−p�/s = q
∫ x

0

tq−1 dt

�1− ts��q−p+s�/s

= qxq

�q−p��1−xs��q−p�/s −
pq

q−p
∫ x

0

tq−1 dt

�1− ts��q−p�/s �

Deduce that y�1�= q/�q−p�.
4.42 Prove the following generalization of Ex. 4.41. For any positive sequence

�an�n�1 satisfying
∑
a−1
n =� and x > 0,

1
x+a1

+ a1

�x+a1��x+a2�
+ a1a2

�x+a1��x+a2��x+a3�
· · · = 1

x
�

Hint: To obtain Ex. 4.41 from Ex. 4.42 put an = p+ns, x = q−p. To prove
the formula of Ex. 4.42 observe that (P0 = 1)

a1 · · ·ak−1x

�x+a1� · · · �x+ak�
= Pk−1−Pk
 Pk =

a1 · · ·ak
�x+a1� · · · �x+ak�

�

4.43 Prove that for r > 0 and q > p > 0 the following identity holds:

�q−p�
∫ 1

0
xp−1�1−x2r ��q−p�/2r

dx

1+xr

= q
∫ 1

0
xp−1�1−x2r ��q−p�/2rdx− �q+ r�

∫ 1

0
xp+r−1�1−x2r ��q−p�/2rdx �

Hints: Collect separately the positive and negative terms in

�1+xr�−1 = 1−xr +x2r −x3r +x4r −· · · 

then integrate and apply Lemma 4.11 and Ex. 4.41 to each collection.

4.44 If a, b, c, p, q, r are positive, a+b− r > c > b− r and g = a+b− c− r then

�
K
n=0

(
pq�c+nr��g+nr�
ap−bq+nr �p−q�

)

=
∫ 1

0 x
g+r−1�1−xr��c−b�/r�p+qxr��c−a�/r dx∫ 1

0 x
g−1�1−xr��c−b�/r�p+qxr��c−a�/r dx �

Hint: See Euler (1750b, §§63, 64).

4.45 Show that in order to insert the intermediate fraction

Pk−#Pk−1

Qk−#Qk−1
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between the convergents Pk−1/Qk−1 and Pk/Qk of a continued fraction q0 +
K�
n=1�pn/qn� it is sufficient to make the replacement

pk
qk +

pk+1

qk+1 + → pk
qk−# +

#

1 −
pk+1/#

qk+1+pk+1/# + · · ·

in the initial continued fraction.
4.46 Apply Ex. 4.45 with #= pk+1 to prove that the even convergents to

b0+
a1

b1−a2 +
a2

1 −
1

b2−a3+1 +
a3

1 −
1

b3−a4+1 +
a4

1 − · · ·

coincide with the convergents to b0+K�
n=1�an/bn�.

4.47 Using Euler’s method (see §103, in section 4.11) prove that

y�x�= coth x+ coth2 x−1
c− coth x

= coth�x+a� 
 c =− coth a ∈ R̂ 


lists all solutions to Riccati’s equation dy/dx = 1− y2. Notice that y = coth x
(c =�) is the only unbounded solution in the vicinity of x= 0.

4.48 Prove that all solutions to Riccati’s equation (s > 0)

s
dy

dt
+y2 = 1

are listed by y�t� = ±1 and y�t� = coth�t/s+��, where � is a real number.
Notice that limt→±� coth�t/s+��=±1.

4.49 Using Euler’s method prove that all solutions to the Riccati equation (s > 0)

s
dy

dt
+y2 =−1

are listed by y�t�= cot�t/s+��, where � is a real number.
4.50 Prove that continued fraction (4.130) is a solution to the Riccati equation (4.126)

if a > 0, m>−1/2, c < 0.
4.51 Prove that the continued fraction

v�t�= "ct

&+1 +
"2t2c

&+3 +
"3t3c

&+5 + · · ·

is a unique solution to the Riccati equation

dv

dt
− &+2

t
+"v2 = bc 
 v�0�= 0 �

4.52 Prove that the continued fraction

z�x�= c+ xn

c+an +
xn

c+2an +
xn

c+3an + · · ·
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is a solution to the Riccati equation

ax
dz

dx
− cz+ z2 = xn �

4.53 Prove that the continued fraction

y�x�= a
x
+ xn−1

c+an +
xn

c+2an +
xn

c+3an + · · ·

is a solution to the Riccati equation

a
dy

dx
+ a− c

x
y+y2 = xn−2 �

4.54 Recover Schlömilch’s (1857) proof of the convergence of (4.103).
Hint: Check that y�s�= cosh

√
s satisfies

y�n+2�+ �4n+2�y�n+1�−y�n� = 0 � (E4.17)

Prove that un+1 = y�n+1�/y�n� satisfies

un+1 =
1/2

2n+1+2sun+2

and

tanh s = s
1 +
s2

3 +
s2

5 + · · · +
s2

2n+1+ s2un+2

�

Use (E4.17) to prove that sny�n+1� = O�1� as s→ 0+ and that �sn+1/2y�n+1�
′ =
�sn−1/2

/
4� y�n�. Prove by induction that y�n� > 0 for s > 0.



5
Continued fractions: Euler’s influence

106. Here we give a simple extension of Euler’s method presented in §68 at the start
of Chapter 4. This, however, results in some interesting formulas.

Theorem 5.1 (Glaisher–Stern) Let  be an infinite product

 =
�∏
k=0

�1+$k� with  n =
n∏
k=0

�1+$k�

for nonzero $k, k > 0. Then � n�n�0 is the sequence of convergents to the continued
fraction

1+$0+
�1+$0�$1

1 −
s2

1+ s2 −
s3

1+ s3 −
s4

1+ s4 −· · ·



where

sn = �1+$n−1�
$n
$n−1

�

Proof Put dn = n in (4.1). �

Applying Theorem 5.1 to Euler’s infinite product (3.16), we obtain

sin �x
�x

=1− x
1 +

1�1−x�
x +

1�1+x�
1−x +

2�2−x�
x +

2�2+x�
1−x

+
3�3−x�
x +

3�3+x�
1−x +· · · � (5.1)

Putting x = 1/2, we immediately obtain Euler’s formula (4.18). More examples can
be found in Perron (1957, pp. 22–5).

228
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5.1 Bauer–Muir–Perron theory

107 A special case of Bernoulli’s theorem. By (1.15) the convergents of any
continued fraction b0+Kk�1�ak/bk� satisfy

Pn+1

Qn+1

= Pn+xnPn−1

Qn+xnQn−1


 (5.2)

where xn = an+1/bn+1. Hence the fractions on the right-hand side of (5.2) converge to
the value of the continued fraction if it exists. This resembles a discrete analogue of
l’Hôpital’s rule, see Ex. 5.1 and Ex. 1.18.

Theorem 5.2 (Stolz) Let the sequence �Qn�n�1 monotonically increase to +� and
�Pn�n�1 be any sequence. Then

lim
n

Pn
Qn

= lim
n

Pn−Pn−1

Qn−Qn−1

provided that the limit on the right-hand side exists.

It follows that the choice of xn indicated after (5.2) is not the only one implying the
convergence of such fractions. To study this phenomenon let us apply Bernoulli’s
theorem 4.1 to the quotients on the right-hand side of (5.2) now assuming the xn to be
arbitrary numbers. To simplify the notation let Cn = Pn+xnPn−1, Dn =Qn+xnQn−1.
By Theorem 4.1 this application is possible if for every n, n= 1, 2, � � �

CnDn−1−Cn−1Dn = �−1�n−1a1 · · ·an−1�n 	= 0 


where

�n = an−xn−1�bn+xn� 
 n= 1
2
 � � � (5.3)

Then by (4.1) the parameters of the continued fraction q0+K�
n=1�pn/qn� with conver-

gents �Cn/Dn�n�0 are given by

pn =
Cn−1Dn−CnDn−1

Cn−1Dn−2−Cn−2Dn−1

Dn−2

Dn



qn =
CnDn−2−Cn−2Dn

Cn−1Dn−2−Cn−2Dn−1

Dn−1

Dn
�

(5.4)

By Exs. 1.12, 1.13

CnDn−2−Cn−2Dn

= �−1�na1 · · ·an−2 �an−1�bn+xn�−xn−2�an+bnbn−1�−xnxn−2bn−1�

= �−1�na1 · · ·an−2 ��n−1�bn+xn�−xn−2�n� �
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By (3.5) (put rn = Dn−1/Dn and observe that rnrn−1 = Dn−2/Dn) the sequence
�Cn/Dn�n�0 is the sequence of the convergents to the continued fraction

b0+x0 +
�1

b1+x1 +
a1�2/�1

b2+x2−x0�2/�1 +· · · +
an−1�n/�n−1

bn+xn−xn−2�n/�n−1 +· · ·
� (5.5)

Now, applying induction and (1.15), one can check that the numerators of convergents
to this continued fraction are Cn and the denominators are Dn. Continued fraction (5.5)
is called the Bauer–Muir transform of b0+Kk�1�ak/bk�, Bauer (1872), Muir (1877). It
is clear that the Bauer–Muir transform of a continued fraction is uniquely determined
by this continued fraction and the choice of �xn�n�0.

108 The value of the Bauer–Muir transform. In view of the motivation given
in §107 it is not surprising that the values of a continued fraction and its Bauer–Muir
transform are related.

Theorem 5.3 Suppose that b0 +Kk�1�ak/bk� and its Bauer–Muir transform �5�5�
are convergent continued fractions with positive parameters. Then their values are
equal. If the first continued fraction has positive elements and converges and if xn � 0
starting from some n then the second continued fraction converges to the same value.

Proof In the first case both the limits

lim
n

Pn
Qn

= l1 
 lim
n

Pn+xnPn−1

Qn+xnQn−1

= l2

exist by the assumption of the theorem. If xn � 0 infinitely often and the first continued
fraction has positive elements then the fractions in the second limit are placed infinitely
often between Pn/Qn and Pn−1/Qn−1, which implies that l1 = l2. Suppose now that
xn < 0 for all n > N . By (1.15) and (5.3),

Pn+xnPn−1−
an
xn−1

�Pn−1+xn−1Pn−2�=−
�n
xn−1

Pn−1 �

A similar formula holds for Q. Hence

Pn+xnPn−1− �an/xn−1��Pn−1+xn−1Pn−2�

Qn+xnQn−1− �an/xn−1��Qn−1+xn−1Qn−2�
= Pn−1

Qn−1

�

Since −an/xn−1 > 0 we see that Pn−1/Qn−1 is placed between Cn/Dn and Cn−1/Dn−1,
which again implies l1 = l2.

If the elements of the first continued fraction are positive and xn > 0 for n > N , the
convergents Cn/Dn of the second continued fraction (for n > N ) are placed between
Pn/Qn and Pn−1/Qn−1, which implies the convergence of the Bauer–Muir transform
to the same value. �
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109 Bauer’s proof of Brouncker’s theorem. For Brouncker’s continued fraction
an = �2n− 1�2, b0 = s, bn = 2s, n = 1, 2, � � � We consider xn = An+B as a linear
polynomial in n and arrange the coefficients A, B so that �n ≡ const. Easy algebra
shows that

�n = �2n−1�2−xn−1�2s+xn�
= �4−A2�n2+ �−4−2sA−2AB+A2�n+1− �2s+B��B−A� �

Hence if A= 2 and B =−s then xn = 2n− s, �n = �s+1�2 and xn+1−xn−1 = 4. By
(5.5) and Theorem 5.3,

b�s�= �s+1�2

s+2 +
12

2�s+2� +
32

2�s+2� +
52

2�s+2� +· · ·
= �s+1�2

b�s+2�



which is equivalent to (3.28).
More sophisticated applications of the Bauer–Muir–Perron theory can be found in

Perron (1957, §§7
8). See also the exercises following this chapter. We include here
only Perron’s proof of Ramanujan’s formula.

110 Perron’s proof of Ramanujan’s formula. For s > 1 Ramanujan stated the
following formula:

1
s2−1 +

4×12

1 +
4×12

s2−1 +
4×22

1 +
4×22

s2−1 +· · · =
∫ �

0

2te−st

et+ e−t dt � (5.6)

It follows from (4.71) that the continued fraction (5.6) equals minus the derivative of
(4.71), which gives an interesting example when the continued fraction of a Laurent
series as well as of its derivative can be explicitly found.

To prove (5.6) Perron (1953, 1954 §7) applied a Bauer–Muir transform. We have

a2k−1 = 4k2 
 b2k−1 = 1 


a2k = 4k2 
 b2k = s2−1 �

Assuming that x2k−1 and x2k are linear polynomials in k, we may choose their coeffi-
cients in such a way that �n does not depent on n:

x2k−1 =
2k
s+1

− 1
2

 x2k = 2k�s+1�+ 3+2s− s2

2



�2k−1 = �2k =
�s+1�2

4
�

The continued fraction (5.6) is positive for s > 1, and xn > 0 for large n. Hence by
(5.5) and Theorem 5.3,
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y�s�= s2−1+ 4×12

1 +
4×12

s2−1 +
4×22

1 +
4×22

s2−1 +· · ·

= �s+1�2

2
+ �s+1�2/4

2/�s+1�+1/2 +
4×12

�s+1�2

+
4×12

1+2/�s+1� +
4×22

�s+1�2 +
4×22

1+2/�s+1� +· · ·

= 1
2
�s+1�2+ �s+1�4/4

2�s+1�+ �s+1�2/2 +
4×12

1 +
4×12

�s+2�2−1

+
4×22

1 +
4×22

�s+2�2−1 +· · · =
�s+1�2y�s+2�/2
y�s+2�− �s+1�2/2

�

It follows that y�s�, lims→+� y�s�=+�, satisfies

1
y�s�

+ 1
y�s+2�

= 2
�s+1�2

�

By Theorem 3.24, Theorem 4.25 and (4.71),

1
y�s�

=−�logb�′′�s�=− d
ds

1

s+ �
K
n=1
�n2/s�

=
∫ +�

0

xe−sx dx
cosh x

� (5.7)

Putting s =√5 in (5.6), we obtain after obvious equivalence transforms Ramanujan’s
formula,

1
1 +

12

1 +
12

1 +
22

1 +
22

1 +
32

1 +
32

1 +· · · =
∫ +�

0

8xe−
√

5x dx

ex+ e−x � (5.8)

5.2 From Euler to Scott–Wall

111 Convergence of Euler continued fractions. The convergents of any Euler
continued fraction (4.5) are the partial sums of its series

∑
ck. Hence an Euler continued

fraction and
∑
ck converge or diverge simultaneously.

Lemma 5.4 For any continued fraction q0+K�
n=1�pn/qn� with finite convergents there

is a series with nonzero terms whose partial sums coincide with the convergents of
this continued fraction.

Proof For any continued fraction with finite convergents,

Pn
Qn

= P0

Q0

+
n∑
k=1

(
Pk
Qk
− Pk−1

Qk−1

)
= q0+

n∑
k=1

�−1�k−1p1 · · ·pk
QkQk−1


 (5.9)

where all terms except possibly q0 are nonzero. If q0 	= 0 then #0 = q0,

#1 = p1�q0Q1�
−1
 #2 =−p2Q0�Q2�

−1
 � � � 
 #k =−pkQk−2�Qk�
−1
 � � �
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and for q0 = 0, #0 = p1�Q1�
−1,

#1 =−p2Q0�Q2�
−1
 � � � 
 #k =−pk+1Qk−1�Qk+1�

−1
 � � �

Then the ratios Pn/Qn are the partial sums of the series in (4.5). �

It follows that every continued fraction with finite convergents is equivalent to an Euler
continued fraction. Therefore it looks reasonable to study the convergence of Euler
continued fractions first. For a positive sequence �#n�n�0 in (4.5) the Euler continued
fraction

E�#�= #1

1 −
#2

1+#2 −· · · −
#n

1+#n −· · ·
=

�∑
k=1

#1 · · ·#k (5.10)

always converges either to a finite or an infinite value. To eliminate infinite values let
us consider the modified Euler continued fraction

E∗�#�= 1+#1

1+#1 −
#2

1+#2 −· · · −
#n

1+#n −· · ·
� (5.11)

The convergents E∗n of (5.11) and En of (5.10) are related by a simple formula:

E∗n = �1+#1�

(
1+#1+

#1

En
−1

)−1

= 1+#1

#1

(
1− 1

1+En

)
� (5.12)

By (4.5) the sequence �En� increases monotonically. It follows from (5.12) that �E∗n�
also increases and is bounded by 1+1/#1. Hence the continued fraction E∗�#� con-
verges to a finite value.

Theorem 5.5 Any modified Euler continued fraction E∗�#� is equivalent to an Euler
continued fraction E�r� with positive rk and r0 = 1.

Proof By Theorem 3.6 E∗�#� is equivalent to

1+#1

1+#1 −
#2

1+#2 −· · · −
#n

1+#n −· · ·

= 1
1 −
t2
1 −· · · −

tn
1 −· · ·

def= T�#� 
 (5.13)

where

tn =
#n

�1+#n−1��1+#n�
> 0 
 n= 2
3
 � � � (5.14)

Hence the convergents E∗n of E∗�#� equal the convergents Gn/Hn of T�#�. Since the
convergents E∗n increase, we have

E∗n−E∗n−1 =
Gn
Hn
− Gn−1

Hn−1

= �−1�n−1 �−t2� · · · �−tn�
HnHn−1

= t2 · · · tn
HnHn−1

> 0 �
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Since H0 = H1 = 1 and tn > 0 for n � 2, this implies by induction that Hn > 0 for
every n. It follows that if

rk =
tk+1Hk−1

Hk+1

> 0 
 k= 1
2
 � � � 
 (5.15)

then

r1 · · · rk =
t2 · · · tk+1

Hk+1Hk
= E∗k+1−E∗k =

Gk+1

Hk+1

− Gk
Hk
�

Since G1/H1 = 1,

E∗n =
Gn
Hn

= 1+
n−1∑
k=1

r1 · · · rk � (5.16)

By (5.16) and (4.5) the continued fraction

1
1 −

r1
1+ r1 −

r2
1+ r2 −· · · −

rn
1+ rn −· · ·

� (5.17)

is equivalent to E∗�#�. �

Corollary 5.6 Every modified continued fraction E∗�#� is equivalent to a continued
fraction T�#�, �5�13�, with positive tn satisfying �5�14�.

Corollary 5.7 The parameters of a modified Euler continued fraction E∗�#� and of
the equivalent Euler continued fraction E�r� are related by

1+
n∑
k=1

r1 · · · rk =
1+#1

#1

(
1− 1

1+∑n+1
k=1 #1 · · ·#k

)
� (5.18)

Proof This follows from (5.12) and (5.16). �

112 Absolute convergence of continued fractions. Since Euler’s method
reduces the convergence of continued fractions to the convergence of series, it is
natural to consider the absolute convergence of continued fractions.

Definition 5.8 A continued fraction q0 +K�
n=1�pn/qn� with convergents �fn�n�0 is

called absolutely convergent if

�f0�+
�∑
n=1

�fn−fn−1�<+� �

The proof of Theorem 5.5 involves three equivalent continued fractions E∗�#�, E�r�
and T�#�, which are all absolutely convergent. Notice that T�#� has the form

�
K
n=1

(cn
1

)

 (5.19)

in which in general the cn are complex numbers. By Corollary 3.7 any continued
fraction with nonzero partial denominators is equivalent to a continued fraction of the
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type (5.19). The formulas for cn in this equivalence are simple. Therefore any criteria
for the convergence of (5.19) is important and the relationships between T�#�, E∗�#�
and E�r� can be used to obtain sufficient conditions for the absolute convergence of
(5.19) in terms of the parameters �rn�n�1.

If the continued fraction (5.19) converges absolutely then the convergents fn to
(5.19) are finite and satisfy

fn−fn−1 = �−1�n−1 c1 · · · cn
QnQn−1

= �−1�n−1c1d1 · · ·dn−1 
 (5.20)

where

dn =
cn+1Qn−1

Qn+1


 n= 1
2
 � � � (5.21)

is defined similarly to (5.15). Hence the absolute convergence of (5.19) will follow if
one can find a way to deduce the inequalities

�dn�� rn 
 n= 1
2
 � � � (5.22)

from bounds on the partial numerators �cn�. Formulas (5.15) hint at a way to do this.

Theorem 5.9 Suppose that the cn in �5�19� satisfy

�cn�� tn 
 n= 2
 3
 � � � 
 (5.23)

for a sequence �tn�n�2 defined by �5�14� with some positive sequence �#n�n�1. Then
the continued fraction �5�19� converges absolutely,

�fn−fn−1�� �c1� r1 · · · rn−1

= �c1�
1+#1

#1

(
1

1+∑n−1
k=1 #1 · · ·#k

− 1
1+∑n

k=1 #1 · · ·#k

)

 (5.24)

and we have ∣∣∣∣ �Kn=1

(cn
1

)∣∣∣∣� �c1�
1+#1

#1

(
1− 1

1+∑�
j=1 #1 · · ·#j

)
� (5.25)

Proof Excluding Hn−2 and Hn (see the discussion after (5.14)) from the system

Hn−1 =Hn−2− tn−1Hn−3


Hn =Hn−1− tnHn−2


Hn+1 =Hn− tn+1Hn−1


(5.26)

of Euler–Wallis equations for (5.13), we obtain that

Hn+1 = �1− tn− tn+1�Hn−1− tntn−1Hn−3 
 n= 2
3
 � � �
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This implies by (5.15) that

rn =
tn+1Hn−1

Hn+1

=
(

1− tn− tn+1

tn+1

− tn
tn+1

rn−2

)−1


 n= 2
3
 � � � 


where we put r0 = 0 to make the formula valid for n= 2. Hence

rn�1− tn− tn+1�= tn+1+ rnrn−2tn 
 n= 2
3
 � � �

Similarly the denominators Qn of (5.19) the continued fraction under consideration,
satisfy

Qn+1 = �1+ cn+ cn+1�Qn−1− cncn−1Qn−3 �

It follows that

�dn� =
�cn+1Qn−1�
�Qn+1�

= �cn+1��Qn−1�
��1+ cn+ cn+1�Qn−1− cncn−1Qn−3�

�
�cn+1�∣∣�1+ cn+ cn+1�− �cn��dn−2�

∣∣ 
 n= 2
3
 � � � 


where we must have d0 = 0 to keep the inequality valid for n= 2. By (5.23),

rn�1+ cn+ cn+1�� rn�1− tn− tn+1�

= tn+1+ rnrn−2tn � �cn+1�+ rnrn−2�cn� �

Lemma 5.10 Suppose that a sequence �cn�n�1 satisfies

r1�1+ c2�� �c2�

r2�1+ c2+ c3�� �c3�


rn�1+ cn+ cn+1�� rnrn−2�cn�+ �cn+1�
 n= 3
4
 � � �

(5.27)

for positive rn and that the dn are defined by (5.21). Then

�dn�� rn
 n= 1
2
 � � �

Proof For n= 0 we formally put d0 = r0. For n= 1 we have

�d1� =
�c2��Q0�
�Q2�

= �c2�
�1+ c2�

� r1 �

For n= 2 we have

�d2� =
�c3��Q1�
�Q3�

= �c3�
�Q2+ c3Q1�

= �c3�
�Q1+ c2Q0+ c3Q1

= �c3�
�1+ c2+ c3�

� r2 �
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Finally, by the expression for �dn� given before Lemma 5.10, for n� 3 we obtain

�dn��
�cn+1�∣∣�1+ cn+ cn+1�− �cn��dn−2�

∣∣ � rn 

since �dn−2�� rn−2 by the induction hypothesis. �

Now the inequality (5.24) follows by (5.20), (5.22) and (5.18). Inequality (5.25) follows
from (5.18). �

Definition 5.11 The inequalities �5�27� are called fundamental inequalities for �cn�n�2

if they hold for some nonnegative �rn�.

See Jones and Thron (1980) or Wall (1948) for more details. Fundamental inequalities
play a role in continued fractions similar to that of Kummer’s test in the theory of
positive series, see Ex. 5.12.

Corollary 5.12 (Scott–Wall; Wall 1948, Jones and Thron 1980) Let �cn�n�0 satisfy
(5.27) with rn such that

∑
r1r2 · · · rk <+�. Then the continued fraction Kn�1 �cn / 1�

converges absolutely.

One choice of the test sequence �rn� is motivated by Theorem 3.12.

Theorem 5.13 (Scott–Wall; Khovanskii 1958, Wall 1948) Let �gn�n�1 be a sequence
of positive reals in �0
1� and �cn� a sequence of nonzero complex numbers such that

�cn�� �1−gn�gn−1 
 n= 2
3
 � � � (5.28)

Then K�
n=1 �cn/1� converges absolutely to a value K satisfying

�K�� 1
1−g1

⎛
⎝1−

(
1+

�∑
n=1

�1−g1� · · · �1−gn�
g1 · · ·gn

)−1
⎞
⎠ �

Proof Let #n = �1−gn�/gn. Then

�1−gn�gn−1 =
#n

�1+#n−1��1+#n�
= tn 


implying �cn�� tn. The bound for �K� follows from (5.25). �

This theorem modifies Pringsheim’s theorem obtained in 1905; see Perron (1957, §14,
Theorem 2.21). A particulary important result is the following.

Corollary 5.14 (Worpitsky’s test) If �cn�� 1/4 then the continued fraction Kn�1 �cn/1�
converges absolutely.

Proof Put gn = 1/2 in Theorem 5.13. �

Corollary 5.15 (Pringsheim, 1905) A continued fraction Kn�1�1 / qn� converges to a
finite value if �q2n−1�−1+�q2n�−1 � 1, n� 1.
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Proof By Corollary 3.7 Kn�1�1/qn�≈Kn�1�cn/1� where cn = �qnqn−1�
−1. Let g2n−1 =

g2n = �q2n�−1. Then

�c2n� = g2n�q2n−1�−1 � g2n�1−g2n�= g2n−1�1−g2n� 


�c2n+1� = g2n�q2n+1�−1 � g2n�1−g2n+2�= g2n�1−g2n+1� �

proving the corollary. �

Corollary 5.15 follows from Corollary 5.14 by the equivalence transform used in the
proof of Corollary 5.15. Indeed, ab � �a+b�2/4 � 1/4.

Let us compare Theorem 5.13 with Theorem 3.12 and especially with formula
(3.24). Using equivalence transformations we may set a= 1. In Theorem 3.12 yn > 1.
However, (3.24) is valid with the restriction that yn 	= 1. Hence, assuming y0 = 1 and
yn ∈ �0
1�, n� 1, we may write

1+ �
K
n=1

(−�1−yn�yn−1

1

)
=
(

1+
�∑
n=1

�1−y1� · · · �1−yn� / y1 · · ·yn
)−1

� (5.29)

Now let yk = k/�k+ x�, k � 1, where x > 0. Then obvious equivalence transforms
render (5.29) as

ex = 1
1 −

x

1+x −
x

2+x −
2x

3+x −
3x

4+x −· · · � (5.30)

5.3 The irrationality of �

113 Pringsheim’s test. At first glance Pringsheim’s test has nothing in common
with Euler continued fractions and the fundamental Wall–Scott inequalities. However,
this turns out not to be the case, and we will explain the relationships later, but first
we prove Pringsheim’s theorem following Jones and Thron (1980).

Theorem 5.16 (Pringsheim) If �qn� � �pn� + 1, n � 1, then K�
n=1�pn/qn� converges

absolutely. Its convergents fn satisfy �fn�< 1.

Proof To prove that �fn�< 1 we consider sn�w�= pn/�qn+w�. Clearly

�sn+m�0�� = �pn+m��qn+m�−1 � �pn+m���pn+m�+1�−1 < 1 �

Assume that �sn+1� · · · � sn+m�0��< 1. Then

�sn � sn+1� · · · � sn+m�0�� =
�pn�

�qn+ sn+1� · · · � sn+m�0��
<

�pn�
�qn�−1

� 1 �

It follows by induction that �fn+m� = �s1� · · · � sn+m�0��< 1. Next, by the Euler–Wallis
formulas,

�Qn�� �qn��Qn−1�− �pn��Qn−2�� �qn��Qn−1�− ��qn�−1��Qn−2� 
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which implies that the sequence �Qn� increases monotonically:

�Qn�− �Qn−1�� ��qn�−1���Qn−1�− �Qn−2���
n∏
k=1

�pn� �

Therefore �p1 · · ·pn�
�QnQn−1�

�
�Qn�− �Qn−1�
�QnQn−1�

= 1
�Qn−1�

− 1
�Qn�




and the continued fraction converges absolutely by (5.9). �

114 Lambert’s theorem: ��Q. The story goes back to Lambert, who applied the
method of Euler that we have already discussed (see §102 in Section 4.10) to obtain
the continued fraction for the tangent function:

tan v= 1
1/v −

1
3/v −

1
5/v −

1
7/v −· · ·

= v
1 −
v2

3 −
v2

5 −
v2

7 −· · · � (5.31)

In fact, Lambert repeated the argument given by Euler for cothp, which was not
completely correct as we saw. A correct proof was given later by Euler, see Corollary
4.40. Assuming that v = m/n is rational let us substitute this value in the above
formula. Then after an obvious equivalence transformation we obtain

tan
m

n
= m
n +

−m2

3n +
−m2

5n +
−m2

7n +
−m2

9n +· · · � (5.32)

If we consider

�k =
−m2

�2k+1�n +
−m2

�2k+3�n +
−m2

�2k+5�n +· · · 


then the continued fraction �k satisfies the conditions of Pringsheim’s test for suffi-
ciently large k and so converges absolutely. To prove that �k represents an irrational
number one can modify Huygens’ arguments (see Theorem 1.14). This clever modifi-
cation is due to Legendre.

Theorem 5.17 (Legendre; see Rudio 1892) Let � = K�
n=1�pn/qn� be a continued

fraction with integer pn and qn. If �qn�� �pn�+1, n�N , for some N and �qn�> �pn�+1
infinitely often then � is irrational.

Proof By Pringsheim’s test �N converges. By (1.17) �N � Q implies that � � Q.
Therefore we may assume that N = 1. An equivalence transformation of � followed
by �→±�, if necessary, reduces the problem to the case of positive qn and p1 > 0.
By Pringsheim’s test ��n�� 1, n� 1. If �n =±1 for some n then

�n+1 = pn/�n−qn = �npn−qn
is an integer. The continued-fractions assumption pn+1 	= 0 implies that �n+1 	= 0 and
therefore �n+1 =±1. Then �qn� = qn = �npn−�n+1, which together with �qn�� �pn�+1
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implies that �qn� = �pn�+ 1. Proceeding by induction, we see that �qk� = �pk�+ 1 for
k= n
n+1
 � � � , which contradicts the assumption that �qk�> �pk�+1 infinitely often.
It follows that ��n�< 1 for every n.

Suppose that �1 = B/A with integer A and B, 0< �B�< A. Then

��2� =
∣∣∣∣p1A−q1B

B

∣∣∣∣=
∣∣∣∣CB

∣∣∣∣< 1 �

Proceeding by induction and observing that �k 	= 0, k= 1
2
 � � � , we obtain an infinite
decreasing sequence A > �B� > �C� > �D� > · · · of positive integers, which is not
possible. Hence � is irrational. �

Applying Legendre’s theorem to the continued fraction of tan�m/n� we see that
x −→ tan x maps Q to R 	 Q. But tan��/4� = 1 ∈ Q. Therefore � is irrational. If
v= � in (5.31) then

3= �
2

5 −
�2

7 −
�2

9 −· · · =
m

5n −
m

7 −
m

9n −
m

11 −· · · 


provided �2 = m/n with m
n ∈ Z. Since this contradicts Legendre’s theorem, �2 is
irrational.

It is useful to note that (4.93) combined with an obvious equivalence transform
shows that

coth
m

n
= n

m
+ n2

3m +
n2

5m +· · ·

is irrational for every pair of integers m and n. It follows that x→ exp x maps Q into
R 	 Q.

The original proof of Lambert was not so brilliantly arranged as that of Legendre. Legendre not only

provided rigorous proofs but also simplified the proof of (5.32). Instead of Pringsheim’s test in the above

arguments Legendre proved its partial case using, in fact, the same proof as that given here (see Rudio 1892

for details). See Wallisser (1998) for an analysis of Lambert’s proof.

5.4 The parabola theorem

115 Pringsheim’s test and Scott–Wall inequalities. In 1655 Brouncker noticed
an important difference in the behavior of the even and odd convergents of regular
continued fractions; see Theorem 1.7. This observation combined with Bernoulli’s
inverse formulas (4.1) leads to two important continued fractions: the even and odd
parts of a continued fraction. If

q0+
�
K
n=1

(
pn
qn

)
(5.33)
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is a continued fraction with convergents �fn�n�0 then Bernoulli’s formulas (4.1) of
Theorem 4.1 show that

q0+
p1q2

q1q2+p2 −
p2p3q4

�q2q3+p3�q4+q2p4 −
p4p5q2q6

�q4q5+p5�q6+q4p6 −· · ·

−
p2n−2p2n−1q2n−4q2n

�q2n−2q2n−1+p2n−1�q2n+q2n−2p2n −· · ·
(5.34)

is the even part of (5.33) with convergents �f2n�n�0. Similarly,

q0q1+p1

q1

− p1p2q3

�q1q2+p2�q3+q1p3

−
p3p4q1q5

�q3q4+p4�q5+q3p5 −
p4p5q2q6

�q4q5+p5�q6+q4p6 −· · ·

−
p2n−1p2nq2n−3q2n+1

�q2n−1q2n+p2n�q2n+1+q2n−1p2n+1 −· · ·
(5.35)

is the odd part of (5.33) with convergents �f2n+1�n�0. The even part exists if and only
if q2k 	= 0 for k= 1
2
 � � � The odd part exists if and only if q2k+1 	= 0 for k= 0
1
2
 � � �
This follows from the requirement that the partial numerators of continued fractions
cannot vanish; see the partial numerators of (115) and (115). Details of these calcu-
lations can be found in Jones and Thron (1980, Theorems 2.10 and 2.11). However,
the same goal can also be achieved by simply excluding excessive numerators and
denominators in the Euler–Wallis formulas; see (5.26) or Lemma 2.21. Let us illustrate
this method for K�

n=1�cn/1�. Adding the Euler–Wallis formulas,

Pk = Pk−1+ ckPk−2
 ×1

Pk−1 = Pk−2+ ck−1Pk−3
 ×1

Pk−2 = Pk−3+ ck−2Pk−4
 ×�−ck−1�

multiplied by the weights shown on the right and observing that Q satisfies the same
equations, we obtain

Pk = �1+ ck−1+ ck�Pk−2− ck−2ck−1Pk−4 


Qk = �1+ ck−1+ ck�Qk−2− ck−2ck−1Qk−4 

(5.36)

for k= 3, 4, � � � We have P2 = �1+c2� × 0+c1 × 1 and Q2 = �1+c2� × 1+c1 × 0.
Considering equations (5.36) for k = 2n, n = 2, 3, � � � as the Euler–Wallis equations
in n for a new continued fraction, we obtain that

1
0



0
1



P2

Q2



P4

Q4


 � � � 

P2n

Q2n


 � � �

are the convergents to the even part
�
Ke
n=1
�cn/1�≈

c1

1+ c2 −
c2c3

1+ c3+ c4 −· · · −
c2n−2c2n−1

1+ c2n−1+ c2n −· · ·
� (5.37)
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To find the odd part of K�
n=1�cn/1� we apply (5.36) for k= 2n+1, n� 1.

Hence
1
0



P1

Q1

= c1 

P3

Q3


 � � � 

P2n+1

Q2n+1


 � � �

are the convergents of the odd part
�
Ko
n=1
�cn / 1�≈ c1−

c1c2

1+ c2+ c3 −
c3c4

1+ c4+ c5 −· · · −
c2n−1c2n

1+ c2n+ c2n+1 −· · ·
� (5.38)

Theorem 5.18 (Scott–Wall; see Jones and Thron 1980) For every sequence �cn�n�1

satisfying the fundamental inequalities �5�27�, both the even and odd parts of K�
n=1�cn/1�

converge to a finite or infinite value. The value of the even part is finite if r1�1+c2�>
�c2�. The value of the odd part is finite if r2�1+ c2+ c3�> �c3�.
Proof If we apply to the even part the equivalence transform #n = r2n−1c

−1
2n , n =

1
2
 � � � , then by Theorem 3.6 the partial numerators an and partial denominators bn
of the continued fraction thus obtained satisfy

a1 =
r1c1

c2


 b1 =
r1�1+ c2�

c2




an =
r2n−1

c2n

r2n−3c2n−1 
 bn =
r2n−1

c2n

�1+ c2n−1+ c2n� �

By the Scott–Wall fundamental inequalities

�bn� = r2n−1

∣∣∣∣1+ c2n−1+ c2n

c2n

∣∣∣∣� r2n−1r2n−3�c2n−1�
�c2n�

+1= �an�+1 


and Pringsheim’s test the continued fraction K�
n=2�an/bn� converges to a point in the

closed unit disc. Consequently the even part of K�
n=1�cn/1� converges to

r1c1�r1�1+ c2�+ c2w�
−1, �w�� 1, which is finite if r1�1+ c2�> �c2�.

We apply the equivalence transform #n+1 = r2nc2n+1
−1, n= 1, 2, � � � to the odd part

(5.38). Then for n= 2
3
 � � � ,

an+1 = #n#n+1c2n−1c2n =
r2nr2n−2c2n

c2n+1




bn+1 =
r2n
c2n+1

�1+ c2n+ c2n+1� �

It follows that

�bn+1� =
r2n�1+ c2n+ c2n+1�

�c2n+1�
�
r2nr2n−2�c2n�
�c2n+1�

+1= �an+1�+1 �

By Pringsheim’s test the continued fraction K�
on=3
�an/bn� converges to a finite value

which does not exceed 1 in modulus. This shows that the odd part of K�
n=1�cn/1�

converges to

c1− r2c1c2�r2�1+ c2+ c3�−vc3�
−1 
 �v�� 1 


which is finite if r2�1+ c2+ c3�> �c3�. �
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116 The parabola theorem. Let us observe that the domain

�0 = �z � 1/2+Re z� �z��
in the complex plane C is a parabola directed along the real axis and having its vertex
at z=−1/4.

Lemma 5.19 Any sequence �cn�n�2 in �0 satisfies the fundamental inequalities �5�27�
with r1 = r2 = · · · = 1 and

�1+ c2�� 1/2+�c2� 
 �1+ c2+ c3�� �c2�+ �c3� � (5.39)

Proof Since the modulus is greater than the real part,

�1+ ck+ ck+1�� 1/2+Re ck+1/2+Re ck+1 � �ck�+ �ck+1�
for k= 2
3
 � � � and �1+ c2�� 1+Re c2 � 1/2+�c2�. �

Theorem 5.20 (The parabola theorem) Suppose that all the complex numbers �cn�n�2

are nonzero and in the parabolic domain �0. Then the continued fraction K�
n=1�cn/1�

converges if and only if

�∑
k=1

∣∣∣∣ c2c4c6 · · · c2k

c3c5c7 · · · c2k+1

∣∣∣∣+ �∑
k=1

∣∣∣∣c3c5c7 · · · c2k−1

c4c6c8 · · · c2k

∣∣∣∣=+� � (5.40)

Proof By Lemma 5.19 the sequence �cn�n�2 satisfies the fundamental inequalities with
rk = 1 for k= 1, 2, � � � Hence by Theorem 5.18 the even and odd parts of K�

n=1�cn/1�
converge. Since �1+ c2� > �c2�, the even part converges to a finite value. Similarly,
since �1+c2+c3�� �c2�+�c3�> �c3� the odd part converges to a finite value. Therefore
the convergence of the continued fraction will be established if we can prove that∣∣∣∣ P2n

Q2n

− P2n+1

Q2n+1

∣∣∣∣=
∣∣∣∣c1 · · · c2n+1

Q2nQ2n+1

∣∣∣∣→ 0 
 n→+� � (5.41)

Lemma 5.21 We have Qk 	= 0 for k� 0 and, for n� 2,∣∣∣∣ Q2n

c2 · · · c2n

∣∣∣∣−
∣∣∣∣ Q2n

c2 · · · c2n−2

∣∣∣∣� 1
2

∣∣∣∣c3 · · · c2n−1

c2 · · · c2n

∣∣∣∣ 

(5.42)∣∣∣∣ Q2n+1

c3 · · · c2n+1

∣∣∣∣−
∣∣∣∣ Q2n−1

c3 · · · c2n−1

∣∣∣∣� �c3�
2

∣∣∣∣ c4 · · · c2n

c3 · · · c2n+1

∣∣∣∣ �
Proof By (5.36) and (5.27),

�Qk�� �1+ ck−1+ ck��Qk−2�− �ck−2ck−1Qk−4�
� ��ck−1�+ �ck���Qk−2�− �ck−2ck−1Qk−4� 


which implies that

�Qk�− �ck��Qk−2�� �ck−1���Qk−2�− �ck−2��Qk−4�� �
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Putting k= 2n, k= 2n+1 and iterating, we obtain

�Q2n�− �c2n��Q2n−2 � �c3 · · · c2n−1���Q2�− �c2��Q0�� 

(5.43)

�Q2n+1�− �c2n+1��Q2n−1 � �c4 · · · c2n���Q3�− �c2��Q1�� �
By (5.39) �Q2�− �c2��Q0�> 1/2 and �Q3�− �c2��Q1�� �c3�. It follows that

�Qk�− �ck��Qk−2�� 1/2�c3 · · · ck−1� 
 k= 4
5
 � � � (5.44)

We conclude by induction that �Qk� > 0 for k � 0. Inequalities (5.42) follow from
(5.43) by division. �

By (5.42) both the sequences �Q2n�c2 · · · c2n�
−1�, �Q2n+1�c3 · · · c2n+1�

−1� increase. There-
fore if one series in (5.40) diverges then their product tends to infinity, implying
(5.41). If both series converge then by Corollary 3.8 K�

n=1�cn/1� ≈ K�
n=1�1/q

∗
n� with∑

n �q∗n�<+�, and by Koch’s theorem 3.3 the continued fraction diverges. �

The following corollary extends Corollary 3.10 to the parabolic domain �0. However,
since �0 contains the closed disc �z � �z� � 1/4�, it also extends Worpitsky’s test,
Corollary 5.14.

Corollary 5.22 Suppose that the complex numbers �cn�n�2 are all nonzero and are
in the parabolic domain �0. Then the continued fraction K�

n=1�cn/1� converges if∑
k �c2k+1�−1/2 =+�.

Proof As in Corollary 3.10 we apply the inequality 2
√
ukvk � uk+vk with

uk =
∣∣∣∣∣ c2c4c6 · · · c2k

c3c5c7 · · · c2k+1

∣∣∣∣∣
 vk =
∣∣∣∣∣c3c5c7 · · · c2k−1

c4c6c8 · · · c2k 


∣∣∣∣∣

and observe that ukvk = �c2/c2k+1�. �

Exercises

5.1 Prove Theorem 5.2. Hint: Sum the inequalities

�a−���Qk−Qk−1� < Pk−Pk−1 < �a+���Qk−Qk−1�

for k= N
N +1
 � � � 
 n, where a is the limit of the ratio in Theorem 5.2.
5.2 Let yn > a > 0, n= 1,2, � � � Prove that for s >maxn�yn−yn−1�

y0+
�
K
n=1

(
yn−1�yn−a�

s

)
= y0�s−a�

s−y1 +
�
K
n=1

(
yn�yn−a�
s+yn−yn+1

)
�

Hint: Apply the Bauer–Muir transform with parameters an = yn−1�yn − a�,
bn = s, xn =−yn and then apply Theorem 5.3.
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5.3 Prove that

2s+ �
K
n=1

(
4n2−1

2s

)
= 1+ 2s

b�s+1�− s 


where b�s� is Brouncker’s continued fraction.

Hint: Apply Ex. 5.2 with a= 2, yn = 2n+1.

5.4 Prove that for s > 0

1+ 2
2s−1 +

1×3
2s +

3×5
2s +

5×7
2s +· · · =

s

4

[
� �s/4�

� ��s+2�/4�

]2

�

Hint: Apply Ex. 5.3 and Theorem 3.25.

5.5 Prove that

1+ 2
8k−1 +

1×3
8k +

3×5
8k +

5×7
8k +· · · =

(
�2k�!!
�2k−1�!!

)2 1
�k



1+ 2
8k−5 +

1×3
8k−4 +

3×5
8k−4 +

5×7
8k−4 +· · · =

(
�2k−1�!!
�2k�!!

)2 2k2�

2k−1
�

Hint: Put s = 4k and s = 4k−2 in Ex. 5.4 and apply (3.66).

5.6 For s > 0 prove that

�
K
n=1

(
n2

s+1

)
= s

s−1 +
�
K
n=1

(
n�n+1�
s

)
�

Hint: Put an = n2, bn = s+1, xn =−n−1 and apply the Bauer–Muir transform.
Obtain a second proof of the formula using a description of the two continued
fractions involved in terms of functional equations; see Corollary 4.20 and
(4.75).

5.7 Let x > 1 and cn > 0, n= 1, 2, 3, � � � Then

�
K
n=1

(
x+ cn
cn

)
= 1+ x−1

1+ c1 +
�
K
n=1

(
x+ cn
cn+1

)

provided that the continued fraction on the left-hand side converges.

Hint: Apply the Bauer–Muir transform with an = x+cn, bn = cn, xn = 1. Then
apply Theorem 5.3.

5.8 Let cn > 0, n= 1, 2, 3, � � � Prove that

�
K
n=1

(
1+ cn
cn

)
= 1 (E5.1)

provided that the continued fraction converges.

Hint: Pass to the limit x→ 1+ in Ex. 5.7.
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5.9 Prove Ramanujan’s formula

x+1
x +

x+2
x+1 +

x+3
x+2 +· · · = 1 
 x � 0 �

Hint: Assuming first that x> 0, in Ex. 5.8 act cn= x+n−1 and apply Corollary
3.10. Reduce the case x = 0 to x = 1.

5.10 Prove that (E5.1) holds for any complex sequence �cn�n�1 with cn 	=−1 such that
the continued fraction in (E5.1) converges and the infinite product

∏
n �1+ cn�

diverges to +� (McLaughlin and Wyshinski 2003).
Hint: Apply Ex. 4.45 to prove that (E5.1) is the even part of

c1+1
c1+1 −

1
1 +
c2+1

0 −
1
1 +
c3+1

0 −
1
1 +· · · � (E5.2)

Let Pn/Qn be the convergents to (E5.2). Apply Ex. 1.12 to prove that∣∣∣∣ P2n+2

Q2n+2

− P2n

Q2n

∣∣∣∣=
∏n+1
k=1 �1+ ck�
�Q2nQ2n+2�

→ 0 �

The conclusion is that lim �Q2nQ2n+2� = +�. Apply the Euler–Wallis recursion
to establish that

P2n+1 =Q2n+1 =
n+1∏
k=1

�1+ ck�

and use this identity to prove that∣∣∣∣1− P2n

Q2n

∣∣∣∣=
∣∣∣∣ P2n+1

Q2n+1

− P2n

Q2n

∣∣∣∣= 1
�Q2n�

�

Since the limit of the left-hand side exists, the limit limn �Q2n� must exist and
be equal to +�.

5.11 Using Bauer’s method prove that the continued fraction

y�s�= s+ �
K
k=1

(
�2k−1�2r2− �r−1�2

2s

)
satisfies the functional equation for s > 0

y�s�y�s+2r�= �s+1��s+2r−1� �

Hint: Apply the Bauer–Muir transform with xn = 2rn− s.
5.12 Prove Kummer’s test. Let �cn�n�0 be a positive sequence such that

∑
n�0 c

−1
n =

+�. If for a positive sequence �un�n�0 we have

lim inf
n

(
cn
un
un+1

−un+1

)
> 0 


then
∑
n un <+�.

Hint: Consider the auxiliary series
∑
n cnun− cn+1un+1.



6
P-fractions

6.1 Laurent series

Brouncker’s theorem (see Theorem 3.16) and Euler’s formula (4.105) are the most
impressive achievements of the early theory of continued fractions. Both Brouncker
and Euler obtained their results using Wallis’ interpolation method. For instance, in
Euler’s case formula (4.105) can be considered as a restriction to N of a polynomial
continued fraction

e1/s = b0�s�+
1

b1�s� +
1

b2�s� + · · · +
1

bn�s� + · · ·



where the bn�s� are linear polynomials in s with integer coefficients. This interpo-
lation method follows an analogy between integers and polynomials: integer partial
denominators of regular continued fractions are replaced by polynomials. Then dec-
imal representations of numbers, as Brouncker observed, correspond to asymptotic
series; see §60 in Section 3.2. We are going to consider this correspondence in more
detail here.

117 Long division of polynomials. The Euclidean algorithm will run not only
in Z but also in some other rings. The most important examples are the rings Q�X
,
R�X
, C�X
 of polynomials

p�X�= c0X
n+ c1X

n−1+ · · · +cn−1X+ cn
with rational, real or complex coefficients c0
 c1
 � � � 
 cn. By the long division of
polynomials, the basic properties of the Euclidean algorithm extend to some rings of
polynomials. Rings in which the Euclidean algorithm works are called Euclidean.

A commutative ring R with only one element, 0, cannot be an integral domain: a commutative ring is an
integral domain if it does not have divisors of zero, i.e. ab = 0 implies either a= 0 or b = 0; Lang (1965).

Definition 6.1 (Koch 2000) An integral domain R is called Euclidean if there exists a function

H �R→ N∪0
def= Z+

247
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called the height, such that H�ab�� max�H�a�
H�b�� for any a
b 	= 0 and for any two elements a
b with
a 	= 0 there exists a representation

b = qa+ r 

where either r = 0 or H�r� < H�a�.

If K is a field then K�X
 denotes the Euclidean domain of polynomials in X with coefficients in K. The
height H in K�X
 is the degree deg p of a polynomial p, p ∈ K�X
. As usual K�X� is the field of quotients
for K�X
 and is also called the field of rational functions in X (with coefficients in K). The continued
fractions (1.2) with coefficients in a given Euclidean domain determine elements of the quotient field for
this domain. So, the situation is very similar to what we have for Z and its quotient field Q.

A particular important example is obtained if K = C and X = z, z being the identical map of C.

Any pair f0, f1 of polynomials in X such that deg f0 > deg f1 generates a sequence
of polynomials with decreasing degrees deg f0 > deg f1 > deg f2 > · · · in the set C�X


of all polynomials with complex coefficients:

f0 = b0f1+f2 


f1 = b1f2+f3 


���

fn−2 = bn−2fn−1+fn 

fn−1 = bn−1fn �

(6.1)

Here bj ∈ C�X
, j = 0
1
 � � � Any sequence in C�X
 with decreasing degrees is finite.
Therefore there exists n ∈ N such that fn−1 = bn−1fn, so the algorithm stops at this
step. This algorithm is known as the Euclidean algorithm for the long division of
polynomials and leads to the same conclusion as in the number-field case: fn is the
greatest common divisor �f0
 f1� of f0 and f1.

The factorization theory of integers is based on the formula

ax+by = d � (6.2)

Here a and b are integers with the greatest common divisor d and x, y are some integers. For given a and b
their greatest common divisor d can be found by the above Euclidean algorithm, and (1.16) with Pn = a and
Qn = b shows that x = �−1�n−1Qn−1 and y = �−1�nPn−1 are solutions to (6.2). The fact that (6.2) always
has solutions in the integers results in Euclid’s factorization theorem,

n= pk1
1 p

k2
2 · · ·pkrr 
 (6.3)

where p1 < p2 < · · ·< pr is the complete list of prime divisors of n and k1
 k2
 � � � 
 kr are positive integers.

Namely, attempts to extend (6.3) to other commutative rings led to the notion of the Euclidean ring, or

Euclidean domain.

118 P-fractions. On the one hand, since C�z
 is an Euclidean domain, any rational
function x0/x1 ∈C�z� expands into a finite continued fraction of the form (1.2), where
bj ∈ C�z
, deg bj � 1, j = 1
2
 � � � , n− 1. On the other hand, with any sequence
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�bj�j�0 of polynomials in z satisfying deg bj � 1, j = 1
2
 � � � , one can associate a
formal continued fraction

b0�z�+
�
K
k=1

(
1

bk�z�

)

 (6.4)

called a P-fraction. Its nth convergent is defined by

Pn
Qn

= b0+
1
b1 + · · · +

1
bn
�

By the Euler–Wallis recurrence formulas (1.15),

Pn = bnPn−1+Pn−2 
 Qn = bnQn−1+Qn−2 
 n= 1
2
 � � � 


P1 = 1
 P0 = b0 
 Q−1 = 0 
 Q0 = 1 �
(6.5)

It follows from (6.5) that

degQn = deg b1+· · ·+deg bn 
 n= 1
2
 � � � �

Another corollary of (6.5) is the following formula:

Pn
Qn
− Pn−1

Qn−1

= �−1�n−1

QnQn−1

� (6.6)

Since the above construction is analogous to the corresponding construction in the
field Q of rational numbers, we can use it to obtain and parameterize the continuum
of continued P-fractions, as in §23, Section 1.3 for regular continued fractions. So,
starting with the Euclidean domain C�z
 and applying the method of continued fractions
we obtain another continuum, namely, the field C ��1/z
� of formal Laurent series at
z=�. Every element f in C ��1/z
� is a formal series

f�z�=∑
k∈Z

ck
zk

 (6.7)

where only a finite number of complex coefficients ck ∈ C with negative indices k
differ from 0. We put

��f

=∑
k�0

ck
zk

 Fracf =∑

k>0

ck
zk
�

As for real numbers, ��f

 is called the integer part and Fracf the fractional part of f .
The field C ��1/z
� is equipped with a nonarchimedean norm

�f� = exp�deg f� 
 deg f =− inf�k ∈ Z � ck 	= 0� � (6.8)
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If f is a polynomial then degf in (6.8) is its degree. As usual we put deg 0=−�. It
is easy to see that the norm in (6.8) satisfies the following properties:

�r� = 0 ⇔ r = 0
 (6.9)

�rs� = �r��y�
 (6.10)

�r+ s�� max��r�
�s��� (6.11)

Clearly, the open unit ball in this norm consists of elements f satisfying f = Frac�f�.
The closed unit ball is the ring C��1/z

 of all formal Laurent series f at z=� such
that ck = 0 in (6.7) for k < 0.

Theorem 6.2 Let f be an element of C ��1/z
�. Then

(a) the element f can be developed into a continued P-fraction �6�4��
(b) the partial denominators Qn of the continued P-fraction of f satisfy

lim
n

deg Qn =+� �

(c) the continued fraction of f converges in the norm of C ��1/z
�, moreover∣∣∣∣
∣∣∣∣f − PnQn

∣∣∣∣
∣∣∣∣= exp �−deg Qn−deg Qn+1� �

(d) the continued fraction of f corresponds to the Laurent series of f in the sense
that the Laurent coefficients of f and Pn/Qn are equal for indices k satisfying
k < sn+ sn+1�

(e) every continued P-fraction converges in C ��1/z
��
(f) only one P-fraction corresponds to a Laurent series�

(g) a continued fraction �6�4� is finite if and only if it corresponds to a rational
function�

(h) the field C�z� is dense in C ��1/z
�.

Proof (a) As in the case of real numbers we put f0 = f and define fn = 1/Fracfn−1

for n= 1
2
 � � � Then

f = ��f0

+
1

1/Fracf0

= ��f0

+
1
��f1

 + · · · +

1
��fn

+Fracfn

� (6.12)

Clearly ��fk

 ∈C�z
. The algorithm (6.12) stops in a finite number of steps if and only
if Fracfn = 0 for some integer n, which happens if and only if f is a rational function.
Indeed, if Fracfn = 0 for some n then f ∈ C�z�, since the ��fk

 are polynomials.
However, if f = P/Q, where P and Q are polynomials, then the long division of
polynomials results in a finite continued fraction (6.12).
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(b) If Pn/Qn are convergents to the continued P-fraction constructed above, then by
the Euler–Wallis formulas

Pn+1 = bn+1Pn+Pn−1 


Qn+1 = bn+1Qn+Qn−1 
 n= 1
2
 � � � 


P0 = 0 
 P1 = 1 
 Q0 = 1 
 Q1 = b1�z� �

(6.13)

It follows from (6.13) that sn
def= deg Qn = deg b1 + · · · + deg bn. Observing that

deg bk�1, we obtain sn � n.
(c) As in the case of real numbers, the Euler–Wallis formulas imply PnQn−1 −

Pn−1Qn = �−1�n−1, which shows that Pn/Qn is a fraction in its lowest terms and,
together with

f = Pn+1+Pn Frac�fn+1�

Qn+1+Qn Frac�fn+1�



implies that

f − Pn
Qn

= �−1�n

QnQn+1�1+Frac�fn+1�Qn/Qn+1�
� (6.14)

Finally, by (6.10) and (6.14) we have

deg
(
f − Pn

Qn

)
=−sn− sn+1+deg

(
1

1+Frac�fn+1�Qn/Qn+1

)
=−sn− sn+1 � (6.15)

(d) This follows from (c) by (6.8).
(e) Using the elementary identity

Pn+k
Qn+k

− Pn
Qn

=
(
Pn+k
Qn+k

− Pn+k−1

Qn+k−1

)
+· · ·+ Pn+1

Qn+1

− Pn
Qn



equation (6.6) and the property (6.11) of the norm, we obtain∣∣∣∣
∣∣∣∣ Pn+kQn+k

− Pn
Qn

∣∣∣∣
∣∣∣∣� exp �−sn− sn+1� 


which implies that the sequence of convergents of any continued P-fraction is a
Cauchy sequence in C ��1/z
�. Since by (d) the Laurent coefficients cj of Pn+k/Qn+k
and Pn/Qn are the same for j < sn+ sn+1, we obtain that this sequence converges to
some formal Laurent series.

(f) Every element f in C ��1/z
� is uniquely decomposed into the sum f = ��f

+
Fracf . By (e) every P-fraction b0�z�+K�

k=1�1/bk�z�� converges in C ��1/z
� and
��Pn/Qn

= bn�z�, n� 0, by the Euler–Wallis formulas. Since C ��1/z
� is a field, the
process described in (a) applied to any P-fraction gives this P-fraction itself.

(g) This follows from (a) and (f).
(h) This follows from (c). �
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119 Huygens’ theorem. The following analogue of Huygens’ theorem 1.14 holds
in the field C ��1/z
�.

Theorem 6.3 Let b0�z�+K�
k=1�1/bk�z�� be an infinite continued fraction and let

0< deg Q< deg Qn. Then for every polynomial P with P/Q 	= Pn−1/Qn−1,∣∣∣∣
∣∣∣∣PQ − Pn−1

Qn−1

∣∣∣∣
∣∣∣∣>

∣∣∣∣
∣∣∣∣ Pn−1

Qn−1

− Pn
Qn

∣∣∣∣
∣∣∣∣ � (6.16)

Proof Since PQn−1−QPn−1 	= 0, we obtain by (6.15) that

deg
(
P

Q
− Pn−1

Qn−1

)
� deg

(
1

QQn−1

)
=−deg Q−deg Qn−1

>−deg Qn−deg Qn−1 = deg
(
Pn
Qn
− Pn−1

Qn−1

)
�

�

Both Theorems 6.2 and 6.3 imply that infinite P-fractions represent irrational func-
tions. However, the arguments of Theorem 6.3 look more explicit. Let us assume to
the contrary that P/Q = f , where f is an infinite continued fraction. Choose n to
satisfy deg Q< deg Qn. Such an n must exist, since f is an infinite continued fraction.
Then by (6.15) and (6.16) we obtain a contradiction:

−sn−1− sn = deg
(
f − Pn−1

Qn−1

)
> deg

(
Pn−1

Qn−1

− Pn
Qn

)
=−sn−1− sn �

Remark By Theorem 6.2 the field C ��1/z
� can be parameterized similarly to R. In the function-field case
the parameters are finite or infinite sequences of polynomials �bk�z��k�0 such that deg bk�z�� 1.

120 Associated fractions and C-fractions. The field C ��1/z
� of formal Laurent
series at z=� is isomorphic to the field C ��z
� at z= 0. The isomorphism is given
by the substitution

f�z�∼∑
k∈Z

ck
zk

→ f�1/z�∼∑
k∈Z

ckz
k �

This isomorphism keeps the form of a Laurent series but violates the form of
P-fractions. However, if deg bn = 1 for every n, i.e. bn = xnz+yn, then

b0�z�+
�
K
k=1

(
1

bk�z�

)
→ b0�1/z�+

1
x1/z+y1 + · · · +

1
xn/z+yn + · · · +

≈ b0�1/z�+
z

x1+y1z +
z2

x2+y2z +
z2

x3+y3z + · · · +
z2

xn+ynz + · · ·
�

Since xn 	= 0 the equivalence relation can be continued to

k1z

1+ l1z −
k2z

2

1+ l2z −
k3z

2

1+ l3z −· · · −
knz

2

1+ lnz − · · ·

 (6.17)
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where k1 = 1/x1, l1 = y1/x1, kn=−1/xn−1xn, ln= yn/xn. The continued fraction (6.17)
is called an associated continued fraction. If ln = 0 for every n then the substitution
z �= z2 leads to the continued fraction

a0+
�
K
n=1

(anz
1

)
(6.18)

with nonzero complex parameters an for n > 0. Continued fraction (6.18) is called a
regular C-fraction. It corresponds to a formal power series centered at z = 0 in the
sense that its nth convergent matches the first n coefficients of this series, see (1.16).
However, if we are given a regular continued fraction (6.18) then obvious equivalence
transforms reduce it to a form of a P-fraction:

a0+
�
K
n=1

(
an/z

1

)
≈ c0+

a1

z +
a2

1 +
a3

z +
a4

1 +
a5

z + · · · � (6.19)

The even part of this latter fraction is given by

a0+
a1

z+a2 −
a2a3

z+a3+a4 − · · · −
a2na2n+1

z+a2n+1+a2n+2 − · · · � (6.20)

This follows easily by an iterative application to (6.19) of the formula

p

1+q/�z+w� = p−
pq

z+q+w 
 (6.21)

with p = a2n, q = a2n+1. By Corollary 3.8 the continued fraction (6.20) is equivalent
(with constant equivalence parameters) to a P-fraction. These simple observations
imply the following corollary.

Corollary 6.4 No regular C-fraction can correspond to a power series at z= 0 of a
rational function.

Proof If f�z� corresponds to (6.18) at z = 0 then f�1/z� corresponds to (6.20) at
z=�. The continued fraction (6.20) is infinite. Hence by (7) of Theorem 6.2 f�1/z�
cannot be rational and similarly for f�z�. �

6.2 Convergents

121 Chebyshev–Markoff theory. Convergents to P-fractions are described by
Markoff’s theorem. At least in part it was known to Gauss and Chebyshev, but it was
Markoff (1948) who clearly stated it in his lectures.

Theorem 6.5 (Chebyshev–Markoff) If f ∈ C ��1/z
� then a rational fraction P/Q
in its lowest terms is a convergent for f if and only if∥∥∥∥f − PQ

∥∥∥∥� exp�−2 deg Q−1� ⇔ deg
(
f − P

Q

)
�−2 deg Q−1 �
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Proof Necessity follows from (3) of Theorem 6.2. To prove sufficiency we choose n
to satisfy

sn = deg Qn � deg Q= s < deg Qn+1 = sn+1

for two consecutive convergents Pn/Qn and Pn+1/Qn+1. Then

deg
(
P

Q
−f

)
�−2s−1 
 deg

(
Pn+1

Qn+1

− Pn
Qn

)
=−sn− sn+1 


deg
(
Pn+1

Qn+1

−f
)
=−sn+1− sn+2 �

Since
Pn
Qn
− P
Q
= Pn
Qn
− Pn+1

Qn+1

+ Pn+1

Qn+1

−f +f − P
Q

and s < sn+1, we have

deg
(
Pn
Qn
− P
Q

)
� max�−sn− sn+1
−2s−1� �

Applying (6.10), we obtain

deg�PnQ−QnP�� s+ sn+max�−sn− sn+1
−2s−1�

=max�s− sn+1
 sn− s−1� < 0 


since sn � s < sn+1. This implies that PnQ−PQn = 0 and therefore Pn/Qn = P/Q.
�

Thus the Chebyshev–Markoff theorem is a functional analogue of the Legendre–
Vahlen theorem. In the functional case an analogue of Lagrange’s theorem 1.21 follows
from Theorem 6.5.

Corollary 6.6 Let f ∈ C ��1/z
� and Pn/Qn be a convergent to f . Then any rational
P/Q in its lowest terms with 0< deg Q� deg Qn satisfies

�Pn−Qnf�< �P−Qf�
unless P = Pn and Q=Qn.
Proof Suppose that �P−Qf�� �Pn−Qnf�. Then

deg
(
P

Q
−f

)
�deg

(
Pn
Qn
−f

)
+deg Qn−deg Q

−deg Qn−deg Qn+1+deg Qn−deg Q

=−degQn+1−degQ<−2 degQ−1 �
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By Markoff’s theorem P/Q is a convergent for f . Since deg Q � deg Qn, we obtain
that Q=Qk for some 0< k� n. But

deg �P−Qf�= deg �Pk−Qkf�= deg Qk+degPk/Qk−f
= deg Qk−deg Qk−deg Qk+1

=−deg Qk+1 >−deg Qn+1 = deg �Pn−Qnf� 

if k 	= n. �

122 Padé approximants. By Corollary 6.6 the convergents Pn/Qn to f ∈C ��1/z
�
have a remarkable extremal property: the norm of the linear form Qf −P in polyno-
mials P and Q attains its minimal value exactly for Q=Qn and P = Pn provided that
degQ� degQn.

Problem 6.7 (Padé problem.) Given a nonzero f ∈ C ��1/z
� and n ∈ Z+ find all
polynomials P and Q 	= 0 such that degQ� n and

deg�Qf −P��−n−1 �

Any pair �P
Q� satisfying the Padé problem is called an n-Padé pair. Let �Pk/Qk�k�0

be the sequence of convergents to f . We put sk = deg Qk. Then

0= s0 < s1 < s2 < · · ·< sn < sn+1 < · · · → +� �
Suppose that sk � n < sk+1. Then deg�Qkf −Pk�=−sk+1 �−�n+1�, since n < sk+1.
It follows that �Pk
Qk� is an n-Padé pair, which implies that the Padé problem always
has a solution.

Lemma 6.8 If �P
Q� and �P ′
Q′� are two n-Padé pairs then

P

Q
= P

′

Q′
= �n�f� �

Proof Using the properties of the norm, we obtain

�QP ′ −Q′P� = �Q′�Qf −P�+Q�P ′ −Q′f��
� max ��Q′�Qf −P��
 �Q�P ′ −Q′f���
=max ��Q′� �Qf −P�
 �Q��P ′ −Q′f��
� ene−�n+1� = 1/e < 1 �

Hence QP ′ −Q′P = cz−1+· · · , which is only possible if QP ′ =Q′P. �

If �Pk
Qk� is an n-Padé pair then

�n�f�=
Pk
Qk

 sk � n < sk+1 � (6.22)
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Since Pk and Qk are relatively prime polynomials, (6.22) is the representation of �n�f�
in its lowest terms.

Applying Lemma 6.8 to an arbitrary n-Padé pair �P
Q� and to �Pk
Qk�, we conclude
that PQk =QPk. Since Pk and Qk are relatively prime,

Q= qQk 
 P = qPk 
 q ∈ C�z
 � (6.23)

It follows that

deg�Qf −P�= degq+deg�Qkf −Pk�= degq− sk+1 � (6.24)

Corollary 6.9 All n-Padé pairs �P
Q� for f ∈ C ��1/z
� are described by �6�23�,
where q is an arbitrary nonzero polynomial such that

0 � degq � min�n− sk
 sk+1− �n+1�� �

Proof By the conditions of the Padé problem, degQ= degq+ sk � n and q− sk+1 �

−�n+1�; see (6.24). �

123 Jacobi formulas. Although Markoff’s theorem gives an algorithm (the algo-
rithm of P-fractions) for the best rational approximations to a given Laurent series
f , it is desirable to find explicit formulas for convergents in terms of the Laurent
coefficients �ck� of f . For every n, n= 1
2
 � � � we consider the Hankel matrix

Hn�f�
def=

⎛
⎜⎜⎜⎝
c1 c2 � � � cn
c2 c3 � � � cn+1
���

���
���

cn cn+1 � � � c2n−1

⎞
⎟⎟⎟⎠ � (6.25)

and an associated polynomial

Jn�z�= det

⎛
⎜⎜⎜⎜⎜⎜⎝

c1 c2 c3 � � � cn+1

c2 c3 c4 � � � cn+2
���

���
���

���

cn cn+1 cn+2 � � � c2n

1 z z2 � � � zn

⎞
⎟⎟⎟⎟⎟⎟⎠ � (6.26)

Definition 6.10 Given f ∈ C ��1/z
�, an index n ∈ N is called normal if n = deg Q
for a convergent P/Q of the P-fraction of f .

Theorem 6.11 (Jacobi 1846) For f ∈ C ��1/z
� an index n is normal if and only if
det Hn�f� 	= 0. If n is a normal index then there are a convergent P/Q with degQ= n
and a nonzero constant % such that

Q�z�= %Jn�z� 
 P�z�= %��Jn�z�f�z�

 �
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Proof By Markoff’s theorem 6.5 a nonzero polynomial

Q�z�= a0+a1z+· · ·+anzn

is the denominator of a convergent for f if and only if

deg FracQf �−�n+1� � (6.27)

Since

f�z�Q�z�=∑
k

a0ck
zk

+∑
k

a1ck
zk−1

+· · ·+∑
k

anck
zk−n

=∑
k

1
zk

n∑
j=0

ajck+j 


(6.27) says that such a polynomial exists if and only if the system

a0c1 + a1c2 + � � � + an−1cn =−ancn+1

a0c2 + a1c3 + � � � + an−1cn+1 =−ancn+2
���

���
���

���
���

���

a0cn + a1cn+1 + � � � + an−1c2n−1 =−anc2n

(6.28)

has a nonzero solution. If n is not a normal index then sk < n < sk+1 for some k. Since
�Pk
Qk� is an n-Padé approximant with degQk < n, (6.28) has a nonzero solution with
an = 0, implying that detHn�f�= 0.

If det Hn�f� 	= 0 then by Cramer’s theorem there always exists a solution
�a0
 a1
 � � � 
 an� to (6.28) with an 	= 0. Any other nonzero solution is proportional
to this. Therefore the space of n-Padé pairs is one-dimensional and by Corollary 6.9
n= sk, i.e. n is a normal index.

For a normal n there is an explicit formula for Qk. The cofactor expansion of Jn�z�,
see (6.26), with respect to the last row is as follows:

Jn�z�= �−1�n detCn+1 1+· · ·+ zn�−1�2n detCn+1n+1 �

Using the cofactor expansion in the reverse direction, we obtain that

�−1�ncj detCn+1 1+· · ·+ �−1�2ncj+n detCn+1n+1 = 0 


for j = 1
2
 � � � 
 n, since the determinant in this case has two equal rows. This shows
that the coefficients of the polynomial in (6.26) satisfy the system (6.28). Hence Qn�z�
is proportional to the monic polynomial Jn�z��detHn�f��

−1, i.e. the polynomial with
leading monomial zn. The polynomial Pn is proportional with the same coefficient to
the integer part ��f�z�detCn�z�/detHn�f�

. �

124 Kronecker’s theorem. It is well known that � ∈ R belongs to Q if and only
if the decimal expansion for � is periodic from some point onwards. In contrast with
R the field of a formal Laurent series does not have this property. It can be easily seen
that Laurent series with coefficients that are periodic from some point are the Laurent
series of rational functions z−nP�z�+Q�z��zg− 1�−1, where g ∈ N, P
Q ∈ C�z
 and
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degQ < g. The Laurent series of rational functions are described by the following
theorem by Kronecker, which shows that the notion of periodicity must be modified
in the function-field case.

Theorem 6.12 (Kronecker) A Laurent series

f�z�∼ b0�z�+
�∑
k=1

ck
zk

(6.29)

is the Laurent series of a rational function if and only if there exists N ∈ N such that
the Hankel determinants detHn�f� are equal to zero for every n� N .

Proof A formal Laurent series f represents an irrational function if and only if the
corresponding P-fraction is infinite. In turn, by Jacobi’s theorem this happens if and
only if Hn�f� 	= 0 infinitely often. �

6.3 Quadratic irrationals

125 Euler’s substitutions. In spite of some similarity in the behavior of regular
continued fractions and P-fractions, things are more complicated in C ��1/z
�. Let us
consider for instance either branch of the square root√

az2+bz+ c , a
b
 c ∈ � , (6.30)

at z = �. We assume that the roots of the quadratic polynomial az2 + bz+ c are
different, i.e. b2−4ac 	= 0. For large R > 0 both roots of az2+bz+ c lie in � z ∈ � �
�z� < R�. Therefore the argument of this polynomial increases by 4� when z makes
one counterclockwise rotation round the origin along � z ∈ � � �z� = R�. Hence both
branches of (6.30) are single-valued in � z ∈� � �z�>R�. It follows that (6.30) can be
developed into a convergent Laurent series which by Theorem 6.2 corresponds to the
continued fraction (6.4).

Euler observed that an attempt to find b0�z� and b1�z� for (6.30) leads to an
interesting conclusion. Namely, the identity

√
az2+bz+ c+√a

(
z+ b

2a

)

= 2
√
a

(
z+ b

2a

)
+ c−b2/4a√

a�z+b/2a�+√az2+bz+ c , (6.31)

which immediately develops (6.30) into the periodic continued fraction√
az2+bz+ c =√a

(
z+ b

2a

)
+ �

K
k=1

(
c−b2/4a

2
√
a�z+b/2a�

)
, (6.32)
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shows that if we denote by v the denominator in (6.31), i.e. x1/x2, then

v= 2
√
a

(
z+ b

2a

)
+ c−b

2/4a
v

.

It follows that

z= 1

2
√
a

(
v− c−b

2/4a
v

)
− b

2a



√
az2+bz+ c = 1

2

(
v+ c−b

2/4a
v

) (6.33)

are rational functions in v. Hence, we obtain Euler’s classical theorem.

Theorem 6.13 (Euler) For any rational function R�z
w� in two complex variables,
the primitive ∫

R
(
z

√
az2+bz+ c

)
dz

can be expressed in elementary functions.

These formulas look especially attractive for az2+bz+c= z2−1, i.e. for a= 1
 b= 0
 c=−1. We then
obtain the continued fraction √

z2−1= z− 1
2z −

1
2z −

1
2z − · · ·

� (6.34)

In this case the Euler substitutions are given by

z= 1
2

(
v− 1

v

)

 dz= 1

2

(
1+ 1

v2

)
dv

√
z2−1= 1

2

(
v− 1

v

)
�

Notice that the continued fraction in (6.32) is a P-fraction if and only if 4ac−b2 = 4a. But in fact it can
be easily transformed into a periodic P-fraction. For instance, for the continued fraction (6.34) we have√

z2−1= z− 1
2z −

1
2z −

1
2z − · · ·

= z+ 1
−2z +

1
2z +

1
−2z +

1
2z + · · ·

�

126 Euler’s algorithm for square surds. In §§35–6 in Section 2.1 we studied
Euler’s algorithm for quadratic surds of integer and rational numbers. Here we consider
it first for quadratic surds of polynomials D of even degree. In order that

√
D∈C��1/z
�

it is necessary and sufficient that deg D is even. If deg D is odd then
√

D is an element
of an algebraic extension of C��1/z
�. We assume that the coefficients of D belong to
a number field K, Q⊂ K ⊂ C.

Lemma 6.14 (Abel 1826) Let D ∈ K�z
, deg D= 2g+2. Then S=±��√D 

 are the
only solutions to the equation

D= S2+T (6.35)

in K�z
, where deg S= g+1 and deg T � g.



260 P-fractions

Proof If S and T satisfy (6.35) then the binomial theorem

√
D=±S

(
1+ T

S2

)1/2

=±S± T
2S
+· · · = ±S+� 
 deg � �−1 


implies that S=±��√D 

 ∈ K�z
.
Since deg D = 2g+ 2,

√
D ∈ C��1/z
�. Hence

√
D = S+ �, where S = ��√D

,

deg S= g+1 and deg� �−1. It follows that

D= S2+2S�+�2 �

Since deg� �−1, deg T= deg�2S�+�2�� g, proving the lemma. �

Abel’s lemma 6.14 shows that Euler’s algorithm from §35 in Section 2.1 can be run
for D. This algorithm determines three sequences of polynomials �rn�n�0, �bn�n�0,
�sn�n�0:

rn+1 = bnsn− rn 
 snsn+1 = D− r2
n+1 
 (6.36)

bn =
[[√

D+ rn
sn

]]
=
[[

b0+ rn
sn

]]

with initial conditions

r0 = 0 
 s0 = 1 
 b0 =
[[√

D+ r0

s0

]]
= ��√D

 � (6.37)

Euler’s algorithm for polynomials runs not only for the initial conditions (6.37) but
also for r0, s0 such that s0 divides D− r2

0. Indeed, in this case the first formula in
(6.36) combined with the second implies that

√
D+ rn

sn
= bn+

√
D− rn+1

sn
= bn+

snsn+1

sn�
√
D+ rn+1�

= bn+
1

�
√
D+ rn+1�/sn+1

�

The third formula in (6.36) implies that we have obtained the polynomial continued
fraction for �

√
D+ r0�/s0.

Let us demonstrate this algorithm for D= z4+4z3+2z2+1. By the binomial theorem,

√
D= z2

(
1+ 4

z
+ 2
z2
+ 1
z4

)1/2

= z2

(
1+ 2

z
− 1
z2
+O

(
1
z3

))
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which implies that b0 = z2+2z−1. Applying Euler’s algorithm, we obtain

r1 = z2+2z−1 
 s1 = 4z 
 b1 = 1
2 z+1 �

r2 = z2+2z+1 
 s2 =−�z+1� 
 b2 =−2�z+1� �

r3 = z2+2z+1 
 s3 = 4z 
 b3 = 1
2 z+1 �

r4 = z2+2z−1 
 s4 = 1 
 b4 = 2b0 �

For n= 5, 6, � � � the rows are periodically repeated with period 4.

Corollary 6.15 Let K be a number field. If D ∈ K�z
, deg D= 2g+2 and r0, s0 are
polynomials in K�z
 then the parameters �rn�n�0, �bn�n�0, �sn�n�0 of Euler’s algorithm
are polynomials in K�z
.

Proof Apply Abel’s lemma 6.14 and Euler’s algorithm (6.36). �

A particularly important case of Euler’s algorithm is
√

R, where R is a rational function
in K�z� of positive even degree 2g+ 2. Then R = p/q, where p
q ∈ K�z
 with no
common divisor. If D = pq, then

√
R =√D/q, so that if s0 = q and r0 = 0 then s0

divides D− r2
0 and Euler’s algorithm may be applied. The degrees of the polynomials

p, q satisfy the system

deg p−deg q= 2g+2 


deg p+deg q= 2e+2 


which shows that deg p= e+g+2 and deg q= e−g. The recurrence relations (6.36)
for �bn�, �rn�, �sn� can be also presented in the form

rn− rn+1 =
sn+1− sn−1

bn

 rn+ rn+1 = bnsn � (6.38)

Lemma 6.16 For any
√

R, where R ∈ K�z�, deg R = 2g+2 > 0, the parameters of
Euler’s algorithm are in K�z
 and satisfy

deg rn = e+1 
 deg sn � e 
 deg bn � e+1 


deg bn+deg sn = e+1 �

The two leading coefficients of rn for n > 0 coincide with those of S. If deg sn = 0
then rn = rn+1 = S.

Proof Let S=±��√D 

, where D= pq. By Abel’s lemma, S∈K�z
 and deg S= e+1.
Next, deg s0 = deg q= e−g < e. By (6.36),[[√

D+ rn
sn

]]
=
[[

S+ rn
sn

]]
= bn =

S+ rn
sn

+ rn+1−S
sn






262 P-fractions

implying that

�n
def= Frac

(
S+ rn

sn

)
= S− rn+1

sn
� (6.39)

Now since deg �n �−1 the formula

rn+1 = S−�nsn (6.40)

shows that deg rn+1 = e+ 1 if deg sn � e. Moreover, it shows that the two leading
coefficients in rn+1 are the same as in S, which is clearly seen in the example above.
Next, by (6.36) and (6.40),

sn+1 =
1
sn

sn+1sn =
D−S2

sn
+2�nS−�2

nsn �

By Abel’s lemma 6.14 the degree of the first polynomial in the right-hand expression
cannot exceed e. The same holds for the second term and the degree of the third cannot
exceed e−2. Hence deg sn+1 � e. Now the second equation in (6.38) shows that

deg bn+deg sn = e+1 


which proves the main part of the lemma. To prove the last statement let us write two
equations:

snsn−1 =
(√

D− rn
)(√

D+ rn
)



sn+1sn =
(√

D− rn+1

)(√
D+ rn+1

)
�

Since S+ rn = ��
√

D+ rn

 and S+ rn+1 = ��
√

D+ rn+1

 have degree e+ 1 and
deg sn±1 � e, deg sn = 0 implies that S= rn = rn+1. �

127 P-fractions of square surds of rational functions. Any R ∈K�z�, deg R=
2g+2 � 2 can be represented in lowest terms as R= p/q, so that

√
R=√D/q, where

D= pq. By Theorem 6.2
√

R ∈C��1/z
� and bk ∈K�z
, see Corollary 6.15. By Euler’s
formula (1.17),

fn = bn�z�+
�
K

k=n+1

(
1

bk�z�

)
=
√

D+ rn
sn

(6.41)

are elements of the quadratic field K�z

√

R� and therefore we may consider the
sequence �f∗n �n�0 of their algebraically conjugate elements.

Clearly K�z

√

R�= K�z
√D�. Lemma 2.7 has an analogue in K�z

√

R�.

Lemma 6.17 For every n� 1,

deg f∗n �z� < 0 
 bn�z�=−���f∗n+1�
−1

 � (6.42)
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If the P-fraction of
√

R is periodic with period d then f1 = fd+1.

Proof We have f∗0 �z� = −
√

R, f∗1 �z� = −�
√

R+b0�
−1, which shows that deg f∗1 �

−�2g+2� < 0, since b0 = ��
√

R

. Now

f∗n = bn+ �f∗n+1�
−1 (6.43)

shows that if deg f∗n < 0 then deg f∗n+1 < 0 as well. Hence deg f∗k < 0 for every k > 0.
Taking the integer parts in (6.43), we obtain (6.42).

Let k be the minimal positive k such that fk = fk+d. If k > 1 then bk−1 = bd+k−1 by
(6.42) and therefore fk−1 = fk−1+d, which contradicts the choice of k. �

The algebraic structure of fn is described by the following lemma.

Lemma 6.18 Let R ∈ K�z�, √R � K�z�, deg R = 2g+ 2 � 0 and let Pk/Qk be the
convergents for the continued P-fraction of

√
R. Then

fn+1 =
�QnQn−1R−PnPn−1�+ �−1�n−1

√
R

P2
n−Q2

nR
� (6.44)

Proof See (2.23). �

Corollary 6.19 The parameters of Euler’s algorithm for R and convergents to R are
related by the formulas

rn = �−1�nq�Qn−1Qn−2R−Pn−1Pn−2� 


sn = �−1�nq�P2
n−1−Q2

n−1R� �

Proof Compare (6.41) with (6.44). �

Theorem 2.8 also has an analogue in function fields.

Theorem 6.20 Let R ∈K�z� be a rational function such that
√

R �K�z� and deg R=
2g+2, g � 0. If the P-fraction b0+ K

k�1
�1/bk� of

√
R has period d then

bd = 2b0 
 �b1
b2
 � � �bd−1�= �bd−1
bd−2
 � � �b1� � (6.45)

Conversely, if a P-fraction satisfies �6�45� with bk ∈ K�z� then it is the P-fraction of
R,
√

R � K�z�, deg R = 2g+2.

Proof The proof follows the proof of Theorem 2.8. The computation in (2.15) should
be replaced by

deg
(

b0Pd−1+Pd−2

Qd−1

)
=max

(
b0

Pd−1

Qd−1



Pd−2

Qd−1

)
= 2 deg b0 �

�
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Lemma 6.21 If R ∈ K�z�, √R � K�z�, deg R = 2g+ 2 � 0 and the P-fraction of√
R is periodic with period d then bd = 2b0, sd = q, rd = qb0, and the convergent

Pd−1/Qd−1 satisfies the Pell equation

P2
d−1−Q2

d−1R = �−1�d �

Proof By Lemma 6.17 f1 = fd+1. By (6.45) bd = 2b0. Hence

√
R = b0+

1
f1

= b0+
1

fd+1

= b0−bd+bd+
1

fd+1

=−b0+ fd �

It follows that √
D

q
=−b0+

√
D+ rd
sd

�

Hence sd = q, rd = qb0. Applying (6.44) with n= d−1, we deduce that

P2
d−1−Q2

d−1R = �−1�d 


Qd−1Qd−2R−Pd−1Pd−2 = �−1�db0 �
(6.46)

�

Finally, the following analogue of Euler’s theorem 2.10 is true.

Theorem 6.22 Let �b1
b2
 � � � 
bd−1� be a symmetric sequence of polynomials in
C�z
. Let Pk/Qk be the convergents to

b1+
1
b2 + · · · +

1
bd−1

�

Then the square of

√
R = b0+

1
b1 + · · · +

1
b1 +

1
2b0 +

1
b1 + · · ·

is a polynomial of an even degree if and only if there is a polynomial m such that

2b0 =mPd−2− �−1�dQd−3Pd−3 


R = b2
0+mPd−3− �−1�dQ2

d−3

and

deg b0 � 1+deg�mPd−3− �−1�dQ2
d−3� � (6.47)

It is easy to see that (6.47) is satisfied if deg m is sufficiently large.

Let us consider as an example d = 3. Then b1 = b2 = b, P1 = b2+1, P0 = b, Q0 = 1. It follows that
2b0 =m�b2+1�+b,

R = b2
0+

2b0Q1+Q0

P1
= b2

0+mb+1 �
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It is clear that (6.47) is valid even if m = 2 provided that deg b > 0. In this case b0 = b2+b/2+ 1 and
R = �b2+b/2+1�2+2b+1. Hence√

b4+b3+ 9
4

b2+3b+2= b2+ 1
2

b+1+ 1
b +

1
b +

1
2b2+b+2 +

1
b +

1
b + · · · �

128 Abel’s theorem. By Lagrange’s theorem 2.19 any quadratic irrational in R is
the value of a periodic continued fraction. Since R and C��1/z
� are described by
similar types of continued fraction, one may expect that Lagrange’s theorem is valid
in C��1/z
� too. Euler’s theorem 6.13 as well as §127 support this conjecture.

For number fields the validity of Lagrange’s theorem is rooted in the fact that any
Pell equation has a nontrivial solution in the set of convergents to

√
D. This can be

easily seen from formula (2.23).
The following theorem by Abel shows that there is a similar relation between

functional Pell equations and P-fractions.

Theorem 6.23 (Abel 1826) Let R be a rational function in C�z� of degree 2g+2 � 2,
which is not a square in C�z�. Then the Pell equation

P2−Q2R = c 
 1 (6.48)

where c is a constant, has a solution in the polynomials P and Q with Q 	= 0 if and
only if

√
R can be developed into a periodic continued P-fraction.

First we relate the solutions to (22) with the convergents to
√

R. If R = p/q is the
representation of R in the lowest terms then

Q2R = Q
2p
q

= P2+ c ∈ C�z� 


implying that Q= qQ1. Substituting this into (22), we obtain

P2−Q2
1D= c � (6.49)

It follows that the mapping �P
Q�↔ �P
Q1� establishes one-to-one correspondence
between the solutions to (22) and to (6.49).

Lemma 6.24 Any solution �P
Q� to �22� with Q 	= 0 determines a convergent P/Q
to
√

R.

Proof First we observe that P/Q is a fraction in its lowest terms. Indeed by (6.49) P
and Q1 are co-prime. Since D= pq, (6.49) implies that P and q are co-prime. Since
Q= qQ1, P and Q are co-prime. Next

0 	= constant= P2−Q2R = �P−Q√R��P+Q√R� �

1 The constant in (22) cannot be zero since
√

R � C�z�.
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Another corollary of this formula is

deg�P−Q√R�=−deg�P+Q√R� � (6.50)

By (6.11) the identity 2P = �P−Q√R�+ �P+Q√R� implies that

degP � max
(

deg�P−Q√R�
 deg�P+Q√R�
)
� (6.51)

It follows that deg�P−Q√R� 	= 0 since otherwise (6.50) and (6.51) would imply that
degP = 0 and therefore Q= 0.

Let us fix the branch of
√

R such that deg�P−Q√R� < 0. Then

P = ��Q√R

 
 P+Q√R = 2P+Frac�Q
√

R� 


and

deg�P+Q√R�= degP = degQ+g+1 � (6.52)

By (6.50),

deg
(
P

Q
−√R

)
= deg�P−Q√R�−degQ

=−deg�P+Q√R�−degQ

=−2 degQ−g−1 �−2 degQ−1 �

The proof of the lemma is completed by Markoff’s theorem 6.5. �

Proof of Theorem 6.23 Let P and Q be nontrivial solutions to (22). By Lemma 6.24
any nontrivial solution to (22), if exists, determines the convergents P/Q to

√
R. Hence

P = tPn, Q= tQn, where n ∈ Z+ and 0 	= t ∈ C. To simplify the notation we assume
that t = 1. Then (6.44) implies that cfn+1 = �QnQn−1R−PnPn−1�+ �−1�n−1

√
R and

therefore cf∗n+1 = �QnQn−1R−PnPn−1�− �−1�n−1
√

R. Putting b=QnQn−1R−PnPn−1

for brevity, we obtain by (6.42) that b= �−1�n−1b0. Let $ = �−1�n−1c. Then

fn+1 = �b0+
√

R�$−1 � (6.53)

Lemma 6.25 If fn+1 satisfies �6�53� for some constant $ then

b1 = $−1bn 
 b2 = $bn−1 
 � � � 
 bk = $�−1�kbn−k+1 
 � � � (6.54)

Proof By (6.53),

√
R = b0+

1
b1�z� +

1
b2�z� + · · · +

1
bn�z� +

$

b0+
√

R
� (6.55)

By (6.55) and by the Euler–Wallis formulas,

√
R = �b0+

√
R�Pn+$Pn−1

�b0+
√

R�Qn+$Qn−1

�
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Since R is not a square in C�z�, this implies that Pn = b0Qn+ $Qn−1. From this
equation and (1.18) we obtain

b0+
1
b1 +

1
b2 + · · · +

1
bn
= Pn
Qn

= b0+$
Qn−1

Qn

= b0+
1

�bn/$� +
1

$bn−1 + · · ·
�

Since Pn/Qn expands into a unique P-fraction, we get (6.54). �

If n= 2k+1 is odd then k= n−k+1 and $ = 1 by (6.54). Hence c= 1. By (6.55)
and (6.54) the period of the P-fraction for

√
R is d = 2k+2.

If n= 2k is even and c=−1 then $ = 1 and the P-fraction for
√

R is periodic with
period d = 2k+1 by (6.55). If c 	= −1 then $ 	= 1. By Lemma 6.25 equations (6.54)
hold. Since n = 2k, we cannot conclude that $ = 1. However, we can continue the
expansion of

√
R:

√
R = b0+

1
b1 +

1
b2 + · · · +

1
bn +

1
2b0/�−c� +

1
�−c�b1 + · · ·

+
1

bn/�−c� +
1

�−c�fn+1

= b0+
1
b1 +

1
b2 + · · · +

1
bn +

1
2b0/�−c� +

1
�−c�b1 + · · · +

1

b0+
√

R

= b0+
1
b1 +

1
−cbn−1 + · · · +

1
bn−1 +

1
−cb1 +

1
2b0/−c +

1
�−c�b1 + · · ·

+
1

2b0 + · · · �

Hence the period of the P-fraction of
√

R is d = 4k+2. The proof in the opposite
direction is covered by Lemma 6.21. �

Corollary 6.26 Let R ∈K�z
, deg R= 2g+2. If the Pell equation for R has a nontrivial
solution for some constant then there is a convergent Pk/Qk to the P-fraction of

√
R

such that P2
k −Q2

kR = 1.

Proof The P-fraction of
√

R is periodic by Theorem 6.23. Hence P2
d−1−Q2

d−1R =
�−1�d, d being the period, by Lemma 6.21. Since f1 = fd+1, we have f1 = f2d+1.
Hence P2

2d−1−Q2
2d−1R = �−1�2d = 1. �

Corollary 6.27 The P-fraction of
√

R, R ∈K�z
, R= p/q, deg R= 2g+2 is periodic
if and only if sn = q for some n.

Proof By Corollary 6.19 sn+1 = q⇔Q2
nR−P2

n = �−1�n. �
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129 Chebyshev’s example. Exercise 6.9 shows that not every functional quadratic
irrational can be expanded into a periodic continued fraction. Moreover, Chebyshev
found examples of R ∈ Z�z
 such that

√
R expands into a nonperiodic P-fraction.

A point z ∈ C is called constructible of order 0 if either z = 0 or z = 1. A point
z ∈C which is not a constructible point of order n is called constructible of order n+1
if it is an intersection either of two circles or a circle (centered at constructible points
of order < n+ 1 with radius equal to the distance between two constructible points
of order < n+1) and a line or two lines (passing through two constructible points of
order < n+1). We denote by � the set of all constructible points of finite order. Then
Q⊂ � is an algebraic field extension. The constructible field � is crucial for the the
solution of ancient problems of Euclid’s geometry such as cube duplication and angle
trisection.

A polynomial p ∈ K�X
 is called separable if it does not have multiple roots. The
multiple roots of p are located as the roots of the greatest common divisor of p and
of its derivative ṗ in X. This greatest common divisor is the result of the application
of the Euclidean algorithm to p and ṗ. Hence it must be in K�X
. It follows that any
irreducible polynomial (see the definition in §47, Section 2.4) is separable.

Theorem 6.28 (Chebyshev 1857) Let D be an irreducible polynomial in ��z
,
deg D= 2g+2. Then

√
D expands into a nonperiodic P-fraction.

Proof Since D is irreducible, it is separable. Therefore
√

D � ��z
. By the binomial
theorem all coefficients ck in

√
D=∑

k

ck
zk
= b0�z�+

�
K
k=1

(
1

bk�z�

)
are in � . Then the algorithm for P-fractions shows that bk�z� ∈ ��z
 for k � 0. By
the Euler–Wallis formulas, P
Q ∈ ��z
 for every convergent P/Q to

√
D. Suppose

now that Pell’s equation for D has a nontrivial solution. By Lemma 6.24 there is a
convergent P/Q for

√
D such that

P2�z�−Q2�z�D�z�= c (6.56)

and degQ is minimal. Putting z= 0 in (6.56), we obtain that c ∈ � . Since
√

D � ��z

we have c 	= 0. Rewriting (6.56) as

�P−√c��P+√c�=Q2D (6.57)

and taking into account that D is separable, we obtain the factorizations

P+√c =Q2
1D1 
 P−√c =Q2

2D2 
 (6.58)

where Q = Q1Q2 and D = D1D2; Q1 and Q2 do not have common roots and neither
do D1 and D2, do not have common roots. The first factorization implies that Q1

is the greatest common divisor of P +√c and of the derivative Ṗ, whereas the
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second implies that Q2 is the greatest common divisor of P−√c and Ṗ. Then the
Euclidean algorithm implies that Q1
Q2 ∈ ��z
 and consequently Q2

1
Q
2
2 ∈ ��z
. The

long division of polynomials implies that D1
D2 ∈ ��z
.
Now if D1 ≡ 1 then P+√c =Q2

1
P−
√
c =Q2

2D. It follows that

Q2
1−Q2

2D= P+√c− �P−√c�= 2
√
c �

Observing that degQ2 < degQ, we obtain a contradiction with the extremal choice
of P and Q. Thus our assumption that Pell’s equation for D has a nontrivial solution
contradicts the irreducibility of D. By Theorem 6.23 the P-fraction of

√
D is not

periodic. �

Following Chebychev we consider the following example.

Corollary 6.29 (Chebychev 1857) The P-fraction of√
z4+2z2−8z+9= b0�z�+

�
K
k=1

(
1

bk�z�

)
is not periodic.

Proof We first observe that p�z� = z4+ 2z2− 8z+ 9 > 0 on the real line. Indeed,
ṗ = 4s3+ 4s− 8 = 4�s− 1��s2+ s+ 2�, implying that the minimal value of p�s� on
�−�
+�� is p�1� = 4 > 0. It follows that the roots of p are two pairs of complex
conjugate numbers. So if one of the roots is in � then the conjugate root is also in
� , and p is factored as a product of two quadratic polynomials with coefficients in � .
Hence if p is reducible over � then it is a product of two quadratic polynomials:

z4+2z2−8z+9= �z2+pz+q��z2+ rz+ s�
= z4+ �p+ r�z3+ �q+ s+ rp�z2+ �rq+ sp�z+qs

with coefficients in � . Comparing the coefficients, we arrive at the system

p+ r = 0 
 q+ s+ rp= 2 
 rq+ sp=−8 
 qs = 9 �

Elementary calculations show that p2 satisfies the cubic equation

X�2+X�2−36X = 64 ⇔ X3+4X2−32X−64= 0 �

Putting X = 4Y , we reduce this equation to

q�Y �= Y 3+Y 2−2Y −1= 0 �

Since q�−1� = 1
 q�0� = q�1� = −1
 q�2� = 7, this equation has two negative and
one positive real roots. Since q is monic and q�0�=−1, q cannot have rational roots.
Now if one of the roots is in � then the degree of the irreducible polynomial over Q

corresponding to this root must be a power of 2. The only possibility is that it is exactly
2, since this polynomial must divide q�Y �. But then the long division of polynomials
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would imply that q�Y� has a rational root, which is not the case. It follows that p2 � �
and consequently p � � . �

Chebyshev’s original arguments were as follows. First he observed that the algebraic equation z4+ 2z2−
8z+9= 0 has the resolvent of third degree

	3+16	2−64×8	−642 = 0 


where 	 = �x1 − x2 + x3 − x4�
2 (see Serret 1879, p. 478). Putting 	 = 16y, Chebyshev obtained the

equation y3+ y2− 2y− 1 = 0, which also can be obtained from the equation found on dividing the circle

z6+ z5+ z4+ z3+ z2+ z+1= 0 by the substitution y = z+1/z.

130 Integration in finite terms

Theorem 6.30 (Abel 1826) Let R be a separable polynomial of degree 2g+2 such
that the Pell equation P2 −Q2R = c, c ∈ C, has a solution in polynomials P and
Q with Q 	= 0. Then there exists a polynomial r of degree g such that the Abelian
integral ∫ r√

R
dz= 1

2
log
P+Q√R

P−Q√R
+C

can be expressed in elementary functions.

Proof Elementary calculations show that

d

dz

(
log
P+Q√R

P−Q√R

)
= 2�Q̇P− ṖQ�R+PQṘ

�P2−Q2R�
√

R
� (6.59)

Differentiating the Pell equation P2−Q2R = constant, we obtain

2PṖ = 2QQ̇R+Q2Ṙ =Q�2Q̇R+QṘ� � (6.60)

Since P and Q are relatively prime, we see that

Ṗ =Qr � (6.61)

In particular (6.61) implies that deg r = d. Substituting these expressions in (6.59),

d

dz

(
log
P+Q√R

P−Q√R

)
= p�2Q̇R+QṘ�−2ṖQR

�P2−Q2R�
√

R

= 2P2Ṗ−2ṖQ2R

Q�P2−Q2R�
√

R
= 2Ṗ/Q√

R
= 2r√

R



we complete the proof. �

The Pell equation

P2−Q2�az2+bz+ c�= constant

obviously has a nontrivial solution. Just take Q = 1 and P2 be the full square in
az2 + bz+ c, i.e. P = √a�z+ b/2a�. Then by (6.61) r = Ṗ = √a and by Abel’s
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theorem we have∫ √
a√

az2+bz+ c dz=
1
2

log

(√
a�z+b/2a�+√az2+bz+ c√
a�z+b/2a�−√az2+bz+ c

)
+C

= log
(√
a�z+b/2a�+

√
az2+bz+ c

)
+C �

Using Ostrogradskii’s formula∫ Pn√
az2+bz+ c dz=Qn−1

√
az2+bz+ c+%

∫ 1√
az2+bz+ c dz 


where Pn and Qn−1 are polynomials, degPn = n
degQn−1 = n−1 and % is a constant,
we obtain Euler’s theorem from Theorem 6.30.

For g � 1 Euler’s substitution fails. Moreover we face a completely new phe-
nomenon. The indefinite integrals, for k= 0
1
 � � � 
 g−1,∫ zk√

R
dz (6.62)

are multiple-valued holomorphic function on the extended complex plane Ĉ with the
exception of a finite number 2g+ 2 of simple zeros of R. Either branch of (6.62) is
uniformly bounded about any point of Ĉ.

Traditionally, elementary functions include rational functions, algebraic functions,
i.e. solutions to polynomial equations with polynomial coefficients, exponential func-
tions and logarithms. By Euler’s formula, from which we obtain

sin z= e
iz− e−iz

2i

 cos z= e

iz+ e−iz
2i


 tan z= 1
i

eiz− e−iz
eiz+ e−iz 


the trigonometric functions are compositions of rational functions and exponentials.
However, the formulas

arcsin z=−i ln�iz+
√

1− z2� 
 arctan z= i

2
ln
i+ z
i− z 


arccos z=−i ln�z+ i
√

1− z2� 
 tanh−1 z= 1
2

ln
1+ z
1− z 


(6.63)

show that other elementary functions are expressed as compositions of logarithms and
algebraic functions.

Compositions of exponential and algebraic functions have at least one essential
singular point. Compositions of logarithms and algebraic functions have logarithmic
singularities. Since integrals of the type (6.62) do not have these types of singularities,
it is likely that they cannot be obtained by compositions of elementary functions.

The integrals (6.62) are called Abelian integrals of the first kind.
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Definition 6.31 A multivalued function F�z1
 z2
 � � � 
 zd� in complex variables z1
 z2
 � � � 


zd is called algebraic if it satisfies the algebraic equation

anX
n+an−1X

n−1+· · ·+a0 = 0
 (6.64)

where an
an−1
 � � � 
 a0 are polynomials in z1
 z2
 � � � 
 zd.

In practice the polynomial in (6.64) is of the lowest possible degree, i.e. it is
irreducible in the ring of polynomials in X over the field C�z1
 z2
 � � � 
 zd�.

If w is an algebraic function in z, then the set R�z
w� of all rational functions in z
and w is the field of functions associated with w.

Theorem 6.32 (Liouville) If for an algebraic R�z
w� we have∫
R�z
w�dz= F�z
 logw1
 logw2
 � � � 
 logwk� 
 (6.65)

for some algebraic function F then there are complex constants a1, a2, � � � , ak and
algebraic functions w0, w1, � � � wk such that∫

udz= w0+a1 logw1+a2 logw2+· · ·+ logwk � (6.66)

A proof of this theorem can be found in Chebotarëv (1948). A more general result can
be found in Ritt (1948).

Theorem 6.33 (Abel) If R ∈ C�z
 is separable, with deg R = 2g+2 and∫ r√
R
dz 


where r ∈ C�z
, deg r � g, is an elementary function then P2−Q2R = c, c ∈ C, has a
solution in polynomials P and Q with Q 	= 0.

In particular, for every complex a the indefinite integral∫ a+ z√
z4+2z2−8z+9

dz

cannot be expressed in finite terms for any complex a. See Corollary 6.29. Further
applications are available in Ptashickii (1888).

6.4 Hypergeometric series

131 Analogues of Markoff’s test. A formal Laurent series determines by Theo-
rem 6.2(f) only one corresponding P-fraction. Therefore it is of interest to find these
continued fractions at least for special Laurent series. We begin with an analogue of
Markoff’s test for C ��1/z
�.



6.4 Hypergeometric series 273

Theorem 6.34 If f ∈ C ��1/z
� for infinitely many n is represented as

f = b0+
1
b1 +

1
b2 + · · · +

1
bn +

1
gn

 (6.67)

where bj ∈ C�z
, deg bj � 0, deg bn � 1 and deg gn � 0, then the continued fraction
b0+Kk�1�1/bk�z�� converges to f in C ��1/z
�.

Proof If deg bj � 1 infinitely often then deg Qn→+�. By (1.17),

f − Pn
Qn

= �−1�n

Q2
n

(
gn+Qn−1/Qn

) �
Since deg gn � 0, deg�Qn−1/Qn� � −1 (see (1.18)), and deg Qn→+� this proves
the theorem. �

Remark As in the case of R the condition deg gn � 0 is essential. Indeed, let �bk�k�1 be any sequence in
C��z
� with deg bk � 1 and b1 = z. Then �bk�k�1 determines the P-fraction in C�1/z
. By (1.18),

1
z
= 1

2z +
1
b2 + · · · +

1
bn +

1
gn

holds with gn =−Qn−1/Qn, deg gn �−1.

P-fractions converge in C ��1/z
�. But pointwise convergence, if it takes place, is
also important. In §112 in Section 5.2 we obtained conditions of absolute convergence
for an important class of C-fractions. By Corollary 6.4 the power series at z = 0
of a C-fraction cannot match the power series of any rational function. Hence if a
C-fraction converges uniformly about z= 0 then the limit function is irrational.

Theorem 6.35 Let f�z� be a function meromorphic in a connected open set G, 0 ∈G,
and let f be a C-fraction �6�18�. Suppose that one of the following conditions holds:

(a) for infinitely many n there are functions hn analytic in �z � �z� < �n� such that
hn+1�0� 	= 0,

f�z�= c0+
c1z

1 +· · · +
cnz

hn�z�
� (6.68)

(b) a subsequence of convergents to the C-fraction f converges to f�z� on an infinite
set E with a limit point in G.

If limn cn = 0 then f converges to a meromorphic g�z� uniformly on compact subsets
of C not containing poles of g and g�z�= f�z� in G.

Proof For R > 0 there is an integer m such that �cnz�< 1/5 for n > m and �z� < R.
By Corollary 5.14 the C-fraction on D�R�= �z � �z�� R�,

Km�z�=
�
K

n=m+1

(cnz
1

)
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converges absolutely and uniformly to an analytic function Km�z�. Let Pm
n/Qm
n be
the convergents to Km�z�. By (1.15),

�Pm+n/Qm+n��z�=
Pm�z�+ �Pm
n / Qm
n��z�Pm−1�z�

Qm�z�+ �Pm
n / Qm
n��z�Qm−1�z�
� (6.69)

For z 	= 0 the equalities below

Qm−1× Pm�z�+Pm−1�z�Km�z�= 0 


Pm−1× Qm�z�+Qm−1�z�Km�z�= 0 


cannot both hold, since subtraction of the above formulas, multiplied as shown, con-
tradicts (1.16). It follows that if Qm = Qm�z�+Qm−1�z�Km�z� = 0 then Pm�z�+
Pm−1�z�Km�z� 	= 0. Since Km�z� is an irrational function, Qm cannot be identically
zero. A nonzero analytic function on D�R� may have only finite number of zeros.
Therefore by (6.69) the continued fraction (6.18) converges to c0+K0�z� uniformly
on compact subsets of C not intersecting the zeros of Qm. At the zeros of Qm the
continued fraction obviously converges to infinity. By (6.68) f�z� and g�z� have equal
Taylor series at z= 0. If (b) holds then the result follows from the uniqueness theorem
for analytic functions. �

Let us illustrate this method for Euler’s continued fraction (4.105).

Theorem 6.36 The continued fraction

ez = 1+ z
1 −
z

2 +
z

3 −
z

2 +
z

5 −
z

2 + · · · 
 (6.70)

converges to ez uniformly on compact subsets of C.

Proof Iterative application of the identity

1
1 +

1
1+w = 1− 1

2+w
to the continued fraction (4.105) shows that its convergents P3n/Q3n�s� equal the
convergents A2n/B2n�s� of

1+ 1
s −

1
2 +

1
3s −

1
2 +

1
5s −

1
2 + · · · ≈ 1+ z

1 −
z

2 +
z

3 −
z

2 +
z

5 −
z

2 + · · · 
 (6.71)

where z= 1/s. Since

1+ z
1 −
z

2 +
z

3 −
z

2 +
z

5 −
z

2 + · · ·

≈ 1+ z
1 −
z/2
1 +

z/�2×3�
1 −

z/�2×3�
1 +

z/�2×5�
1 −

z/�2×5�
1 + · · · 


We have that A2n/B2n�1/z� are even convergents of a C-fraction with limn cn = 0.
By Euler’s theorem, see §101 in Section 4.10, P3n/Q3n�s� converges to e1/s for s > 0,
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implying the convergence to ez of the even convergents to (6.70) for z > 0. Hence (b)
of Theorem 6.35 holds. By Theorem 6.35 the continued fraction (6.70) converges to
ez uniformly on compact subsets of C, since ez is an entire function. �

By Theorem 6.36 the P-fraction of

e1/z =
�∑
k=0

1
k!

1
zk

def= 0F0

(
-
-
�

1
z

)
= 0F0�- � - � z−1�

(for an explanation of the notation see the discussion after (6.72)) converges in
C ��1/z
�. This function is at the very top of the hierarchy of hypergeometric functions.

132 Wallis’ hypergeometric function. The notation for hypergeometric series
(see below) is considerably simplified by the use of the so-called Pochhammer symbol

�x�n =
��x+n�
��x�

= x�x+1� · · · �x+n−1� �

As usual, such a product having an empty set of multipliers has the value 1. The
hypergeometric Laurent series

2F0

(
a
b

-
�

1
s

)
= 2F0�a
 b� - � s−1�

def=
�∑
n=0

�a�n�b�n
n!

1
sn

(6.72)

is a formal Laurent series in C ��1/s
�. Here on the left-hand side of (6.72) the index
2 on F stands for the number of parameters a and b in the numerator of the series
in (6.72) and the index 0 for the number of parameters in the denominator (in the
argument of F , a hyphen stands for none). The choice a= 1, b= 1 gives the divergent
Wallis series:

2F0

(
1
1

-
�−1
s

)
= 2F0�1
1� - � s−1�

def=
�∑
k=0

�−1�kk!
sk


 (6.73)

which was studied by Euler (1760).2 Euler’s idea was to replace (6.73) with a suitable
formula, for instance with a related continued fraction, and evaluate the value of this
formula at s = 1.

Theorem 6.37 The following identity holds in C ��1/z
�:

2F0�a
 b� - � z−1�

2F0�a
 b+1� - � z−1�

= 1+ a
z +

b+1
1 +

a+1
z +

b+2
1 +

a+2
z + · · · (6.74)

2 We shall not use the two-tiered notation for the arguments of the hypergeometric functions F in what
follows, to avoid a multiplicity of notation.
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Proof Although the continued fraction on the right-hand side of (6.74) is not a P-
fraction, since it contains constant partial denominators, it still converges in C ��1/z
�
because there are infinitely many denominators of the first degree. Elementary algebra
for series shows that

2F0

(
a
b+1� - �−z−1

)
= 2F0

(
a
b� - �−z−1

)−az−1
2F0

(
a+1
 b+1� - �−z−1

)
�

It follows that

2F0

(
a
b� - �−z−1

)
2F0 �a
 b+1� - �−z−1�

= 1+ az−1

2F0 �a
 b+1� - �−z−1� /2F0 �a+1
 b+1� - �−z−1�
�

Since 2F0 is symmetric with respect to a and b, the iterations complete the proof by
Theorem 6.34. �

Corollary 6.38 (Euler 1760) In C ��1/z
�, we have

1
z +

1
1 +

1
z +

2
1 +

2
z +

3
1 +

3
z + · · · =

�∑
k=0

�−1�kk!
zk+1

� (6.75)

Proof This follows from Theorem 6.37 and the obvious identity

2F0

(
1
2� - �−z−1

)= 1− 2!
z
+ 2!3!

2!z2
− 3!4!

3!z3
−· · ·

= z{1− 2F0

(
1
1� - �−z−1

)}
�

Just substitute this in (6.74) and apply equivalence transforms. �

The continued fraction on the left-hand side of (6.75) converges by Corollary 3.10 for
every z= s > 0 . In (1760) Euler found that its value at s = 1 is 0.596 347 362 323 � � �
Next, Euler formally differentiated the right-hand side y�s� of (6.75) and noticed that
it satisfies the differential equation y′ = y−1/s. This equation has the solution

y�s�= es
∫ �

s
e−t
dt

t
=
∫ �

0

e−stdt
1+ t =

∫ �

0

e−t dt
t+ s � (6.76)

By Watson’s lemma 3.21 ∫ �

0

e−tdt
t+ s ∼

�∑
n=0

�−1�nn!
sn+1

� (6.77)

Euler computed the integral in (6.77) at s = 1 and discovered that it coincides with
the value 0.596 347 362 323 � � � of the continued fraction. Using Wallis’ interpolation
we arrive at the conclusion that∫ �

0

e−t dt
t+ s =

1
s +

1
1 +

1
s +

2
1 +

2
s +

3
1 +

3
s + · · · � (6.78)
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This of course requires a rigorous justification, which can be easily obtained by analogy
with Euler’s differential method, Section 4.7. Notice that equation (6.74) involves
quotients of hypergeometric series for different values of parameters. Formula (6.77)
gives an integral representation for 2F0�1
1� - �−s−1� s−1� Now the binomial theorem
and Watson’s method imply that

E�a
b� s�
def= 1
��a�

∫ �

0

e−xxa−1

�1+x/s�b dx ∼ 2F0�a
 b� - �−s−1� � (6.79)

In view of (6.79) one may conjecture that

E�a
b� s�= E�b
a� s� � (6.80)

This in fact turns out to be true. Applying the trick (3.52), we can write

1
�1+x/t�b =

1
��b�

∫ �

0
e−�1+x/s�yyb−1 dy �

To handle the apparent asymmetry of E�a
b� s� in a and b we write

E�a
b� s�= 1
��a���b�

∫ �

0

∫ �

0
e−x−y−xy/sxa−1yb−1 dxdy = E�b
a� s� �

Now, integration by parts gives

E�a
b� s�= E�b
a� s�= 1
��b+1�

∫ �

0

e−t

�1+ t/s�a dt
b

=− 1
��b+1�

∫ �

0
tbd�e−t�1+ t/s�−a�

= 1
��b+1�

∫ �

0

e−ttb dt
�1+ t/s�a +

a

s��b+1�

∫ �

0

e−ttb dt
�1+ t/s�a+1

= E�a
b+1� s�+ a
s
E�a+1
 b+1� s� �

This and the symmetry of E�a
b� s� lead to

E�a
b� s�= E�a
b+1� s�+ a
s
E�a+1
 b+1� s� 
 (6.81)

E�a
b� s�= E�a+1
 b� s�+ b
s
E�a+1
 b+1� s� � (6.82)

Now (6.81) and (6.82), as in Lemma 4.18, imply the following corollary.

Corollary 6.39 For positive a, b and s,

E�a
b� s�

E�a
b+1� s�
= 1+ a

s +
b+1

1 +
a+1
s +

b+2
1 +

a+2
s + · · · �
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Putting b = 0 in (6.81) and b = 1 in (6.82), we find that

X = E�a+1
1� s�
E�a+1
2� s�

= 1−E
�a+ s�E− s 


where E = E�a
1� s�. Resolving this equation in E, we find

1
��a�

∫ �

0

e−xxa−1

x+ s dx = E�a
1� s�
s

= 1
s +

a

1 +
1
sX

= 1
s +

a

1 +
1
s +

a+1
1 +

2
s + · · · +

n

s +
a+n

1 + · · · 
 (6.83)

which explains Euler’s striking calculations. Later Stieltjes proved and used these
formulas to develop the theory of moments (1895). However, even in 1780 Euler
(1818a) had proved these formulas for C��z
�.

Applying (6.21) iteratively, we transform (6.74) to

1+ a

z+b+1 −
�a+1��b+1�
z+a+b+3 −

�a+2��b+2�
z+a+b+5 − · · · (6.84)

and (6.75) to ∫ �

0

e−t dt
t+ s =

1
s+1 −

12

s+3 −
22

s+5 −
32

s+5 − · · · � (6.85)

Equations (6.84) and (6.85) are called the contractions of the initial continued fractions
(6.74) and (6.75), since their convergents obviously make subsequences of the con-
vergents for (6.74) and (6.75). Obvious equivalence transformations represent (6.84)
and (6.85) as P-fractions.

133 The hypergeometric function 0F1. The hypergeometric function 0F1 is de-
fined by the series

0F1 �- � a� z�= 0F1�a� z�
def=

�∑
n=0

zn

n!�a�n
(6.86)

converging uniformly on compact subsets of C to an entire function. In (4.114) we
studied it in relation to Euler’s solution of Riccati’s equations.

Theorem 6.40 The expansion into a continued fraction

0F1�a+1� z�

0F1�a� z�
= a
a +

z

a+1 +
z

a+2 +
z

a+3 +· · ·

= a
a +

1
s�a+1� +

1
a+2 +

1
s�a+3� + · · ·


 (6.87)

where z = 1/s, converges to the expanded value both in C ��z
� and uniformly on
compact subsets of C in z not containing zeros of 0F1�a� z�.
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Proof The identity

0F1�a+1� z�

0F1�a� z�
= 1

1+ z

a�a+1�
0F1�a+2� z�

0F1�a+1� z�

proves the convergence of the continued fractions in (6.87) to the expanded value in
C ��z
� by Theorem 6.34 and for s > 0 by Theorem 3.2. The proof is completed by
Theorem 6.35(b). �

This theorem is essentially Euler’s theorem 4.36 with b0 = a, d = 1, c = z. The
first continued fraction in (6.87) can be easily transformed into the P-fraction of
the hyperbolic cotangent. Indeed putting z = 1/t2 in (6.87) we obtain after obvious
equivalence transformations

1
at

0F1�a+1� t−2�

0F1�a� t
−2�

= 1
ta +

1
t�a+1� +

1
t�a+2� +

1
t�a+3� + · · ·

�

Next, the choice a= 1/2, t = 2s gives

1

s

0F1�
3
2 �

1
4 s
−2�

0F1�
1
2 �

1
4 s
−2�

= 1

s +
1
3s +

1
5s +

1
7s + · · ·

�

Since n! ( 3
2

)
n
= �2n+1�! 4−n, n!� 1

2 �n = �2n�! 4−n, we have

0F1

(
3
2 �

1
4 s
−2
) 1
s
=

�∑
n=0

1
�2n+1�!s2n+1

= sinh
1
s



0F1

(
1
2 �

1
4 s
−2
)= �∑

n=0

1
�2n�!s2n

= cosh
1
s
�

This proves Corollary 4.39 by Euler’s method presented in §104, Section 4.11.

134 The hypergeometric function 1F1. This is defined by

1F1�a� c� z�
def=

�∑
n=0

�a�n
n!�c�n

zn � (6.88)

In (1813) Euler considered the continued fraction

K�s�= s
1 +
s+1

2 +
s+2

3 +
s+3

4 + · · · � (6.89)

We apply his differential method (see Section 4.7) and put in (4.59)

a= s 
 b = 1 
 c = 1 
 �b−"a= 1− s 

�= 1 
 "= 1 
 $ = 0 
 �c−$a= 1 


giving

dS

S
= �s−1�

dR

R
+ �1− s�dR+RdR

R−1
⇒ S = CRs−1�1−R�2−seR �
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It follows that Rn+1S = 0 at x= 0 and x= 1, if 0< s < 2 and R�x�= x. By (4.58) and
Lemma 4.18

K�s�=
∫ 1

0 x
s�1−x�1−sex dx∫ 1

0 x
s−1�1−x�1−sex dx �

Putting s= 1, we obtain (4.7). Expanding ex in a Maclaurin series and applying (4.30),
we have∫ 1

0
xa−1�1−x�1−sex dx =

�∑
k=0

1
k!
∫ 1

0
xk+a−1�1−x�1−s dx

=
�∑
k=0

B�a+k
2− s�
k! =

�∑
k=0

��a+k���2− s��
k!��2+k+a− s� �

Now putting a= s+1 and a= s, we obtain∫ 1

0
xs�1−x�1−sex dx = s��s���2− s�

2 1F1 �s+1�3�1� 


∫ 1

0
xs−1�1−x�1−sex dx = ��s���2− s�1F1 �s�2�1� 


(6.90)

which implies that

s

2
1F1 �s+1�3�1�

1F1 �s�2�1�
= �

K
k=1

(
s+k−1
k

)
� (6.91)

Formulas (6.90) hint that there may be an integral representation for 1F1.

Lemma 6.41 For a > 0, c > a and arbitrary complex z,

1F1 �a� c� z�=
��c�

��a���c−a�
∫ 1

0
eztta−1�1− t�c−a−1 dt �

Proof Expand ezt and integrate using (4.30). �

Theorem 6.42 In C ��z
�,

1F1 �a+1� c+1� z�

1F1 �a� c� z�

= c

c −
�c−a�z
c+1 +

�a+1�z
c+2 −

�c−a+1�z
c+3 + · · ·

+
�a+n�z
c+2n −

�c−a+n�z
c+2n+1 + · · · �

Proof Use Exs. 6.2 and 6.3 alternately. Apply Theorem 6.34. �
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135 Gauss’ continued fractions for 2F1. The series

2F1 �a
 b� c� z�=
�∑
n=0

�a�n�b�n
n!�c�n

zn (6.92)

was introduced by Euler (1769), although he had considered partial cases earlier in
relation to Wallis’ interpolation method (see for instance Ex. 4.41). The ratio test
shows that the series (6.92) converges in the unit disc �z� < 1. The analytic function
in z 2F1�a
 b� c� z� is also denoted simply as F�a
b� c� z�.

A careful account of what was done by Euler and Gauss to develop quotients of
hypergeometric series into continued fractions can be found in Andrews, Askey and
Roy (1999, §2.5).

Theorem 6.43 (Gauss 1812) For z= 1/s in C ��1/s
�,

2F1�a
 b+1� c+1�z�

2F1 �a
 b� c� z�

= c

c −
a�c−b�z
c+1 −

�b+1��c−a+1�z
c+2 − · · ·

−
�a+n��c−b+n�z

c+2n+1 −
�b+n+1��c−a+n+1�z

c+2n+2 − · · · �

Proof The identity

F�a
b� c� z�= F�a
b+1� c+1� z�− a�c−b�
c�c+1�

zF�a+1
 b+1� c+2� z�

follows from (6.92) by comparison of the coefficients at zn. It can be rewritten in a
form generating a continued fraction:

F�a
b� c� z�

F�a
a+1� c+1� z�
= 1− a�c−b�

c�c+1�
z

1
F�a
b+1� c+1� z�
F�a+1
 b+1� c+2� z�

�

Observing the symmetry of 2F1 in a and b, one thus obtains

F�a
b� c� z�

F�a
b+1� c+1� z�
= 1− u1

1 −
v1

1 −
u2

1 −
v2

1 − · · · 
 (6.93)

where

un =
�a+n−1��c−b+n−1�
�c+2n−2��c+2n−1�

z 
 vn =
�b+n��c−a+n�
�c+2n−1��c+2n�

z� (6.94)

Theorem 6.34 and equivalence transformations complete the proof. �

To obtain convergence in a stronger sense, as in the case of 2F0, we need an integral
representation for 2F1.
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Theorem 6.44 (Euler 1769) For c > b > 0

2F1 �a
 b� c� z�=
��c�

��b���c−b�
∫ 1

0

tb−1�1− t�c−b−1

�1− zt�a dt � (6.95)

Proof The proof of (6.95) is very similar to the proof of Euler’s formula (6.79).
Whereas in the case of (6.79) we used Euler’s integral formula for the gamma function,
in the case of (6.95) we can combine the binomial theorem with Euler’s formula (4.30)
for the beta function:

∫ 1

0

tb−1�1− t�c−b−1

�1− zt�a dt =
�∑
n=0

zn
�a�n
n!

∫ 1

0
tn+b−1�1− t�c−b−1 dt

=
�∑
n=0

zn
�a�n
n! B�b+n
 c−b�

=
�∑
n=0

zn
�a�n�b�n
�c�nn!

��b���c−b�
��c�

= ��b���c−b�
��c� 2F1 �a
 b� c� z� �

These calculations are made under the assumption that �z�< 1. �

Remark Notice that the right-hand side of (6.95) is analytic about any point z such that z < 0 and in
particular about z=−1. Hence Euler’s formula (6.95) sums up the hypergeometric series at z=−1.

Since the Maclaurin series for Gauss’s hypergeometric function converges in the unit disc, we immediately
obtain the symmetry of the expression on the right-hand side of (6.95) in respect of a and b. This can also
be proved along the same lines as (6.80). In any case the parameters a and b in the integral (6.95) can
exchange without changing the value of the integral.

The appearance of the quotient of hypergeometric functions in Theorem 6.43 is
explained by (4.69). The change of variables x= x1/r in Euler’s integral (6.95) shows
that if

b = �f − r�r−1 > 0 
 c−b = �s−f + r+h�2r−1 > 0 


a= �f + r−h�2s−1 


then by Theorem 6.44

s+ �
K
n=1

(
�f +nr��h+nr�

s

)
= rc 2F1 �a
 b� c�−1�

2F1 �a
 b+1� c+1�−1�
�

putting b = 0 in Theorem 6.43 and observing that F�a
0� c�−z�= 1, we arrive at the
following important result.
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Theorem 6.45 For z� 0,

2F1 �a
1� c�−z�

= 1
1 +
az

c +
1�c−a�z
c+1 +

�a+1�cz
c+2 +

2�c−a+1�z
c+3 + · · ·

+ �a+n��c+n−1�z
c+2n +

�n+1��c−a+n�z
c+2n+1 + · · · � (6.96)

Proof For any continuous function f on [0, 1]

lim
b→0
b
∫ 1

0
tb−1f�t�dt = lim

b→0

∫ 1

0
f�t1/b�dt = f�0� �

Combining recursions of Theorem 6.43 with Euler’s integral representation for 2F1

and Theorem 6.44, and passing to the limit b→ 0 in the finite version of (E6.1), we
obtain (6.96) by Markoff’s test if c �= c+1. �

Since many known functions can be obtained from 2F1�a
1� c�−z�, Theorem 6.45
gives useful expansions into convergent continued fractions. Let us consider for in-
stance

ln�1+ z�= z
�∑
n=0

1
n+1

�−z�n = z 2F1 �1
1�2�−z� � (6.97)

By Euler’s theorem 6.44 the hypergeometric function on the right-hand side of the
above equality in C ��z
� extends to an analytic function about the positive half-line
�0
+��. The same is true for ln�1+z�. Hence they must coincide for z� 0. If a= 1,
c = 2 in Theorem 6.45 then

ln�1+ z�= z
1 +

12z

2 +
12z

3 +
22z

4 +
22z

5 +
32z

6 +
32z

7 + · · · � (6.98)

The substitution z= 1/s shows that∫ 1

0

dt

t+ s = ln
(

1+ 1
s

)
= 1
s +

12

2 +
12

3s +
22

4 +
22

5s +
32

6 +
32

7s + · · ·

 (6.99)

which can be to compared with (6.78). The function (6.99) can be used to sum the
series in (6.97) for z= 1/s > 0.

Applying the same method to (4.64), we see that

arctan
1
s
= 1
s 2F1

(
1
2 
1�

3
2 �−s−2

)= 1
s +

12

3s +
22

5s +
32

7s + · · ·
�

We obtained this formula in §88, Section 4.7, with Euler’s differential method. Next

ln
1+ z
1− z = 2F1

(
1
2 
1�

3
2 � z

2
)

2z= 2z
1 −

12z2

3 −
22z2

5 −
32z2

7 − · · · � (6.100)
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If z= 1/s in (6.100) then after equivalence transformations we get

ln
s+1
s−1

= 2
s −

12

3s −
22

5s −
32

7s −
42

9s − · · ·
� (6.101)

Another application is Jacobi’s continued fraction (1859) which Jacobi had actually
considered in 1843. Observing that F�a
0� c� z�≡ 1 and replacing c by c−1 in (6.94),
we obtain

F�a
1� c� z�= 1
1 −
u1z

1 −
v1z

1 −
u2z

1 −
v2z

1 − � � 
 (6.102)

where

un =
�a+n−1��c+n−2�
�c+2n−3��c+2n−2�


 vn =
n�c−a+n−1�

�c+2n−2��c+2n−1�
� (6.103)

Let us put a= 1, b = �, c = �+" in (6.95) and use the symmetry of 2F1 in a and
b. Then by Euler’s theorem 6.44 and (6.96),

���+"�
������"�

∫ 1

0

t�−1�1− t�"−1

z− t dt = 2F1

(
�
1��+"�z−1

)
z−1

= 1
z −
u1

1 −
v1

z −
u2

1 −
v2

z − · · · −
un
1 −

vn
z − · · · � (6.104)

Applying (6.21) with p= un, q =−vn, w �=−w, we obtain the following expansion:

���+"�
������"�

∫ 1

0

t�−1�1− t�"−1

z− t dt

= 1
z−u1 −

u1v1

z−v1−u2 −
u2v2

z−v2−u3 − · · · −
unvn

z−vn−un+1 − · · ·
� (6.105)

Theorem 6.46 (Laguerre) For −1< �< 1 in C ��1/s
�:

sin��
��

∫ 1

−1

(
1+x
1−x

)�
dx

s−x =
2

s−�+ �
K
n=1
��2−n2 / �2n+1�s�

� (6.106)

Proof Let us make the following substitutions in (6.105): t= �x+1�/2, z= �s+1�/2,
� �= �− 1, " �= 2−�. By Ex. 3.19 the integrals on the left-hand sides of (6.105)
and (6.106) coincide. Elementary algebra applied to (6.103), for c = 2 and a= �+1,
shows that

un =
n+�
4n−2


 vn =
n−�
4n+2


 un+vn+1 =
1
2



unvn =
n2−�2

4�2n−1��2n+1�



and therefore the continued fraction in (6.106) is equivalent to the continued fraction
in (6.105). �
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6.5 Stieltjes’ theory

136 Convergence in the right half-plane. Brouncker’s continued fraction (3.34)
as well as many continued fractions of Euler have the form

b0s+ c0+
�
K
n=1

(
an

bns+ cn

)

 (6.107)

where an > 0, bn � 0, Re cn � 0. If s > 0, such continued fractions converge to
the expanded value by Markoff’s theorem 3.2. To summarize, the reasons for this
are Brouncker’s inequalities (1.21) and the observation that �0
+�� is mapped by
w−→ an�bns+cn+w�−1 into itself. Such Möbius transformations map the right half-
plane P+ = �z � Re z > 0� into itself also. This hints that the convergence of (6.107)
may extend to P+.

Definition 6.47 A family N of analytic functions in an open connected set G is called
normal if every sequence �fn� in N contains a subsequence �fnk� which converges
uniformly on compact subsets of G either to infinity or to a finite function. If the first
option, infinity, does not occur then N is called a pre-compact family.

Every family of uniformly bounded analytic functions in an open connected set is
pre-compact (Ex. 6.8). The mapping z→ �1− z�/�1+ z� maps P+ conformally onto
D, sending the family R�G� of all analytic functions in G with positive real part in G
into the family ��G� of all analytic functions in G bounded by 1. Since � is mapped
to −1, R�G� is normal but is not pre-compact. For instance, limn nz =� in P+. No
meromorphic function can have a positive real part about its pole or zero.

Theorem 6.48 The family of convergents to �6�107� with an > 0, bn � 0 and Re cn � 0
is a normal family in P+.

Proof Let s0�w� = k0z+ l0+w, sk�w� = ak/�bkz+ ck+w�. Every sk maps the right
half-plane into itself. Then (see Theorem 3.2)

Pn�z�

Qn�z�
= s0 � s1 � · · · � sn�0�

has a positive real part in P+. �

Corollary 6.49 (Complex Markoff test) If �6�107� converges to finite values on
a subset E of �0
+�� having a finite nonzero limit point then �6�107� converges
uniformly on compact subsets of �z � Re z > 0� to an analytic function with positive
real part.

Proof The convergents make a normal family in P+ by Theorem 6.48. Since they
converge on an E ⊂ �0
+��, there is no subsequence converging to �. All limit
points of this sequence of analytic functions have equal restrictions to E. Since E has
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a limit point in P+, limit functions of the convergents coincide in P+ by the uniqueness
theorem. �

Corollary 6.50 Brouncker’s continued fraction �3�34� converges uniformly on com-
pact subsets of P+ to a function in R�P+�.

Proof Apply Corollary 3.10. �

Corollary 6.51 The identity in �3�40� holds for Re s > 0 and the infinite product in
�3�40� has a positive real part for Re s > 0.

By Corollary 6.49 the continued fractions given in (3.34), (4.45), (4.60) – (4.62),
(4.65), (4.70), (4.71), (4.83), (4.85)–(4.88), (4.90), (4.103), (4.125), (6.78), (6.83),
(6.99) all converge to analytic functions with a positive real part in P+. We consider
the most important examples in §§138–40.

137 Van Vleck’s theorem. Van Vleck’s theorem is obtained by refining the argu-
ments of §136. For 0 < � < �/2 we denote by P� the angle �z � � arg z� < �/2−��
in P+.

Theorem 6.52 (Van Vleck 1901) If there is an � ∈ �0
�/2� such that bn ∈ P� for
n� 1 then:

(a) the nth convergent fn of K�
n=1�1/bn� is in P�;

(b) the limits limk f2k and limk f2k+1 both exist and are finite;

(c) the continued fraction converges if
∑
n �bn� = +�;

(d) if K�
n=1�1/bn� converges to f then f ∈ P+.

Proof 3 Since fn is a composition of Möbius transforms each of which maps P� into
itself, it must be in P�. This proves (a).

Let z be an auxiliary complex parameter such that the functions

bn�z�= �bn�ei"nz 
 "n = arg bn

interpolate bn at z= 1. Now � arg bn�z�� = �"nRe z� is smaller than ��−��/2 inG= �z �
�Re z�< 1+�/��−2��
 �Im z�< 1�. By (a) the family �fn�z��n�1 of the convergents to
�
K
n=1
�1/bn�z�� takes values in P+. Hence it is normal in G. Since bn�z� > 0 on �−i
 i�⊂

G, we obtain (b) and (c) by Theorems 3.3 and 3.4. Now (d) follows from (a). �

3 Here we follow Jones and Thron (1980).
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138 Convergence for b�s�. Stirling’s formula (3.58),

��z�∼√2�zz−1/2e−z 
 �z� → +� 
 (6.108)

is valid in any angular domain � arg z�<�−�, �> 0; see Andrews, Askey and Roy R.
(1999, Corollary 1.4.3). Simple calculations using Ramanujan’s formula (Theorem
3.25), show that in any such domain

b�z�∼ z 
 �z� → +� � (6.109)

Theorem 6.53 For Re s > 0,

1
b�s�

=
∫

R

d��t�

s− it 
 d�= 1
8�3

∣∣∣∣�
(

1+ it
4

)∣∣∣∣4 dt 

where � is a probability measure on R.

Proof Euler’s functional equation for the gamma function, see Ex. 3.19 or Whittaker
and Watson (1902, Section 12.14), with s = 1/4− it/4 shows that

�

(
3+ it

4

)
= ��1− s�= �

sin�s
1
��s�

and therefore

1
4

{
� ��1+ it�/4�
� ��3+ it�/4�

}2

= 1− cos 2�s
8�2

���s��4 = 1
8�2

���s��4
(

1− i sinh
�t

2

)
.

Hence by Theorem 3.25

Re
1
b�it�

= 1
8�2

∣∣∣∣�
(

1+ it
4

)∣∣∣∣4 > 0 �

By (6.109) we can apply Cauchy’s integral formula for the holomorphic function
1/b�s� to the right half-plane Re s > 0:

1
b�s�

= 1
2�

∫ −�

+�
1
b�it�

1
it− s d�it�=

1
2�

∫ +�

−�
1
b�it�

1
s− it dt

0= 1
2�

∫ +�

−�
1
b�it�

1
it+ s dt =

1
2�

∫ +�

−�
1

b̄�it�

1
s− it dt �

To complete the proof it remains to add the above formulas. Since 1/b�s� = 1/s+
o�1/s2� as s→+�, we obtain that

1
8�3

∫ +�

−�
�� �1+ it / 4��4 dt = 1 � (6.110)

Hence d� is a probability measure on R. �
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Using (6.108) one can easily obtain an asymptotic formula for the density d�/dt (see
Andrews, Askey and Roy 1999, Corollary 1.4.4):

1
8�3

∣∣∣∣�
(

1+ it
4

)∣∣∣∣4 ∼ 2
�t�� exp

(
−�

2
�t�
)

 t→±� � (6.111)

Corollary 6.54 For Im z > 0,

1
8�3

∫ +�

−�

∣∣∣∣�
(

1+ it
4

)∣∣∣∣4 dt

z− t =
1
z −

12

2z −
32

2z −
52

2z− · · ·
� (6.112)

Proof If Im z > 0 and s = z/i then Re s > 0 and∫ +�

−�
d��t�

s− it = i
∫ +�

−�
d��t�

z+ t = i
∫ +�

−�
d��t�

z− t 

since � is symmetric. Brouncker’s continued fraction is transformed into (6.112) by
obvious equivalence transforms. �

Since d� is symmetric, we can write

1
b�s�

=
∫ +�

0

2s
s2+ t2 d�=

s

8�3

∫ +�

0

∣∣��1+ it�/4�4t−1/2dt

s2+ t 


1
8�3

∫ +�

0

∣∣�(�1+ it�/4)∣∣4t−1/2dt

s+ t = 1√
sb�
√
s�

= 1
s +

12

2 +
32

2s +
52

2 +
72

2s + · · ·

=
(
s+ 1

2
− 9

8s
+ 153

16s2
+ · · ·

)−1


 (6.113)

which explains why c2 = c4 = · · · = 0 in (3.33). The continued fraction in (6.113)
converges uniformly on compact subsets of C\ �−�
0
.

139 Gaussian distribution. To obtain the continued fraction for the Gaussian or
the normal distribution we reverse the arguments of §138. Since ��1/2� = √�, see
(3.66), we obtain from (6.83) with a= 1/2 that

1√
�

∫ +�

−�
e−t2dt
z− it =

2z√
�

∫ +�

0

e−t2dt
z2+ t2 =

z

��1/2�

∫ +�

0

e−tt1/2−1dt

z2+ t

= z

z2 +
1/2
1 +

1
z2 +

3/2
1 +

2
z2 +

5/2
1 + · · · =

1
z +

1/2z
1 +

1
z2 +

3/2
1 + · · ·

= 1
z +

1
2z +

2
z +

3
2z +

4
z +

5
2z + · · ·

= 2
2z +

2
2z +

4
2z +

6
2z +

8
2z +

10
2z + · · ·

�
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Now by (4.90) we obtain

1√
�

∫ +�

−�
e−t2dt
z− it =

2

2z+ �
K
n=1

(
2n/2z

) = 2ez
2
∫ +�

z
e−x

2
dx � (6.114)

Hence the Cauchy integral of the Gaussian distribution can be simply expressed via
the error function and extended to an entire function by the use of a Laplace transform.
We obtain

2
∫ +�

0
e−2xz−x2

dx �

Corollary 6.55 For Im z > 0,

1√
�

∫ +�

−�
e−t2dt
z− t =

2
2z −

2
2z −

4
2z −

6
2z −

8
2z − · · ·

� (6.115)

140 Continued fraction for arctan�1/s�. By Euler’s formulas (6.63),

arctan
1
s
= i

2
ln
s− i
s+ i =−

1
2

arg
s− i
s+ i +

i

2
ln

∣∣∣∣ s− is+ i
∣∣∣∣ �

The Möbius transform s→ �s− i�/�s+ i� maps P+ onto C−. Hence the real part
of arctan�1/s� tends to −� if s approaches �−i
 i� from P+ and tends to zero if
s approaches the complement of �−i
 i
 on the imaginary axis. It follows that for
Re s > 0,

1
2

∫ 1

−1

dt

s− it =
1
s +

12

3s +
22

5s +
32

7s +
42

9s + · · · +
n2

�2n+1�s + · · ·



and for Im z > 0,

1
2

∫ 1

−1

dt

z− t =
1
z −

12

3z −
22

5z −
32

7z −
42

9z − · · · −
n2

�2n+1�z − · · ·
�

141 Asymptotic expansions. The examples considered in §§138–40 hint that there
may be a general theory including them as partial cases. Let P�R� be the set of all
Borel measures � on R with finite moments

−�< sk =
∫ +�

−�
xkd��x� <+� 
 k� 0� (6.116)

the problem of determining all � with a given sequence �sn�n�0 is known as the
Hamburger moment problem. If � ∈P�T� then the Cauchy integral

C��z�=
∫ +�

−�
d��t�

z− it
is obviously in R�P+�. It is natural to consider � in this formula as a measure placed
on the imaginary axis.
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Lemma 6.56 If � ∈P�R� then

C��x�∼
�∑
k=0

iksk
xk+1

(6.117)

is the asymptotic expansion of C��x� as x→+�.

Proof 4 We have

C��x�−
2n−1∑
k=0

iksk
xk+1

= �−1�n

x2n+1

∫
R

xt2nd�

x− it =
�−1�n

x2n+1

(
s2n+

∫
R

it2n+1d�

x− it
)
�

If R > 0 then ∣∣∣∣∫
R

t2n+1d�

x− it
∣∣∣∣� 1

x

∫ R

−R
�t�2n+1d�+

∫
�t�>R

t2nd� �

Given � > 0 we first find R > 0 to make the second integral less than �/2. Then the
first will be smaller than �/2 if x is large enough. �

If � is an even measure, then∫ +�

−�
d��t�

x− it =
∫ �

0

2xd��
√
t�

x2+ t 
 (6.118)

implying that∫ +�

0

d��
√
t�

x+ t ∼

�∑
j=0

�−1�jmj
xj+1


 mj =
∫ +�

0
tjd��

√
t� � (6.119)

We are interested in functions in R�P+� admitting an asymptotic expansion (6.117).
A proof of the following theorem can be found in Akhiezer (1961) or Shohat and
Tamarkin (1943) or it can be deduced directly from Theorem 8.2 by the standard
conformal mapping of D onto P+.

Theorem 6.57 For any function F ∈R�P+� there are a unique finite positive measure
� and real numbers a > 0 and b such that

F�z�= az+ ib+
∫ +�

−�
1− itz
z− it d��t� 
 Re z= x > 0 �

Corollary 6.58 A function F ∈R�P+� equals C� for a finite positive � if and only if
F�x�= O�1/x� as x→+�.

Corollary 6.59 A function F ∈R�P+� has an asymptotic expansion as x→+� if
and only if F = C� with � ∈P�R�.

The measure � can be recovered by Stieltjes’ inversion formula.

4 Akhiezer (1961).
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Theorem 6.60 (Stieltjes–Perron) Let a < b and � be positive and finite. Then

���a��+���b��
2

+���a
b��= lim
�→0+

1
�

Re
∫ b

a
C���+ it�d��t� � (6.120)

We refer to Akhiezer (1961) for the proof.
Corollary 6.59 extends the analogy first observed by Brouncker; see §60 in Section 3.2.

In this analogy P�R� corresponds to the continuum of real numbers R and the asymp-
totic expansions (6.117) to their decimal expansions. It follows that simple formulas
for the continued fractions corresponding to C� may exist. By (6.56),

C��z�= s0
z

(
1+ is1/s0

z
+O

(
1
z2

))
= s0
z− is1/s0+G�z�




where G�x�= O�1/x� if x→+�. Expressing the above equation in terms of G, we
find

ReG�z�=−x+x
∫ d��t�

�z− it�2
s0

�C��z��2 > 0 


since, by the Cauchy–Schwarz inequality

�C��z��2 �
∫
d�

∫ d��t�

�z− it�2 �

Since G�x� = O�1/x�, by Corollary 6.58 G�z� = C�1�z�. similarly to the algorithm
presented in §13 at the start of Section 1.3, this algorithm allows one to find the
corresponding P-fraction for every � ∈P�T�:

C��z�= a1

z+ ic1 +
a2

z+ ic2 + · · · +
an

z+ icn + · · ·

 (6.121)

where an = s0��n−1�, cn =−s1��n−1�/an.
Following Stieltjes we assume now that � is an even measure in P�R�. By Theorem

6.60 this will be the case if and only if C��z�= C��z̄�. If � is even then s1 = 0 and
therefore

C��z�= s0
z+C�1�z�


 where C�1�z�= C�1�z̄� �

Iterating this formula, we obtain that c1 = c2 = · · · = 0 and therefore

C��z�= a1

z +
a2

z + · · · +
an

z+C�n+1�z�
� (6.122)

The continued fraction K�
n=1 �an/z� corresponds to the asymptotic expansion (6.56) of

� . By (6.118), ∫ +�

0

2d��
√
t�

s+ t ∼
a1

s +
a2

1 +
a3

s +
a4

1 + · · · � (6.123)
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Definition 6.61 The Hamburger moment problem �6�116� is called determined if there
is only one � ∈P�R� satisfying �6�116�. Otherwise it is called undetermined. If � is
restricted to the class of even measures then the moment problem �6�116� is called
the Stieltjes moment problem.

In (1895) Stieltjes considered the following family of functions:∫ +�

0

�1+% sin 4
√
t� e−

4√t

z+ t dt 
 −1 � %� 1 �

Since

��s�=
∫ +�

0
sin t e−stdt = 1

2i

(
1
s− i −

1
s+ i

)
= 1

1+ s2



we have ∫ +�

0
tk sin 4

√
t e−

4√tdt = 4
∫ +�

0
t4k+3 sin t e−tdt =−��4k+3��1� �

Since �1− i��1+ i�−1 =−i, the derivative ��n��1�,

�−1�n2i��n��1�
�n+1�! = 1

�1+ i�n+1
− 1
�1− i�n+1

= �−i�
n+1−1

�1− i�n+1

vanishes if and only if n= 4k+3. It follows that the Stieltjes moments (6.119) for these
measures do not depend on %. See Exs. 6.10 and 6.11 for other examples. Hence there
are cases when an even more restricted Stieltjes moment problem is undetermined.

Theorem 6.62 The Stieltjes moment problem �6�116� is determined if and only if the
continued fraction K�

n=1 �an/x� converges for x > 0.

Proof Let Pn/Qn be the convergents to K�
n=1 �an/z�. Then by (6.122)

P2n�x�

Q2n�x�
< C��x� <

P2n+1�x�

Q2n+1�x�

 x > 0 �

Since by Brouncker’s theorem 1.7 the even convergents increase and the odd conver-
gents decrease, the moment problem (6.116) has a unique solution � if the continued
fraction K�

n=1 �an/z� converges.
If on the contrary it diverges then we consider the two functions

Feven�z�= lim
n

P2n�z�

Q2n�z�

 Fodd�z�= lim

n

P2n+1�z�

Q2n+1�z�
�

Both limits exist for z= x > 0. Since the family of convergents is normal in P+, we
obtain that Feven and Fodd are both in R�P+� by the complex Markoff test, Corollary
6.49. On the one hand, by (6.122) both Feven and Fodd correspond to the same continued
fractions. Hence they have equal asymptotic series. On the other hand, by Corollary
6.59 they determine two different measures �even and �odd with equal moments. �
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Notice that the method presented is very close to the one we used in proving Euler’s
formulas with Markoff’s test. Corollary 3.9 states the conditions in terms of the �an�n�0

that are necessary and sufficient for the moment problem to be determined. See Ex. 3.5
for examples of nondetermined moment problems. A convenient sufficient condition
due to Carleman will be considered in §154, Section 7.4. We refer to Shohat and
Tamarkin (1943) for the other results.

Exercises

6.1 Prove that (Euler (1813, Chapter V)

2
1 +

3
2 +

4
3 +

5
4 +

6
5 +

7
6+ · · ·

= 1 �

Hint: Put s = 2 in (6.91).
6.2 Prove that

1F1

(
a+1
c+1

� z

)
= 1F1

(a
c
� z
)
+ �c−a�z
c�c+1� 1F1

(
a+1
c+2

� z

)
�

Hint: Apply the definition (6.88) of 1F1 to the left-hand side and use the obvious
identities

�c+n+1��c�n+1 = c�c+1��c+2�n 
 �a�n+1 = a�a+1�n �

6.3 Prove that

1F1

(
a

c+1
� z

)
= 1F1

(a
c
� z
)
− az

c�c+1� 1F1

(
a+1
c+2

� z

)
�

6.4 Theorems 6.43 and 6.44 with Markoff’s test imply that for z� 0∫ 1
0 t

b�1− t�c−b−1 �1+ zt�−adt∫ 1
0 t

b−1�1− t�c−b−1 �1+ zt�−adt

= b
c +

a�c−b�z
c+1 +

�b+1��c−a+1�z
c+2 + · · ·

+
�a+n��c−b+n�z

c+2n+1 +
�b+n+1��c−a+n+1�z

c+2n+2 + · · · � (E6.1)

6.5 Prove that

b�s�= �s+1�2

s+2×1 +
12

s+2×2 +
�s+3�2

s+2×3 +
32

s+2×4 +
�s+5�2

s+2×5 + · · · � (E6.2)

Hint: Apply (E6.1) to Euler’s formula (4.46). Put z= 1, b= �s+1�/2, c−b=
1/2, a= 1/2 in (E6.1).
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6.6 For s = 1 (E6.2) turns into a nice formula for �:

� = 3+ 12

5 +
42

7 +
32

9 +
62

11 +
52

13 +
82

15 + · · · � (E6.3)

Compare (E6.3) with (4.63) and notice that they differ, starting with the second
partial numerator, by the permutations 4↔ 3, 6↔ 5, 7↔ 8, � � �

6.7 Show that Euler’s K�s� (1813), see (6.89), satisfies

K�s�= s
2 +
s−2

3 +
s+1

4 +
s−3

5 +
s+2

6 +
s−4

7 +
s+3

8 + · · · (E6.4)

and in particular that

K�1�= �e−1�−1 
 K�2�= 1 
 K�3�= 4/3 
 K�4�= 136/73 
 � � �

as Euler indicated.
Hint: Put a = s, c = 2, z = 1 in Theorem 6.42. This is an interesting example
of a function given by a simple formula (6.89) which takes rational values in
integers n� 2 and a transcendental value at 1.

6.8 Prove that any family of analytic functions uniformly bounded in an open
connected set G is pre-compact.
Hint: Prove this first for G = D. Match each function of the family with
its Taylor series centered at z = 0. Apply Cauchy’s formula to prove that
the coefficients of these series are all uniformly bounded. Apply the diagonal
process to obtain a subsequence of functions with converging Taylor coefficients
at any power of z (for details see Markushevich 1985, Part I, Chapter 17, §86).

6.9 Prove that C�z

√
z2−1� contains nonperiodic quadratic P-fractions.

Hint: If −1< �< 1 then by Cauchy’s formula

sin��
2��

∫ 1

−1

1
z−x

(
1+x
1−x

)�
dx = 1

2�

{(
z+1
z−1

)�
−1

}

 (E6.5)

implying by (6.106)(
z+1
z−1

)�
= 1+ 2�

z−� +
�2−1

3z +
�2−4

5z +
�2−9

7z + · · · � (E6.6)

If � = 1/2 then (E6.6) shows that the P-fraction corresponding to the Jacobi
polynomials �P�1/2
−1/2�

n �n�0 is not periodic. Notice that by (E6.5) this Cauchy
integral belongs to C�z


√
z2−1�.

6.10 (Stieltjes) If f is an odd function such that f�x+1/2�=±f�x� then∫ +�

0
xkx− logxf�logx�dx = 0 
 k ∈ Z �

Hint: Since f is odd,
∫

R
e−t2f�t�dt = 0. Put t = logx− �k+1�/2.
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6.11 (Stieltjes) Show that the integrals

1√
�

∫ +�

0

1+% sin�2� log t�
z+ t t− log tdt

have the same asymptotic expansion as z = x→+�, % ∈ �−1
1
. Find the
asymptotic expansion and the corresponding continued fraction.



7
Orthogonal polynomials

7.1 Euler’s problem

142 Orthogonal matrices. A square matrix∥∥∥∥∥∥∥∥∥

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
���

���
���

���
���

an1 an2 an3 · · · ann

∥∥∥∥∥∥∥∥∥
is called orthogonal if its entries aij satisfy

n∑
j=1

akjalj =
{

1 if k= l,
0 if k 	= l �

(7.1)

Orthogonal 2×2 matrices are parameterized by independent real parameters a and b
as

1
a2+b2

∥∥∥∥a b

b −a
∥∥∥∥ � (7.2)

The entries in this parameterization are rational functions in a and b. Euler (1771)
found a rational parameterization for orthogonal 3×3 matrices:∥∥∥∥∥∥

D2+A2−B2−C2 2�AB−CD� 2�AC+BD�
2�AB+CD� D2−A2+B2−C2 2�BC−AD�
2�AC−BD� 2�BC+AD� D2−A2−B2+C2

∥∥∥∥∥∥
The sum of the squares of the columns and rows equals �D2+A2+B2+C2�2, which
shows that to obtain the required parametrization one should divide the entries of the
matrix by D2+A2+B2+C2.

296



7.1 Euler’s problem 297

Euler also found similar formulas for 4×4 matrices:∥∥∥∥∥∥∥∥
A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

∥∥∥∥∥∥∥∥ 

where

A1 = ap+bq+ cr+ds , A2 = ar−bs− cp+dq 

B1 =−aq+bp+ cs−dr , B2 = as+br+ cq+dp 

C1 = ar+bs− cp−dq , C2 =−ap+bq− cr+ds 

D1 =−as+br− cq+dp , D2 =−aq−bp+ cs+dr 

A3 =−as−br+ cq+dp , A4 = aq−bp+ cs−dr 

B3 = ar−bs+ cp−dq , B4 = ap+bq− cr−ds 

C3 = aq+bp+ cs+dr , C4 = as−br− cq+dp 

D3 =−ap+bq+ cr−ds , D4 = ar+bs+ cp+dq 


As an application Euler presented the square matrix∥∥∥∥∥∥∥∥
+68 −29 +41 −37
−17 +31 +79 +32
+59 +28 −23 +61
−11 −77 +8 +49

∥∥∥∥∥∥∥∥
having orthogonal columns and rows. The sum of the squares of the rows and columns
equals 8515. The sums of the squares of the corners of the large and central interior
squares each have this same value:

682+372+492+112 = 312+792+232+282 = 8515= 5×1703�1

In the conclusion of his paper (1771, §36), Euler writes:

Solutio haec eo maiorem attentionem meretur, quod ad eam nulla certa methodo, sed potius
quasi divinando sum perductus; et quoniam ea adeo octo numeros arbitrarious implicat, qui
quidem facta reductione ad unitatem, ad septem rediguntur, vix dubitare licet, quin ista
solutio sit universalis et omnes prorsus solutiones possibiles in se complectatur. Si quis
ergo viam directam ad hanc solutionem manuducentem investigaverit, insignia certe
subsidia Analysi attulisse erit censendus. Utrum autem similes solutiones pro amplioribus
quadratis, quae numeris 25, 36, et majoribus constant, expectare liceat, vix affirmare ausim.
Non solum autem hinc Algebra communis, sed etiam Methodus Diophantea maxima
incrementa adeptura videtur.

1 1703 is the year in which St Petersburg was founded.
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This translates into English as

This solution deserves to be paid full attention, as I arrived at it not using a definite method
but rather by making guesses; and since in addition it depends on eight arbitrary
parameters, which after normalization can be reduced to seven, one can hardly doubt that it
is universal and includes all possible cases. If somebody can find a direct way to this
solution, then it will be have to admitted that he has made an outstanding contribution to
analysis. Whether similar solutions exist for wider squares consisting of 25, 36, etc.
numbers, I hardly dare to claim. Here it seems that not only algebra but the Diophantine
method would benefit from a contribution of great significance.

D. Grave (1937, 1938), using quaternions, explained Euler’s approach for the case
n= 4. Euler’s problem can be stated as follows.

Problem 7.1 Find rational parameterizations of the manifold of real orthogonal
matrices with independent parameters.

A solution to Euler’s problem can be found in Vilenkin (1991, Chapter IX, §1]. Let
gjk��� be a rotation by angle � in a plane �xj
 xk�; a rotation moving the vector �1
0�
to vector �0
1� is positive. Let gk+1k���= gk��� for brevity.

Theorem 7.2 Any rotation g of Rn can be represented as the product of rotations
g = g�n−1�, � � � , g�1�, where g�k� = g1�	

k
1� · · · gk�	kk�.

Rotations of Rn correspond to orthogonal n× n matrices. Since any rotation of a
plane can be rationally parameterized, see (7.2), their products can be rationally
parameterized too.

In 1855 Chebyshev discovered a parameterization which gave rise to the theory
of orthogonal polynomials. Chebyshev’s solution followed important contributions by
Gauss, Jacobi, Legendre and Sturm.

7.2 Quadrature formulas

143 Newton–Cotes formulas. In 1671 Newton discovered the three-eighths rule
for definite integrals of continuous functions:∫ x4

x1

f�x�dx ≈ 3h
8
�f�x1�+3f�x2�+3f�x3�+f�x4�� � (7.3)

Here x2−x1 = x3−x2 = x4−x3 = h> 0. Formula (7.3) gives an approximate value of
the definite integral (that is, a quadrature) and therefore is called a quadrature formula.
Since Cotes extended Newton’s formula to a greater number of nodes, these formulas
are often called the Newton–Cotes formulas.

Newton’s quadrature formula has a remarkable property: it turns into an equality for
any polynomial f , deg f � 4−1= 3. To check this evaluate both sides for f�x�= 1,
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x, x2, x3 and then extend the formula by linearity. This property of Newton’s formula
follows from the formula for Lagrange interpolation polynomials,

L�x�=
n∑
k=1

yk
Q�x�

�x−xk�Q′�xk�

 Q�x�= �x−x1� · · · �x−xn� � (7.4)

It is clear that L�xk�= yk, k= 1
2
 � � � 
 n. Fixing a choice of nodes �xk� and integrating
(7.4) we obtain the Newton–Cotes quadrature∫ xn

x1

f�x�dx ≈
n∑
k=1

lkf�xk� 
 (7.5)

which is a true equality on polynomials of degree n−1. The Lagrange coefficients lk
in (7.5) are defined by

lk =
∫ xn

x1

Q�x�

�x−xk�Q′�xk�
dx � (7.6)

144 Gaussian quadrature. Since Newton–Cotes quadratures depend on n nodes,
a proper choice of the nodes �xk� may give a formula which is a true equality on any
polynomial of degree n−1+n= 2n−1. This problem was studied in Gauss (1814).
We have ∫ 1

−1
f�x�dx ≈

n∑
k=1

lkf�xk�

for nodes −1 � x1 < x2 < · · · < xn � 1 (in fact Gauss considered the interval �0
1�,
which is obtained from �−1
1� by a linear transformation). A quadrature formula is
an equality for any polynomial of degree 2n−1 if and only if it is an equality for any
monomial f�x�= xm, m= 0, 1, � � � , 2n−1. It follows that for these m values

�m
def=

∫ 1

−1
xm dx−

n∑
k=1

lkx
m
k =

1− �−1�m+1

m+1
−

n∑
k=1

lkx
m
k = 0 � (7.7)

Since the lk are defined by (7.6), �m = 0 for m = 0
 � � � 
 n− 1. Notice also that
�m = O�1� as m→�. For �z�> 1, Gauss considered a convergent Laurent series

G�z�=
�∑
m=0

1− �−1�m+1

�m+1�zm+1
=

n∑
k=1

lk

�∑
m=0

xmk
zm+1

+
�∑
m=n

�m
zm+1

and multiplied it by Q to obtain the formula

Q�z�G�z�=
n∑
k=1

lkQ�z�

z−xk
+

�∑
m=n

�mQ�z�

zm+1

= P�z�+ ��nz
n−1+ · · · +�2n−1�Q�z�

z2n
+O

(
1
zn+1

)

 (7.8)
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where P is a polynomial. Notice that �n = · · · = �2n−1 = 0 in (7.8) if and only if
deg �QG−P� � −n− 1, where deg Q = n. Then by Markoff’s theorem P/Q is the
nth convergent to the continued fraction

ln
z+1
z−1

= 2
z −

12

3z −
22

5z −
32

7z −
42

9z − · · ·



see (6.101), of

ln
z+1
z−1

=
�∑
m=0

1− �−1�m+1

�m+1�zm+1
=G�z� 


as elementary calculations with power series show. It follows that Q is one of the
polynomials defined by the Euler–Wallis formulas

Qn+1�x�= �2n+1�xQn�x�−n2Qn−1�x� 
 Q0�x�= 1 
 Q1�x�= x � (7.9)

To complete Gauss’s construction we must check that all the zeros of Qn are simple
and located in �−1
1�. Recall that by the intermediate value theorem, see for instance
Hairer and Wanner (1996, Theorem 3.5), every polynomial taking values of opposite
sign at a < b has at least one zero in �a
 b�. Both Newton and Gauss considered this
statement for polynomials as obvious.

Theorem 7.3 The zeros xn
1 < xn−1
1 < · · · < xn
n of Qn are located in �−1
1� and
interlace the zeros of Qn−1.

Proof By inspection the statement is true for Q0 = 1, Q1 = x, Q2 = 3x2 − 1 and
Q3 = 3x�5x2−3�. Easy induction with (7.9) shows that Qn�x� is even if n is even and
is odd if n is odd, deg Qn�x� = n and the leading coefficient of Qn�x� is �2n− 1�!!.
The identity

�2n+1�n!−n2�n−1�! = �n+1�!
and (7.9) imply by induction that Qn�1� = n! > 0. Now the proof is completed by
induction and splits into the following two cases.

Case 1: n is even We assume that Qk has k simple zeros for k� n and that the zeros
of Qn−1 alternate those of Qn:

−1
+
< xn1

−
< xn−1 1

−
< xn2

+
< xn−1 2

+
< � � �

−
< xn−1n−1

−
< xnn

+
< 1 �

Here ± indicate the signs of Qn on the corresponding intervals. Since the
zeros of Qn−1 alternate the zeros of Qn, the sequence Qn−1�xnk� is alternating,
which by (7.9) implies that the sequence Qn+1�xnk� is alternating too. Since
Qn−1�1� = �n− 1�!, the polynomial Qn−1 is positive on �xn−1n−1
 xnn� and
therefore Qn+1�xnn� < 0. Since n is even and Qn+1�xnk� alternates, we obtain
that Qn+1�xn1� > 0.
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Since Qn+1�xnn� < 0 and Qn+1�1�= �n+1�!> 0, the polynomial Qn+1 must
vanish in �xnn
1� at least once by Bolzano Theorem.
Since Qn+1�−1� = −�n+ 1�! < 0 and Qn+1�xn1� > 0, the polynomial Qn+1

must vanish in �−1
 xn1�.
Every open interval �xnk
 xn�k+1�� contains at least one zero of Qn+1, since the
values of Qn+1�xnk� alternate.
The total number of intervals is 2+ �n− 1� = n+ 1, the degree of Qn+1 is
n+1. Hence all zeros of Qn+1 are simple and alternate those of Qn.

Case 2: n is odd The only difference here is that Qn+1�xn1� < 0, which implies
that Qn+1 has at least one zero in �−1
 xn1�, since Qn+1�−1� = Qn+1�1� =
�n+1�!> 0. �

Thus we obtain the following theorem.

Theorem 7.4 (Gauss 1814) For every positive integer n there are n nodes −1 <
x1 < · · · < xn < 1 such that ∫ 1

−1
f�x�dx =

n∑
k=1

lkf�xk� (7.10)

for every polynomial f , deg f � 2n−1. The nodes xk are the zeros of the denominator
of the nth convergent to the continued fraction �6�101�.

Notice that since deg Qn = n, the approximation of G�z� by the convergent of nth
order cannot give order 2n at infinity, which implies that 2n−1 is the highest possible
degree in Gauss’s quadrature.

145 Jacobi’s contribution. Jacobi (1826) observed that the substitution of f�x�=
xkQn�x� in (7.10) with 0 � k < n gives∫ 1

−1
Qn dx =

∫ 1

−1
xQn dx = · · · =

∫ 1

−1
xn−1Qn dx = 0 
 (7.11)

since deg�xkQn�x�� � 2n− 1 and Qn�xk� = 0. However Legendre (1785) introduced
orthogonal polynomials Pn�x�:∫ 1

1
Pn�x�Pm�x�dx =

1
2n+1

�nm 
 �nm
def=

{
1 if n=m

0 if n 	=m 


(7.12)

which are called now the Legendre polynomials. A glance at (7.11) and (7.12) reveals
that the Qn in (7.11) are constant multiples of the Legendre polynomials. Integration
by parts, ∫ 1

−1
uv′ dx = uv

∣∣∣∣∣
1

−1

−
∫ 1

−1
vu′ dx
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shows that the polynomial

v′�x�= dn

dxn
�x2−1�n

of degree n satisfies (7.11) since it has zeros of order n at x =−1 and x = 1. Taking
into account the formulas for the leading coefficients of the polynomials, we obtain
that

Qn�x�=
�2n−1�!! n!
�2n�!

dn

dxn
�x2−1�n �

Applying Rolle’s theorem iteratively, we obtain again that all the roots of Qn are
located in �−1
1�.

In about 1843 Jacobi returned to these results and extended them to the more general
Jacobi’s weights. Jacobi’s paper (1859) was published by Heine after Jacobi’s death. In
this paper Jacobi observed that the continued fraction (6.101), which played a crucial
role in Gauss’s quadratures, is a special case of Gauss’s continued fraction (6.96). An
important ingredient of Gauss’s proof was the fact that the continued fraction (6.101)
represents in C ��1/z
� a Cauchy-type integral having a constant positive weight on
�−1
1
. Comparing Euler’s formula (6.95) with Gauss’s continued fraction (6.96)
and keeping in mind the symmetry of 2F1 in a and b, see (6.92), we easily obtain
a continued fraction for Cauchy integrals with some special weights on �0
1
. More
precisely, let � > 0, " > 0. Then by Theorem 6.44

2F1 ��
1��+"�z�= 2F1 �1
���+"�z�

= ���+"�
������"�

∫ 1

0

t�−1�1− t�"−1

1− zt dt �

Hence by Theorem 6.45

���+"�
������"�

∫ 1

0

t�−1�1− t�"−1

z− t dt = 2F1

(
�
1��+"�Z−1

)
Z−1

= 1
z −

�

�+" −
1"

��+"+1�z −
��+1���+"�
�+"+2 −

2�"+1�
��+"+3�z − · · ·

−
��+n���+"+n−1�

�+"+2n −
�n+1��"+n�
��+"+2n+1�z − · · ·

�

This formula implies quadrature formulas analogous to Gauss’s quadrature formula. It
also can be used to obtain the recurrence relation for Jacobi orthogonal polynomials;
see Szegő (1975, Chapter IV, Section 3.4) for details.

It is interesting that Jacobi knew the paper Euler (1771), which motivated Chebyshev in his discovery of

general orthogonal polynomials. Moreover, Jacobi even wrote a manuscript (1884), in which he explained

Euler’s ideas. This paper, like that of 1859, was published only after Jacobi’s death.
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7.3 Sturm’s method

146 Roots of real polynomials. Two theorems on the zeros of polynomials pre-
ceded Sturm’s theorem.

Theorem 7.5 (Descartes) The number of positive roots of a polynomial equals the
number of sign variations in its coefficients minus a nonnegative even number.

By Taylor’s formula the coefficient of a polynomial f , deg f = n, at xk is f �k��0�/k!.
Hence in Descartes’ theorem, for a polynomial f with deg f = n, one in fact counts
the variation in sign in the sequence

f�x�
 f �1��x�
 f �2��x�
 � � � 
 f �n��x� 
 (7.13)

for x = 0. Since f �k��x� ∼ n�n−1� · · · �n−k+1�f �n��0�xn−k/n! as x→ +�, the
number of sign variations V�x� in (7.13) for sufficiently large x is zero. A sequence
such as (7.13) is an example of a Budan sequence, since in 1803 Budan proved the
following theorem, generalizing Descartes’ theorem.

Theorem 7.6 (Budan) Let f be a polynomial such that f�a�f�b� 	= 0 for a < b. Then
the number of roots of f in �a
 b� counting multiplicities is less than V�a�−V�b� by
a nonnegative even integer.

Proof We follow Chebyshev (1856–7, §15) and Grave (1938, §109). Let c ∈ �a
 b�
be a zero of f of order m. Then f�x�= �x− c�mg�x�, where g�c� 	= 0. Differentiating
this formula successively, we see that the sequence

f�x�
 f �1��x�
 � � � 
 f �m��x�

has m sign changes if x→ c− and has zero sign changes if x→ c+. Hence when x
moves through c to b the sign changes decrease by exactly m. This is true for any zero
of f , and it is also true for any zero of any derivative of f . Hence V�a�−V�b� must
be greater than or equal to the total number of zeros of f in �a
 b� by a nonnegative
integer n�a
b�.

To prove that n�a
b� is even, we investigate what happens when x goes through c,
f �l��c� = 0, f�c� 	= 0. An important difference compared with the above case is that
in the series of derivatives the first and last terms do not vanish at c. As above the
series alternates for x→ c− and does not alternate for x→ c+ at terms that are zero.
The signs are controlled by the sign of the last term, which we may assume positive
for definiteness. Two possible cases are as follows. In each of (a) and (b) the top line
gives the signs of the derivatives as x→ c−, the second line gives their signs at x= c
and the third line gives their signs as x→ c+.

�a�
+ − + − + − +
+ 0 0 0 0 0 +
+ + + + + + +

�b�
− − + − + − +
− 0 0 0 0 0 +
− + + + + + +
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In (a) the first term has the same sign as the last and counting from the right to the
left shows that every minus contributes two sign changes, an even number. In (b) the
first term has the opposite sign to the last. The same calculation as for (a) gives an
odd number of sign changes in the top line and one sign change in the bottom line.
Hence again the number of sign changes is even. �

147 Sturm’s theorem. The proof of Theorem 7.3 can easily be extended to cover
a more general case.

Theorem 7.7 Let �bn�x��n�1 be any sequence of real linear polynomials with positive
coefficients at x and let �an�n�1 be any nonzero real sequence. Then the zeros of the
denominators Qn of any convergent to

a2
1

b1�x� −
a2

2

b2�x� −
a2

3

b3�x� − · · · −
a2
n

bn�x� − · · ·
(7.14)

are all real and interlace the zeros of Qn−1.

Proof The difference from Theorem 7.3 is that in this general case it is not necessary
to prove that all zeros lie in �−1
1
. Since Qn�x�∼ cxn, c > 0, if x→�, the location
of xn
1 and xn
n may vary. �

The properties of the polynomials Qn used in Theorems 7.3 and 7.7 are conveniently
summarized in the following theorem.

Theorem 7.8 Let Qn be the denominator of the nth convergent to the continued
fraction �7�14�. Then the sequence

f0�x�=Qn�x� 
 f1�x�=Qn−1�x� 
 � � � 
 fn�x�=Q0�x� (7.15)

satisfies the following properties:

(a) f0�x�f1�x� changes sign from − to + if x passes any zero of f0�x� in the positive
direction;

(b) no polynomials fk�x�, fk+1�x�, k= 0
1
 � � � 
m−1, may have common zeros;
(c) if fk���= 0, 1 � k�m−1, then fk−1���fk+1��� < 0;
(d) fn�x� has no real zeros.

Proof Applying the determinant identity (1.16) to the continued fraction (7.7), we
obtain that

PkQk−1−Pk−1Qk = a2
1a

2
2 · · · a2

k 


which implies (b). The Euler–Wallis formula Qk+1 = bk+1Qk−Qk−1 implies (c). Since
Q0 = 1, we have (d). Let us prove (a). Since the zeros �xn−1
k� of Qn−1 alternate
with the zeros �xn
k� of Qn, we have xn−1
k ∈ �xn1
 xnn
. If n is even then Qn�x� > 0,
Qn−1�x� < 0 for x < xn1, which proves (a) since the signs alternate. The case of odd
n is considered similarly. �
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Definition 7.9 A sequence of nonzero polynomials

f�x�= f0�x�
 f1�x�
 � � � 
 fm�x� (7.16)

in R�X
 is called a Sturm sequence for a polynomial f�x� on �a
 b
, a< b if conditions
�a�–�d� of Theorem 7�8 are valid on �a
 b
.

There is a striking similarity between Sturm and Budan sequences, see (7.16) and
(7.13) respectively. Gauss’s method of continued fractions, see Theorem 7.3, gives
a better control of the zeros of polynomials for Sturm sequences than for Budan
sequences (7.13), where the zeros of higher derivatives, not counted in the proof of
Budan’s theorem, increase the number of sign changes. Therefore Budan’s theorem
can be improved by using Sturm sequences. However, the price to be paid is that the
zeros have to be assumed simple. Given x ∈ �a
 b
 let WS�x� be the number of sign
changes in (7.16).

Theorem 7.10 (Sturm 1829) Let f ∈ R�x
 be a separable polynomial with simple
roots, let f�a�f�b� 	= 0 for a < b and let (7.16) be the Sturm sequence for f�x�. Then
the number of roots of f�x� on �a
 b� is WS�a�−WS�b�.

Proof A sign change in (7.16) may occur only at zeros of the fj . No sign changes
occur in fm, since by (d) it has no zeros on �a
 b
. If 0< j <m then by (c) the number
of the sign changes in �fj−1�x�
 fj�x�
 fj+1�x�� is invariant when x passes through any
zero of fj . If x passes through a zero of f0 then the product f0f1 changes sign from −
to +, which implies that WS�x� decreases by unity. �

The case of multiple zeros can be treated using the Euclidean algorithm (6.1) for
polynomials. If f0 = f�X� = c0X

m + · · · + cm and f1 = f ′�X� = mc0X
m−1 +

�m− 1�c1X
m−2+ · · · + c1, then let fn be the greatest common divisor of f and f ′

which includes all multiple roots. Therefore f/fn is a separable polynomial.
The second important ingredient of Sturm’s method is the choice of Sturm sequence.

Sturm (1829) proposed to take the first two polynomials f and f ′ from Budan’s
sequence (7.13) and then apply the method of continued fractions. The idea was to
calculate the continued fraction of f ′/f in the form of Euler (see (4.106)) and Gauss,

f ′

f
= 1
b0 −

1
b1 −

1
b2 − · · · � (7.17)

Namely, let a1 = a2 = � � �=−1 in (1.11). Then

f0 = b0f1−f2 
 f1 = b1f2−f3
 � � � 
 fk−2 = bk−2fk−1−fk 
 (7.18)

where f0 = f and f1 = f ′. Since f is separable, the greatest common divisor of f and
f ′ must be a nonzero constant polynomial fk.

Inspection of the system (7.18) shows that no pair of polynomials fj , fj+1 may
vanish simultaneously, since otherwise the constant polynomial fk would have a zero
at this point as well.
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From the equation fj−1 = bj−1fj−fj+1 we see that fj+1 and fj−1 have opposite signs
at any zero of fj .

Finally, f�x�f ′�x� changes sign from − to + when x passes through any zero a of
f . Indeed, if f�a�= 0 then either f ′�a� > 0 or f ′�a� < 0. If f ′�a� > 0 then the graph
of f near a is increasing from a negative value f�a−�� to a positive value f�a+��.
This makes ff ′ negative to the left from a and positive to the right. The case f ′�a� < 0
is considered similarly.

It follows that the sequence of polynomials

f�x�
 f ′�x�
 f2�x�
 � � � 
 fk�x�

is a Sturm sequence. Theorem 7.10 is usually applied to such a sequence.

148 Newton’s example. We illustrate Sturm’s method on Newton’s example (1671), x3−2x−5= 0. The
algorithm for the long division of polynomials yields

f0�x�= x3−2x−5
 f1�x�= 3x2−2


f2�x�=
4
3
x+5
 f3�x�=−

643
16

=−40�1875 �

The evaluations of �f0�x�
 f1�x�
 f2�x�
 f3�x�� at x =−�, 0, 1, 2, 3, +� are collected below.

−� −→ �−�
+�
−�
−40
1875� , WS�−��= 2 

0 −→ �−5
−2
5
−40
1875� , WS�0�= 2 

1 −→ �−6
1
6 1

3 
−40
1875� , WS�1�= 2 

2 −→ �−1
10
7 2

3 
−40
1875� 
 WS�2�= 2 

3 −→ �16
25
9
−40
1875� , WS�3�= 1

+� −→ �+�
+�
+�
−40
1875� , WS�+��= 1 �

It can be seen that Newton’s equation has only one real root in �2
3�:

WS�2�−WS�3�= 2−1= 1 �

Knowing that �2
3� contains one root of the system f�x� = 0, f�x� = x3 − 2x− 5, we may write the
independent variable as x = 2+1/y, where y > 1, and consider another polynomial

q�y�= y3p

(
2+ 1

y

)
=−y3+10y2+6y+1 �

This polynomial has one real root y > 1 and to fix it we may apply Sturm’s algorithm. The process can be
repeated. The result is a finite continued fraction approximating the real root of Newton’s equation:

� = 2+ 1
10 +

1
1 +

1
1 +

1
2 +

1
1 +

1
3 +

1
1 +

1
1 +

1
12 +

1
3

= P10

Q10
= 16 415

78 37
= 2�094 551 486 4 � � �

This method (excepting Sturm’s ideas) was proposed by Lagrange.

149 Vincent’s theorem. In 1836 Vincent showed that Sturm’s theorem is very
closely related to Descartes’ theorem. Vincent’s theorem was hinted at earlier by
Fourier. Let us apply Lagrange’s method to locate the positive roots of a real separable
polynomial f . Any such root x can be represented as a finite continued fraction

x = b0+
1
b1 +

1
b2 +· · · +

1
bm +

1
z
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where b0
 b1
 b2
 � � � 
 bm are positive integers and z > 0. By Euler’s formula (1.17),

x = Pmz+Pm−1

Qmz+Qm−1

� (7.19)

Then

Fm�z�
def= �Qmz+Qm−1�

n f

(
Pmz+Pm−1

Qmz+Qm−1

)
is a polynomial in z such that Fm�z�= 0 if and only if f�x�= 0.

Theorem 7.11 (Vincent) For every real separable polynomial f there is a positive
integerM�f� such that for anym>M�f� the number of sign changes in the coefficients
of Fm is either zero or one.

Proof We follow Uspenskii (1948) with minor modifications. Let Im be the segment
of R spanned by the convergents Pm−1/Qm−1 and Pm/Qm. Since positive roots of f
are simple and limm �Im� = 0 by (1.20) and (1.34), there is an M�f� such that f has at
most one root in Im for m>M�f�.

Case 1. We assume first that there are no roots of f in Im. By (7.19),

z=−Pm−1−Qm−1x

Pm−Qmx
� (7.20)

This shows that any real root x of f can be transformed into a negative root of Fm.
Similarly, for a complex root x = a+bi, b 	= 0, we have for the real part of z

Re z=− �Pm−1−Qm−1a��Pm−Qma�+Qm−1Qmb
2

�Pm−Qma�2+Q2
mb

2
�

It follows that Re z < 0 if a � Im. If a ∈ Im then by (1.20) and (1.34)

��Pm−1−Qm−1a��Pm−Qma��<
1

Qm−1Qm
� 1

for sufficiently large m. Hence Re z < 0 if a ∈ Im, provided that Qm−1Qmb
2 > 1.

Increasing M�f� if necessary, we obtain that for every m, m >M�f�, every complex
root x of f is mapped to the root z of Fm in C− = �z � Re z < 0�.

Since Im does not contain any roots of f , all the complex and real roots of Fm are in
C−. It follows that Fm is proportional to a product of linear and quadratic polynomials
with positive coefficients. Hence the number of sign variations in the coefficients of
Fm is zero.

Case 2. Let x ∈ Im be a root of f in Im and x′ be any other root (real or complex).
Then by (7.20) and (1.16)

z′ = −Qm−1

Qm

Pm−1/Qm−1−x′
Pm/Qm−x′

= −Qm−1

Qm
�1+�� 
 (7.21)
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where

�= Pm−1Qm−PmQm−1

QmQm−1 �Pm/Qm−x′�
= �−1�m

QmQm−1 �Pm/Qm−x′�
−→ 0

if m→+�, since x′ � Im. By (7.20) z > 0 since x ∈ Im. All other roots of Fm lie
in C−. As in case 1 this implies that all coefficients of Gm�X� = Fm�X�/�X− z� are
positive.

Definition 7.12 A positive sequence c0 = 1, c1, � � � , cn−1 is called logarithmic concave
if c2

j > cj+1cj−1 for j = 1
2
 � � � 
 n−2.

One can easily check that the sequence of the binomial coefficients cj =
(
n−1
j

)
, j = 0,

1, � � � , n−1, is logarithmic concave.

Lemma 7.13 Let q�X� =∑n−1
j=0 cjX

n−1−j be a polynomial with logarithmic convex
coefficients. Then for every positive � the number of sign changes in the coefficients
of p�X�= �X−��q�X� is 1.

Proof The number of sign changes in the coefficients of

p�X�= Xn+ �c1−��Xn−1+ �c2− c1��X
n−2+· · ·

+ �cn−1− cn−2��X− cn−1� 


equals the number of sign changes in

c0 = 1 

c1

c0

−�
 c2

c1

−�
 � � � 

cn−1

cn−2

−�
 −� � (7.22)

By the logarithmic concavity of the cj the sequence �cj+1/cj�j�0 decreases. The first
term of (7.22) is positive and the last term is negative. Hence there is exactly one sign
change. �

We now continue the proof of Theorem 7.11. Let qm�X�=Gm�Qm−1/QmX�. Then by
(7.21) all the roots of q are close to −1 if m→+�. By Viète’s formulas this implies
that the coefficients of qm approximate the coefficients of a polynomial c�X+1�n−1.
The coefficients of �X+1�n−1 are the binomial coefficients, which constitute a loga-
rithmic concave sequence. Any sufficiently close sequence is also logarithmic concave.
Thus the proof of the theorem is completed by Lemma 7.13. �

150 Chebyshev rational functions. We begin with a definition.

Definition 7.14 A rational function r�x� is called a Chebyshev rational function if it
can be represented as

r�x�=
k∑
j=1

cj

x−xj

 (7.23)

where cj > 0 and x1 < x2 < · · · < xk.
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The logarithmic derivative �logf�′ of f = c�x− x1�
n1 · · · �x− xk�nk is a Chebyshev

function and, in addition,

1
N
�logf�′ = 1

N

f ′

f
=

k∑
j=1

nj/N

x−xj



where N = n1+ · · · +nk. Since any vector �c1
 � � � 
 ck� with positive components cj ,∑
cj = 1, can be approximated by a vector with rational coordinates �n1/N
 � � � 
 nk/N�,

it looks probable that the properties of the continued fractions (7.17) considered in
Sturm’s method may be extended to Chebyshev rational fractions. Moreover, Theorem
7.7 explains Sturm’s method better if the rational function in (7.23) is represented by
a continued fraction (7.14). The key to such a representation lies in the Cauchy index
of a rational function.

Let r�x� be a real rational function on R. For a given interval �a
 b� let n+�a
 b�
be the total number of singularities xk of r�x� on �a
 b� such that r�x� jumps from
−� to +� when x passes through xk moving to the right, and let n−�a
 b� be the
total number of singularities xk of a function r�x� on �a
 b� such that r�x� jumps
from +� to −� when x passes through xk in the positive direction. Then the
integer

Iba r�x�= n+�a
 b�−n−�a
 b�
is called the Cauchy index of r�x� on �a
 b�. For instance, I+�−� f

′/f = k. More
generally,

Iba
(

n∑
j=1

cj

x−xj

)
= ∑
xj∈�a
b�

sign cj


where sign c=+1 if c > 0 and −1 if c < 0. If all cj > 0 then the Cauchy index equals
the number of singularities in �a
 b�.

Lemma 7.15 (Chebyshev 1855) If u is a Chebyshev rational function then

u�x�= 1
b�x�−v�x� 
 (7.24)

where b�x� is a linear polynomial with a positive coefficient of x and v�x� is either
zero or a Chebyshev rational function such that

I+�−� v�x�= I+�−� u�x� −1 � (7.25)

Proof If

u�x�=
n∑
j=1

cj

x−xj
=

∑n
j=1 cj

x
+O

(
1
x2

)

 x→� 
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then the real polynomial ��1/u

 is linear and its coefficient at x is k= �∑n
j=1 cj�

−1 > 0.
For any Chebyshev function r and z ∈ C the imaginary part of r�z� is given by

Im r�z�=−Im z
n∑
j=1

cj

�z−xj�2



which implies that r�z� can vanish only on R. This and (7.24) imply that the poles of
v are located on R at the zeros of u. The function u decreases on R since

u′�x�=−
n∑
j=1

cj

�x−xj�2
< 0 � (7.26)

If u�c� = 0 then limx→c�x− c�v�x� = limx→c�x− c�b�x�− 1/u′�c� > 0 by (7.26),
implying that v is a Chebyshev function. By (7.26) the poles of v interlace the poles
of u. This proves (7.25). �

Lemma 7.16 If v is either zero or a Chebyshev rational function and b is a real linear
polynomial in z with positive coefficient at z then u in �7�24� is also a Chebyshev
rational function.

Proof Since Im �b− v� > 0 if Im z > 0, the zeros of b− v are located on R. Since
�b−v�′ > 0 on R, we see that limx→c�x−c�u�x� > 0 at every pole of u, which proves
that u is a Chebyshev function. �

Corollary 7.17 A rational function r is a Chebyshev function if and only if

r�z�= 1
b1�z� −

1
b2�z� −· · · −

1
bn�z�


 (7.27)

where n= I+�−� r and b1, b2, � � � , bn are real linear polynomials with positive coefficients
at z.

If f is a separable polynomial with real roots then nj = 1 in (150) and therefore
f ′/f is a Chebyshev function. Hence all real polynomials bj in (7.17) have positive
coefficients at x.

7.4 Chebyshev’s approach to orthogonal polynomials

151 Continued fractions and orthogonal polynomials. By (7.12) the Legendre
polynomials are orthogonal on �−1
1
 with respect to the unit weight, which is related
to Gauss’s continued fraction (6.101) by

1
2

∫ 1

−1

1
z− t dt =

1
2

ln
z+1
z−1

= 1
z −

12

3z −
22

5z −
32

7z −
42

9z − · · ·
� (7.28)

However, as Jacobi observed (see §145), the denominators of convergents to the
continued fraction in (7.28) are orthogonal with respect to this very weight.
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γ

Γ

+

–

Fig. 7.1. Contours of integration.

Sturm’s formula (7.17) and Corollary 7.17 hint that an analogue of Gauss’s formula
(7.28) holds for any Chebyshev rational fraction. One may expect therefore that the
denominators of the convergents to (7.27) are orthogonal with respect to the discrete
weight of any Chebyshev rational fraction.

Here we will present the argument for the case of positive Borel measures � with
compact support supp� in C. Since the Cauchy integral

C��z�=
∫ d��t�

t− z
is holomorphic at z=� it determines a unique element of C��1/z
�.

Theorem 7.18 Let P/Q be a convergent to C� , n= deg Q. Then∫
Q�t�tkd� = 0 
 k= 0
1
 � � � 
 n−1� (7.29)

Proof By Markoff’s theorem, C� −P/Q= O�z−2n−1�. Following Lagrange (see §16
in Section 1.3), we consider a linear form in C� with polynomial coefficients

QC� −P =
∫ Q�z�−Q�t�

t− z d�−P+
∫ Q�t�

t− zd� = O�z
−n−1� � (7.30)

It follows that

P =−
∫ Q�t�−Q�z�

t− z d� 

∫ Q�t�

t− zd� = O�z
−n−1� �

Observing that �t−z�−1 =−∑�
k=1 t

k−1z−k converges uniformly in t for every z, �z�>
2�t�, t ∈ supp� , we obtain (7.29). �

Remark Compare this proof with Gauss’s arguments, see (7.7) and (7.8).
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In the case where � is supported by a smooth curve and is absolutely continuous with
respect to the distance along the arc length there is another solution. By Sokhotskii’s
formulas (see Markushevich 1985, p. 316),

F�z�=
∫
$

d��t�

t− z , � ′�t�= F+�t�−F−�t�
2�i

�

Since F ∈ C��1/z
�, we can develop F into a P-fraction. The moments of Q for
k < n= deg Q are zero by Cauchy’s integral theorem (Markushevich 1985, p. 258):∫

tkQ�t�d� =
∫
$
F�z�zkQ�z�dz=−

∫
�
F�z�zkQ�z�dz

=−
∫
�

(
F − P

Q

)
zkQdz= O

(
1
z2n+1

zk+n+1

)
= 0 �

Chebyshev’s theorem 7.18 gives Gauss quadratures for arbitrary measures � with
compact support in C.

Corollary 7.19 Let P/Q be the convergent of nth order to C� such that deg Q = n
and all zeros z1, z2
 � � � , zn of Q are simple. Then for any polynomial f , deg f � 2n−1,
we have ∫

f�z�d��z�=
n∑
k=1

lkf�zk� � (7.31)

Proof By Lagrange’s interpolation formula (see (7.4)), (7.31) is valid for any poly-
nomial f for which deg f � n− 1. If f is any polynomial, deg f � 2n− 1, then
f =Qp+r by the long division of polynomials; here deg p� n−1 and deg r � n−1.
By Theorem 7.18

∫
Qpd� = 0. Since f�zk�= r�zk� if Q�zk�= 0, this implies (7.31).

�

Hence Chebyshev’s theorem 7.18 is related in the first place to Gauss quadratures.
However, for measures supported on lines of the complex plane it gives orthogonal
polynomials.

Corollary 7.20 Let � be a positive measure with compact support on a line in C.
Let P/Q be a convergent to C� , n= deg Q. Then∫

Q��� �
k
d����= 0 
 k= 0
1
 � � � 
 n−1
 (7.32)

i.e. the polynomials Q are orthogonal with respect to d� .

Proof If � is on a line, then � will be on the symmetric line with respect to R. Hence
there are %, �%� = 1, and a complex b such that � = %�+b, on the line. The proof is

completed by Theorem 7.18 and by the binomial formula �
k =∑k

j=0 %
jzjbk−j � �

Orthogonal polynomials explain an interesting phenomenon in Gauss quadratures
on the location of the nodes of interpolation in �−1
1
.
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Lemma 7.21 Let � be a probability measure on C. Then the zeros of any orthogonal
polynomial p lie in the convex hull conv� of supp� .

Proof Let p�%�= 0. Then p= �z−%�q and deg q < deg p. Since p is an orthogonal
polynomial, it must be orthogonal to q:

0=
∫
pq̄ d� =

∫
�z−%��q�2 d� �

Let mq be the total mass of �q�2d� . We define an auxiliary probability measure
d� = m−1

q �q�2d� , which is supported by supp� . It follows that % = ∫
supp � zd��z�.

The Riemann sums of the above integral are nothing other than convex combinations
of points in supp� . Therefore % lies in the closure of the convex hull of supp� . �

In Gauss quadratures, � is the Lebesgue measure on �−1
1
, which is convex. By
Lemma 7.21 all zeros of polynomials Qn lie in �−1
1
 .

152 Chebyshev’s solution to Euler’s problem

Theorem 7.22 (Chebyshev 1855) Let �Qn� be the denominators of the convergents
for the continued fraction∫

R

d��t�

z− t =
a1

b1�z� −
a2

b2�z� − · · · −
an
bn�z� − · · ·


 (7.33)

where bn�z�= knz+ ln. Then∫
R

Q2
n�t�d��t�=

a1 · · · an+1

kn+1

� (7.34)

Proof By the Euler–Wallis formulas (1.15), Qn�t� = kn · · · k1t
n+ · · · +Q�0�. Ob-

serving that Qn ⊥ tk for k= 0
1
 � � � 
 n−1, we obtain that∫
R

Q2
nd� = kn · · · k1

∫
R

Qnt
n d� �

Integration of one of the Euler–Wallis formulas multiplied by tn−1,

Qn+1t
n−1 = kn+1t

nQn+ ln+1Qnt
n−1−an+1Qn−1t

n−1


shows by the orthogonality property that

kn+1

∫
R

Qnt
n d� = an+1

∫
R

Qn−1t
n−1 d� 


implying that∫
R

Q2
nd� =

kn · · · k1an+1 · · · a2

kn+1 · · · k2

∫
R

Q0 d� =
k1an+1 · · · a2

kn+1

��R� �

Comparing the asymptotic formulas for both sides of (7.33) we get ��R�= a1/k1. �
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By Theorems 7.18 and 7.22 the matrix⎛
⎜⎜⎜⎝

√
k1c1

√
k1c2 � � �

√
k1cn√

k2c1Q1�x1�
√
k2c2Q1�x2� � � �

√
k2cnQ1�xn�

���
���

���
���√

knc1Qn−1�x1�
√
knc2Qn−1�x2� � � �

√
kncnQn�xn�

⎞
⎟⎟⎟⎠ (7.35)

is orthogonal. Applying Theorem 7.22 to (6.115) we obtain (7.40); see §156.

153 Asymptotic expansions. Chebyshev’s theorem 7.18 extends to arbitrary � ∈
P�R�.

Theorem 7.23 Let P/Q be a convergent to C� , n= deg Q, � ∈P�R�. Then Q⊥ zk,
0 � k < n, in L2�d��.

Proof By Markoff’s theorem and Lagrange’s formula,

QC� −P =
∫ Q�z�−Q�t�

t− z d�−P+
∫ Q�t�

t− zd� = O�z
−n−1�

if z= iy, y→+�. It follows that

P =−
∫ Q�t�−Q�z�

t− z d� 

∫ Q�t�

t− zd� = O�z
−n−1� �

Since ∫ Q�t�

z− t d� =
n∑
k=0

1
zk+1

∫
R

tkQd�+ 1
zn+1

∫
R

tn+1Qd�

z− t 


the uniqueness of the asymptotic expansion as y→+� proves the theorem. �

154 Carleman’s criterion. Here we apply Chebyshev’s theorem 7.22 to prove
Carleman’s criterion.

Theorem 7.24 If ∑
n=1

s
−1/2n
2n =+� 
 (7.36)

then Stieltjes’ moment problem �6�116� is determined.

Proof By Theorem 6.62 the question is reduced to the convergence of K�n=1 �an/x�

for x > 0, which follows by Corollary 3.11 if we can prove that
∑
n=1 a

−1/2
n =+�. By

Theorem 7.22

an+1 · · · a1 =
∫

R

Q2
nd� =

∫
R

tnQnd� �

(∫
R

Q2
nd�

)1/2

s
1/2
2n �

Hence a1 · · · an+1 � s2n. Now the Carleman inequality
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�∑
k=1

�x1x2 · · · xk�1/k < e
�∑
k=1

xk 
 (7.37)

see Akhiezer (1961), completes the proof. �

7.5 Examples of orthogonal polynomials

155 Chebyshev polynomials. Combining (6.34) with the substitution x = cos	,
we can develop the Cauchy integral

1
�

∫ 1

−1

dx

�z−x�√1−x2
= 1
z −

1
2z −

1
2z −

1
2z − · · ·

into a P-fraction. By the Euler–Wallis formulas (1.15) the denominators Tn�z� of the
convergents to (6.34) satisfy

Tn�z�= 2zTn−1�z�−Tn−2�z� 
 n= 2
3
 � � � 


T1�z�= zT0�z�−T−1�z� , T0 ≡ 1
 T−1 ≡ 0 �
(7.38)

Hence the polynomials

T0�z�≡ 1
 T1�z�= z
 T2�z�= 2z2−1
 T3�z�= 4z3−3z
 � � �

are the Chebyshev classical polynomials, which are orthogonal in the Hilbert space
L2��−1
1
 
 d��, d�= �−1 �1−x2�−1/2 dx:

1
�

∫ 1

−1
Tj�x�Tk�x�

dx√
1−x2

= 0 if j 	= k .

The Cauchy integral associated to with Chebyshev polynomials corresponds to a
periodic P-fraction with period 2. Similarly, the formula

2
�

∫ 1

−1

√
1−x2

z−x dx = 2

z+√z2−1
= 1
z −

1
4z −

1
z −

1
4z −

1
z − · · ·

(7.39)

shows that the Chebyshev polynomials of the second kind also correspond to a periodic
P-fraction with period 2.

156 Hermite polynomials. These are defined in Szegő (1975) by

1√
�

∫ +�

−�
e−x

2
Hn�x�Hm�x�dx = 2nn!�nm � (7.40)

To find formulas for the Hermite polynomials we apply Chebyshev’s method. By
the Euler–Wallis formulas the denominators Hn of the convergents Gn/Hn to
(6.115) satisfy the three-term recurrence for Hermite polynomials. We have H0�x�= 1,
H1�x�= 2x,

Hn�x�= 2xHn−1�x�−2�n−1�Hn−2�x� 
 n� 2 � (7.41)
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Then the Hn�x�
n� 0, are orthogonal in L2��−1/2e−x2
dx� by Theorem 7.23. Formula

(7.40) for n=m follows by Theorem 7.22.

157 Brouncker’s orthogonal polynomials. Using (1.15) we can easily list the
first few of Brouncker’s polynomials:

P−1�s�= 1 
 P0�s�= s 

P1�s�= 2s2+1 
 P2�s�= 4s3+11s 


P3�s�= 8s4+72s2+25 
 P4�s�= 16s5+340s3+589s 


P5�s�= 32s6+1328s4+3410s2+2025 �

It is clear that deg Pn = n+1 and Pn�s�= 2nsn+1+ · · · If s = 0, then in (1.15)

Pn�0�=
{

0 if n is even

�2n−1�2�2n−5�2�2n−9�2 · · · if n is odd �

For instance, P5�0�= 92×52×12 = 2025. For odd n (3.20) implies that

�2n+1�Pn�0�= �2n+1��2n−1��2n−1��2n−5��2n−5� · · ·
> �2n+1��2n−1��2n−3��2n−5��2n−7� · · · = �2n+1�!! = Pn�1� �

The partial denominators Bn of the convergents to the continued fraction in (6.112)
satisfy the recurrence relation

Bn�z�= 2zBn−1�z�− �2n−3�2Bn−2�z� 
 n� 2 


with B0�z� = 1 and B1�z� = z. By Theorem 7.23 the Bn, n � 0
 are orthogonal in
L2�d��, � being the measure in Theorem 6.53. By (7.34),∫

R

B
2
n d�=

1
2
�2n−1�!!2 
 n= 1
2
 � � �

Observing that z = is and using the recurrence relations for Bn and Pn, we see that
these polynomials are related by Bn�z�= inPn−1�s�. By Theorem 7.7 all the roots of
the polynomials Bn are real. Hence all the roots of Pn lie on the imaginary axis. These
roots taken in their totality make a barrier between the right half-plane to the left half-
plane against the analytic continuation of Brouncker’s continued fraction. However,
as Theorem 3.16 shows, b�s� can still be extended analytically through the imaginary
axis by use of the formula for Wallis’ infinite product. The system

Vn�s�=
√

2
�2n−1�!!Bn�z� 
 n= 1
2
 � � � 
 V0�z�≡ 1

is an orthonormal system in L2�d��. The operation of multiplication by z acts on Vn

according to the formulas zV0�z�= 2−1/2V1�z�,
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zVn�z�=
(
n+ 1

2

)
Vn+1+

(
n− 1

2

)
Vn−1 
 n� 1 �

The matrix of this operator in the basis �Vn�n�0, i.e. the Jacobi matrix, is given by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1√
2

0 0 0 � � � � � � 0 � � �
1√
2

0 3
2 0 0 � � � � � � 0 � � �

0 3
2 0 5

2 0 � � � � � � 0 � � �
���

���
���

���
���

���
���

���
���

0 0 0 � � � n− 1
2 0 n+ 1

2 0 � � �
���

���
���

���
���

���
���

���
���

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let us put z= iy, y→+� in (6.112). Then

y

b�y�
∼

�∑
k=0

�−1�k
1
y2k

∫
R

t2kd� 
 y→+�� (7.42)

Comparing this formula with (3.31), we obtain that∫
t2 d�= 1

2



∫
t4 d�= 11

8



∫
t6 d�= 173

16
�

Further moments can be evaluated by the use of (4.79). Since by (6.111)∫
R

log�d�/dx�dx
1+x2

=−� 


the polynomials are complete in L2�d��; see Akhiezer (1961).

158 Pell’s equation and orthogonal polynomials. Let us apply orthogonal
polynomials to the study of the solutions of the Pell equation (22) assuming that R
has only real roots.

Lemma 7.25 If P and Q are solutions to (22) then for every r ∈ C�z
, deg r � g, the
rational function Qr/P is a convergent to r/

√
R.

Proof It follows from (22) that

deg
(

1√
R
− Q
P

)
+deg

(
1√
R
+ Q
P

)
=−2 degP− �2g+2� . (7.43)

Since
2√
R
=
(

1√
R
− Q
P

)
+
(

1√
R
+ Q
P

)
(7.44)

and deg�2/
√

R�=−g−1, at least one summand in (7.44), say the second (otherwise
change the sign of Q), satisfies the inequality

−g−1 � deg
(

1√
R
+ Q
P

)
.
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By (7.43) we obtain

deg
(

1√
R
− Q
P

)
=−2 degP− �2g+2�−deg

(
1√
R
+ Q
P

)
�−2 degP−g−1 .

It follows that for every polynomial r, deg r � g,

deg
(
r√
R
− Qr
P

)
�−degP−1 ,

which implies the lemma by Theorem 6.5. �

Since R�x�= �x− t0��x− t1� · · · �x− t2g��x− t2g+1� is a separable polynomial with
real roots, we obtain g+1 cuts of the complex plane, �t0
 t1�, �t2
 t3�, …, �t2g
 t2g+1�,
which together constitute the set E= �x ∈R � R�x� < 0�. Let us place in each interval
�t2k−1
 t2k�, k= 1
2
 � � � 
 g, exactly one root of r . Then deg r = g. Counting the argu-
ments along a path moving in R and passing over the roots of R along semicircles in
the upper half-plane shows that

r�z�√
R�z�

= 1
�

∫
E

�r�t��√−R�t�

dt

z− t . (7.45)

Here the branch of
√

R is chosen to be positive for z = x > t2g+1. Since by Lemma
7.25 Qr/P is a convergent for r/

√
R, we obtain that∫

E

�r�t��√−R�t� tjP�t�dt = 0 for j = 0
1
 � � � 
degP−1� (7.46)

Therefore P is an orthogonal polynomial for a family of varying measures supported
by E:

d�r =
�r�t��√−R�t� 1E . (7.47)

By Lemma 7.21 all zeros of P are simple and are located on R in the closed convex
hull of E. Then rQ is an orthogonal polynomial of the second kind. It follows that all
zeros of rQ are real and simple. Moreover, the zeros of Q must be located in E, since
otherwise, picking an r with a zero at the same point as a zero of Q, we would get an
orthogonal polynomial with a multiple zero. Now

P2 = 1+Q2R , (7.48)

which implies that P2 > 1 on the complementary intervals of E and 0 � P2 � 1 on E.
In particular, all degQ+g+1 zeros of P are located in E. Differentiating (7.48), we
obtain that Ṗ2 = 2PṖ, implying that

deg P2 = 2 degQ+2g+1 . (7.49)
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However, by (6.60) Q, which is co-prime with P, must divide Ṗ2. It follows that the
number of zeros in E of the derivative of P2 is

degQ+ �g+1�+degQ= 2 degQ+g+1� (7.50)

At the ends of �t2k−1
 t2k
 the polynomial P2 equals 1. By Rolle’s theorem the derivative
of P2 must vanish at least once in each of g complementary intervals. Combining this
with (7.49) and (7.50), all the roots of Ṗ2 are found. It follows that P must oscillate
between −1 and 1 on the intervals of E and has modulus greater than 1 outside E.

Let us choose r according to (6.61). Then by Theorem 6.30

Re
∫ r√

R
dz= ln �P±√P2−1�+ constant

and we see that the real part of the Abelian integral is constant on E. However,

d

dz

∫
ln�z− t�d�r =

∫ d�r
z− t =

r�z�√
R�z�

,

see (7.45). This obviously implies that �r with Abel’s choice of r is proportional to
the equilibrium measure on E. See Akhiezer (1960), Peherstorfer (1991), Peherstorfer
and steinbauer (1995) and Tomchuk (1963) for a development of these ideas to the
general case when Pell’s equation does not have solutions.

Exercises

7.1 Check that the following arguments imply Theorem 7.11. Since from the start
of §149 in Section 7.3 we have

Pmz+Pm−1

Qmz+Qm−1

= Pm
Qm

+ �−1�m

Q2
m�z+p�

, p= Qm−1

Qm
∈ �0
1� 


we can apply to the real separable polynomial f Taylor’s formula centered at
�m = Pm/Qm and obtain

Q−nm Fm�z�= �z+p�n f
(
Pmz+Pm−1

Qmz+Qm−1

)

= f ��m� �z+p�n+
�−1�m

Q2
m

f ′ ��m� �z+p�n−1+· · · +�−1�nm

Q2n
m n!

f �n� ��m� �

The coefficient at zn is obviously f��n� and the coefficient at z0 is

pn
(
f��m�+

�−1�m

QmQm−1

f ′ ��m�+ · · · +
�−1�nm

QnmQ
n
m−1n!

f �n� ��m�

)
�
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Similar formulas can be written down for the other coefficients. If �m approaches
� in such a way that f��� 	= 0 then the signs of all coefficients in Fm coincide
with the sign of f��m�, since Qm→+� if m→+�.

7.2 Let f be a holomorphic function on a simple closed curve � such that it does
not vanish on � and its integral F has a constant real part on � . Then

1
2�i

f�z�dz= �

2�
� f � ds (E7.1)

on � , where s is the arc length on � and � is either +1 or −1.
Hint: Apply the Cauchy–Riemann equations.

7.3 If f , g are polynomials with real zeros, deg g � deg f and the zeros of g
interlace the zeros of f then the polynomial W�f
g�= f ′g−fg′ does not have
real zeros (Vladimir Markoff 1892; see Grave 1938).
Hint: Differentiate the Lagrange interpolation formula, see (7.4),

g

f
�x�= c+ ∑

f�ci�=0

g�ci�

f ′�ci�
1

x− ci



and observe counting the zeros that the signs of its coefficients are all the same.
7.4 If the zeros of g and f interlace, deg g < deg f , then one of g/f and −g/f is

a Chebyshev function.
Hint: Observe that any Chebyshev function decreases on R. Count zeros to
show that the former is a quotient of two polynomials with interlaced zeros.

7.5 Show that the zeros of g and f interlace then the zeros of g′ and of f ′ also
interlace.
Hint: Consider the Wronskian W�f
g� = f ′g− fg′, which by Ex. 7.3 is either
positive or negative on R. Let ci and ci+1 be two consecutive zeros of g′. Then
the numbers f ′�ci�g�ci�=W�f
g��ci� have the same sign. But g�ci� and g�ci+1�

have opposite signs. Hence the numbers f ′�ci� and f ′�ci+1� have opposite signs
as well.

7.6 For Re z > 0 investigate the orthogonal polynomials associated with

�a�
1
y�s�

=
∫ +�

0

e−sx dx
cosh x


 �b�
1
y�s�

=
∫ +�

0

e−sx dx
cosh2 x


 �c� coth
1
s
�

7.7 Prove that ���� 1 in P+, where � is defined in (4.84).
Hint: Rewrite (4.84) in the form

�−1
�+1

= 1
8s +

1×3
8s +

3×5
8s +

5×7
8s + · · · � (E7.2)

7.8 Prove that for the generalized Laguerre polynomials L���n ,∫ +�

0
e−xx�L���n �x�L

���
m �x�dx =

��n+�+1�
n! �nm



Exercises 321

7.9 Prove that Carleman’s condition (7.36) implies that the Hamburger moment
problem is also determined.
Hint: Make the continued fraction (6.121) fit the conditions of Theorem 6.52
with equivalence transformations. Use the tricks of §56 in Section 3.1 and
Carleman’s inequality (7.37) to prove the convergence of the continued fraction
(6.121) in P+.
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8.1 Orthogonal polynomials and continued fractions

159 Herglotz’ theorem. In Chebyshev’s theory orthogonal polynomials appear as
the denominators of convergents to the P-fraction of C� , see Corollary 7.20. By §45
at the start of Section 2.4, continued fractions are compositions of Möbius transforms,
which, as is well known in complex analysis, leave invariant the family of circles
in Ĉ. This hints that an analogue of Chebyshev’s theory may exist for circles. Since
any circle in C is a linear transformation of the unit circle T, we restrict ourselves to
this case.

To determine continued fractions corresponding to T we consider the spaces P�T�

of all probability measures supported by T and R�D� of all holomorphic functions
F�z� in D, with ReF�z� > 0, F�0�= 1. We consider P�T� as a convex subset of the
Banach space M�T� of all complex Borel measures on T equipped with the variation
norm ��� = Var�. By Riesz’ theorem M�T� is the Banach space dual to the Banach
space C�T� of all continuous functions f on T with norm �f�� = sup�∈T

�f����. The
duality �C�T�
M�T�� given by

�f
��→
∫

T

fd�

defines the ∗-weak topology on P�T�, which makes it compact, Rudin (1973). The
continuum P�T� corresponds to �0
1
 in the theory of regular continued fractions. We
recall the definition of ∗-weak convergence.

Definition 8.1 A sequence ��n�n�0 in M�T� is said to converge to � ∈M�T� in the
∗-weak topology, ∗- limn �n = � , if for every f ∈ C�T�

lim
n

∫
T

f d�n =
∫

T

f d� � (8.1)

322
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Every � ∈ P�T� determines the unique Hilbert space L2�d�� of functions square
integrable on T with respect to � . It is equipped with the standard inner product

�f
 g�=
∫

T

f ḡ d� �

In contrast with the Chebyshev case R�D� is not closed under compositions, which is
an obstacle in arranging algorithms for continued fractions. However, since the Möbius
transform z→ �1+ z�/�1− z� maps D onto �z � Re z > 0�, any F�z� ∈R�D� can be
uniquely represented as

F�z�= 1+ zf�z�
1− zf�z� = 1+ 2

−1+1/zf

 (8.2)

where f is a holomorphic mapping of D into itself. The set � of all holomorphic
f � D→ D is closed under superpositions. Hence, if f is developed into a continued
fraction then the continued fraction for F can be obtained by substitution into (8.2).
From another point of view, � is the unit ball of the Hardy algebra H� consisting of
all holomorphic f in D satisfying

�f�� def= sup
z∈D

�f�z��<+� �

This algebra is studied in detail in Garnett (1981). The point of view on � as the unit
ball of H� plays a significant role in what follows. First we establish a relationship
between P�T�, R�D� and �.

Theorem 8.2 (Herglotz) The formula∫
T

�+ z
�− z d�

def= F��z�= 1+ zf��z�
1− zf��z� (8.3)

defines a one-to-one mapping between � ∈P�T�, F� ∈R�D� and f ∈�:

�↔ F� ↔ f� � (8.4)

Proof That �↔ F� is one-to-one follows from the Taylor expansion of F� at z= 0:

F��z�= 1+2
�∑
k=0

�̂�k�zk 
 (8.5)

where the �̂�k�= ∫
T
�̄kd� are the Fourier coefficients of � . By the Weierstrass app-

roximation theorem, trigonometric polynomials are dense in C�T�. Hence the Fourier
coefficients ��̂�k��k∈Z

uniquely determine � .
To prove that for any F ∈R�D� there is a � ∈P�T� such that F = F� , we assume

first that G ∈R�D� is analytic on the closed unit disc. Then by Cauchy’s formula

G�z�= 1
2�

∫
T

�

�− z G���d	 
 � = ei	 
 �z�< 1 


0= 1
2�

∫
T

�

�−1/z̄
G���d	 = 1

2�

∫
T

z

z− � G���d	 �
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Putting z= 0 in the first equation, we see that the mean value of G and G against T

is 1. Using an obvious formula, ��+z�/��−z�=−1+2�/��−z�, we obtain with the
help of the above equalities that

G�z�= 1
2�

∫
T

�+ z
�− z Re �G���� d	 
 �z�< 1 �

SinceG�0�= 1 andG∈R�D�, the measure Re �G���� d	/2� is in P�T�. If F ∈R�D�

then Fr�z�= F�rz�∈R�D� for every 0< r< 1. SinceG= Fr is analytic on �z � �z�� 1�,
the above formula can be applied. Since P�T� is a compact subset ofM�T�, the family
Re �Fr���� d	/2� has a limit point � in the weak topology, implying that F = F� .

�

Corollary 8.3 The mappings �8�4� are homeomorphisms of P�T� with the ∗-weak
topology onto the continuums R�D� and � equipped with the topology of uniform
convergence on compact subsets of D.

Proof This follows from (8.3) by the compactness principle for analytic functions.
�

For � ∈M�T� and � ∈ T we say that � is differentiable at � if the limit

�′���= lim
�I�→0
 �∈I

1
�I�

∫
I
d�

exists and finite; �′��� is called the Lebesgue derivative of � at � . Here the limit is
taken along the family of open arcs contracting to � . By the Lebesgue theorem on
differentiation (see Garnett 1981) the derivative �′��� exists almost everywhere on
T with respect to Lebesgue measure m; in what follows we write this as m-a.e. on
T. Moreover, d� can be uniquely represented as d� = �′dm+d�s, where d�s is a
measure singular to dm.

Theorem 8.4 (Fatou) For every � ∈P�T� and every � ∈ T such that � is differen-
tiable at � ,

lim
z→�

ReF��z�= � ′��� 


where z→ � in any angle within D whose vertex is at � .

We refer to Koosis (1998, pp. 11–16) for a proof. Taking the real part of (8.3), we
obtain

ReF��z�=
∫

T

1−�z�2
��− z�2 d����=

1−�zf��z��2
�1− zf��z��2 
 �z�< 1 � (8.6)

Any f ∈� has boundary values

f���= lim
r→1−

f�r��= f��� m-a.e. on T �
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Moreover, as in the case of F� the radial limit can be replaced by the angular limit;
see Garnett (1981) or Koosis (1998). Combining this with Fatou’s theorem, we obtain
an important formula relating � to f� and F� :

� ′���= ReF����= 1−�f�����2
�1− �f�����2 m-a.e. on T � (8.7)

160 Weak convergence in P�T� and Helly’s theorems. We begin the system-
atic study of P�T�, R�D� and � with P�T�. The indicators 1I of open arcs I having
no point masses of � at their ends make a useful set of test functions for (8.1).

Lemma 8.5 If ∗- limn �n = � in P�T� then

lim
n
�n�I�= ��I� (8.8)

for any open arc I on T such that � vanishes at the end-points of I .

Proof Let J = T\clos I , where clos I is the closure of I in T. If 0 � f � 1, f ∈ C�T�
and f is supported by I then

lim inf
n

�n�I�� sup
f

lim
n

∫
T

fd�n = sup
f

∫
I
fd�= ��I� �

Similarly, lim infn �n�J�� ��J�. Since � vanishes at the end:-points of J ,

lim sup
n

�n�I�= ��T�− lim
n
J � ��T�−��J�= ��I� 


which obviously implies (8.8). �

Theorem 8.6 (Helly) Let ��n�n�0 be a sequence in P�T� and let � ∈P�T�. Then
∗- limn �n = � if and only if limn �n�I� = ��I� for any open arc I on T such that �
does not have point masses at the end-points of I .

Proof The necessity follows by Lemma 8.5. Applying (8.8) with I =T we get ��n�=
�n�T� � C for some C > 0. For any f ∈ C�T� and � > 0 there is a � = ��f
�� > 0
such that

�f���
def= sup

��−z���
�f���−f�z��� � �

Since �� ∈ T � ������ > 0� is either finite or countable, given � > 0 there is a finite
family F of disjoint open arcs I on T such that �I� < �, E = T \∪I∈FI is finite and
��E�= 0. Then limn �n�E�= 0 by (8.8). If

f� =
∑
I∈F

fI1I +
∑
�∈E
f���1��� 
 fI =

1
m�I�

∫
I
fdm 
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then

lim
n

∫
T

f�d�n =
∑
I∈F

fI lim
n

∫
I
d�n+

∑
�∈E
f��� lim

n
�n�����=

∫
T

f�d� 


∣∣∣∫
T

fd�n−
∫

T

f�d�n

∣∣∣� C sup
T

�f −f��� C�f���� C� �

It follows that

lim sup
n

∣∣∣∫
T

fd�n−
∫

T

fd�
∣∣∣� 2C�+ lim

n

∣∣∣∫
T

f�d�n−
∫

T

f�d�
∣∣∣= 2C� 


which proves the theorem since � is an arbitrary positive number. �

Lemma 8.5 and Theorem 8.6 are called Helly’s theorems. We turn our attention to the
study of �.

161 Hardy spaces. The Hardy class Hp, p> 0, is defined as the class of all analytic
functions f in D satisfying

sup
0<r<1

∫
T

�f�r���p dm���= �f�pp <� �

It follows from Fatou’s theorem 8.4 that for any f ∈ Hp the radial limits f��� =
limr→1− f�r�� exist almost everywhere on T with respect to Lebesgue measure m. By
the uniqueness theorem for analytic functions any f ∈ Hp can be identified with its
boundary values. In (1928) V. I. Smirnov proved the following.

Theorem 8.7 (Smirnov 1928) For every F ∈R�D� and 0< p < 1,

�F�pp � sec�p�/2� �

Proof If F is analytic about D then Fp = �F �p�cos p�+ i sin p�� on T. Since
−p�/2 � p� � p�/2, we obtain by the mean-value theorem applied to  Fp that

cos�p�/2�
∫

T

�F �pdm�

∫
T

ReFpdm= ReF�0�p = 1 �

The result follows, since the Fr = F�rz� are all analytic about D. �

By Smirnov’s theorem F� ∈⋂p<1H
p for every � ∈P�T�.

Theorem 8.8 (Khinchin–Ostrovskii) Let E be a subset of T of positive Lebesgue
measure and �fn�n�0 be a bounded sequence in Hp with p > 0. If fn converges in
measure to 0 on E, then fn ⇒ 0 uniformly on compact subsets of D.

The double arrows signify uniform convergence. A proof of the theorem as well as
generalizations to other classes of functions can be found in Khrushchev (1978). See
also the original proof in Privalov (1950).
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162 Schur’s algorithm and Wall continued fractions. Schur introduced and
studied basic properties of his algorithm in two fundamental papers (1917, 1918).
Starting with f0 = f , Schur’s algorithm determines a sequence �fn�n�0 of functions in
� related by the formulas

fn�z�=
zfn+1�z�+an
1+ ānzfn+1�z�


 fn�0�= an 
 n= 0
1
 � � � (8.9)

Moving fn+1 in (8.9) inside the fraction as far as possible, so that

fn�z�= an+
�1−�an�2�z

ānz+1/fn+1�z�



we obtain by iteration the Wall continued fraction (Wall 1944):

f�z�= a0+
�1−�a0�2�z

ā0z +
1
a1 +

�1−�a1�2�z
ā1z + · · · � (8.10)

The numbers an = fn�0� in Schur’s algorithm are called the Schur parameters of f ,
and the fn are called its Schur functions.

Schur’s algorithm can be run until �an� = 1. If �an� = 1 then, by the maximum principle, fn ≡ an in D

and the algorithm breaks down. As Schur (1917, §1) noticed, formula (8.9) shows that now we may put
fk ≡ 0 for every k > n. Then clearly ak = 0 for k > n. This agreement, however, contradicts the definition
of continued fractions, demanding that the partial numerators of (8.10) must be nonzero. Therefore we stop
Schur’s algorithm if �an� = 1. Otherwise it runs to infinity. By the maximum principle, �ak�< 1 for k < n
where �an� = 1 if an exists.

Schur’s algorithm is to a great extent nothing other than the algorithm of Wall continued fractions. The
difference is that whereas the second constructs the convergents, the first constructs the even remainders
�fn�n�0 of the corresponding continued fraction.

The formula (8.9) can be viewed as arising from the substitution of w in the Möbius
transformation (n�w�= �zw+an�/�1+ ānw� with fn+1�z�. Hence

f�z�= (0 � (1 � · · · � (n�fn+1� � (8.11)

Any polynomial pn of degree n in z determines a conjugate polynomial p∗n�z� =
znpn�1/z̄�. The coefficient vector of p∗n in Cn+1 is the vector of the complex conjugate
coefficients of pn, written in reverse order. Hence deg p∗n � n. Since z = 1/z̄ on T,
this formula is equivalent to

p∗n�z�= znpn�z� 
 z ∈ T � (8.12)

Lemma 8.9 For every n,

(0 � (1 � · · · � (n�w�=
An+ zB∗nw
Bn+ zA∗nw


 (8.13)

where An
Bn ∈ �n, B0 = B∗0 ≡ 1, A0 ≡ a0, A∗0 = ā0.
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Proof Suppose that (8.13) holds for n. Then for every w ∈ C,

(0 � (1 � · · · �(n�(n+1�w��=
An+an+1zB

∗
n+ z�zB∗n+ ān+1An�w

Bn+an+1zA
∗
n+ z�zA∗n+ ān+1Bn�w

�

It follows that

B∗n+1 = zB∗n+ ān+1An
 A∗n+1 = zA∗n+ ān+1Bn


An+1 = An+an+1zB
∗
n
 Bn+1 = Bn+an+1zA

∗
n


(8.14)

completing the proof. �

Putting w = 0 in (8.13), we obtain that

(0 � (1 � · · · �(n�0�=
An
Bn
� (8.15)

If w=� in (8.13) then (0 �(1 � · · · �(n���= zB∗n/zA∗n. Therefore An/Bn are the even
convergents of order 2n, and zB∗n/zA

∗
n are the odd convergents of order 2n+1, to the

Wall continued fraction (8.10). It follows that the formulas (8.14) are equivalent to the
Euler–Wallis formulas for (8.10). The polynomials �An�n�0, �Bn�n�0 associated with
the Wall continued fraction (8.10) by (8.14) were first introduced in Schur (1918, §14).
However, since the important explicit connection of Schur’s algorithm with continued
fractions was first considered in Wall (1944), we will call these polynomials the Wall
polynomials (of (8.10))1.

Following §45 at the start of Section 2.4, we represent (8.14) as(
zB∗n −A∗n
−zAn Bn

)
=∏n

k=0

(
z −āk

−akz 1

)
� (8.16)

The basic properties of An, Bn are deduced from the determinant identity first obtained
in Schur (1918, §14):

B∗nBn−A∗nAn = zn
n∏
k=0

�1−�ak�2�= �nzn � (8.17)

To get (8.17) apply the multiplicative functional C→ det C to both sides of (8.16).
Restricting (8.17) to T and applying (8.12), we obtain

�Bn����2−�An����2 ≡ �n 
 � ∈ T 
 (8.18)

which in particular implies that �An/Bn�< 1 on T provided that �an�< 1.

Lemma 8.10 The Wall polynomials Bn do not vanish in �z � �z�� 1�.

1 In his papers Schur described his algorithm as “continued-fraction-like”.
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Proof First we note that B0 ≡ 1. If Bn 	= 0 in �z� � 1 then both An/Bn and A∗n/Bn
are holomorphic on �z � �z� � 1�. By (8.18) they are less than 1 on T. Hence
An/Bn
A

∗
n/Bn ∈� by the maximum principle. If �z�� 1 then by (8.14)

�Bn+1�z�� = �Bn�z�+an+1zA
∗
n�� �Bn�z��

(
1−�an+1�

∣∣∣∣A∗nBn
∣∣∣∣
)
> 0 


implying that Bn+1 	= 0 in �z � �z�� 1� even if �an+1� = 1. �

Corollary 8.11 Let �an�n�0 be a sequence of Schur parameters that can be finite or
infinite. Then for every n such that �an�< 1,∥∥∥∥AnBn

∥∥∥∥
�
< 1 


∥∥∥∥A∗nBn
∥∥∥∥
�
< 1 �

Proof By Lemma 8.10 both functions are analytic on �z � �z� � 1�. To complete the
proof apply the maximum principle and (8.18). �

By Corollary 8.11 every even convergent An/Bn to (8.10) is an interior point of �
if �an� < 1. If �an� = 1 then �n = 0 and �An/Bn� = 1 on T by (8.18). It follows that
any function f ∈ � with a finite number of Schur parameters is a rational function
f = An/Bn unimodular on T.

Lemma 8.12 (Schur 1917, §2) A rational function f ∈� is unimodular, �f � = 1, on
T if and only if f = %p/p∗, where p is a monic polynomial with roots in D and % ∈ T.
The factorization f = %p/p∗ of f is unique.

Proof Since f ∈ �, all poles of f lie in �z � �z� > 1�. Since f maps T into T, by
Schwarz symmetry the zeros %1
 � � � 
 %n of f are symmetric to the poles 1/%̄1
 � � � 
1/%̄n
with respect to T. Hence %k ∈ D, 1 � k � n. If p�z� = �z− %1� · · · �z− %n� then
p∗�z�= znp�1/z̄�= �1− %̄1z� · · · �1− %̄nz�, implying that

b�z�= p�z�

p∗�z�
=

n∏
k=1

z−%k
1− %̄kz

(8.19)

has the same poles and zeros as f . Then by Liouville’s theorem the quotient f/b must
be a constant %. Since �f � = �b� = 1 on T, we obtain that % ∈ T. The inverse statement
follows from (8.12). �

In the theory of Hardy spaces, see Garnett (1981), the products (8.19) are called finite
Blaschke products. They are often normalized by including −�%k�/%k in the multipliers
to make them positive at z= 0. This makes it obvious when the Blaschke products

B�z�=
�∏
k=1

−�%k�
%k

z−%k
1− %̄kz

(8.20)

converge:
∏
k �%k� > 0. By Lemma 8.12 finite Blaschke products can be described as

rational functions unimodular on T and analytic in D. Notice that the Schur functions
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and parameters of �z−%k�/�1− %̄kz� are f1 ≡ 1, a1 = 1, a0 =−%k. For a finite Blaschke
product b, we denote by Z�b� the total number of zeros of b.

Theorem 8.13 (Schur 1917, §2) A function b ∈ � has a finite number of Schur
parameters if and only if it is a finite Blaschke product. The number of parameters of
b equals Z�b�+1.

Proof Let �an� = 1. Then f = An/Bn is unimodular on T and is a finite Blaschke
product by Lemma 8.12. If Z�b�= 1 then the number of Schur parameters is 2. Suppose
the theorem is true for every b with Z�b� < n and consider a b with Z�b�= n. Then
by Schur’s algorithm

b = zb1�z�+b�0�
1+b�0�zb1�z�

⇒ b1 =
b−b�0�

z�1−b�0�b� �

Since �b�0��< 1 and b�z�−b�0� vanishes at z= 0, the rational function b1 is analytic
on �z � �z�� 1�. The elementary identity

1−
∣∣∣∣ w+%1+ %̄w

∣∣∣∣2 = �1−�%�2��1−�w�2��1+ %̄w�2 
 �%�� 1 
 �w�� 1 
 (8.21)

shows that �b1� = 1 on T. By Lemma 8.12 b1 is a finite Blaschke product. To find its
Schur representation we observe that b�0�= %�−%1� · · · �−%n�. It follows that

b1 = %
p− �−%1� · · · �−%n�p∗
z�p∗ − �−%̄1� · · · �−%̄n�p�

�

Easy algebra shows that the polynomial q= �p−�−%1� · · · �−%n�p∗�/z is a polynomial
of degree deg q = deg p−1 and that b1�z�= %q/q∗. Since

q∗ = p∗ − �−%̄1� · · · �−%̄n�p�= p∗�1−b�0�b� 

the polynomial q∗ does not vanish in �z � �z�� 1�. Hence we have obtained the Schur
factorization of b1. Since Z�b1� = Z�b�− 1 = n− 1, the result follows by induction.

�

Euler’s formula (1.17) for Schur’s algorithm is

f = An+ zB
∗
nfn+1

Bn+ zA∗nfn+1


 (8.22)

from (8.13), putting w= fn+1. Taking into account that (8.22) is the Euler formula for
Wall continued fractions, we can describe the set �n =�n�a0
 � � � 
 an� of all functions
in � whose first n+1 Schur parameters �a0
 � � � 
 an� are fixed, �an� < 1, in terms of
the Wall polynomials associated with �a0
 � � � 
 an�,

�n =
{
An+ zB∗n	
Bn+ zA∗n	

� 	 ∈�

}
� (8.23)
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Since 	 ≡ 0 has zero Schur parameters, by putting 	 ≡ 0 we obtain from (8.23) the
Schur parameters of An/Bn: �a0
 a1
 � � � 
 an
0
0
 � � ��. By Corollary 8.11 A∗n/Bn ∈�.
Then by

A∗n
Bn
= zA

∗
n−1+ ān−1Bn−1

Bn−1+anzA∗n−1

= zA∗n−1/Bn−1+ ān
1+anzA∗n−1/Bn−1

and (8.9), the Schur parameters of A∗n/Bn are �−ān
−ān−1
 � � � 
−ā0
 � � � �.

Lemma 8.14 The elements of 	n have the same Taylor polynomial of order n at
z= 0.

Proof This follows by (8.23) and (8.17) from the formula

An+ zB∗n	
Bn+ zA∗n	

− An
Bn
= zn+1	

�n
Bn�Bn+ zA∗n	�

� (8.24)

�

The lemma below is useful in computations with Wall polynomials.

Lemma 8.15 For every n,

An = a0+· · ·+anzn 
 Bn = 1+· · ·+anā0z
n � (8.25)

Proof This follows immediately from (8.14) by induction. �

A number of useful identities related to (8.22) are collected in (E8.1)–(E8.6).

163 The convergence of Schur’s algorithm. Schur proved the uniform conver-
gence of An/Bn to f on compact subsets of D.

Theorem 8.16 (Schur 1918, §15) If f ∈ � is not a finite Blaschke product and
�An�n�0, �Bn�n�0 are its Wall polynomials then

An�z�

Bn�z�
⇒ f�z�

uniformly on compact subsets of D.

Proof By Theorem 8.13 �An/Bn�n�0 is infinite. If 	 = fn+1 in (8.24) then we obtain
the Lagrange formula (1.50) for Schur’s algorithm:

f�z�− An�z�
Bn�z�

= zn+1fn+1

�n
B2
n�1+ z�An/Bn�fn+1

� (8.26)

By Corollary 8.11 �An/Bn�n�0 is compact in D. By Lemma 8.14 its limit point is
analytic in D and equals f .
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Theorem 8.16 can be also proved constructively. Since fn+1 ∈ � and An/Bn ∈ �,
the right-hand side of (8.26) is analytic in D and so∣∣∣∣f�z�− An�z�Bn�z�

∣∣∣∣� �z�n+1 1
�1+ zA∗nB−1

n fn+1�
�
�z�n+1

1−�z� � (8.27)

Observe that �n�Bn�z��−2 � 1 in D by (8.18) and by the maximum principle. �

The odd convergents to any Wall continued fraction are related to the even conver-
gents by a simple formula:

zB∗n
zA∗n

= Bn�1/z̄�
An�1/z̄�

=
(
An�1/z̄�
Bn�1/z̄�

)−1

�

Hence one may just consider the even convergents An/Bn. By (5.34) the even part of
a Wall continued fraction exists if and only if ak 	= 0 for k= 0
1
 � � � If this is the case
then the even part of a Wall continued fraction is given by

f�z�= a0

1 −
�1−�a0�2��a1/a0�z

1+ �a1/a0�z −· · · −
�1−�an�2��an+1/an�z

1+ �an+1/an�z − � (8.28)

The continued fractions (8.28) were studied by Geronimus (1944) in relation to
orthogonal polynomials on T and are called Geronimus continued fractions. Geronimus
continued fractions differ from those of Euler corresponding to the series

S�z�=
�∑
n=0

anz
n

by �1− �an�2� in the partial numerators; see (4.2). Later we show that if an → 0
sufficiently fast then S�z� behaves similarly to (8.28).

Notice that the Geronimus continued fraction (8.28), converges uniformly and ab-
solutely on compact subsets of D; see (3.8). This follows from (8.27).

164 The algebra of Schur’s algorithm. We turn to the third continuum R�D�

associated with T. Following their definition, we substitute the convergents

1
0



A0

B0



zB∗0
zA∗0



A1

B1



zB∗1
zA∗1


 � � � 

An
Bn



zB∗n
zA∗n


 � � � 


of the continued fraction (8.10) into (8.2) and obtain the convergents to F� ,

1
0



1
1



1
−1



� ∗

1

�∗
1



z�1

−z�1


 � � � 

� ∗
n

�∗
n



z�n
−z�n


 � � � 
 (8.29)

Here by (8.3)

�n+1 = zB∗n−A∗n
 �n+1 = zB∗n+A∗n

�∗
n+1 = Bn− zAn
 � ∗

n+1 = Bn+ zAn �
(8.30)
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These formulas can be conveniently compressed into matrix form:(
�n+1 �n+1

�∗
n+1 −� ∗

n+1

)
=
(
zB∗n −A∗n
−zAn Bn

)(
1 1
1 −1

)
(8.31)

or equivalently, see (8.16),(
�n+1 �n+1

�∗
n+1 −� ∗

n+1

)
=

n∏
k=0

(
z −āk

−akz 1

)(
1 1
1 −1

)
� (8.32)

Corollary 8.17 For n= 0
1
 � � � ,

�n+1�
∗
n+1+�∗

n+1�n+1 = 2zn+1
n∏
k=0

�1−�ak�2� � (8.33)

Proof Apply the multiplicative functional C→ det C to (8.32). �

The recurrence form of (8.32) is as follows:(
�n+1 �n+1

�∗
n+1 −� ∗

n+1

)
=
(
z −ān

−anz 1

)(
�n �n
�∗
n −� ∗

n

)
�

Considering the matrix entries, we obtain

�n+1 = z�n− ān�∗
n
 �n+1 = z�n+ ān� ∗

n 


�∗
n+1 =�∗

n−anz�n
 � ∗
n+1 =� ∗

n +anz�n �
(8.34)

By Lemma 8.15,

�∗
n+1�z�= 1+· · ·−anzn+1 ⇒ �n+1 = zn+1+· · ·− ān � (8.35)

Hence the �n+1 are monic polynomials. The convergent � ∗
n /�

∗
n is at the 2nth place in

(8.29). Let us assume that all the parameters an are nonzero. Then a simple substitution
of the Geronimus continued fraction (8.28) for the Schur function f into the second
expression in (8.2) shows that

1
0



1
1



� ∗
1

�∗
1


 � � � 

� ∗
n

�∗
n


 � � � (8.36)

are the convergents to the continued fraction

F��z�= 1+ zf�
1− zf� = 1+ 2zf�

1− zf�

∼ 1+ 2a0z

1−a0z −
�1−�a0�2��a1/a0�z

1+ �a1/a0�z − · · ·

−
�1−�an−1�2��an/an−1�z

1+ �an/an−1�z − · · · 
 (8.37)
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which is called the Geronimus continued fraction for the Herglotz function F� . By
(8.31) � ∗

1 /�
∗
1 = 1+2a0z�1−a0z�

−1 and

� ∗
n+1

�∗
n+1

=1+ 2a0z

1−a0z −
�1−�a0�2��a1/a0�z

1+ �a1/a0�z − · · ·

−
�1−�an−1�2��an/an−1�z

1+ �an/an−1�z
(8.38)

for n > 0 by (8.28) and (8.31). Following (8.36) we put � ∗
0 = �∗

0 = 1, � ∗
−1 = 1,

�∗
−1 = 0. The Euler–Wallis formulas (1.15) and equation (8.38) show that Xn = � ∗

n

and Xn =�∗
n satisfy the recurrence relations

Xn+1 =
(
1+ an

an−1

z
)
Xn− �1−�an−1�2�

an
an−1

zXn−1 
 n� 1 


X1 = �1−a0z�X0+2a0zX−1 �

By (8.31) �∗
n+1�z� = Bn�z� �1− zA∗n�z�/Bn�z�� 	= 0 for �z� � 1, which agrees with

Lemma 7.21. Hence the � ∗
n+1/�

∗
n+1 are analytic on �z�� 1.

165 Geronimus’ theorems. The first is a theorem relating orthogonal polynomials
to Schur’s parameters. We begin with a lemma.

Lemma 8.18 Suppose that polynomials Pn and Qn of degree n satisfy

Qn�z�+Pn�z�F��z�= O
(
z−1

)

 z−→� 
 (8.39)

Qn�z�+Pn�z�F��z�= O�zn� 
 z−→ 0 
 (8.40)

where � ∈P�T�. Then Pn⊥�1
 �
 � � � �n−1� in L2�d�� and

Qn�z�=
∫

T

�+ z
�− z�Pn���−Pn�z��d���� � (8.41)

Proof If z→� in the identity

Qn+PnF� =Qn−
∫

T

�+ z
�− z�Pn���−Pn�z��d�+

∫
T

�+ z
�− zPnd� 


then by (8.39) the left-hand side is O�1/z�. Since the first summand on the right-hand
side is a polynomial and since

lim
z→�

∫
T

�+ z
�− zPnd� =−

∫
T

Pnd� 


we obtain that

Qn =
∫

T

�+ z
�− z�Pn���−Pn�z��d�+

∫
T

Pnd� �
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It follows that

Qn+PnF� =
∫

T

Pnd�+
∫

T

�+ z
�− zPnd� = 2

∫
T

1

1− �̄zPnd�

= 2
∫
Pnd�+2z

∫
�̄Pnd�+· · ·+2zn−1

∫
�̄n−1Pnd�+ · · · 


which completes the proof by (8.40) if z→ 0. �

Lemma 8.19 For any � ∈P�T�,

�n+�nF� =−
2ān�n−1

z
+O�1/z2� 
 z→� 
 (8.42)

�n+�nF� = 2�n−1z
n+O�zn+1� 
 z→ 0 
 (8.43)

−� ∗
n +�∗

nF
� = 2an�n−1z

n+1+O�zn+2� 
 z→ 0 
 (8.44)

−� ∗
n +�∗

nF
� =−2�n−1+O�1/z� 
 z→� � (8.45)

Proof Elementary calculations with (8.22), (8.17) and (8.31) show that

�n+�nF� =
2�n−1z

n

�1− zf��Bn−1+ zA∗n−1fn�
= 2�n−1z

n+O�zn+1� 


−� ∗
n +�∗

nF
� = 2�n−1fnz

n+1

�1− zf��Bn−1+ zA∗n−1fn�
= 2an�n−1z

n+1+O�zn+2�

as z→ 0, implying (8.43), (8.44). Since F��1/z̄�=−F��z�, two other formulas follow
by conjugation. �

Theorem 8.20 (Geronimus 1944) For every � ∈P�T� the family of monic polyno-
mials ��n�n�0 is orthogonal in L2�d��:∫

T

�n�̄kd� = 0 if n 	= k �

Proof Pn =�n and �n =Qn satisfy Lemma 8.19 by (8.42), (8.43). �

By (8.41) we obtain that

�n�z�=
∫

T

�+ z
�− z��n���−�n�z��d���� � (8.46)

Theorem 8.21 (Geronimus 1944) Let � ∈P�T� and let f = f� be the Schur function
of � with parameters �an�n�0. Let ��n�n�0 be a family of monic orthogonal polynomials
in L2�d�� such that deg �n = n, ��n�> 0. Then

an =−�n+1�0� �
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Proof By Theorem 8.20 the polynomials ��n�n�0 are orthogonal in L2�d��. By (8.35)
an =−�n+1�0�. The proof is completed by Ex. 8.13. �

Notice that ��n� = 0 if and only if � is a finite convex combination of point masses
on T located at the zeros of �n. For � ∈P�T� we define

N���=
{
k if � is a sum of k point masses,

� otherwise


to be the number of growth points for � . If n < N��� then ��n� > 0, since �n
cannot vanish on � . If n= N��� <+� then there is a unique monic polynomial �n,
deg �n = n, vanishing on � .

By Theorem 8.20 we can rewrite formulas (8.42)–(8.45). Since �n is orthogonal to
�0 ≡ 1, and to �k for k < n, we obtain by (8.46) that

�n+�nF� = 2
∫

T

�n���d����

1− �̄z = 2zn
∫

T

�̄n�n���d����

1− �̄z � (8.47)

Comparing (8.47) with (8.43), we obtain a circular analogue of Chebyshev’s formula
(7.34):

n−1∏
k=0

�1−�ak�2�= �n−1 =
∫

T

�̄n�nd� =
∫

T

��n�2d� =
∫

T

�∗
nd� � (8.48)

Passing to the conjugate polynomials in (8.47), we get by Theorem 8.20

F� − �
∗
n

�∗
n

= 2z
�∗
n

∫
T

�∗
n���d����

�− z = zn

�∗
n

∫
T

�+ z
�− z �n��� d���� � (8.49)

Formulas (8.47) and (8.49) are due to Geronimus. We will write (8.49) as

F� − �
∗
n

�∗
n

= 2zn+1

�∗
n�n

∫
T

�n��� �n�z�

�− z d� = 2zn+1

�∗
n�n

∫
T

��n����2
�− z d� � (8.50)

8.2 The Gram–Schmidt algorithm

166 Orthogonal vectors in a Hilbert space. By Theorem 8.20 orthogonal poly-
nomials in L2�d�� satisfy three-term recurrence relations (equivalently, the Euler–
Wallis formulas). With this in mind one can develop the theory of orthogonal poly-
nomials on T starting with the property of orthogonality. This alternative approach to
orthogonal polynomials is based on the Gram–Schmidt algorithm, which transforms a
family �vn�n�0 (finite or infinite) of linear independent vectors in a Hilbert space H
into a family ��n�n�0 of orthogonal unit vectors in H . The steps of the Gram–Schmidt
algorithm are as follows.
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Step 1. For l00 = �f0�−1 > 0 let �0 = l00v0.
Step 2. Let the vector �1 be defined by �1= l10v0+l11v1, where l11> 0 and the values

of l00 and l11 are determined by the following conditions of orthogonality:
��1
�0�= 0 and ��1
�1�= 1.

Step n+1. If �0, �1, � � � , �n−1 are already defined then let

�n = ln0v0+· · ·+ lnnvn 
 lnn > 0 
 (8.51)

where the coefficients �lnj�0�j�n are uniquely determined by a system of
linear equations

��n
�k�= �nk 
 k= 0
1
 � � � 
 n � (8.52)

Since �vn�n�0 is a linearly independent family, the number of steps in the Gram–
Schmidt algorithm equals the number of elements in this family. The orthogonal family
��n�n�0 of unit vectors is determined by the property

Vn = span�v0
 � � � 
 vn�
def= {∑n

k=0
%kvk � %k ∈ C

}= span��0
 � � � 
�n� �

By (8.52) �n is orthogonal to Vn−1, i.e. �n⊥Vn−1. By (8.51) we have lnnvn−�n ∈ Vn−1.
It follows that

��n
 vn�= l−1
nn ���n
 lnnvn−�n�+ ��n
�n��= l−1

nn

and that vn− l−1
nn �n is the orthogonal projection of fn onto Vn−1. Hence

dist�vn
Vn−1�= �vn− �vn− l−1
nn �n�� = l−1

nn 
 (8.53)

explaining the meaning of the diagonal coefficients lnn in (8.51).
Again, since �vn�n�0 is a linearly independent family the quadratic forms in

n∑
i
j=0

%i%̄jvivj =
∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

%kvk

∣∣∣∣∣
∣∣∣∣∣
2

> 0 (8.54)

are positive definite, implying that the determinants Dn = det��vi
 vj��
n
i
j=0 are positive.

For any matrix C with two identical rows, det C= 0. This simple observation results
in an explicit formula for �n:

�n = �DnDn−1�
−1/2 det

∣∣∣∣∣∣∣∣∣∣∣

�v0
 v0� �v1
 v0� � � � �vn
 v0�

�v0
 v1� �v1
 v1� � � � �vn
 v1�
���

���
���

�v0
 vn−1� �v1
 vn−1� � � � �vn
 vn−1�

v0 v1 � � � vn

∣∣∣∣∣∣∣∣∣∣∣

 (8.55)

where the determinant is defined by Kramer’s rule applied to the last row, {v0 v1 · · ·vn}.
Hence ��n
 vk� is proportional to the determinant with two identical rows �v0
 vk� �v1
 vk�

· · · �vn
 vk� at places k and n for every k, 0 � k � n − 1. Hence �n⊥vk,
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k = 0, 1, � � � , n− 1. By (8.55) the coefficient at vn equals �Dn−1Dn�
−1/2Dn−1 =

�Dn−1/Dn�
1/2. Formula (8.55) also implies that

��n
�n�= �Dn−1/Dn�
1/2��n
 vn�=

�Dn−1/Dn�
1/2

�Dn−1Dn�
1/2
Dn = 1 �

In particular,

lnn = �Dn−1/Dn�
1/2 � (8.56)

167 Orthogonal polynomials in L2�d��. The general theory presented in §166
can be applied to the Hilbert space L2�d��, � ∈ P�T�, and the family of monomi-
als vn = zn, n = 0, 1, � � � First we determine the vector � corresponding to linear
independent families �zn�n�0 in L2�d��. Let �n = span�1
 z
 � � � 
 zn�.

Lemma 8.22 The family �zn�n�0 is linearly dependent in L2�d�� if and only if
N���= k <+�. In this case the vectors �1
 z
 � � � 
 zk−1� are linearly independent and
zn ∈ �k−1 for n� k.

Proof Obviously �zn�n�0 is linearly dependent in L2�d�� if and only if
∫

T
�p����2

d���� = 0 for a nonzero polynomial p�z�. This identity holds only if � is supported
by the zeros of p. If � is a sum of k point masses then deg p � k, implying that
�1
 z
 � � � 
 zk−1� is linearly independent. If p = zk+ ck−1z

k−1+ · · · + c0 is the monic
polynomial with roots at the point masses of � then obviously

zk =−ck−1z
k−1−· · ·− c0 ∈ �k−1

in L2�d��. Multiplying by z and iterating, we obtain the lemma. �

By Lemma 8.22 the Gram–Schmidt algorithm stops after k steps if N���= k <�
and runs up to infinity otherwise. In any case a sequence ��n�n�0 of polynomials is
obtained such that

�n�z�= �nzn+· · ·+�n�0� 
 �n > 0 


∫
T

�n�̄k d� =
{

1 if k= n

0 if k 	= n�

(8.57)

By Theorem 8.20 and (8.48),

�n�z�= �n�n�z� 
 �n = �−1/2
n−1 � (8.58)

If N��� <�, then ��n�n�0 consists of N��� terms: 1= �0
�1
 � � � 
�n, n= N���−1.
In view of (8.58) and (8.67) below it is natural to put �n+1 =�n+1, where �n+1 is the
unique monic polynomial vanishing on � . If N��� =� then ��n�n�0 is infinite. For
instance if � =m, m being the normalized (m�T�= 1) Lebesgue measure on T, then
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the Gram–Schmidt algorithm does not change the family fn = zn, since the monomials
�zn�n�0 are orthogonal in L2�dm�. The inner products

�zj
 zk�=
∫

T

zj−k d� = ck−j (8.59)

where ck =
∫

T
�̄k d� = �̂�k� are the Fourier coefficients of � , depend on k− j. Sub-

stituting (8.59) into (8.55), we obtain

�n�z�= �DnDn−1�
−1/2 det

∣∣∣∣∣∣∣∣∣∣∣

c0 c−1 c−2 � � � c−n
c1 c0 c−1 � � � c−n+1
���

���
���

���

cn−1 cn−2 cn−3 � � � c−1

1 z z2 � � � zn

∣∣∣∣∣∣∣∣∣∣∣

 (8.60)

where Dn is the determinant of the Töplitz matrix Cn = �cj−i�ni
j=0. If n = N��� then
there is a nonzero vector �%1
 � � � 
 %n� such that the norm in (8.54) is zero, implying
that Dn = 0. For n < N��� we always have Dn > 0. By (8.56),

lnn = �n = �Dn−1/Dn�
1/2 � (8.61)

Since f→ zn−1f̄ is an isometry of �n−1 over the field of real numbers, we obtain from
(8.53) that

dist�zn
�n−1�= dist�z̄
�n−1�= dist�1
 z�n−1�=
1
�n
� (8.62)

Notice that the distance dist�zn
�n−1� is attained at �−1
n �n− zn.

Lemma 8.23 The sequence ��n�n�0 is nondecreasing.

Proof Since f → zf is an isometry in L2�d��,

1/�n+1 = dist�zn+1
�n�� dist�zn+1
 z�n−1�

= dist�zn
�n−1�= 1/�n 


implying that �n � �n+1 for n � 1. Since �0 = 1 and dist�zn
�n−1� cannot exceed 1,
we see that �0 � �1. �

Corollary 8.24 The sequence �Dn�n�0 is logarithmic concave:

Dn−1Dn+1 �D
2
n �

Proof Apply Lemma 8.23 and (8.61). �

Corollary 8.25 If N���=+� then the limits

lim
n→+�

n
√
Dn = lim

n→+��
−2
n (8.63)

exist, can be finite or infinite and are equal.
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Proof Since N��� = +�, we have Dn > 0 and �n < +� for every n � 0. Since
logD0 = 0, easy geometry with the graph of the concave function n→ logDn shows
that logDn/n decreases with growth in n. However, taking logarithms in (8.61), we
see that the sequence

1
n

n∑
k=1

log
1

�2
k

= logDn
n

(8.64)

has a finite or infinite limit. By Lemma 8.23 the sequence log�1/�2
n� has the same

limit. �

168 Three-term recurrence. The isometry f → zf in L2�d�� is responsible for
the increasing character of ��n�n�0. Another important consequence is the Szegő (1939)
recurrence relations. We derive them following Landau (1987).

Lemma 8.26 For n= 0
1
 � � � 
N���−1, the polynomials �n+1, z�n, �
∗
n are orthog-

onal to the set �z
 z2
 � � � 
 zn�.

Proof By the Gram–Schmidt algorithm, �n+1⊥1
 z
 � � � 
 zn. Putting n �= n−1 in the
above formula and applying the isometry f → zf to both sides of the orthogonality
relations obtained, we get that z�n is orthogonal to �z
 z2
 � � � 
 zn�. Finally, the identity

��∗n
 z
k�=

∫
T

zn�̄nz̄
k d� = �zn−k
�n�

shows that �∗n⊥ z
 z2
 � � � 
 zn. �

It is clear that �n+1
 z�n
�
∗
n ∈ �n+1. By Lemma 8.26 these polynomials are or-

thogonal to the subspace Kn
def= span�z
 z2
 � � � 
 zn� of �n ⊂ �n+1. Since the dimension

dim��n+1"Kn� of the orthogonal complement of Kn in �n+1 cannot exceed 2, the
polynomials under consideration are linearly dependent: �n+1 = az�n+b�∗n. Matching
the coefficients of zn+1 on both sides we find that a= �n+1/�n. Putting z= 0, we get
b = �n+1�0�/�n.

Corollary 8.27 For n= 0
1
 � � � 
N���−1,

�n�n+1 = �n+1z�n+�n+1�0��
∗
n 


�n�
∗
n+1 = �n+1�

∗
n+�n+1�0�z�n �

(8.65)

Proof The second equality in (8.65) is obtained from the first, already established, by
conjugation. �

The formulas (8.65) are called the Szegő recurrence relations. Let us consider the
case n= N���−1<+� in more detail. Then

� =
n∑
j=0

pj��j 
 �j ∈ T 
 pj > 0 
 p0+· · ·+pn = 1 � (8.66)
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By Lemma 8.26, z�n and �∗n ⊥ z
 � � � 
 zn. It follows that

�n+1�z�
def=

n∏
j=0

�z− �j�= az�n+b�∗n �

Observing that �∗n�0� = �n and putting z = 0 in the above formula, we find that
b = �n+1�0�/�n. We obtain a = 1/�n by comparing the leading coefficients of the
two polynomials. Hence

�n�n+1�z�= z�n+�n+1�0��
∗
n 
 (8.67)

which explains our choice of �n+1 in the discussion following (8.58). Notice that
��n+1�0�� = ��n+1�0�� = 1. Lemma 8.26 also implies the orthogonal expansion of �∗n.

Corollary 8.28 For n= 0
1
2
 � � � 
N���−1,

�n�
∗
n�z�=

n∑
k=0

�k�0��k�z� � (8.68)

Proof Since �∗n⊥ z
 z2
 � � � 
 zn,

�n��
∗
n
�k�= �k�0�

∫
T

�nz
n�̄n d� = �k�0�

∫
T

��n�2 d� = �k�0� �
�

Corollary 8.29 For n= 0
1
2
 � � � 
N���−1,

�n+1�
∗
n+1 = �n�∗n�z�+�n+1�0��n+1�z� � (8.69)

Proof Formula (8.69) is a direct corollary of (8.68). �

If we put z= 0 in (8.68), then a useful identity is obtained:

�2
n =

n∑
k=0

��k�0��2 � (8.70)

Next, by Theorem 8.21, (8.58) and (8.70),

1−�ak�2 = 1−��k+1�0��2 = 1−��k+1�0��2�−2
k+1 = �2

k/�
2
k+1 


which implies, see (8.17) and (8.58),

�n =
n∏
k=0

�1−�ak�2�= �−2
n+1 
 n� 0 � (8.71)

Using (8.32) and (8.58), we can write down explicit formulas for the orthogonal
polynomials in terms of the parameters �a0
 � � � 
 an�:(

�n+1 'n+1

�∗n+1 −'∗n+1

)
= �n+1

n∏
k=0

(
z −āk

−akz 1

)(
1 1
1 −1

)
� (8.72)
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This and (8.71) show that �n+1 is uniquely determined by these parameters. The
relationship with the Wall polynomials is as follows:

�n+1 = �n+1�zB
∗
n−A∗n�
 'n+1 = �n+1�zB

∗
n+A∗n�


�∗n+1 = �n+1�Bn− zAn�
 '∗n+1 = �n+1�Bn+ zAn� 

(8.73)

see (8.30). Since An/Bn ∈�, the zeros of �n are in D. This also can be derived from
the orthogonality relations.

Lemma 8.30 If n < N��� then all zeros of �n are in D. The polynomial �∗n does not
vanish in �z � �z�� 1�.

Proof Suppose that �n�%� = 0. Then �n�z� = �z− %�pn−1�z�, where pn−1 ∈ �n−1.
Since �n⊥�n−1, this implies the orthogonal decomposition zpn−1 = �n⊕%pn−1. Then
by the Pythagorean theorem

1= ��n�2 = �zpn−1�2−�%�2�pn−1�2 = �1−�%�2��pn−1�2 


which proves the first statement of the lemma. The second is obtained from the first
by conjugation. �

Since �∗n does not vanish in �z � �z�� 1�, we have the factorizations

�n�z�= �n�z−%1n� · · · �z−%nn� 

�∗n�z�= �n�1− %̄1nz� · · · �1− %̄nnz� 


which determine the finite Blaschke product (see (8.20))

bn�z�=
�n�z�

�∗n�z�
=

n∏
k=1

z−%kn
1− %̄knz

� (8.74)

Division of the first equation in (8.65) by the second yields

bn+1 =
zbn�z�− ān
1−anzbn�z�

� (8.75)

Hence �n+1 is uniquely recovered by considering �bn+1
�n+1�. By (8.67) the points �k
in (8.66) coincide with the roots of the equation zbn = ān
 �an� = 1. Since the argument
of zbn increases on T when z is moving counter-clockwise, this equation has exactly
n+1 roots for any an, �an� = 1.

169 Orthogonal polynomials and moments. The following theorem is one more
illustration of the property of �n+1 to store information on all such polynomials with
indices less than n+1.
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Theorem 8.31 Let ��n�n�0 be a sequence of polynomials satisfying �8�65� and let m
be Lebesgue measure on T. Then �0, �1, � � � , �n are orthogonal in L2�d�n�, where

d�n
def= ��n�−2dm:

∫
T

�k�̄j

��n�2
dm=

{
0 if k 	= j

1 if k= j� (8.76)

Proof We will show that for every 0 � k� n and any p ∈ �k−1∫
T

p̄�k
��n�2

dm= 0 

∫

T

zp �∗k
��n�2

dm= 0 �

If k= n then ∫
T

p̄�n
�n�̄n

dm=
∫

T

znp̄

�∗n
dm= 0

by the mean-value theorem, since zp∗/�∗n is holomorphic on �z � �z� � 1� by Lemma
8.30. Similarly ∫

T

zp�∗n
��n�2

dm=
∫

T

zp�∗n
�̄∗n�∗n

dm=
∫

T

zp

�∗n
dm= 0 �

It follows that �∗n⊥ z
 z2
 � � � 
 zn, �n⊥1
 z
 � � � 
 zn−1 in L2�d�n�. By (8.69) with n �=
n−1 this implies that �∗n−1⊥ z
 z2
 � � � 
 zn−1, which with (8.65) (applied for n �= n−1)
implies that �n−1⊥1
 z
 � � � 
 zn−2. Now the proof can be completed by induction. �

Corollary 8.32 Let � ∈ P�T� and �0, �1, � � � , �n be polynomials orthogonal in
L2�d��. Then ∫

T

�̄k d����=
∫

T

�̄k
dm

��n�2

 �k�� n � (8.77)

Proof By Theorem 8.31 the polynomials �0
�1
 � � � 
�n are also orthogonal in
L2���n�−2dm�. It follows that the inner products in L2�d�� and L2���n�−2dm� re-
stricted to �n = span��0
�1
 � � � 
�n� are identical. In particular the inner products of
1 and �k in these Hilbert spaces coincide; this equality is expressed by (8.77). �

Equation (8.77) with k = 0 shows that ��n�−2dm ∈ P�T�. The following theorem
specifies the Herglotz and Schur functions of ��n�−2dm.

Theorem 8.33 For orthogonal polynomials ��n�n�0 in L2�d��,

∫
T

�+ z
�− z

dm

��n�2
= '

∗
n�z�

�∗n�z�
= �

∗
n �z�

�∗
n�z�

= 1+ zAn−1/Bn−1

1− zAn−1/Bn−1

�
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Proof By (8.33)

 �
∗
n

�∗
n

= z̄
n

2
�n�

∗
n +�∗

n�n
��n�2

=
∏n−1
k=0�1−�ak�2�
��n�2

= 1
��n�2

(8.78)

on T. By Theorem 8.2 � ∗
n /�

∗
n is the Herglotz function of ��n�−2dm. By (8.31)

An−1/Bn−1 is its Schur function. �

Theorem 8.34 (Favard) Let �an�n�0 be an arbitrary sequence in D. Then there
exists a unique � ∈P�T� such that �an�n�0 is the sequence of the parameters of the
polynomials orthogonal in L2�d��.

Proof Let ��n�n�0 be defined by (8.65). By Theorem 8.31 the polynomials �0


�1
 � � � 
�n are orthogonal in L2�d�n�, d�n = ��n�−2dm. By Corollary 8.32 the Fourier
coefficients ck of �n, �n+1, � � � , are the same if �k�� n. It follows that the limit

lim
n

∫
T

p
dm

��n�2
(8.79)

exists for any trigonometric polynomial p. By Weierstrass’ theorem trigonometric
polynomials are dense in C�T�. Since ��n�n�0 is a sequence of probability measures,
these measures are in the unit ball of M�T�. Hence the limit (8.79) exists for any
p ∈ C�T� and determines a bounded linear functional on C�T�. By Riesz’ theorem it
can be represented by a probability measure � . �

Theorem 8.34 is usually referred to as Favard’s theorem.

170 Verblunsky parameters. By Theorem 8.34,

�an�n�0 → � (8.80)

is a one-to-one mapping of the infinite product
∏�
k=0 D to � ∈P�T� with N���=+�.

This mapping extends to finite sums of point masses on T. The measures (8.66) can
be uniquely identified with finite sequences of parameters �a0
 a1
 � � � 
 an� satisfying
�a0�< 1, � � � , �an−1�< 1, �an� = 1. The parameters �an�n�0 viewed as the parameters of
measures are called Verblunsky parameters; see Simon (2005a).

Theorem 8.31 says that the polynomials �0
 � � � 
�n are orthogonal in L2���n�−2dm�.
Lemma 8.35 lists the remaining orthogonal polynomials.

Lemma 8.35 Let

�k = ��n�k =
{
�k if 0 � k� n


zk−n�n if k > n�
(8.81)

Then ��k�k�0 are orthogonal polynomials in L2���n�−2dm�.



8.2 The Gram–Schmidt algorithm 345

Proof Let k > n and p ∈ �k−1. Then∫
T

p̄�k−n�n
�n�̄n

dm=
∫

T

�kp̄

�n�̄n
dm=

∫
T

�p∗

�∗n
dm= 0 �

�

Corollary 8.36 The Verblunsky parameters of ��n�−2dm are

a0
 a1
 � � � 
 an−1
0
0
 � � � 
 � (8.82)

Given a sequence (8.82) one can choose any an ∈ T and construct a discrete mea-
sure �n, see (8.66), corresponding to the Verblunsky parameters �a0
 a1
 � � � 
 an�. By
Corollary 8.32,

n∑
j=0

pj�̄j =
∫

T

�̄k
dm

��n�2

 �k�� n � (8.83)

Hence any � ∈ P�T� generates two sequences of probability measures: a sequence
���n�−2dm�n�0 of absolutely continuous measures with parameters (8.82) and a
sequence ��n�n�0 of discrete measures with parameters �a0
 a1
 � � � 
 an−1
1�.

Corollary 8.37 If � ∈P�T� then ∗- limn ��n�−2dm= d� .

Proof By (8.77) condition (8.1) holds for any trigonometric polynomial f . Since
trigonometric polynomials are dense in C�T� and the variations in d�n = ��n�−2dm all
equal 1, (8.1) holds for any f ∈ C�T�. �

Corollary 8.38 Let � ∈P�T� with parameters �an�n�0 and �n be the measures with
parameters �a0
 � � � 
 an−1
1�. Then ∗-limn �n = � .

Corollary 8.39 If � ∈P�T� and N���=+� then '∗n/�
∗
n⇒ F� uniformly on compact

subsets of D.

Proof Apply Theorem 8.33 and Corollary 8.37. �

171 Rotations of Verblunsky parameters. If �an�n�0 are the Verblunsky pa-
rameters of � ∈ P�T�, % ∈ T and f = f� then by Favard’s theorem 8.34 �%an�n�0

are the Verblunsky parameters of some �%. Multiplying (8.9) by %, we obtain that
f�% = %f . A brief analysis of (8.38) for �% indicates a dependence on % only in the
first term of (8.38), which reduces to the substitution a0 → %a0.

To obtain a formula for orthogonal polynomials in L2�d�%� let �sn�n�0 be the
sequence of the Möbius transform assigned to (8.38) for F� and �s∗n�n�0 a similar
sequence associated with F�% ; see §45 at the start of Section 2.4.

Then
s0 = s∗0 
 sn = s∗n 
 n� 2 


s1�w�=
2a0z

1−a0z+w

 s∗1�w�=

2%a0z

1−%a0z+w



(8.84)
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which implies that

S∗n�0�= s∗0 � s∗1 � s−1
1 � s−1

0 �Sn�0� � (8.85)

Some easy algebra now shows that

s∗0 � s−1
1 � s−1

0 � �w�= �w+1�+%�w−1�
�w+1�−%�w−1�

� (8.86)

By (8.38) � ∗
n+1/�

∗
n+1 = Sn+1�0�. Therefore (8.85) and (8.86) imply the Geronimus

formulas (1944, Theorem 7.1, (7.4)) for the orthogonal polynomials in L2�d�%�:

2�n�z
%�= �1+ %̄��n�z�+ �1− %̄�'n�z� 

2�∗n�z
%�= �1+%��∗n�z�+ �1−%�'∗n�z� 

2'n�z
%�= �1− %̄��n�z�+ �1+ %̄�'n�z� 

2'∗n�z
%�= �1−%��∗n�z�+ �1+%�'∗n�z� �

(8.87)

In particular, �n�z
−1�= 'n�z�. By (8.7)∫
T

�+ z
�− z d�% =

1+ z%f
1− z%f 
 � ′% =

1−�f �2
�1− z%f �2 �

For % ∈ T, �1−%�/�1+%�= i�, �=−�2$%�/��1+%�2�. It follows that m-a.e. on T,

F�% = i�+F�
1+ i�F� 
 � ′% =

1+�2

�1+ i�F� �2 �
′� (8.88)

For %=−1 we have �=� and � ′−1 = � ′�F� �−2 a.e. on T.

8.3 Szegő’s alternative

The main problem in the study of orthogonal polynomials is their asymptotic behavior.
Szegő measures make a convenient class of measures for which this behavior can be
determined relatively easily.

172 Parameters of Szegő measures. By Corollary 8.25 the limit in (8.63) always
exists and is either infinite or finite.

Definition 8.40 A probability measure � on T is called a Szegő measure ifN���=+�
and limn �n <+�.

Lemma 8.41 The set � =⋃
n�0 �n of all polynomials in z is dense in L2�d�� if and

only if � is not a Szegő measure.

Proof If N��� <+� then Pn = L2�d�� for n�N���. If N���=+� then the lemma
follows from (8.62). �
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Theorem 8.42 Let � ∈ P�T�, ��n�n�0 be the orthogonal polynomials in L2�d��

and �an�n�0 the parameters of ��n�n�0. Then � is a Szegő measure if and only if
N���=+� and

∑�
k=0 �ak�2 <+�.

Proof By (8.65) the Fourier coefficients of z̄ with respect to ��n�n�0 are∫
T

�̄�̄nd� =
�n
�n+1

�1
�n+1�−
�n+1�0�
�n�n+1

��nz
n
�n�=−

�n+1�0�
�n�n+1

�

By Parseval’s identity z̄ � span��n � n� 0� if and only if

1= �z̄�2 >
�∑
n=0

��n+1�0��2
�2
n�

2
n+1

=
�∑
n=0

�2
n+1−�2

n

�2
n�

2
n+1

= 1− lim
n

1
�2
n

�

By (8.71) limn �
−2
n > 0 if and only if

0<
�∏
n=0

�1−�an�2�= exp

{ �∑
n=0

log�1−�an�2�
}
�

Since log�1− x� = −x+ o�x� as x→ 0, this condition is fulfilled if and only if∑�
k=0 �ak�2 <+�. �

173 Szegő’s entropy theorem. Szegő’s theorem states that � is a Szegő measure
if and only if its entropy (see (8.89) below) is finite.

Theorem 8.43 (Szegő–Geronimus) For any � ∈P�T�,

log
�∏
k=0

�1−�ak�2�= log
1
�2
=
∫

T

log� ′dm � (8.89)

Hence � ∈P�T� is a Szegő measure if and only
∫

T
log� ′ dm >−�.

Proof The first equality in (8.89) (due to Geronimus) follows by (8.71). Since by
Lemma 8.30 �∗n does not vanish in �z � �z�� 1�, the function log ��∗n�z��−2 being a real
part of the analytic function log�∗n

−2 is harmonic in D. By the mean value theorem
for harmonic functions,∫

T

log
1

��n�2
dm= log

1
��∗n�0��2

= log
1
�2
n

� (8.90)

If
∫

T
log� ′ dm >−� then by (8.90) and Jensen’s inequality, see Ex. 8.21:

∫
T

log� ′ dm=
∫

T

log

(∣∣∣∣�∗n�n
∣∣∣∣2 � ′

)
dm� log

(∫
T

∣∣∣∣�∗n�n
∣∣∣∣2 � ′ dm

)

� log

(∫
T

∣∣∣∣�∗n�n
∣∣∣∣2 d�

)
= log

1
�2
n




(8.91)

implying that � is a Szegő measure by Definition 8.40.
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Suppose now that � is a Szegő measure. Let

log+ x =max�logx
0� 
 log− x = log+ x− logx �

Observing that �log+ x�2 � x (see Ex. 8.18) and ��n�−2dm ∈ P�T�, we obtain by
Theorem 8.33 ∫

T

(
log+

1
��n�2

)2

dm�

∫
T

1
��n�2

dm= 1 
 (8.92)

which by (8.90) implies that∫
T

log−
1

��n�2
dm=

∫
T

log+
1

��n�2
dm+ log�2

n � 1+2 log� � (8.93)

For the sequence d�n = log ��n�−2dm of real Borel measures on T,

d�+n = log+
1

��n�2
dm 
 d�−n = log−

1
��n�2

dm �

Since ��n�n�0 is bounded, (8.93) implies that ��−n �n�0 has a ∗-weak limit point
& ∈M�T�:

∗-lim
n∈�
d�−n = &′dm+d&s 
 (8.94)

where d&s is the singular part of d&, &′ = d&/dm and �⊂ Z+.

By (8.92) �+n /dm is in the unit ball of L2�T�, which is compact in the weak topology
of L2�T�. It follows that any ∗-limit point of ��+n �n�0 inM�T� is absolutely continuous
with the Lebesgue derivative in this unit ball. Then there exist �′ ∈ � and �′ in the
unit ball of L2�T� such that

∗-lim
n∈�′
d�+n = �′dm 
 ∗-lim

n∈�′
d�n = d� 


d�= ��′ −&′�dm−d&s �
(8.95)

Let I be any open arc on T such that its end-points do not carry point masses d&s and
d�s. By Jensen’s inequality, see Ex. 8.21,

exp
{

1
�I�

∫
I
log

1
��n�2

dm

}
�

1
�I�

∫
I

dm

��n�2
� (8.96)

Applying Theorem 8.6 separately to ��+n �n∈�′ and ��−n �n∈�′ , we obtain

lim
n∈�

1
�I�

∫
I
log

1
��n�2

dm= ��I��I� � (8.97)

Applying Corollary 8.37 and Theorem 8.6, we obtain

lim
n

1
�I�

∫
I

dm

��n�2
= ��I��I� � (8.98)
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Substitution of (8.97) and (8.98) into (8.96) results in the inequality

��I�

�I� � log
��I�

�I� �

It follows by Lebesgue’s theorem on differentiation that

�′ � log � ′ (8.99)

almost everywhere on T. Passing to the limit (along �′) in (8.90), we obtain by (8.99)

−�< log
1
�2
+&s�T�=

∫
T

d�+&s�T�=
∫

T

�′dm�

∫
T

log� ′ dm � (8.100)

Combining (8.91) with (8.100) we see that∫
T

log� ′ dm= log
1
�2

 &s�T�= 0 
 (8.101)

which completes the proof of the theorem. �

Corollary 8.44 Let � be a Szegő measure and ��n�n�0 be the orthogonal polynomials
in L2�d��. Then

∗-lim
n

log
1

��n�2
dm= log � ′ dm (8.102)

in the weak topology of M�T�.

Proof Taking (8.99) into account, we obtain

�′ = log � ′ a.e. on T � (8.103)

Substitution of (8.103) into the last formula of (8.95) results in

d�= log � ′ dm= ��′ −&′�dm �
Since � is an arbitrary ∗-limit point of ��+n �n∈�, this implies that ∗- limn∈� d�+n =
�′dm. Since & is an arbitrary ∗-limit point of ��−n �n∈�, we conclude that ∗- limn d�n =
log � ′ dm. �

Corollary 8.45 Let � be a Szegő measure and Dn be the determinant of the matrix
Cn = �cj−i�ni
j=0. Then

lim
n
D1/n
n = exp

{∫
T

log � ′ dm
}
�

Proof By (8.64),
logDn
n

= 1
n

(
log

1

�2
1

+· · ·+ log
1
�2
n

)



which proves the corollary by (8.89). �

Szegő measures can be described in terms of their Schur’s functions.
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Theorem 8.46 (Boyd 1979) A function f ∈� is a Schur function of a Szegő measure
� if and only if ∫

T

log� ′ dm=
∫

T

log�1−�f �2�dm >−� � (8.104)

Proof Considering the real part of (8.3), we obtain∫
T

1−�z�2
��− z�2 d����=

1−�zf�z��2
�1− zf�z��2 
 �z�< 1 � (8.105)

Taking logarithms in (8.7), we obtain

log� ′ = log�1−�f �2�− log �1− �f����2 � (8.106)

Since  �1− zf� > 0 in D, 1− zf is an outer function. Therefore∫
T

log �1− �f �2 dm= log 1= 0�

Integration of (8.106) with respect to dm implies (8.104). �

Corollary 8.44 can be strengthened. The main tool for this is the next lemma, which
plays an important role in what follows.

Lemma 8.47 Let f be the Schur function of � ∈P�T� and ��n�n�0 be the orthogonal
polynomials in L2�d��. Let bn = �/�∗ be the Blaschke product defined in �8�74� by
the zeros of the orthogonal polynomials ��n�n�0. Then

��n�2� ′ =
1−�fn�2
�1− �bnfn�2

(8.107)

almost everywhere on T with respect to Lebesgue measure.

Proof By (8.17) and (8.22) we obtain the following identity on T:

1−�f �2 = �n−1�1−�fn�2�
�Bn−1+A∗n−1zfn�2

� (8.108)

Similarly

�1− zf �2 =
∣∣∣∣ �Bn−1− zAn−1�− �B∗n−1z−A∗n−1�zfn

Bn−1+A∗n−1zfn

∣∣∣∣2 �
By (8.7),

� ′ = 1−�f �2
�1− zf �2 =

�n−1�1−�fn�2�
��Bn−1− zAn−1�− �B∗n−1z−A∗n−1�zfn�2

�

From (8.30) we have

�∗n =
Bn−1− zAn−1√

�n−1


 �n =
zB∗n−1− zA∗n−1√

�n−1

� (8.109)
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thus we obtain

� ′ = 1−�fn�2
��∗n− z�nfn�2

� (8.110)

Since ��∗n� = ��n� on T, (8.107) follows from (8.110) on multiplying (8.110) by ��n�2.
�

Theorem 8.48 A measure � ∈P�T� is a Szegő measure if and only if

lim
n

∫
T

∣∣∣∣log
1

��n�2
− log� ′

∣∣∣∣ dm= 0 � (8.111)

Proof Taking logarithms in (8.107) we obtain

log���n�2� ′�= log�1−�fn�2�−2 log �1− �bnfn� 

which implies that∣∣∣∣log

1
��n�2

− log� ′
∣∣∣∣= log+ ��n�2� ′ + log− ��n�2� ′

� log
1

1−�fn�2
+2 log− �1− �bnfn�+2 log+ �1− �bnfn� �

(8.112)

The mean value over T of log �1−�bnfn� is zero. Applying this fact and the elementary
inequalities log�1+x�� x �− log�1−x�, 0 � x � 1, we obtain by (8.112)∫

T

∣∣∣∣log
1

��n�2
− log� ′

∣∣∣∣ dm
�

∫
T

log
1

1−�fn�2
dm+4

∫
T

log+ �1− �bnfn�dm

�

∫
T

log
1

1−�fn�2
dm+4

∫
T

�fn�dm

�

∫
T

log
1

1−�fn�2
dm+4

(∫
T

�fn�2 dm
)1/2

�

∫
T

log
1

1−�fn�2
dm+4

(∫
T

log
1

1−�fn�2
dm

)1/2

�

Since �an+k�k�0 are the Schur parameters of fn, fn must be the Schur function of a
Szegő measure by (8.89). By (8.89) and (8.104),∫

T

log
1

1−�fn�2
dm= log

�∏
k=n

1
1−�ak�2

−→
n

0 
 (8.113)

which proves the theorem. �
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Corollary 8.49 If � is a Szegő measure then for every �, 0< �� 1,

lim
n

∫
T

���n�2� ′�� dm= 1 � (8.114)

Proof Jensen’s inequality, see Ex. 8.21, implies that

exp
{∫

T

� log���n�2� ′�dm
}
�

∫
T

���n�2� ′�� dm� 1 �

The proof is completed by the use of Corollary 8.44. �

Corollary 8.50 For every Szegő measure � we have
∫

T
��n�2 d�s = 0.

Proof Applying Corollary 8.49 with �= 1, we obtain that

lim
n

∫
T

��n�2 d�s = 1− lim
n

∫
T

���n�2� ′�dm= 0 �

�

Given a Szegő measure � we define the Szegő function of � by

D�z�=D��
 z�= exp
{∫

T

�+ z
�− z log

√
� ′ dm���

}

 z ∈ D � (8.115)

In Smirnov’s factorization theory for functions in Hp this D is called the outer function
and is defined by �D� = √� ′ a.e. on T and D�0� > 0. In what follows we assume that
D−1 ≡ 0 in L2�d�s�. The reason for such an agreement is explained by the following
theorem.

Theorem 8.51 If � is a Szegő measure then

lim
n

∫
T

��∗n−D−1�2 d� = 0 � (8.116)

Proof By Corollary 8.50, by the definition of D and by the mean value theorem for
harmonic functions,∫

T

��∗n−D−1�2 d� =
∫

T

��∗n−D−1�2� ′ dm+o�1�

=
∫

T

��∗nD−1�2 dm+o�1�

= 2−2 Re
∫

T

�∗nDdm+o�1�

= 2−2 Re �∗nD�0�+o�1�= o�1� 

since limn��

∗
nD�0�� = 1 by Corollary 8.44 (observe that the �∗n are outer functions

satisfying ��∗n� = ��n� on T). �
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Corollary 8.52 (Geronimus 1958) If � is a Szegő measure, then

lim
n

∫
T

∣∣��n�2� ′ −1
∣∣ dm= 0 �

in particular ∗-limn ��n�2d� = dm.

Proof Apply Corollary 8.50 and the triangle inequality to (8.116). �

Theorem 8.53 If � is a Szegő measure with �s = 0 then

lim
n

∫
T

��∗n−1−D�dm= 0 �

Proof By Corollary 8.32 (putting k = 0) the function �∗n
−1 is a point of the unit

sphere in L2�T�. Next, �∗n
−1 ⇒ D uniformly on compact subsets of D by Corollary

8.44. Hence �∗n
−1 →D in the weak topology of L2�T�. It follows that∫

T

∣∣∣∣ 1
�∗n
−D

∣∣∣∣ dm= 2−2 Re
∫

T

D̄
1
�∗n
dm−→ 2−2 Re

∫
T

� ′dm= 0 


since �s = 0. �

174 Szegő measures and nonextreme points of �. Condition (8.104) can be
stated in terms of the convex geometry of �.

Theorem 8.54 A function f is an extreme point of � if and only if∫
T

log�1−�f �2�dm=−� � (8.117)

Proof The function f ∈ � is not an extreme point of � if and only if there are two
different functions f1 and f2 in � such that f = �f1+ f2�/2. Putting g = f1− f , we
see that this condition is equivalent to the existence of a nonzero function g such that
f ±g ∈�. By the parallelogram identity,

2��f �2+�g�2�= �f +g�2+�f −g�2 � 2 �

In other words, if f ∈ � is not an extreme point of � then there exists a nonzero
function g ∈ H� such that �g�2 � 1−�f �2. Then the integral on the left-hand side of
(8.117) converges since

∫
T

log �g�2 dm >−�.
If the integral in (8.117) converges then there is an outer function g ∈H� satisfying

�g� = 1− �f � almost everywhere on T. It follows that zng ∈ � and f ± zng ∈ � for
every nonnegative integer n. �

Let

P�z1
 z2�= log
1+#�z1
 z2�

1−#�z1
 z2�

 where #�z1
 z2�=

∣∣∣∣ z1− z2

1− z̄2z1

∣∣∣∣ 
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be the Poincaré metric; # is the pseudo-hyperbolic distance in D. There is a beau-
tiful description of Szegő measures in terms of Poincaré’s model of Lobachevskii’s
geometry. We begin with the following simple lemma.

Lemma 8.55 If f ∈� and An/Bn is an even convergent to the Wall continued fraction
of f then #�f
An/Bn�= �fn+1� on T.

Proof The pseudo-hyperbolic distance on D is invariant under Möbius transforma-
tions. Since for z ∈ T the Möbius transform (k�w� = �zw+ ak��1+ ākzw�−1 is a
conformal isomorphism of D, we obtain the lemma by induction from (8.11) and
(8.15). �

Theorem 8.56 A measure � ∈P�T� is a Szegő measure if and only if

lim
n

∫
T

P�f
An/Bn�dm= 0 � (8.118)

Proof By Lemma 8.55, on T we have

P�f
An/Bn�= log
1+�fn+1�
1−�fn+1�

� (8.119)

By Theorem 8.46
∫

T
log� ′ dm= ∫

T
log�1−�f �2�dm. By Theorem 8.43∫

T

log�1−�f �2�dm= log�n+
∫

T

log�1−�fn+1�2�dm �

It follows from (8.89) that � is a Szegő measure if and only if

lim
n

∫
T

log
1

1−�fn+1�2
dm= 0 � (8.120)

Next, by elementary calculus, for 0 � x � 1

x2 � log
1

1−x2
� log

1+x
1−x � 2x+ log

1
1−x2

� (8.121)

By (8.119) and the second inequality in (8.121), condition (8.118) implies (8.120)
showing that � is a Szegő measure. If � is a Szegő measure then (8.120) and the first
inequality in (8.121) imply that

0 � lim
n

∫
T

�fn+1�dm� lim
n

(∫
T

�fn+1�2 dm
)1/2

� lim
n

(∫
T

log
1

1−�fn+1�2
dm

)1/2

= 0 �

Together the last inequality in (8.121) this implies (8.118). �
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175 Bary’s theorem. In this paragraph we follow Khrushchev (1988). Non-Szegő
measures admit an interesting description in terms of Hilbert-space geometry. Com-
bining (8.65) and (8.68) we get

z�n =
�n
�n+1

�n+1−
�n+1�0�
�n�n+1

n∑
k=0

�k�0��k � (8.122)

Since f → zf is an isometry in L2�d��, the system �z�n�n�0 is also orthogonal in
L2�d��. By (8.62) and Lemma 8.41 it is complete in L2�d�� if and only if � is not a
Szegő measure. Elementary computations with (8.122) show that

�z�n−�n+1�2 = 2 �1−Re �z�n
�n+1��

= 2
(

1− �n
�n+1

)
= 2

(
1− �1−�an�2�1/2

)
� (8.123)

Notice that ��n+1�n�0 is not complete in L2�d��.

Theorem 8.57 (Bary 1944) Let 0 � dn �
√

2,
∑
n d

2
n = +�. Then for every orthog-

onal system �en�n�0 of unit vectors in a Hilbert space H there exists a noncomplete
orthogonal system �gn�n�0 of unit vectors in H such that �en−gn� = dn, n� 0.

Proof We assume first that dn <
√

2 for every n and put

an =
(
1− �1−d2

n/2�
2
)1/2


 n= 0
1
 � � �

Since dn <
√

2, the parameters an satisfy 0� an < 1 for every n. By Theorem 8.34 there
exists a unique probability measure � on T such that �an�n�0 is the sequence of the
parameters of the orthogonal polynomials ��n�n�0 in L2�d��. Let en = z�n, gn = �n+1,
n � 0. It follows from (8.123) that �en− gn�2 = d2

n. Since gn⊥�0, n = 0
1
 � � � , the
system �gn�n�0 cannot be complete in L2�d��. However,

lim
n

1
�2
n

= lim
n

n∏
k=0

�1−�ak�2�= lim
n

n∏
k=0

(
1− d

2
k

2

)2

= 0 


which shows that � is not a Szegő measure and therefore the system �en�n�0 is
complete in L2�d��.

Suppose now that �=�n � dn=
√

2� 	= � and put d ′n=min�dn
1�. Then
∑
n d

′
n

2=+�
and the above construction can be applied to �d ′n�n�0. If n ∈ � and % ∈ T then
�en−%gn�2 = 2−2 Re %̄�en
 gn�. For %= 1, then the left-hand side of the last formula
is d ′n

2 = 1, implying that Re �en
 gn�= 1/2. It follows that there exists a %n ∈ T such
that Re �en
%ngn�= 0. Then for n ∈� we have �en−%ngn�2 = 2. �
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8.4 Erdös measures

176 Schur functions of Erdös measures. A measure � ∈ P�T� is called an
Erdös measure if � ′ = d�/dm> 0 almost everywhere on T. The set 	�T� of all Erdös
measures on T is a convex subset of P�T�. It follows from (8.7) that � ∈ 	�T� if and
only if the Schur function f of � satisfies �f � < 1 a.e. on T. Erdös measures can be
described in terms of their Schur functions �fn�n�0.

Theorem 8.58 If f ∈� then �f �< 1 a.e. on T if and only if

lim
n

∫
T

�fn�2 dm= 0 
 (8.124)

where �fn�n�0 are the Schur functions of f .

Proof We observe first that the condition �f �< 1 a.e. is necessary for (8.124). Indeed,
if �f � = 1 on E ⊂ T, m�E� > 0, then by (8.108) �fn� = 1 on E for every n, which does
not allow (8.124) to hold.

Suppose now that �f �< 1 a.e. on T. Multiplying (8.107) by

�1− �bnfn�2 = 1+�fn�2−2 Re ��bnfn� 


we obtain after elementary algebra

�fn�2 =
1−��n�2� ′
1+��n�2� ′

+Re ��bnfn�+
��n�2� ′ −1
1+��n�2� ′

Re ��bnfn� � (8.125)

The mean value theorem for analytic functions,∫
T

Re ��bnfn�= Re
∫

T

�bnfn dm= 0 


combined with (8.125) results in the inequality∫
T

�fn�2 dm� 2
∫

T

∣∣∣∣1− 2��n�2� ′
1+�n�2� ′

∣∣∣∣ dm � (8.126)

It is clear that

gn
def= 2��n�2� ′

1+��n�2� ′
� ��n�

√
� ′ � (8.127)

It follows that for any arc I ⊂ T,

1
�I�

∫
I
g2
n dm�

1
�I�

∫
I
��n�2 d� �

For I = T this implies that∫
T

gn dm�

(∫
T

g2
n dm

)1/2

�

(∫
T

��n�2 d�
)1/2

= 1 � (8.128)
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By Cauchy’s inequality(
1
�I�

∫
I

√
� ′ dm

)2

�

(
1
�I�

∫
I
gn dm

)(
1

2�I�
∫
I

1
��n�2

+� ′ dm
)
� (8.129)

Since 0 � gn � 2 on T, the sequence �gn�n�0 is bounded in L��T�. Let g be any
∗-weak limit point of �gn�n�0 in L��T�. Passing to the limit in the above inequality
along a subsequence corresponding to g, and applying Corollary 8.37 and Lemma 8.5,
we obtain that(

1
�I�

∫
I

√
� ′ dm

)2

�

(
1
�I�

∫
I
g dm

)(
��I�

2�I� +
1

2�I�
∫
I
� ′dm

)



if we assume additionally that the ends of I do not carry point masses of � . By
Lebesgue’s theorem on differentiation,

� ′ � g
(

1
2�

′ + 1
2�

′) a.e. on T �

Since � ′ > 0, it follows that 1 � g a.e. on T and hence that

1=
∫

T

g dm= lim
n

∫
T

gn dm

by the ∗-weak convergence. Comparing this inequality with (8.128), we obtain

lim
n

∫
T

gn dm= lim
n

∫
T

g2
n dm= 1 �

Then the elementary calculation

lim
n

∫
T

�1−gn�2 dm= 1−2 lim
n

∫
T

gn dm+ lim
n

∫
T

g2
n dm= 0

completes the proof. �

Let us compare Theorems 8.46 and 8.58. Since obviously

log
1

1−x = log�1+x+x2+· · · �� log

( �∑
k=0

xk

k!

)
= x 


(8.113) implies that

∫
T

�fn�2 dm�

∫
T

log
1

1−�fn�2
dm= log

�∏
k=n

1
1−�ak�2

−→
n

0 


demonstrating a subtle difference between Erdös and Szegő measures.
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177 Rakhmanov’s theorem. No simple descriptions of Erdös measures in terms
of parameters similar to Szegő measures are known. However, there is a beautiful
theorem of Rakhmanov (1977, 1983).

Theorem 8.59 (Rakhmanov) If � ∈ 	�T� with parameters �an�n�0 then limn an = 0.

Proof Since

�an� = �fn�0�� =
∣∣∣∫

T

fn dm
∣∣∣� (∫

T

�fn�2 dm
)1/2


 (8.130)

the proof is completed by Theorem 8.58. �

Theorem 8.60 Let � ∈P�T�, ��n�n�0 be the orthogonal polynomials in L2�d�� and
f the Schur function of � . Then∫

T

∣∣��n�2� ′ −1
∣∣ dm� 12

∫
T

�fn�2 dm
 n= 0
1
 � � � (8.131)

Proof It follows from (8.107) that

���n�2� ′ −1��1− �bnfn�2 = 2 Re ��bnfn−�fn�2� a.e. on T � (8.132)

Let � ∈ T be such that

���n�2�� ′ −1�=−���n�2�� ′ −1�− < 0 �

It follows from (8.132) that Re ��bnfn� < �fn�2 and therefore

�1− �bnfn�� 1−Re ��bnfn� > 1−�fn�2 �
Since �Re ��bnfn��� �fn�� 1 a.e. on T, (8.132) implies that

���n�2� ′ −1�− �1−�fn�2�2 � 2�fn�+2�fn�2 � (8.133)

Notice that ���n�2� ′ −1�− � 1, since ��n�2� ′ � 0. Keeping this in mind and applying
the elementary identity �1− �fn�2�2 = 1− 2�fn�2+ �fn�4 to (8.133), we arrive at the
inequality

���n�2� ′ −1�− � 2�fn�+2�fn�2+2�fn�2 � 6�fn�2 
 (8.134)

implying ∫
T

���n�2� ′ −1�− dm� 6
∫

T

�fn�dm 
 (8.135)

since �fn�� 1. Finally,∫
T

���n�2� ′ −1�+ dm

�

∫
T

���n�2� ′ −1�dm+
∫

T

���n�2� ′ −1�− dm� 6
∫

T

�fn�dm 


since
∫ ��n�2� ′ dm�

∫ ��n�2d� = 1. �
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If � ∈P�T� is a Szegő measure then the sequence ��∗n�n�0 converges in L2�d�� to
D−1 by Theorem 8.51. Since any Szegő measure is an Erdös measure, this sequence
converges toD−1 in measure on T. However, if some subsequence of ��∗n�n�0 converges
in measure on some measurable subset E ⊂ T of positive Lebesgue measure, then �
is a Szegő measure. This observation is due to Geronimus (1958, Theorem 5.9) and
makes use of the Khinchin–Ostrovskii theorem 8.8. Although it is meaningless to talk
of the convergence of ��∗n�n�0 on T if � is not a Szegő measure, no obstacles exist
for the convergence of ���n��n�0 on T if � is an Erdös measure. And in fact this
convergence holds by (8.131).

Theorem 8.61 Let � ∈P�T�, f = f� and ��n�n�0 be the orthogonal polynomials in
L2�d��. Then the following conditions are equivalent:

(a) � is an Erdös measure;
(b) the sequence �fn�n�0 converges to 0 in measure on T;
(c) limn

∫
T

∣∣��n�2� ′ −1
∣∣ dm= 0;

(d) there exists �, 0< �< 1, such that

lim
n

∫
T

���n�2� ′�� dm= 1 � (8.136)

(e) the equality �8�136� holds for every �, 0< �� 1.

Proof �a�⇒ �b� by Theorem 8.58. �b�⇒ �c� by Theorem 8.60. �c�⇒ �d�. Using
the elementary inequality

�√a−√b��√�a−b� 
 a
 b > 0 


we obtain by Jensen’s inequality, Ex. 8.21,∫
T

∣∣∣��n�√� ′ −1
∣∣∣ dm�

∫
T

√∣∣∣��n�2� ′ −1
∣∣∣dm�

√∫
T

∣∣∣��n�2� ′ −1
∣∣∣dm


implying (8.136) with �= 1/2.
�d�⇒ �e�. Let "n���=

∫
T
���n�2� ′�� dm 
0<�� 1. The function "n is logarithmic

convex, while �→ "n���
1/� increases on �0
1
. Since obviously "−n�1� � 1, we

obtain that limn "n���= 1 if limn "n��0�= 1 and �0 � �� 1. Let now 0< �< �0 <

1, limn "n��0� = 1. Then �0 = �t0 + t1, where t0 + t1 = 1, ti > 0. The logarithmic
convexity of "n implies "n��0�� "n���

t0"n�1�
t1 . Hence limn "n���= 1.

�e� ⇒ �a�. Applying the identity �a− b� =
∣∣∣√a−√b∣∣∣ ∣∣∣√a+√b∣∣∣ followed by

Cauchy’s inequality, we obtain∫
T

∣∣��n�2� ′ −1
∣∣ dm� 2

(∫
T

���n�
√
� ′ −1�2dm

)1/2

= 2�1+"n�1�−2"n�1/2��
1/2 → 0 


which obviously implies that � ′ > 0 a.e. on T. �
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178 Erdös measures and nonexposed points of �. A point x in the unit ball,
ballX, of a Banach space X is called an exposed point of ballX if there is an x∗ in
the conjugate space X∗ such that �x∗� = x∗�x� = 1 but �x∗�y�� < 1 for every y 	= x,
y ∈ ballX.

Exposed points of � were described by Amar and Lederer (1971), who applied
the approach developed by Fisher (1969). By Fatou’s theorem, Garnett (1981), every
element f
 f ∈ H�, can be identified with its radial limits on T. Therefore every
f ∈H� determines the set 
 = �t ∈ T � �f�t�� = 1� up to a subset of m-measure zero.

Theorem 8.62 (Amar–Lederer) A function f is an exposed point of � if and only
if m�
�f�� > 0.

Although historically the theory of the Hardy algebra H� goes back to Nevanlinna’s
interpolation problem, which in fact Nevanlinna solved with an analogue of Thiele
continued fractions, see Garnett (1981, Chapter IV, Section 6), we do not have the
space to discuss this interesting topic here. Instead we refer the interested reader to
Garnett (1981) for the theory of Hardy algebra and to Havin (1974) for a simple proof
of the Amar–Lederer theorem.

Theorem 8.63 A measure � ∈ P�T� is an Erdös measure if and only if the Schur
function f of � satisfies P�f
An/Bn�⇒ 0 in measure on T.

Proof Apply Lemma 8.55 and Theorem 8.58. �

8.5 The continuum of Schur parameters

179 The convergence of the parameters. Following the analogy between regular
and Wall continued fractions we extend the results of §23, Section 1.3, to Schur’s
parameters. By (8.9) the Schur parameters

�f
def= �a0
 a1
 a2
 � � ��

of f ∈� make either an infinite sequence a= �an�n�0 with domain ��a�=Z+ (in this
case �an� < 1 for all n) or a finite sequence a = �an�kn=0 with domain ��a� = �0
 k

(in this case �an� < 1 for n 	= k and �ak� = 1). As in the case of the real numbers,
�fn = �an
an+1
 an+2
 � � ��. We denote by �� the set of all sequences in D satisfying

�an�< 1

{
n ∈ Z+
 if ��a�= Z+ �

0 � n < k 
 �ak� = 1
 if ��a�= �0
 k
 �
We equip �� with the topology of point-wise convergence. Similar to R a sequence
�aj�j�0 in �� is said to converge to a ∈ �� if

lim
j
ajn = an 
 0 � n� k 
 ��a�= �0
 k
 �
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In this topology �� is a compact space.

Theorem 8.64 The mapping � ��→ �� is a homeomorphism.

The following lemma is crucial for the proof of Theorem 8.64.

Lemma 8.65 Let �f k�k�0 be a sequence in �, ak = �akn�n�0 the Schur parameters
of fk and �f kn �n�0 the Schur functions of fk. Let �an�n�0 be the Schur parameters of
f ∈� and �fn�n�0 its Schur functions. Suppose that

lim
k
f k�z�= f�z� (8.137)

for every z ∈ D. Then for every n

lim
k
f kn �z�= fn�z� (8.138)

uniformly on compact subsets of D and in particular

lim
k
akn = an � (8.139)

Proof By Cauchy’s integral formula (8.137) is equivalent to (8.138) for n= 0. Next,
we have

zf kn+1 =
fkn −akn
1− āknf kn

� (8.140)

If (8.138) holds for some n then limk a
k
n = an (put z= 0 in (8.138)). If �an� = 1 then

there is nothing to prove since fn ≡ an and f is a finite Blaschke product of order n.
In this case fn+1 does not exist. If �an�< 1 then

fkn −akn
1− āknf kn

− fn−an
1− ānfn

= �f
k
n −fn�+ �an−akn�+ �ākn− ān�fnf kn +aknānfn−anāknf kn

�1− āknf kn ��1− ānfn�
�

It follows that for any compact subset F ⊂ D, 0 ∈ F, we have

sup
F

∣∣∣∣ fkn −akn1− āknf kn
− fn−an

1− ānfn

∣∣∣∣� 6 supF �fkn −fn�
�1−�akn���1−�an��




which by (8.140) implies that supF �fkn+1−fn+1� → 0 as k→�. �

Proof of Theorem 8.64 By Schur’s theorem 8.16, the Schur parameters uniquely
determine the corresponding function f ∈�. This fact, combined with the compactness
of � in the topology of uniform convergence, implies that the converse of Lemma
8.65 is also true. Indeed, suppose that (8.139) holds for every n. Let g be any limit
point of �f k�k�0. Applying Lemma 8.65 to any subsequence of �f k�k�0 converging to
g we conclude that g = f , since g has the same Schur parameters as f . �
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Since � is a metric space, the metric can be defined by, for instance,

#�f
 g�= max
�z��1/2

�f�z�−g�z�� �
�� is a metric space too.

Corollary 8.66 Let f ∈ �. Then limn an = 0 if and only if fn�z�⇒ 0 uniformly on
compact subsets of D.

Combining Theorem 8.64 with Corollary 8.3 and statement (8.4) of Theorem 8.2, we
obtain a sequence of homeomorphisms

P�T�
�→R�D�


→�
�→ �� �

The composite map � �
 �� assigns Verblyunsky parameters �an�n�0 to every
probability measure � . By (8.75),

�bn = �−ān−1
−ān−2
 � � � 
−ā0
1� � (8.141)

The Blaschke products �bn�n�0 together with the Schur functions �fn�n�0 play an
important role in Schur’s algorithm. Therefore we call them inverse Schur functions.

180 An analogue of Lagrange’s formula. By (8.50),

F��z�− '
∗
n�z�

�∗n�z�
= zn

�n�z��
∗
n�z�

{∫
T

�+ z
�− z ��n����

2 d�−1
}
� (8.142)

It follows from (8.142) that the expression in the braces must vanish at the zeros of �n
or equivalently at the zeros of the inverse Schur function bn. Hence if we can express
the expression in the braces in terms of fn and bn then we will obtain an analogue of
Lagrange’s formula (1.50) for R�D�. See also (E8.10).

Theorem 8.67 Let � ∈P�T� and ��n�n�0 be the orthogonal polynomials in L2�d��.
Let f = 
 �� ��� be the Schur function of � . Then∫

T

�+ z
�− z ��n����

2 d� = 1+ zfnbn
1− zfnbn


 z ∈ D � (8.143)

Proof Observe first that for n = 0 (8.143) reduces to (8.3). Suppose first that d� =
� ′dm. By Lemma 8.47 and by Fatou’s theorem,

��n�2� ′ =
1−�fn�2
�1− �bnfn�2

= Re
1+ �bnfn
1− �bnfn

a.e. on T � (8.144)

The analytic function z %−→ �1+ zbnfn��1− zbnfn�−1 equals 1 at z = 0 and its real
part is positive in D. By Theorem 8.2 it is the Schwartz integral of � ∈P�T�. Now
(8.144) implies that �′ = ��n�2� ′ a.e. on T:∫

T

��n�2� ′dm=
∫

T

��n�2d� = 1 �
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It follows that d�= �′dm= ��n�2� ′dm.

Let � ∈P�T� be an arbitrary measure. By Corollary 8.32 the Fourier coefficients of
��n�−2dm and d� coincide for �k�� n. By Theorem 8.31 �0
 � � � 
�n are orthogonal in
L2�d�� and L2���n�−2dm�. Since the theorem holds for ��n+k�−2dm, k� 0, we obtain∫

T

�+ z
�− z ��n�

2 dm

��n+k�2
= 1+ zbngkn

1− zbngkn

 �z�< 1 
 (8.145)

where gkn are the Shur functions of order n of An+k−1/Bn+k−1. By Theorem 8.16,
limk An+k−1

/
Bn+k−1 = f uniformly on compact subsets of D. By Lemma 8.65,

gkn�z�⇒ fn�z� 
 k→� 
 z ∈ D � (8.146)

Taking into account Corollary 8.37 and (8.146) we complete the proof by taking the
limit of (8.145) as k→�. �

Corollary 8.68 Let � ∈P�T�, ��n�n�0 be the orthogonal polynomials in L2�d�� and
�an�n�0 the parameters of � . Then for �z�< 1,

∫
T

�+ z
�− z

∣∣∣∣ �n�n+1

∣∣∣∣2 dm= 1+ zanbn�z�
1− zanbn�z�


 (8.147)

1
2

∫
T

�+ z
�− z

(
1+

∣∣∣∣ �n�n+1

∣∣∣∣2
)
dm= 1

1− zanbn�z�
= �∗

n�z�

�∗
n+1�z�

� (8.148)

Proof Since the Schur function of order n for An/Bn is the constant an, (8.147) is a
direct corollary of Theorem 8.67. Formula (8.148) follows from (8.147). �

181 Expansions of Schur functions

Theorem 8.69 Let f ∈ �, �fn�n�0 be its Schur functions and �an�n�0 its Schur
parameters and An/Bn the even convergents to the Wall continued fraction of f . Then

f�z�=
�∑
n=0

anz
n
�∏
k=0

�1− ākfk� 
 (8.149)

f�z�=a0+
�∑
n=0

an+1z
n+1 �n
Bn+ zA∗nfn+1


 (8.150)

where both series converge uniformly on compact subsets of D.

Proof Iterating the identity fn�z�= an+ �1− ānfn�zfn+1, we obtain

f�z�= a0+ �1− ā0f0�a1z+ �1− ā0f0��1− ā1f1�a2z
2+· · ·

+ �1− ā0f0� · · · �1− ān−1fn−1�z
nfn �

(8.151)
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By (E8.1) and (E8.7) we have

�n
Bn+ zA∗nfn+1

=
n∏
k=0

�1− ākfk� � (8.152)

Finally, ∣∣∣∣ �n
Bn+ zA∗nfn+1

∣∣∣∣=
√
�n

�Bn�
√
�n

�1+ zfn+1A
∗
n/Bn�

�

√
�n

1−�z� (8.153)

completes the proof. �

Theorem 8.70 Let f = f� , � ∈ P�T� and �an�n�0 be the Schur parameters of f .
Then the series

∑�
n=0 ānfn�z� converges uniformly on compact subsets of D if and only

if � is a Szegő measure.

Proof If z= 0 then the series turns into
∑�
n=0 �an�2 <+�, implying that � is a Szegő

measure. Suppose now that
∑�
n=0 �an�2<+� and �z�< 1−�, �> 0. Applying Theorem

8.69 to fn, we obtain by (8.149), (8.152) and (8.153) that fn�z�=
∑�
k=0 an+kz

khn
k�z�,
where �hn
k�z��� �−1 in �z�� 1−�. It follows that

n+p∑
k=n
�ānfn�z���

n+p∑
k=n

�∑
j=0

�anan+j��−1�1−��j � �−2
�∑
k=n
�an�2

for �z�� 1−�, which proves the theorem. �

8.6 Rakhmanov measures

182 A test for Rakhmanov measures. A measure � ∈P�T� is called a Rakhmanov
measure if

∗-lim
n
��n�2d� = dm � (8.154)

By Theorem 8.61(c) any Erdös measure is a Rakhmanov measure.

Lemma 8.71 Let � ∈P�T� and let �fn�n�0 be the Schur functions and �bn�n�0 the
inverse Schur functions of � . Then � is a Rakhmanov measure if and only if fnbn ⇒ 0
uniformly on compact subsets of D.

Proof Apply Theorem 8.67. �

It follows from (8.154) that Rakhmanov measures cannot be supported by compact set
smaller than T.
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183 An extension of Theorem 8.58. Given any � ∈P�T� we denote by E=E���
the Lebesgue support �� ∈ T � � ′ > 0� of the absolutely continuous part of � . The
following theorem plays a crucial role in the solution of the convergence problem for
Schur’s algorithm.

Theorem 8.72 Let � ∈P�T� be a Rakhmanov measure and ��n�n�0 be the orthogonal
polynomials in L2�d��. Then

lim
n

∫
E���

∣∣∣∣1− 2��n�2� ′
1+��n�2� ′

∣∣∣∣
2

dm= 0 � (8.155)

Proof By (8.127),
1
�I�

∫
I
g2
n dm�

1
�I�

∫
I
��n�2d� � (8.156)

Since � is a Rakhmanov measure, Helly’s theorem 8.6 implies that

lim
n

1
�I�

∫
I
g2
n dm� 1 (8.157)

(where lim means lim sup) and consequently that

lim
n

1
�I�

∫
I
gn dm� 1 � (8.158)

Let g be any limit point of �gn�n�0 and G any limit point of �g2
n�n�0 in the ∗-weak

topology of L��T�. By (8.129),

1
�I�

∫
I

√
� ′ dm�

(
1
�I�

∫
I
gn dm

)1/2 ( 1
2�I�

∫
I

1
��n�2

+� ′ dm
)1/2




which obviously implies that

1
�I�

∫
I

√
� ′ dm�

(
1
�I�

∫
I
g2
n dm

)1/4 ( 1
2�I�

∫
I

1
��n�2

+� ′ dm
)1/2

�

Passing to the limit in the above inequalities along the corresponding sequences, we
obtain by Theorem 8.6 and Corollary 8.37

1
�I�

∫
I

√
� ′ dm�

(
1
�I�

∫
I
g dm

)1/2 (
��I�

2�I� +
1

2�I�
∫
I
� ′ dm

)1/2




1
�I�

∫
I

√
� ′ dm�

(
1
�I�

∫
I
Gdm

)1/4 (
��I�

2�I� +
1

2�I�
∫
I
� ′ dm

)1/2
(8.159)

for every open arc I whose end-points are not point masses of � . Applying Lebesgue
differentiation to (8.159), we obtain

√
� ′ �

√
g
√
� ′ 


√
� ′ �

√
G
√
� ′ a.e. on T �
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It follows that

1 � min�g
G� a.e. on E��� � (8.160)

However, by (8.157) and (8.158),

1
�I�

∫
I
gdm� 1 


1
�I�

∫
I
Gdm� 1 (8.161)

for any open arc I . Applying Lebesgue’s theorem on differentiation, we conclude that

max�g
G�� 1 a.e. on T � (8.162)

Obviously gn = g2
n = 0 on T \E���, which implies that g ≡ G ≡ 0 on T \E���. It

follows from (8.161) and (8.162) that g = G = 1E , where 1E is the indicator of E.
Since g and G were chosen to be arbitrary ∗-weak limits points of �gn�n�0 and �g2

n�n�0

respectively, we may conclude that both these sequences converge to 1E in the ∗-weak
topology of L��T�. Hence∫

E
�1−gn�2 dm= �E�+

∫
T

g2
n dm−2

∫
T

gn dm−→ 0

as n→�. �

184 The Máté–Nevai condition. A sequence �an�n�0 in D is said to satisfy the
Máté–Nevai condition if

lim
n
anan+k = 0 for k= 1
2
 � � � (8.163)

Theorem 8.73 Let � ∈ P�T� with parameters �an�n�0. Then � is a Rakhmanov
measure if and only if �an�n�0 satisfies the Máté–Nevai condition.

Proof Suppose first that �an�n�0 satisfies the Máté–Nevai condition. We have∫
T

���n−�n+1�2d� = 2�1−√
1−�an�2�� 2�an�2 � (8.164)

Since obviously �k�n ⊥ �k�n−k, �n+k ⊥ �k�n−k and �n+k ⊥ �n, we obtain∫
T

�k��n�2d� =−
∫

T

��k�n−�n+k���k�n−k−�n�d� (8.165)

for k= 1, 2, � � � The following identities are obvious:

�k�n−�n+k= ��k�n− �k−1�n+1�

��k−1�n+1− �k−2�n+2�+· · ·
+ ���n+k−1−�n+k� 


�k�n−k−�n= ��k�n−k− �k−1�n−k+1�

+ ��k−1�n−k+1− �k−2�n−k+2�+· · ·
+ ���n−1−�n� �

(8.166)
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Taking into account (8.164) and (8.166), we obtain from (8.165) by Cauchy’s inequality
(for k= 1, 2, � � � ) that∣∣∣∫

T

�k��n�2d�
∣∣∣� ��k�n−�n+k���k�n−k−�n�
� 2��an�+ �an+1�+ · · ·+ �an+k−1����an−k�+ · · ·+ �an−1�� �

(8.167)

By the Máté–Nevai condition the right-hand side of (8.167) tends to zero as n→�.
Hence � is a Rakhmanov measure.

Suppose now that � is a Rakhmanov measure. Then by Lemma 8.71 fnbn ⇒ 0
uniformly on compact subsets of D. By (8.9) and (8.75),

zbnfn =
bn+1+ ān
1+anbn+1

zfn+1+an
1+ ānzfn+1

�

It follows that

zbnfn�1+anbn+1��1+ ānzfn+1�= zbn+1fn+1+anbn+1+�an�2+ ānzfn+1 


which obviously implies that

anbn+1+�an�2+ ānzfn+1 ⇒ 0 � (8.168)

Multiplying (8.168) by fn+1, we obtain the more symmetric condition

anfn+1�an+ zfn+1�⇒ 0 � (8.169)

Lemma 8.74 If f ∈� satisfies �8�169� then its Schur parameters �an�n�0 satisfy the
Máté–Nevai condition.

Proof We will prove that

anfn+k�an+ zfn+1�⇒ 0 
 n→� 
 (8.170)

uniformly on compact subsets of D for k = 1, 2, � � � If k = 1 then (8.170) coincides
with (8.169). Suppose now that (8.170) holds for some k and prove that it holds for
k+1. By (8.9),

fn+k�1+ ān+kzfn+k+1�= zfn+k+1+an+k � (8.171)

It follows from (8.170), putting z= 0, that

�anan+k��
√
�a2
nan+k� → 0 
 n→� �

Multiplying (8.171) by an�an+ zfn+1�, we obtain from (8.170) that

anfn+k+1�an+ zfn+1�⇒ 0

as n→�, proving the lemma. �

To complete the proof of the theorem apply Lemma 8.74. �
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Theorem 8.75 The following are equivalent:

(a) � is a Rakhmanov measure;
(b) the parameters �an�n�0 of � satisfy the Máté–Nevai condition;
(c) anfn+1 ⇒ 0 uniformly on compact subsets of D;
(d) anbn ⇒ 0 uniformly on compact subsets of D;
(e) bnfn ⇒ 0 uniformly on compact subsets of D;
(f) ∗- limn ��n/�n+1�2dm= dm;
(g) ∗- limn ��n/�n+l�2dm= dm for every l� 0;
(h) �∗

n+1�z�/�
∗
n�z�⇒ 1 
 n→�, uniformly on compact subsets of D.

Proof �a�⇔ �b� by Theorem 8.73. �b�⇒ �c�: by (8.150) and (8.153) we have

fn+1 = an+1+
�∑
k=1

an+1+kz
khk
n�z� 
 �hk
n�z��� �1−�z��−1 � (8.172)

Multiplying (8.172) by an, we obtain (c).
�c�⇒ �b�: if anfn+1 ⇒ 0 then (8.169) is true, which implies (b) by Lemma 8.74.

�b�⇒ �d� is similar to �b�⇒ �c�, since the Schur parameters of bn are given in (8.141).
�d�⇒ �b� If anbn�z�⇒ 0 then anan−1 → 0 (putting z= 0). By (8.75) we have

bn�z��1− zan−1bn−1�z��= zbn−1�z�− ān−1 � (8.173)

Multiplying (8.173) by an, we obtain that anbn−1�z�⇒ 0 and therefore anan−2 → 0.
Now the proof is completed by induction.
�a�⇔ �e� by Lemma 8.71. �b�⇔ �f� and �b�⇔ �h� by Corollary 8.68 and by the

already proved equivalence �d�⇔ �b�. �g�⇒ �f� is obvious.
�b�⇒ �g� By Theorem 8.33 the parameters of ��n+l�−2dm are

�a0
 � � � 
 an+l−1
0
0 � � �� �

Putting d� = ��n+l�−2dm in (8.167), we get∣∣∣∣∫
T

�k
∣∣∣∣ �n�n+l

∣∣∣∣ dm
∣∣∣∣

� 2��an�+ �an+1�+ · · ·+ �an+l−1����an−k�+ · · ·+ �an−1��→ 0 


where n→�, for k= 1, 2, � � � �

8.7 Convergence of Schur’s algorithm on T

185 The convergence theorem. Since An/Bn ⇒ f in D by Schur’s theorem
8.16, it is natural to investigate the convergence of An/Bn on T. By Theorem 8.56
Szegő measures � can be characterized by the An/Bn to f = f� in terms of the
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integrated Poincaré metric. The Schur functions of Erdös measures are described from
this point of view by Theorem 8.63. Now we are going to study the convergence of
An/Bn in L2�dm�.

Lemma 8.76 If f ∈� is the Schur function of � ∈P�T� and is such that

lim
n

∫
E���

∣∣∣∣f − AnBn
∣∣∣∣2 dm= 0 (8.174)

then An/Bn→ f in L2�dm�.

Proof By (8.26) f and An/Bn have matching Taylor polynomials at z= 0 of order n.
Hence by Parseval’s identity and Cauchy’s inequality,

∫
T

∣∣∣∣f − AnBn
∣∣∣∣2 dm= ∫

T

�f �2 dm+
∫

T

∣∣∣∣AnBn
∣∣∣∣2 dm−2 Re

∫
T

f
An
Bn
dm

=
∫

T

∣∣∣∣AnBn
∣∣∣∣2 dm− ∫

T

�f �2 dm+o�1� � (8.175)

By the triangle inequality,

∫
E

∣∣∣∣f − AnBn
∣∣∣∣2 dm�

{(∫
E
�f �2 dm

)1/2

−
(∫

T

∣∣∣∣AnBn
∣∣∣∣2 dm

)1/2}2




which by (8.174) implies that

∫
E

∣∣∣∣AnBn
∣∣∣∣2 dm− ∫

E
�f �2 dm= o�1� 
 n→� � (8.176)

Since �f � = 1 on T\E and �An/Bn�< 1 on T by (8.18), we have

∫
T\E

∣∣∣∣AnBn
∣∣∣∣2 dm− ∫

T\E
�f �2 dm < 0 � (8.177)

Taking the sum of (8.176) and (8.177), we obtain from (8.175) that

0 �

∫
T

∣∣∣∣f − AnBn
∣∣∣∣2 dm� o�1� 
 n→+� 


proving the lemma. �

Theorem 8.77 For the Schur function f of a Rakhmanov measure,

lim
n

∫
T

∣∣∣∣f − AnBn
∣∣∣∣2 dm= 0 �
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Proof By Lemma 8.71 fnbn ⇒ 0 uniformly on compact subsets of D. The space
L��T� is the dual space to L1�T�. Since the linear span of Poisson kernels is dense
in L1�T� and fnbn ∈ �, we have limn

∫
fnbnGdm = 0 for every G ∈ L1�T�. Hence

fnbn→ 0 in the ∗-weak topology of L��T�. In particular,

lim
n

∫
E
�bnfn dm= 0 (8.178)

for every measurable E ⊂ T. Integration of (8.125), together with (8.178), gives∫
E
�fn�2 dm=

∫
E
�1−gn�dm+Re

∫
E
�bnfn

+
∫
E
�gn−1�Re ��bnfn�dm

� 2
∫
E
�1−gn�dm+o�1�

(8.179)

as n→�. Resolving (8.22) in fn+1, see also (E8.3) and (E8.5), we obtain

�fn+1�
∣∣∣∣1− AnBn

∣∣∣∣=
∣∣∣∣f − AnBn

∣∣∣∣ (8.180)

on T. Since An/Bn ∈� and f ∈�, (8.179) and (8.180) imply that

∫
E

∣∣∣∣f − AnBn
∣∣∣∣2 dm� 4

∫
E
�fn+1�2 dm� 8

(∫
E
�1−gn�2 dm

)1/2

+o�1� �

To complete the proof apply Theorem 8.72 and Lemma 8.76. �

Theorem 8.78 Let f ∈ �, let �an�n�0 be its Schur parameters and let An/Bn be the
even convergents of the Wall continued fraction for f . Then

lim
n

∫
T

∣∣∣∣f − AnBn
∣∣∣∣2 dm= 0

if and only if either f is an inner function or limn an = 0.

Proof If f is an inner function then �E���� = 0 and we conclude that limn An/Bn= f in
L2�T� by Lemma 8.76. If limn an = 0 then fn ⇒ 0 uniformly on compact subsets of D

by Corollary 8.66. By Lemma 8.71 � is a Rakhmanov measure. Hence limn An/Bn = f
in L2�dm� by Theorem 8.77. The necessity follows from the lemma.

Lemma 8.79 Let f ∈� and �f �< 1 on a set E ⊂ T, �E�> 0. If

lim
n

∫
E

∣∣∣∣f − AnBn
∣∣∣∣ dm= 0 (8.181)

then limn an = 0.
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Proof By (8.14),

An+1

Bn+1

− An
Bn
= an+1z

n+1 �n
BnBn+1

= an+1z
n+1√

1−�an�2
√
�n

Bn

√
�n+1

Bn+1

�

Using (8.18) we now obtain∫
E

∣∣∣∣An+1

Bn+1

− An
Bn

∣∣∣∣ dm
= �an+1�√

1−�an�2
∫
E

(
1−

∣∣∣∣AnBn
∣∣∣∣2
)1/2 (

1−
∣∣∣∣An+1

Bn+1

∣∣∣∣2
)1/2

dm �

It follows from (8.181) that An/Bn⇒ f on E. Therefore

lim
n

∫
E

(
1−

∣∣∣∣AnBn
∣∣∣∣2
)1/2 (

1−
∣∣∣∣An+1

Bn+1

∣∣∣∣2
)1/2

dm=
∫
E
�1−�f �2�dm > 0

by Lebesgue’s dominated convergence theorem. However,

lim
n

∫
E

∣∣∣∣An+1

Bn+1

− An
Bn

∣∣∣∣ dm= 0

by (8.181). It follows that limn �an+1��1−�an+1�2�−1/2 = 0. �

The theorem is thus proved. �

8.8 Nevai’s class

186 Basic properties. A measure � ∈P�T� is called a Nevai measure if limn an=0.
The class N�T� of all Nevai measures is called Nevai’s class. By Rakhmanov’s theorem
8.59 any Erdös measure is a Nevai measure. By Theorem 8.73 any Nevai measure
is a Rakhmanov measure. Therefore supp� = T for any � ∈N�T�, see (8.154). The
results of §185 imply an important corollary.

Corollary 8.80 A Rakhmanov measure � �N�T� is singular.

Proof If � is a Rakhmanov measure then by Theorem 8.77 the even convergents
An/Bn of the Wall continued fraction for f = f� converge to f in L2�dm�. By
Theorem 8.78 either f is an inner function or limn an = 0. The second possibility is
excluded by the assumption that � does not belong to Nevai’s class. It follows that f
is an inner function and therefore � is a singular measure. �

There is a nice description of nonsingular Nevai measures.
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Theorem 8.81 Let � ∈P�T�, let �fn�n�0 be its Schur functions and let �E���� > 0.
Then � ∈N�T� if and only if

lim
n

∫
E���

�fn�2 dm= 0 � (8.182)

Proof On the one hand, since �E����> 0, (8.182) implies by the Khinchin–Ostrovskii
theorem 8.8 that fn ⇒ 0 in D. It follows that limn an = limn fn�0� = 0. On the other
hand, if limn an = 0 then fn⇒ 0 by Corollary 8.66. By Lemma 8.71 � is a Rakhmanov
measure. Now (8.182) follows from (8.179). �

Corollary 8.82 Let �nk�k�1 be any gap sequence of positive integers satisfying
limk�nk+1−nk�=+� and let �an�n�0 be any sequence of points in D such that an = 0
if n 	= nk and limn�an�> 0. Then �an�n�0 is a sequence of Verblunsky parameters of a
singular measure.

By Theorem 8.42 the Verblunsky parameters �an�n�0 of any Szegő measure satisfy∑�
n=0 �an�2 < �. For every Szegő measure � and any 1 > � > 0 we define a gap

sequence �nk�k�1 such that n1 > 1/�, limk�nk+1−nk�=+�. Then we put

a∗n =
{
an if n 	= nk 

� if n= nk

and denote by �∗ the measure in P�T� with Verblunsky parameters �a∗n�n�0. Then �∗

is a Rakhmanov measure which is not in Nevai’s class. So it is singular. However,
if � is very small it is hard to distinguish the Szegő measure � from this singular
Rakhmanov measure �∗ by their respective Verblunsky parameters. Therefore when
solving inverse spectral problems related to wave propagation in stratified media one
cannot be sure that the spectral measure � behaves regularly. What one may at most
expect is that the average

1
�I�

∫
I
��n�2 dm−1

is small for large n, for any arc I . Therefore the very existence of a Rakhmanov class
is closely related to the instability of the solutions of such inverse spectral problems.

Theorem 8.83 Suppose that � ∈P�T� with �E���� > 0 does not belong to Nevai’s
class. Then �An/Bn�n�0 diverges in measure on any subset of positive Lebesgue mea-
sure in E���.

Proof By Theorem 8.16 An/Bn ⇒ f uniformly on compact subsets of D. It follows
that ∗-limn An/Bn = f in the ∗-weak topology of L��T�. Hence

lim
n

∫
T

�An/Bn�hdm=
∫

T

hf dm (8.183)
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for any h ∈ L1�T�. Suppose now that An/Bn ⇒ g on E ⊂ E���, �E� > 0. Then by
Lebesgue’s dominant convergence theorem, Vulikh (1973, Theorem VII.3.1) and by
(8.183) we obtain ∫

T

ghdm=
∫

T

fhdm

for every h supported by E, which implies that g = f a.e. on E. Applying Lebesgue’s
theorem again we obtain (8.181), which by Lemma 8.79 implies that � is in Nevai’s
class. �

187 Nevai’s theorems. We summarize some useful inequalities in the following
lemma.

Lemma 8.84 Let � ∈P�T�, �an�n�0 be the Verblunsky parameters of � , �fn�n�0 the
Schur functions of � and ��n�n�0 the orthogonal polynomials in L2�d��. Then

�an�2
2

�
1
2

∫
T

�fn�2 dm�

∫
T

∣∣1−��n�2� ′∣∣ dm� 12
∫

T

�fn�dm � (8.184)

Proof Since an = fn�0� the first inequality is obtained by the mean value theorem
followed by Cauchy’s inequality. The second follows by (8.126) and the obvious
inequality ∫

T

∣∣∣∣1− 2��n�2� ′
1+��n�2� ′

∣∣∣∣ dm�

∫
T

�1−��n�2� ′�dm �

The third inequality is just (8.131). �

By Theorem 8.33 An+l/Bn+l is the Schur function of ��n+l+1�−2dm. We denote by f ln
the Schur function of order n for An+l/Bn+l. Clearly

an = f ln�0� 
 f 0
n ≡ an 
 n
 l= 0
1
 � � � (8.185)

Theorem 8.85 (Nevai 1991) Let � ∈P�T� and ��n�n�0 be the orthogonal polynomials
in L2�d��. Then � ∈N�T� if and only if

lim
n

inf
l�0

∫
T

∣∣∣∣ ��n�2
��n+l+1�2

−1

∣∣∣∣ dm= 0 �

Proof This is immediate from (8.184) if � ′ = ��n+1+1�−2. Indeed, by (8.185) an= f ln�0�
and

∫
T
�f 0
n �dm= �an�. �

Theorem 8.86 (Nevai 1991) Let � ∈P�T� and ��n�n�0 be the orthogonal polynomials
in L2�d��. Then � is an Erdös measure if and only if

lim
n

sup
l�0

∫
T

∣∣∣∣ ��n�2
��n+l+1�2

−1

∣∣∣∣ dm= 0 � (8.186)
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Proof By (8.9), see also (E8.3) and (E8.5),

zf ln =
Bn−1�An+l/Bn+l�−An−1

B∗n−1−A∗n−1�An+l/Bn+l�

= An+l/Bn+l−An−1/Bn−1

�B∗n−1/Bn−1− �A∗n−1/Bn−1��An+l/Bn+l��
� (8.187)

Suppose first that (8.186) holds. Then L1− limn ��n/�n+1�2 = 1 and therefore � is a
Rakhmanov measure by �a�⇔ �f� of Theorem 8.75. By Theorem 8.77 An/Bn⇒ f on
T. Passing to the limit l→� in (8.187), we obtain that f ln⇒ fn, l→�.

Now let � ′ = ��n+l+1�−2 in (8.184). Applying Lebesgue’s dominant convergence
theorem, we obtain from the second inequality in (8.184) that

∫
T

�fn�2 dm� 2 sup
l�0

∫
T

∣∣∣∣ ��n�2
��n+l+1�2

−1

∣∣∣∣ dm 

which implies that � is an Erdös measure by Theorem 8.58.

Now let � be an Erdös measure. Then limn an = 0 by Rakhmanov’s theorem 8.59.
It follows that � is a Rakhmanov measure. By Theorem 8.77 An/Bn⇒ f on T.

Multiplying both sides of (8.187) by the denominator of the fraction in the second
line of (8.187) and using the triangle inequality, we obtain

∫
T

�f ln��1−�f ��dm�

∫
T

∣∣∣∣An+lBn+l
− An−1

Bn−1

∣∣∣∣ dm+ ∫
T

∣∣∣∣An−1

Bn−1

−f
∣∣∣∣ dm �

It follows that limn supl
∫

T
�f ln��1−�f ��dm= 0 and consequently

lim
n

sup
l

∫
E
�f ln�dm= 0 (8.188)

for any measurable E ⊂ E���. Since �f �< 1 a.e. on T, for every � > 0 there is an E
with supE �f � < 1 such that �T \E� < �. Observing that f ln ∈ �, we obtain by (8.188)
that

lim
n

sup
l

∫
T

�f ln�dm= 0 �

The result now follows by the third inequality in (8.184) with � ′ = ��n+l+1�−2. �

The following corollary is immediate from (8.184) and Theorem 8.86.

Corollary 8.87 The measure � ∈P�T� is an Erdös measure if and only if

lim
n

sup
l

∫
E
�f ln�2 dm= 0 �
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188 Theorems on Nevai’s class. On the Riemann sphere Ĉ we consider the metric

k�w1
w2�=
�w1−w2�√

1+�w1�2
√

1+�w2�2
�

It is easy to prove, see Evgrafov (1991, Chapter X, Section 6), that k is invariant
under the transforms w = �1+ zā��z−a�−1, a ∈ Ĉ, corresponding to rotations of the
Riemann sphere.

Theorem 8.88 If � ∈P�T� then '∗n/�
∗
n⇒ F� if and only if either � is singular or

� ∈N�T�.

Proof By (8.73)

'∗n+1�z�

�∗n+1�z�
= 1+ zAn/Bn

1− zAn/Bn
�

If z ∈ T then (z�w�= �1+ zw�/�1− zw�=−z̄�1+ zw�/�w− z̄�, being a composition
of two rotations, leaves invariant the spherical metric k�w1
w2�. It follows that

k

(
'∗n+1

�∗n+1


F�
)
= k

(
An
Bn

 f

)
(8.189)

a.e. on T. Let !n be the function on T defined by the left-hand side of (8.189). Since
f
An/Bn ∈� we obtain from (8.189) that

1
2

∣∣∣∣f − AnBn
∣∣∣∣� !n �

∣∣∣∣f − AnBn
∣∣∣∣ �

The proof is completed by Theorem 8.78. �

Nevai’s class is closely related to the Hardy spaces Hp with 0< p < 1.

Theorem 8.89 Let � ∈P�T� be either a singular measure or a measure in Nevai’s
class. Then for every 0< p < 1

lim
n

∫
T

∣∣∣∣'∗n�∗n −F�
∣∣∣∣p dm= 0 �

Proof By Theorem 8.33, Re �'∗n/�
∗
n� > 0 in D. Hence∫

T

∣∣∣∣'∗n�∗n
∣∣∣∣s dm�

1
cos��s/2�


 0< s < 1 


by Smirnov’s theorem 8.7. Given p, 0 < p < 1, we fix any r > 1 with rp = s < 1.
Then for every e⊂ T we have by Hölder’s inequality∫

e

∣∣∣∣'∗n�∗n
∣∣∣∣p dm�

�e�
�e�1/r

(∫
e

∣∣∣∣'∗n�∗n
∣∣∣∣pr dm

)1/r

�
�e�1−1/r

�cos��rp/2��1/r
� (8.190)
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If � is singular or is in Nevai’s class then '∗n/�
∗
n⇒ F� by Theorem 8.88. For every

� > 0 we put e��
n� = �� ∈ T � �'∗n/�∗n−F� � > ��. It follows that limn �e��
n��=0.
Now

lim
n

∫
T

∣∣∣∣'∗n�∗n −F�
∣∣∣∣p dm ��p+ lim

n

∫
e��
n�

∣∣∣∣'∗n�∗n
∣∣∣∣pdm

+ lim
n

∫
e��
n�

�F� �dm

��p+ limn�e��
n��1−1/r

�cos��rp/2��1/r
= �p 


by (8.190) and by Lebesgue’s dominated convergence theorem. �

Corollary 8.90 Let � ∈P�T� be a singular measure or a measure in Nevai’s class.
Then for every p > 0

lim
n

∫
T

∣∣∣∣log
'∗n
�∗n
− logF�

∣∣∣∣p dm= 0 � (8.191)

Proof By (8.78) there exists An ∈ C�T� such that �An�� <�/2 and arg�'∗n/�
∗
n�=An

on T. Then

log
'∗n
�∗n
= log

∣∣∣∣'∗n�∗n
∣∣∣∣+ iAn �

It follows that log �'∗n/�∗n� is the harmonic conjugate to −An. By Theorem 8.88
'∗n/�

∗
n⇒ F� and therefore An⇒ A = argF� . Since �An�n�0 is uniformly bounded,

we obtain (8.191) for p > 1 by the Lebesgue dominant convergence theorem and by
Riesz’s theorem (Garnett 1981, Chapter III, Theorem 2.3). For 0 < p � 1 the result
follows by the Hölder inequality. �

Let us compare Corollary 8.90 with Theorem 8.48. By §171 in Section 8.2, �−1

corresponds to the Verblunsky parameters �−an�n�0, where �an�n�0 are the Verblunsky
parameters of � . Then −f = f�−1 . It follows that F�−1 = 1/F� and therefore � ′−1 =
� ′�F� �−2 a.e. on T. Applying Theorem 8.48 separately to � and �−1, we get

lim
n

∫
T

∣∣∣∣log
�'n�
��n�

− log �F� �
∣∣∣∣p dm= 0 �

Corollary 8.90 says that although for singular measures and Nevai measures we cannot
guarantee the convergence of log ��∗n� in the L1 metric, as we can for Szegő measures,
more than that holds for log �'∗n/�∗n�.
Theorem 8.91 Let � ∈P�T� be either a singular measure or a Nevai measure. Then
for 0< p < 1,

lim
n

∫
T

���n�−2−� ′�p dm= 0 � (8.192)
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Proof Suppose first that p < 1/4. Then by Theorem 8.33 and Cauchy’s inequality,∫
T

∣∣∣∣ 1
��n�2

−� ′
∣∣∣∣p dm �

(∫
T

∣∣∣∣1−
∣∣∣∣AnBn

∣∣∣∣2−� ′
∣∣∣∣1− zAnBn

∣∣∣∣2
∣∣∣∣2pdm

)1/2

×
(∫

T

dm

�1− zAn/Bn�4p
)1/2

� (8.193)

The second multiplier in (8.193) is uniformly bounded by Smirnov’s theorem 8.7,
since 4p < 1 and Re �1−zAn/Bn� > 0. The first multiplier tends to zero as n→� by
Lebesgue dominant convergence, since by Theorem 8.78

1−
∣∣∣∣AnBn

∣∣∣∣2−� ′
∣∣∣∣1− zAnBn

∣∣∣∣2 ⇒ 1−�f �2−� ′�1− zf � = 0 �

The proof can now be completed by convexity arguments. Let

�n�p�=
∫

T

∣∣��n�−2−� ′∣∣p dm 
 0< p� 1 �

Then �n�1� � 2. By Zygmund (1977, Theorem 10.12) the function p→ �n�p� is
logarithmic convex. For p < 1 we choose any p0 < min�1/4
 p�. Then p = t0p0+ t1,
where t0+ t1 = 1, ti > 0. Then by logarithmic convexity �n�p� � �n�p0�

t0�n�1�
t1 �

2t1�n�p0�
t0 → 0, since p0 < 1/4. �

Corollary 8.92 If � ∈N�T� then

��n�−2 ⇒ � ′ on T 
 ��n�2� ′ ⇒ 1E��� �

Theorem 8.93 If � ∈N�T� then for every 0< p < 1

lim
n

∫
T

∣∣��n�2�−1E���
∣∣p dm= 0 �

Proof This is similar to the proof of Theorem 8.91. If p < 1/4 then∫
T

∣∣��n�2�−1E���
∣∣p dm�

(∫
E���

�1−�fn�2−�1− �bnfn�2�2p
)1/2

×
(∫

T

dm

�1− �bnfn�4p
)1/2

�

The proof is completed by Smirnov’s theorem 8.7 and convexity arguments. �

Corollary 8.94 Let � ∈N�T�; then for 0< p < 1

lim
n

∫
T

���n�2��p dm= �E���� �

Proof Apply Theorem 8.93 and �ap−bp�� �a−b�p, 0< p < 1. �
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189 Totik’s theorem. Totik (1992), answering a question of A. Gonchar, gave an
elegant construction showing that Nevai measures are ubiquitous in P�T�. Totik’s
construction is based on matrices �&jk�j
k�1 whose entries &jk are finite nonnegative
Borel measures on T such that

∗- lim
k
&jk = j−rdm (8.194)

for some r > 1 and every j � 1. We call �&jk�j
k�1 a T -matrix. It is clear that for every
r > 1 there are infinitely many T -matrices.

Theorem 8.95 For any T -matrix �&jk�j
k�1 there is a subsequence �kj�j�1 such that
the normalized version �&�−1& of & =∑�

j=1 &jkj is a Nevai measure.

Proof By (8.71) & ∈N�T� if and only if

lim
n

�n+1�&�

�n�&�
= lim

n
�1−�an�&��2�−1/2 = 1 �

By (8.62)

�−2
n �&�= inf

Pn�z�=zn+· · ·

∫
T

�Pn�2d& 


implying that �n�&� increases in n and decreases in &. Passing to subsequences if
necessary we may assume that �&jk�< 2j−r for all k. Suppose now that k1, � � � , kj−1

are constructed. Then

�j0 =
j−1∑
l=1

&lkl +
( �∑
l=j+1

l−r
)
m 


�jk = �j0+&jk 
 �j� = lim
k
�jk = �j0+ j−rm �

(8.195)

Lemma 8.96 There exists Nj such that for n� Nj and all k� 0

1 �
�n+1��jk�

�n��jk�
� 1+ r2r j−1 �

Proof By Theorem 8.43, for every k � 1 the sequence ��n��jk�
2��n=1 monotonically

increases to

�∗��jk�
2 = exp

{
−
∫

T

logwjk dm
}



where wjk = d�jk/dm= wj0+ujk, see (8.195), and ujk � 0 satisfies∫
T

ujk dm� �&jk�< 2j−r �

Since by (8.195)

wj0 �
�∑

l=j+1

l−r �
∫ �

j+1

dx

xr
= 1
�r−1��j+1�r−1

>
1

r�2j�r−1
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we obtain applying Jensen’s inequality, see Ex. 8.21, that

�∗��j0�2

�∗��jk�2
= exp

{∫
T

log
wjk

wj0

}
�

∫
T

wjk

wj0
dm� 1+

∫
T

ujk

wj0
dm

� 1+ r2r−1jr−1
∫

T

ujkdm

< 1+ r2r j−1 < �1+ r2r j−1�2 � (8.196)

Since ∗-limk �jk = �j�, the set Sj = ��j0
�j1
 � � ��j�� is compact in the ∗-weak
topology. We consider on Sj a sequence of continuous functions

fn��jk�=min
(
�n��jk�


�∗��j0�
1+ r2r j−1

)
�

By (8.196) the sequence �fn�n�0 converges to �∗��j0��1+r2r+1j−1�−1. Since fn� fn+1,
it converges to this constant uniformly on Sj . Then

�∗��j0�
1+ r2r+1j−1

⇔
n

fn��jk�� �n��jk�� �n��j0�� �
∗��j0� 


implying that

lim sup
n

�n+1��jk�

�n��jk�
� 1+ r2r j−1

uniformly in k. �

If now kj , kj+1, � � � all tend to+� then for every fixed n we have �n�&�→�n��
j−1
kj−1
�.

It follows that we can choose the numbers Kjj , K
j
j+1, � � � so that for kj > K

j
j , kj+1 >

K
j
j+1, � � �we have

1 �
�n+1�&�

�n�&�
< 1+ r2

r+1

j−1

for every Nj−1 < n� Nj . Now let kj =max�K1
j 
 � � � 
K

j
j �+1, where K1

j , � � � , K
j
j were

determined at the previous steps of the construction. Notice that this choice of kj does
not influence the numbers Nj and therefore the induction can be continued. �

If we choose the entries &jk of a T -matrix to be discrete measures then & is a
discrete Nevai measure. If the entries are singular continuous measures then we obtain
a continuous singular measure in N�T�. If we choose the &jk to equal wjkdm with
continuous densities wjk satisfying

�wjk��
1
j2

 �suppwjk�<

�

�1+ j�2 


where � > 0, then & ∈ N�T� and d&/dm = w ∈ C�T�, m��w > 0�� < �. However,
supp& = T, since & ∈N�T�.
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Let � be any measure with supp�= T; then by Totik’s theorem there is a measure
in N�T� that is absolutely continuous with respect to �.

8.9 Inner functions and singular measures

190 Holland’s theorem. By (8.7) � ∈ P�T� is singular if and only if f = f� is
unimodular on T, i.e. f is an inner function. By Smirnov’s factorization theorem any
inner function is the product of a unimodular constant, a Blaschke product (8.20) and
a singular function

exp
{
−
∫

T

�+ z
�− zd����

}



where � is a positive singular measure. Since no singular measure can be a Szegő
measure,

∑�
n=0 �an�2 = �. The rate of divergence of this series can be estimated by

the following beautiful theorem of Holland (1974).

Theorem 8.97 Let � ∈P�T� be a singular measure and f = f� . Then

∫
T

∣∣∣∣∣1− z
n−1∑
k=0

f̂ �k�zk

∣∣∣∣∣
2

d� =
�∑
k=n
�f̂ �k��2 �

Proof Let ck = 2�̂�k�, k � 1. If dk = f̂ �k− 1�, k � 1, then the multiplication of
the power series (8.5) by 1− zf gives 1+ zf = �1− zf��1+∑�

k=1 ckz
k� and dk =

ck−
∑k−1
j=1 djck−j . Substituting ck = 2�̂�k�, we obtain after obvious calculations

dk =
∫

T

(
�̄−

k−1∑
j=1

dj�̄
�k−j�

)
d� =

∫
T

�̄k
(

1−
k−1∑
j=1

dj�
j

)
d� � (8.197)

Let sn�z� = 1−∑n
j=1 djz

j = 1− z∑n−1
j=0 f̂ �j�z

j . Since sn = sn−1−dnzn, using (8.197),
we obtain∫

T

�sn�2 d� =
∫

T

�sn−1�2 d�+d2
n−2 Re

∫
T

dn�̄
nsn−1d�

=
∫

T

�sn−1�2 d�−d2
n = 1−

n∑
j=1

�dj�2 =
�∑
k=n
�f̂ �k��2 
 (8.198)

proving the theorem. �

If � is discrete then by (8.6) it is supported by the level set zf = 1. Theorem 8.97
extends this to arbitrary singular � . Comparing (8.62) with Theorem 8.97, we obtain
on the one hand

n−1∏
k=0

�1−�ak�2�=
1
�2
n

= dist�1
 z�n−1��
�∑
k=n
�f̂ �k��2 �
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On the other hand, by (E8.3) we have for any inner f :∫
T

log �Bnf −An�dm=
n∑
k=0

∫
T

log �1− ākfk�dm �

Observing that Bn�0�= 1, we obtain∫
T

log

∣∣∣∣f − AnBn
∣∣∣∣dm= �∑

k=0

log�1−�ak�2� �

By Lemma 8.76 An/Bn⇒ f , again implying that
∑
n �an�2 =� if f is an inner function.

191 Riesz products in the Nevai class. A Riesz product is a measure � ∈P�T�

with the formal Fourier series

d� ∼

�∏
k=1

�1+Re "k�
nk� 


where 0 < �"k� � 1, k = 1, 2, � � � , and �nk�k�1 is an increasing sequence of positive
integers. Its partial products are nonnegative trigonometric polynomials with unit
integrals against T and corresponding Fourier coefficients. Therefore the ∗-weak limit
of this sequence in M�T� exists and determines a Riesz measure � . See Zygmund
(1977) for details. In what follows we assume that

nk+1 > 2�nk+nk−1+· · ·+n1� 
 (8.199)

�∑
k=1

�"k�2p <� for every p
 p > 1 
 (8.200)

�∑
k=1

�"k�2 =� � (8.201)

Here (8.199) says that every �̂�k� 	= 0, k 	= 0, is a product of a finite number of
multipliers "j/2 with different indices j. This together with (8.200) implies that
��̂�k��k∈Z

∈∩p>2l
p. Finally, (8.201) implies that � is a singular measure; see Zygmund

(1977).

Theorem 8.98 There exists a singular Riesz product � with Verblunsky parameters
satisfying

∑�
n=0 �an�p <+� for every p > 2.

Proof We construct the required measure in the class of Riesz products � satisfying
(8.199)–(8.201) by specifying the growth in �nk�k�1. Suppose that n1, � � � , nk have
already been chosen. We have that the partial product

pk���=
k∏
j=1

�1+Re"j�
n
j �� 0 on T � (8.202)

By Feijer’s theorem, see Szegő (1975), pk = �hk�2, where hk is a polynomial in z
of degree � = n1+· · ·+nk which does not vanish in D. It follows that the Fourier
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spectrum spec�k of the probability measure d�k = �hk�2dm is in �−� 
� 
 and that
�k is a Szegő measure.

Without specifying the choice of nk+1, we observe that by (8.199) and (8.202) the
measure d�k+1 is a linear combination of three measures with disjoint Fourier spectra:

d�k+1 = �"̄k+1/2��̄
nk+1d�k+d�k+ �"k+1/2��

nk+1d�k �

Hence the Hilbert spaces L2�d�k� and L2�d�k+1�, and consequently L2�d��, induce
identical inner products on �n if n < nk+1 −� . Since the orthogonal polynomials
are obtained by the Gram–Schmidt algorithm, the polynomials �0, � � � , �n in �n are
orthogonal in L2�d�k�, L

2�d�k+1� and L2�d��. It follows that any future choice of
nk+1 cannot influence the Verblunsky parameters an of � with n�� < nk+1−� .

Keeping for a moment the notation �an� for the parameters of �k, we can apply
(8.89) and find an integer �k satisfying �k > n1+· · ·+nk and

exp
{∫

T

log � ′k dm
}
�

�k∏
j=0

�1−�aj�2�

� �1+�"k+1�2� exp
{∫

T

log � ′k dm
}
� (8.203)

We put nk+1 = 2�k. Since nk+1−� > 2�k−�k =�k, we obtain that �0, � � � , ��k
are

orthogonal in L2�d�k� and in L2�d��.

Lemma 8.99 Let 0 � �� 1 and n be an arbitrary integer. Then

1
2�

∫ �

−�
log�1+� cosnx�dx = log

1
1+a2




where a= ��1+√1−�2�−1.

Proof Apply the mean value theorem to the harmonic function log �p�z��2, where
p�z�= �1+azn�/√1+a2. �

By (8.203),

�k+1∏
j=�k+1

�1−�aj�2�=
�k+1∏
j=0

�1−�aj�2�
�k∏
j=0

�1−�aj�2�−1

�
1

1+�"k+1�2
exp

{∫
T

log
� ′k+1

� ′k
dm

}

= 1
1+�"k+1�2

exp
{

1
2�

∫ �

−�
log�1+�"k+1� cos�nk+1	+	k+1��d	

}



where 	k+1 = arg"k+1. By Lemma 8.99 this implies that

�k+1∏
j=�k+1

�1−�aj�2��
1

�1+�"k+1�2�2
�
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It follows that
�k+1∑
j=�k+1

�aj�2 �−
�k+1∑
j=�k+1

log�1−�aj�2�� 2 log�1+�"k+1�2�� 2�"k+1�2

and finally, for every p > 1,
�∑

j=�1+1

�aj�2p =
�∑
k=1

(∑�k+1

j=�k+1
�aj�2p

)

�

�∑
k=1

(∑�k+1

j=�k+1
�aj�2

)p
� 2p

�∑
k=1

�"k+1�2p 


which proves the theorem. �

192 Singular measures

Theorem 8.100 Let � ∈P�T� with Schur function f = f� . For every p < 1/4 there
is a constant cp > 0 such that(∫

E
� ′pdm

)1/p

� cp

∫
E
�1−�fn�2�dm (8.204)

for every measurable E ⊂ T.

Proof Applying (8.107) and Hölder’s inequality for powers 1/p and 1/�1−p�, we
obtain ∫

E
� ′pdm�

(∫
E
�1−�fn�2�dm

)p(∫
E

dm

���n��1− �bnfn��2p/�1−p�

)1−p
�

Applying Hölder’s inequality to the second integral with �1− p�/p and �1− p�/
�1−2p�, we obtain

∫
E

dm

���n��1− �bnfn��2p/�1−p�

�

(∫
E

dm

��n�2
)p/�1−p�(∫

E

dm

�1− �bnfn�2p/�1−2p�

)�1−2p�/�1−p�
�

The first integral on the right is bounded by 1 since ��n�−2dm ∈ P�T�. The second
integral is bounded by Smirnov’s theorem 8.7. �

Corollary 8.101 A function f ∈� is inner if and only if

lim sup
n

∫
T

�fn�2 dm= 1 � (8.205)

Proof Let E = T in (8.204). Then (8.205) implies that � ′ = 0 a.e. on T. If f is an
inner function then �fn� = 1 a.e. on T, see (8.108). �
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Corollary 8.102 (Rakhmanov 1983, Lemma 4) Let f ∈ � and lim supn �an� = 1.
Then f is an inner function.

Proof Apply (8.130). �

Theorem 8.103 Let � ∈P�T� satisfy limn �an� = 1. Then the following are equivalent:

(a) ( is in the derived set of supp�;
(b) there exists an infinite set �⊂ N such that limn∈� ānan−1 =−(.

Proof Let F be the closed set of limit points of �−ānan−1�n�1. Since limn �an� = 1, the
set F is a subset of T. Since fnbn�0�=−anān−1 the set of limit points of ���n�2d��n�0

equals ��( � ( ∈ F�, see Theorem 8.67. If ( ∈ F then for every h ∈ C�T�,
lim
n∈�

∫
T

h��n�2 d� = h�(� 


implying that F ⊂ supp� . If ( ∈ F is an isolated point of supp� then ���(�� > 0 and
by Ex. 8.23 limn �n�(�= 0, contradicting the formula above.

To prove that (supp��′ ⊂ F we apply Worpitsky’s test, Corollary 5.14. By
obvious equivalence transforms we reduce the Geronimus continued fraction (8.28) to
K�
n=1�cn�z�/1�, where c1�z�≡ a0,

c2�z�=−
�1−�a0�2��a1/a0�z

1+ �a1/a0�z



cn�z�=−
�1−�an−2�2��an−1/an−2�z

�1+ �an−1/an−2�z��1+ �an−2/an−3�z�

for n� 3. If I is any closed arc in T\F then the denominators of cn�z� are bounded
away from zero in an open neighborhood V of I . Since limn �an� = 1, this implies that
limn supz∈V �an�z�� = 0. Then by Worpitsky’s test K�

n=N �cn�z�/1� converges absolutely
and uniformly to a holomorphic function in V . Since by Schur’s theorem the Geron-
imus continued fraction converges to f� uniformly on compact subsets of D, we see
that f� extends analytically to V . The allowable points of supp� in I are located at the
zeros of 1−zf� . It follows that supp� ∩ �T\F� consists only of isolated points. �

Theorem 8.104 Suppose that the Verblunsky parameters �an�n�0 of � ∈P�T� satisfy

lim inf
n

�an�> 0 
 lim
n

arg�ānan−1�= 	 ∈ R �

Then there exists an open arc I on T centered at ei	 such that supp� ∩ I is finite.

Proof Using rotations if necessary we may assume that 	= 0. We apply Pringsheim’s
theorem 5.16 to

KN�z�=
�
K
n=N

(−�1−�an−1�2��an/an−1�z

1+ �an/an−1�z

)
�
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The condition of Pringsheim’s theorem takes the form∣∣∣∣ anan−1

+ z
∣∣∣∣� �1−�an−1�2��z�+

∣∣∣∣an−1

an

∣∣∣∣ � (8.206)

Let �n be the open disc centered at cn = −an−1/an with radius �1− �an−1�2� +
�an−1/an�. The conditions imposed on �an�n�0 imply that the cn are located in an
arbitrary small angle with vertex at z= 0 and with the negative real semi-axis as the
bisectrix. Since the an are separated from T, there is a neighborhood U of z= 1 such
that �n∩U =� for n� N . Squeezing U if necessary, we obtain that (8.206) holds in
U for n�N . By Prigsheim’s theorem Kn�z� converges to a bounded analytic function
in U . It follows that f�z�= a0�1+K1�z��

−1 is meromorphic in U . Since f is bounded
in D∩U , we conclude that the Geronimus continued fraction of f converges to f
uniformly on I . Since lim infn �an� > 0, we obtain by Lemma 8.79 that �f � = 1 on I .
Since supp� ∩ I is in the zero set of the analytic function 1− zf on I , the proof is
complete. �

193 Cesàro conditions. A sequence �an�n�0 is called a Cesàro sequence if

lim
n

�a0�+ · · ·+ �an�
n+1

= 0 �

We say that � ∈ P�T� is a Cesàro–Nevai measure if its parameters make a Cesàro
sequence.

Theorem 8.105 Any Rakhmanov measure is a Cesàro–Nevai measure.

Proof Given � > 0 let ���� = �n � �an� � ��. By Theorem 8.73 the Verblunsky
parameters �an�n�0 of � satisfy the Matè–Nevai condition (8.163). It follows that for
every K> 0 there is a positive integer L= L��
K� such that

�an+kan�< �2 
 k= 1
2
 � � � 
K 
 n� L � (8.207)

Let M���=����∩ �L
+��. The sets

M��� 
 M���+1 
 � � � 
 M���+K (8.208)

do not intersect. Indeed, if �M���+ j�∩ ��M���+ i�� 	= ∅ for i < j � K then there
exists n ∈M��� such that n+ �j− i� ∈M���. It follows that �2 � �anan+�j−i��, which
contradicts (8.207) since 1 � j− i� K. We denote by

d = d���= lim
n

1
n

Card �����∩ �0
 n
�
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the upper density of ����. Since the sets listed in (8.208) do not intersect, we have

n� L+
K∑
j=0

Card��M���+ j�∩ �L
n
�

� L+ �K+1�Card�M���∩ �L
n
�−K�K+1�

= L+ �K+1�Card�����∩ �L
n
�−K�K+1�

= L+ �K+1�Card�����∩ �0
 n
�
−K�K+1�− �K+1�Card�����∩ �0
 n
�
� �K+1�Card�����∩ �0
 n
�−K�K+1�−KL �

Dividing both sides by n and passing to the limit n→+�, we obtain that �K+1�d� 1.
Since K is an arbitrary positive integer, d= d���= 0. Since �an�n�0 is bounded and �
is an arbitrarily small positive number, we see that �an�n�0 is a Cesàro sequence. �

194 Universal measures. Given � ∈P�T� we denote by Lim� the derived set of
���n�2d��n�0, i.e. the set of all limit points of this sequence in P�T�. A probability
measure � is called universal if Lim� =P�T�. It is clear that the orthogonal poly-
nomials of a universal measure, if such a measure exists, have very poor asymptotic
properties. By Theorem 8.67 � is universal if and only if the sequence �fnbn�n�0 is
dense in �.

Theorem 8.106 There are Cesàro–Nevai universal measures.

Proof
Step 1. Let P
Q ∈� have an infinite number of Schur parameters:

�P = �p0
 p1
 � � �� 
 �Q= �q0
 q1
 � � �� �

That is, P and Q are not finite Blaschke products. We put H = PQ. Pick a union � of
disjoint intervals of nonnegative integers:

� =
�⋃
k=1

�nk−mk
nk+mk



with limk mk =�. Define a function f ∈� by �f = �a0
 a1
 � � ��, where

aj
def=

{
pj−nk if nk � j � nk+mk

−q̄nk−j−1 if nk−mk � j � nk−1

is arbitrary on the complement �c = Z+ \� . Let fn and bn be the Schur functions of
f . Then for n= nk

�fn = �p0
 p1
 � � � 
 pmk
 � � �� 
 �fn = �q0
 q1
 � � � 
 qmk−1
 � � �� �
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By Theorem 8.64

lim
n∈�
fn�z�= P�z� 
 lim

n∈�
bn�z�=Q�z� 
 �

def= �nk � k� 1� 


implying that

lim
n∈�
fn�z�bn�z�=H�z� � (8.209)

Let �
& ∈P�T� be the measures with Schur functions f and H and ��n�n�0 be the
orthogonal polynomials in L2�d��. It follows from (8.209) that & = ∗-limn∈� ��n�2d�
by Theorems 8.67 and 8.64.

Step 2. Given positive integers r and s we denote pairwise disjoint subsets of N by

�rs
def= �22r �2s−1�
22r �2s−1�+2s
= �nrs−mrs
 nrs+mrs
�

Let

�
def=

�⋃
r
s=1

�rs �

For a large positive integer N the number of solutions of the inequality 2k < N for
positive integer k does not exceed log2N . If k = 2r �2s− 1� then s � k < log2N . It
follows that

Card��∩ �0
N
�� �2 log2N +1� log2N 


implying that d���= 0.

Let �Hl�l�0 be any dense sequence in �. Then the measures &l with Schur functions
Hl are dense in P�T�. Each Hl can be factored as Hl = PlQl, where neither Pl nor Ql
is a finite Blaschke product.

Now we apply now step 1 to

�l
def=

�⋃
s=1

�ls =
�⋃
s=1

�nls−mls
 nls+mls
 
 l= 1
2
 � � �

Thus the Schur parameters �an�n�0 of f are defined for n ∈ �. For n � � we define
an to satisfy the condition limn�� an = 0. By step 1, for every l � 1 there is a subset
�l ⊂ Z+ such that

lim
n∈�l
fn�z�= Pl�z� 
 lim

n∈�l
bn�z�=Ql�z� 
 lim

n∈�l
fn�z�bn�z�=Hl�z�

in �. It follows that each measure &l is a limit point of the sequence ���n�2 d��n∈�,
implying that � is a universal measure. �
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8.10 Schur functions of smooth measures

195 Pointwise estimates. The method of Schur functions can also be applied to
the study of measures � with smooth � ′.

Theorem 8.107 Let � ∈P�T�, �fn�n�0 be the Schur functions of � and ��n�n�0 the
orthogonal polynomials in L2�d��. If �fn�� < 1/2 then on T∣∣∣∣��n�2� ′ −1

∣∣∣∣< 6�fn� �1−2�fn��−1 � (8.210)

Proof If ��n�2� ′ −1< 0 then (8.210) follows by (8.134). It follows from (8.107) that

��n�2� ′ −1= 2
Re ��bnfn�−�fn�2
�1− �bnfn�2


 (8.211)

which implies that ��n�2� ′ −1 � 0 if and only if �fn�2 � Re ��bnfn�. Now let ��n�2� ′ −
1 � 0 for some � ∈ T. By (8.125)

��n�2� ′ −1
��n�2� ′ +1

= Re �bnfn−�fn�2+
��n�2� ′ −1
��n�2� ′ +1

Re �bnfn � (8.212)

Notice that the fraction on the left-hand side of (8.212) is nonnegative and is bounded
by 1. Since �fn�2 �Re �bnfn � �fn�, we obtain from (8.212) that 0 � ���n�2� ′ −1����n�2
� ′ + 1�−1 � 2�fn�, which obviously implies ��n�2� ′ − 1 � 4�fn��1− 2�fn��−1, proving
the theorem. �

196 Hölder classes: inverse theorems. We define the Hölder class as follows.
For 0< �< 1 we put

�� = �f ∈ C�T� � �f�ei�x+t��−f�eix��� Cf �t��
 x
 t ∈ R� �

The Zygmund class �1 is defined by

�1 = �f ∈ C�T� � �f�ei�x+t��+f�ei�x−t��−2f�eix��� Cf �t��
 x
 t ∈ R� �

Now let n < � � n+1, where n is a positive integer. Then �� denotes the space of
all functions on T with nth derivative f �n� ∈��−n.
Theorem 8.108 If � ∈P�T� with Schur functions �fn�n�0 satisfying �fn�� =O�n−��,
� > 0, then � is absolutely continuous and � ′ ∈��.

Proof By (8.210) we obtain ���n�2� ′ −1�� =O�n−��, which implies that inf
T
� ′ > 0.

It follows that ���n�2−1/� ′�� =O�n−��. Notice that ��n�2 = �n�̄n is a trigonometric
polynomial of order n. Now the result follows by the Bernstein–Zygmund theorem.

�
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197 Direct theorems. We begin with a technical lemma.

Lemma 8.109 For every z ∈ T the map %→ %bn�z
%� is a homeomorphism of T.

Proof By (8.87) and (8.73)

%bn�z
%�= %
�n�z
%�

�∗n�z
%�
= �1+%��n− �1−%�'n
�1+%��∗n− �1−%�'∗n

= ��n−'n�+%��n+'n�
��∗n+'∗n�+%��∗n−'∗n�

= −A∗n−1+%zB∗n−1

Bn−1−%zAn−1

= B
∗
n−1

Bn−1

%z−A∗n−1/B
∗
n−1

1−%z�An−1/Bn−1�
�

Observing that A∗n−1/B
∗
n−1 = Ān−1/B̄n−1 for z ∈ T and that by Corollary 8.11 this

complex number lies in D, we see that %→ %bn�z
%� is a Möbius transform. �

Corollary 8.110 If � ∈P�T� then �fn�� sup%∈T
���n��
%��2� ′%−1� on T.

Proof By Lemma 8.109, given � ∈ T there exists % ∈ T such that

�bn�z
%�%fn���= Re ��bn�z
%�%fn�=−�fn� �
By (8.211)

sup
%∈T

∣∣∣∣��n�z
%��2� ′%−1

∣∣∣∣� 2
�fn�+ �fn�2
�1+�fn��2

= 2�fn�
1+�fn�

� �fn� 


as stated. �

Theorem 8.111 Let � ∈P�T� be an absolutely continuous measure with �� ′�−1 ∈��
and Schur functions �fn�n�0. Then

�fn�� = O�n−� logn� �

Proof The harmonic conjugate −�2��−1
∫ �
−� cot 1

2 �t− x�d��t� of � ′ is in ��; see
Zygmund (1977, Chapter VII, (1.8), Chapter III, Theorem 13.29). It follows that
F� ∈��. Since

zf = F
� −1
F� +1

and
1

F� +1
∈�� 


we obtain that f ∈��. Next, �f�� < 1 since inf � ′ > 0. Observing that %f is the Schur
function of �%, we obtain that %→ ��%�

−1 is a homeomorphism of T into �� \ �O�.
By Szegő’s theorem,

�n�z
%�=
zn

D��%
 z�
+O

(
logn
n�

)

 n→�
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uniformly in z and %; z
% ∈ T (Grenander and Szegő 1958). Notice that the proof
given Section. 3.5 of the latter work extends to � > 1 by Bernstein’s theorem on best
polynomial approximation. It follows that

sup
%∈T

∣∣∣∣��n�z
%��2� ′%−1

∣∣∣∣= O�n−� logn�

uniformly in � ∈ T. This proves the theorem by Corollary 8.110. �

Corollary 8.112 Let � ∈P�T� be an absolutely continuous measure with �� ′�−1 ∈��
and Verblunsky parameters �an�n�0. Then

an = O�n−� logn� �

Proof This follows by �an� =
∣∣∫

T
fn dm

∣∣� �fn��. �

The following results are immediate by (8.26) from Theorems 8.108 and 8.111.
They demonstrate a remarkable similarity between the behavior of An/Bn and the
partial Fourier sums of f (Zygmund 1977, Chapter II, Theorem 10.8). Compare this
with the discussion in §163, Section 8.1.

Corollary 8.113 If � ∈P�T� is absolutely continuous with �� ′�−1 ∈ �� and An, Bn
are its Wall polynomials then

�f −An/Bn�� = O�n−� logn� �

Corollary 8.114 Let � ∈P�T� with f = f� satisfying �f�� < 1. If

�f −An/Bn�� = O�n−�� 
 � > 0 


then � is absolutely continuous and �� ′�−1
 f ∈��.

Proof By (8.18)�n�Bn�−2= 1−�An/Bn�2 ⇒ 1−�f �2 uniformly on T. Hence sup
T
��f �−

�A∗n/Bn��→ 0 as n→�. It follows from (8.26) that �fn�� =O�1/n��, which completes
the proof by Theorem 8.108. �

8.11 Periodic measures

198 Ratio-asymptotic measures. A measure � ∈P�T� is called ratio asymptotic
if the limit

G��z�
def= lim

n

�∗
n+1�z�

�∗
n�z�

(8.213)

exists for every z ∈ D. By Theorem 8.75�h� every Rakhmanov measure is ratio
asymptotic.
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Definition 8.115 A measure � ∈P�T� is said to satisfy the López condition if there
exist a ∈ �0
1
 and % ∈ T such that the Verblunsky parameters of � satisfy

lim
n
�an� = a 
 lim

n

an+1

an
= % �

Theorem 8.116 A measure � ∈P�T� is ratio asymptotic if and only if either � is a
Rakhmanov measure or � satisfies the López condition.

The proof of Theorem 8.116 splits into three lemmas.

Lemma 8.117 Let � ∈P�T�, �an�n�0 be the Verblunsky parameters of � and �bn�n�0

the inverse Schur functions for � . If for every z ∈ D

lim
n
anbn�z�= B�z� (8.214)

then for every k� 1 the following limits exist:

− lim
n
ānan+k = ck � (8.215)

Proof Since �anbn�n�0 is normal in D, the function B�z� is holomorphic in D. Putting
z= 0 in (8.214) implies that c1 = B�0�. By (8.75),

bn+1�z��1− zanbn�z��= zbn�z�− ān � (8.216)

Multiplying both sides of (8.216) by an+1, we obtain that

lim
n
an+1bn�z�= �B�z�−B�0��z−1−B2�z�

def= B�1��z�
uniformly on compact subsets of D. Suppose now that − limn an+j ān = cj for j � k
and limn an+kbn�z�= B�k��z� uniformly on compacts of D. For z= 0 this implies that
− limn an+k+1ān = B�k��0�. Multiplying both sides of (8.216) by an+k+1, we obtain

lim
n
an+k+1bn�z�= �B�k��z�−B�k��0��z−1−B�k�B def= B�k+1��z� 


which completes the proof by induction. �

Lemma 8.118 Let �an�n�0 be a sequence in C such that limn an+kān = ck exists for
every k� 1. Then either ck = 0 for every k� 1 or ck 	= 0 for every k� 1. If ck 	= 0 for
k� 1 and �an�< 1 for n� 0 then �an�n�0 satisfies the López condition.

Proof For k > s we have

ckc̄s = lim
n
an+kān lim

n
ān+san = lim

n
�an�2�an+kān+s� � (8.217)

It is clear that limn an+kān+s = limn an+s+�k−s�ān+s = ck−s. If cj 	= 0 for some j � 1
then for any pair �k
 s� with k− s = j we obtain by (8.217) that ckc̄s = cj limn �an�2.
Since cj 	= 0, this shows that the limit limn �an�2 = a2 = ckc̄s/cj exists. If a = 0
then cj = limn an+j ān = 0, contradicting cj 	= 0. It follows that a > 0. Now an ∈D for
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n� 0 implies that a∈ �0
1�. Finally, limn an+1/an= limn�an+1an�/�ānan�= c1/a
2 ∈T,

which proves the lemma. �

Lemma 8.119 Let � satisfy the López condition for some a ∈ �0
1� and % ∈ � . Then
the ratio-asymptotic limit �8�213� holds uniformly on compact subsets of D and is
given by

G��z�=
1
2
��1+%z�+√

�1−%z�2+4%a2z� � (8.218)

Proof It follows from the second recurrence formula in (8.65) that

�∗
n+1�z�

�∗
n�z�

= 1− zanbn�z� � (8.219)

Although the mapping � is not linear, we still have by (8.9)

��cf�= �ca0
 ca1
 � � � �

for any unimodular constant c, �c� = 1. Taking this observation into account and
applying it to (8.141) with c = an/�an�, we obtain that

�

(
an
�an�

bn�z�

)
=
(
−anān−1

�an�

 −anān−2

�an�

 · · · 
 an�an�

)
� (8.220)

It follows from the López condition that

lim
n

anān−k
�an�

= lim
n

an
an−k

lim
n

�an−k�2
�an�

= %ka 
 k= 1
2
 � � � �

Hence the right-hand side of (8.220) converges to

x = �−%a
−%2a2
−%3a3
 � � � �

in �� if 0 < a < 1, and to x = −%, ��x� = �0�, if a = 1. In the latter case, by
Theorem 8.64 the sequence �anbn�z��n�0 converges to −% uniformly on compact
subsets of D. Therefore G� = 1+ %z, which coincides with (8.218) for a = 1. If
0< a< 1, then it is easy to see that ��−%fa�%z��= x and by Theorem 8.64 G��z�=
1+a%fa�%z�, whereas the convergence in (8.213) is uniform in D. �

Proof of Theorem 8.116 It follows from (8.219) that � ∈P�T� is ratio asymptotic if
and only if (8.214) holds. If (8.214) holds then the limits (8.215) exist by Lemma 8.117.
By Lemma 8.118 either all these limits are zero or the Verblunsky parameters �an�n�0

of � satisfy the López condition. If the first possibility occurs, then by Theorem 8.75
� is a Rakhmanov measure and is ratio asymptotic with G� ≡ 1. If � satisfies the
López condition then � is ratio asymptotic by Lemma 8.119. �



8.11 Periodic measures 393

Corollary 8.120 If � ∈P�T� then

�∗
n+1�z�

�∗
n�z�

⇒
1
2
��1+%z�+√

�1−%z�2+4%a2z� (8.221)

in D for some a ∈ �0
1
, % ∈ T, if and only if � satisfies the López condition for
exactly these values of a and %.

Proof If (8.221) holds then � is ratio asymptotic. Since a > 0 in (8.221), we obtain
that G� 	≡ 1. This implies by Theorem 8.116 that � satisfies the López condition. Next,
the values a and % are uniquely determined by a given G� . However, if � satisfies
the López condition then the desired conclusion follows by Lemma 8.119. �

In fact, the convergence in (8.221) is uniform on compact subsets of C\ supp�; see
Barrios and López (1999, Theorem 1).

199 Measures with constant parameters. Let f = f�z�a� be the Schur function
corresponding to constant parameters ak = a= �a�ei	a , k� 0, where 0 	= a ∈ D. Then
f1 = f and by (8.9) f satisfies the quadratic equation

āzX2+ �1− z�X−a= 0 � (8.222)

Together with f we consider the Schur function f # corresponding to the constant
parameters ak =−ā, k� 0. Then f # satisfies the equation

azX2− �1− z�X− ā= 0 � (8.223)

Hence the solutions to (8.222) are x1 = f and x2 = �zf #�−1. By Viète’s theorem,

f

zf #
= x1x2 =−

ā

az
⇒ f # =−e2i	af � (8.224)

The discriminant �a of (8.222) and of (8.223),

�a = �z−1�2+4�a�2z= z (4�a�2−�1− z�2) 
 z ∈ T 


determines the real trigonometric polynomial

�a =�a/z= 4�a�2−�1− z�2

on T. The roots of �a are at the two points of intersection of the circle �1−z� = 2�a�< 2
with T:

z± = 1−2�a�2±2�a�i√1−�a�2 �
The arc �� = �exp�i	� � �� 	 � 2�−��, where sin��/2�= �a�, 0<�<�, connects
z+ with z− counterclockwise along the part of T outside the disc �z � �z−1�< 2�a��.
It follows that �a�e

i	�= 4
(�a�2− sin2 	/2

)= 2�cos	−cos�� is negative on �� and is
positive on the open arc $� = T\��. By (8.21),

�1+ āzf �2 (1−�f�z��2)= (
1−�a�2) (1−�f�z��2) �
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Hence zf maps T into itself and into the circle orthogonal to T centered at −1/ā with
radius

√
1/�a�2−1 . By (8.222),

x1 = f�z�a�=
�z−1�+√

�a

2āz
= 2i sin�	/2�+√

�a
2āei	/2


 z= ei	 
 (8.225)

where the branch of the square root is taken to satisfy
√

1 = 1; this by the Taylor
formula guarantees that f�z�a�∼ a when z→ 0. Hence

zf�z�a� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
exp

i	

2

)
1
ā

(√
�a�2− sin2 	

2
+ i sin

	

2

)
if �	�� � 


(
i exp

i	

2

)(
1
ā

sin
	

2
−
√

sin2 	

2
−�a�2

)
if � < �	�� � �

(8.226)

Therefore �f � < 1 on �� except at the ends and �f � = 1 on $� = T \��. Applying
complex conjugation to (8.222) for z ∈ ��, we obtain that f̄ = zf # on �� and hence

zff # = �f �2 on �� � (8.227)

Applying (8.7), we easily find � ′a on �� by Viète’s formulas:

� ′a =
1−�f �2
�1− zf �2 =

zf #f −1
�1− zf��f #−1�

= z�x1−x2�

�1− zx1��1− zx2�

=
√
�a

1+ ā− z�1+a� =
√��a�

�2 Im��1+a�√z�� � (8.228)

Lemma 8.121 For f�z�a�

(a) zf�z�a� � D−→ D∩ �w � �w+1/ā�>√�a�−2−1�;
(b) f�z�a� � D−→ D∩ �w � �w−1/ā�<√�a�−2−1�;
(c) G� = 1+ āzf�z�a� � Ĉ\�� −→ �w � �w�>√

1−�a�2�,
are conformal onto mappings.

Proof (a) This follows from (8.226), which says that the image T under zf�z�a� is
the union of two circular arcs.

(b) This follows from (a), since f is zf followed by a Möbius transform (by Shur’s
algorithm f = f1).

(c) This follows from (a) by the Schwarz reflection principle. �

Since w = zf�z�a� is a conformal mapping, there is at most one solution za ∈ $�
to the equation zf�z�a� = 1. By Lemma 8.121(a) the solution exists if and only if
�1+a�2 � 1−�a�2. In turn this means that the parameter 0 	= a ∈ D must be outside
the open disc �w+ 1/2� < 1/2. Next �fa� = 1 on T \��, which shows that � ′a = 0
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everywhere on $� except for z = za. To find the location of za we put w = 1 in the
quadratic equation

āw2+ �1− z�w−az= 0 ⇒ za =
1+ ā
1+a �

The measure �a has a point mass at z = za if za ∈ $�. To find �a��za�� we observe
that by (8.6)

F�a�rza�=
1− r2

�1− r�2�a��za��+o
(

1
1− r

)
= 2�a��za��

1− r +o
(

1
1− r

)



where r→ 1−. Now applying (8.7), we obtain

�a��za��= Re lim
r→1−

za− rza
2za

1+w�rza�
1−w�rza�

= Re
1

za�w�
′�za�

�

Differentiating the quadratic equation for w = zf , we easily find that

1
za�w�

′�za�
= a+ ā+2�a�2

za�1+a�2
= 2�Rea+�a�2�

�1+a�2 = �a��za�� �

Again, if �1/2+a�> 1/2 then �a��za�� > 0. There is a simple geometric construction
due to Geronimus (1941, §4), which allows one to find the arc �� and za for any
nonzero a easily, see Fig. 8.1. With its center at 0 we plot the circle of radius �a� and
continue the tangents to this circle from the point (−1, 0) to the intersection with T.
This gives the ends A and B of ��. Then D= za between them is the intersection with

–1 –0.5 0.5 1
X

Y

C

B

A

Da

Fig. 8.1. �� and D = za
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T of the line passing through (−1
0) and (a
a). For an a with �a+1/2�� 1/2 there
are no point masses at za. Using (8.228), we can derive Geronimus’s formula for � ′a:√��a�

�1+ ā− z�1+a�� =
2
√

sin2�	/2�− sin2��/2�

�1+a��z− za�

=
√

sin�	−��/2 sin�	+��/2
�1+a�� sin�	−"�/2� �

200 Logarithmic potential theory on T 2. If � is a nonnegative Borel measure
on T then

U��z�=
∫

T

log
e

��− z� d����

is the logarithmic potential of �. In the above formula e = 2�71 � � � . Hence the loga-
rithmic kernel is positive on T. We have

log
e

�1− �� = 1+∑
n	=0

�n

2�n� �

Then the potential energy of � is nonnegative and equals

I���
def=

∫
T

U�d�= ��̂�0��2+∑
n	=0

��̂�n��2
2�n� �

The logarithmic capacity cap� of a compact � ⊂ T is defined as

cap�
def= sup����� � supp�⊂� 
 U����� 1 for � ∈�� �

It is well known that cap� = �inf I����−1, where the infimum is taken over all
� ∈P�T� supported by � : supp�⊂� . By duality,

cap� = inf

{
��̂�0��2+∑

n	=0

2�n���̂�n��2
}



where the infimum is taken over all smooth �, �� 1, on � . It follows that cap T= 1.
To avoid the deeper implications of potential theory, which are not necessary for our
purposes, we will restrict our attention to compacts � ⊂T which are unions of a finite
number of closed arcs. They all are regular in the sense of this theory. Namely, for
every regular � there exists a unique equilibrium measure &� ∈P�T� such that

U&� = �cap��−1 on � 
 U&� < �cap��−1 on C\� � (8.229)

If � is a regular compact subset of T, then

g�z�= g� �z�= �cap��−1−U&� �z� (8.230)

2 See Nikishin and Sorokin (1988, Chapter 5, Section 5) for a brief introduction.
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is the Green’s function for the domain C\� (with pole at �). Clearly g > 0 in C\�
and

lim
z→�
g�z�= 0 for � ∈� 


g�z�= log �z�+ 1
cap�

−1+o�1� as z→� �
(8.231)

If � = T then &
T
= m, Um�z� = 1 for z ∈ T and Um�z� = 1− log �z� for �z� > 1.

Hence log �z� is the Green’s function for T.
Another example is a single arc � = ��. Since �fa�< 1 on ��, by (8.226), except

for the ends, we have �1+azfa�z�� = �G��z�� =
√

1−a2 on �� by (8.226) and (8.218).
By Lemma 8.121(c),

g��z�= log �G��z��− log
√

1−a2

= log �z�− log
√

1−a2+ log

∣∣∣∣afa+ 1
z

∣∣∣∣
= log �z�+ log

1√
1−a2

+o�1�

as z→�, implying that g� is the Green’s function of C\��. Hence

cap�� =
(

log
e√

1−a2

)−1

�

Especially important is the case when � = ∪ rj=1ej is the union of nonintersecting
closed arcs ej on T. Each arc ej has its interior side e+j facing the origin (the southern

pole of Ĉ) and its exterior side e−j facing � (the northern pole of Ĉ). Since g > 0 in
C\� and g = 0 on � , both normal derivatives �g/�n± in the directions of � and 0
are nonnegative. Then the density of the equilibrium measure on � is given by the
formula

d&� ���=
1

2�

(
�g���

�n−
+ �g���
�n+

)
ds��� 
 � ∈� 
 (8.232)

where ds is the arc length on � . For �z�� 1,

g�z�= log �z�+g
(

1
z̄

)
� (8.233)

Indeed g�1/z̄�, being the real part of an analytic function log �̄�1/z̄�, is harmonic and
bounded in �z� � 1. However, it obviously coincides with another bounded harmonic
function g�z�− log �z� everywhere on T. By the maximum principle they coincide in
�z�> 1. It follows from (8.233) that �g/�n− = 1+ �g/�n+ and therefore

d&� ���=
1

2�

(
1+2

�g���

�n+

)
ds��� 
 � ∈� � (8.234)
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Logarithmic potentials of � ∈ P�T� can be expressed in terms of their Schur
functions f = f� . Indeed,

d

dz

∫
T

log
1
�− z d����=

∫
T

d����

�− z =
f�z�

1− zf�z� (8.235)

implies that ∫
T

log
1

��− z� d����= Re
∫ z

0

f����

1− �f���� d� � (8.236)

Let us apply the above formula to � = &� . We will keep the notation f for the Schur
function of &� . If g̃ is harmonically conjugate to g then by (8.236)

g+ ig̃ = 1
cap�

−1−
∫ z

0

f���

1− �f��� d� �

Following Widom (1969), together with g we consider the multivalued function

��z�= exp�g�z�+ ig̃�z�� � (8.237)

It is analytic in C \� and has a single-valued modulus. We normalize the choice of
the multivalued harmonic conjugate function g̃�z� by the requirement that g̃�0� = 0
for at least one branch of g̃�z�. It is clear that

�′

�
�z�= �log��′�z�=− f�z�

1− zf�z� (8.238)

is single-valued in C\� because f extends to C\� from D through the complemen-
tary arcs of � by Schwarz’s reflection. Hence if z→� then

�′

�
�z�= 1

z

(
1− 1

z
f̄

(
1
z

))−1

= 1
z

{
1+ f�0�

z
+O

(
1
z2

)}
(8.239)

is analytic at z=�. It follows that

log��z�= log z+ c− f�0�
z
+O

(
1
z2

)
� (8.240)

The level curves C1, � � � , Cr of ��� = 1+ � become concentrated to e1, � � � , er as
�→ 0+. By Cauchy’s theorem,

1= 1
2�i

∮
�z�=R

�′

�
dz=

r∑
k=1

1
2�i

∮
�k

�′

�
dz =

r∑
k=1

1
2�
�
Ck
g̃ �

Now, by the Cauchy–Riemann equations,

2�&� �ek�=
∫
ek

�g

�n�
�d�� =

∫
ek

�g̃

�t�
�d�� = �

ek
g̃ = �

Ck
arg� � (8.241)
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Here t� is the tangent vector obtained by rotating the normal vector n� counterclockwise
through an angle �/2. The harmonic measures &� �ek� play a significant role in the
theory of periodic measures. For r = 1 we have &� �e1�= 1 and

� = G�√
1−a2

� (8.242)

201 The equilibrium measure of ��. We first compute the limit measure of
���n�2d��n�0 for any ratio-asymptotic � .

Theorem 8.122 Let ��n�n�0 be the orthogonal polynomials in L2�d�� for � ∈P�T�

with Verblunsky parameters �an�n�0. Suppose that �an�n�0 satisfies the López condition
with parameters �a
%�. Then the limit ∗-limn ��n�2 d� = d&a
% exists and the Schur
function f&a
% of &a
% ∈P�T� is −%f 2�%z�a�, where f�z�a� is given in �8�225�.

Proof We consider��ān / �an��fn+1�z��n�0 and ��an / �an��bn+1�z��n�0 in �. Since
�an�n�0 satisfies the López condition,

lim
n

ān
�an�

an+k = lim
n
�an� lim

n

an+k
an

= a%k 
 k� 1 �

lim
n
− an
�an�

ān−k = lim
n
�an� lim

n
−
(
an−k
an

)
=−a%k 
 k� 0 �

(8.243)

Notice that

�

(
ān
�an�

fn+1

)
=
(
ān
�an�

an+1 

ān
�an�

an+2 
 � � �

)



�

(
an
�an�

bn+1

)
=
(
− an
�an�

ān 
 −
an
�an�

ān−1 
 � � �

)
�

(8.244)

By (8.243) the sequences on the right-hand sides of (8.244) converge in �� to the
Schur parameters of %f�%z�a� and of −%f�%z�a� respectively. By Theorem 8.64,

lim
n

ān
�an�

fn+1�z�= %f�%z�a� 
 lim
n

ān
�an�

bn+1�z�=−f�%z�a�

uniformly on compact subsets of D. Hence

lim
n
fn+1�z�bn+1�z�=−%f 2�%z�a� 


which completes the proof by Theorem 8.67. �

To study &a
% in more detail let us put t = �%, w = z% in (8.9). Then &a
%�E� =
&a
1�%E� for any Borel subset E of T. Hence we may assume that % = 1 and study

only &a
def= &a
1, 0< a < 1. By (8.224) f # =−f , implying by (8.227) that

zf &a =−zf 2 = zff # = �f �2 
 &′a =
1+�f �2
1−�f �2
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on ��. By (8.225), in the neighborhood of z= 0 we have

f = 1− z
2az

(√
�a

1− z −1

)
= 2a

1− z

(
1+

√
�a

1− z

)−1

=−f # �

Then

zff # = 1− z−√
�a

1− z+√
�a


 F&a = 1+ zff #

1− zff #
= 1− z√

�a

� (8.245)

It follows from (8.245) that limr→1−�1− r�F&a�r��= 0 for every � ∈ T, implying that
&a has no discrete masses.

Lemma 8.123 The function −zf 2�z�a� conformally maps D onto the sliced disc
D\ �c
1�, where c = a2�1+√1−a2�−2.

Proof By the first formula of (8.226) 	→−�exp i	�f 2�exp i	�a� moves clockwise
along T (from −1 to 1) as 	 runs from 0 to �. By the second formula of (8.226),
	→−�exp i	�f 2�exp i	�a� maps ��
�� onto �c
1�, where

c = (
1−√1−a2

)2
a−2 = a2

(
1+√1−a2

)−2
�

The mapping of ��
2�� is symmetric to that of �0
��. By the argument principle
−zf 2�z�a� is univalent in D. �

Theorem 8.124 The measure &a is the equilibrium measure for �� with respect to
the logarithmic kernel.

Proof By (8.235), (8.238) and (8.242),

∫
��

�+ z
�− z d����= 1+2z

∫
��

d����

�− z = 1−2z
G

′
�

G�
� (8.246)

Let w�z� = zf�z�a�, � = �z− 1�2+ 4a2z. We have G� = 1+aw, where w satisfies
the algebraic equation

aw2+ �1− z�w−az= 0 � (8.247)

Differentiating (8.247), we obtain w′ = �w+a��−1/2
a and∫

��

�+ z
�− z d����= 1−2az

w+a
�1+az�√�a

= 1− 2aw√
�a

= 1− z√
�a

�

Now �= &a by (8.245). �
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202 The parameters of equilibrium measures. In the theory of orthogonal
polynomials on the circular arc �� the equilibrum measure &a replaces the Lebesgue
measure m on T. Therefore it is important to have formulas for the parameters of &a.
We obtain them by the method of Pell’s equation.

Symmetrizing (8.42)–(8.45), we see that if �Qn
Pn� is a solution to

Qn+PnF� =
{
O�1�
 z→� 

O�zn�
 z→ 0

(8.248)

then �−Q∗n
P∗n� is also a solution. Since (8.248) is a linear system,

Pn = %n�n+ �1−%n��∗
n/�n�0� 


Qn = %n�n+ �1−%n�� ∗
n /�n�0�

(8.249)

for some complex %n, by (8.42)–(8.45). Hence if one finds a solution to (8.248) then the
formulas for the Verblunsky parameters follow by Geronimus’ theorem 8.21. Notice
that the pair p�z�= z+1, q�z�= 1 satisfies the Pell equation p2−q2�a = 4z�1−a2�.

Lemma 8.125 Let Pn and Qn be polynomials defined by

Pn+Qn
√
�a = 21−n�p+q√�a �

n
� (8.250)

Then, if Pn = P∗n and Qn =Q∗n are self-adjoint monic polynomials of degree deg Pn = n
and deg Qn = n−1 respectively, we have

P2
n−Q2

n�a = 4�1−a2�nzn � (8.251)

Proof By (8.250)

2Pn+1 = Pnp+Qnq�a 
 2Qn+1 = Pnq+Qnp �
Since p, q, �a are self-adjoint, these relations show that Pn+1 and Qn+1 are self-adjoint
provided that Pn = P∗n and Qn = Q∗n. It is also clear that Pn+1 and Qn+1 are monic if
Pn and Qn are monic. Finally,

P2
n−Q2

n�a = 22−2n
(
p−q√�a

)n(
p+q√�a

)n = 4�1−a2�nzn

completes the proof. �

By Lemma 8.125,

Pn−Qn
√
�a =

4�1−a2�nzn

Pn+Qn
√
�a

�

Taking into account (8.245), we see that

PnF
&a +Qn�z−1�= 4�1−a2�nzn

PnF
&a −Qn�z−1�

�F&a�2 � (8.252)
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Since Pn�0�=Qn�0�= 1= F&a�0� and as z→� Pn�z�∼ zn, Qn�z�∼ zn, F&a�z�∼−1,
we obtain that

PnF
&a +Qn�z−1�=

{
2�1−a2�nzn+o�zn� 
 z→ 0 


−2�1−a2�n+o�1� 
 z→� �
(8.253)

Combining (8.249) with (8.253), we arrive at the system

�1−a2�n = %n�n−1 


−�1−a2�n =− �1−%n��n−1

�n�0�
�

Eliminating %n and applying Theorem 8.21, we obtain the recurrence for the parameters
�an�n�0 of &a:

an =
�1−a2�n+1∏n−1
k=0�1−a2

k�
−1 
 n= 0
1
 � � �

It follows that

1−an+1 = 2− 1−a2

1−an
� (8.254)

Lemma 8.126 Suppose that X2 −AX+B = 0, where A > 0 and B > 0, has two
different real roots r < r ′ and that the sequence �Xn�n�0 is defined by

Xn+1 = A−
B

Xn

 n= 0
1
2
 � � � 
 (8.255)

where X0 satisfies X0 ∈ �r
 r ′�. Then �Xn�n�0 is an increasing sequence in �r
 r ′� such
that for some c > 0

Xn = r ′ −
( r
r ′

)n
c�1+o�1�� 
 n→+� � (8.256)

Proof By Viète’s theorem the mapping (�w�=A−B/w satisfies (�r�= r , (�r ′�= r ′.
Since ( ′�x� = Bx−2 > 0 on �r
 r ′�, we conclude that ( maps the interval onto itself.
It follows that Xn ∈ �r
 r ′�, n = 1
2
 � � � Since by (8.255) the inequality Xn+1 > Xn
is equivalent to the inclusion Xn ∈ �r
 r ′�, we obtain that �Xn�n�0 is an increasing
sequence. Passing to the limit in (8.255), we conclude that limn Xn = r ′.

Let sn = r ′ −Xn. Then by (8.255) we have

�r ′ −�n+1��r
′ −�n�= A�r ′ −��−B �

Since r ′ is a root of the equation X2−AX+B = 0, this implies that

�n+1

�n
= r

r ′ −�n

 n= 0
1
 � � �
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Therefore limn �n+1�n
−1 = r/r ′ < 1. It follows that �n = o�qn�, n→+�, for every

q > r/r ′. Hence the infinite product

�0

�∏
k=0

(
1− �k

r ′

)−1 = c

converges to a finite value c > 0. Now the identity

�n =
�n
�n−1

�n−1

�n−2

�n−2 · · ·
�1

�0

�0 =
( r
r ′

)n
�0

n−1∏
k=0

(
1− �k

r ′

)−1

obviously yields (8.256). �

Theorem 8.127 The parameters �an�n�0 of the equilibrium measure &a for �� make
a negative decreasing sequence in �−a
−a2� such that

an =−a+ c
(

1−a
1+a

)n
�1+o�1�� 
 n→�� (8.257)

Proof The quadratic equation X2−2X+ �1−a2�= 0 has two different roots, r = 1−
a < r ′ = 1+a. The sequence Xn = 1−an satisfies (8.255) with A= 2 and B= 1−a2.
Since 0 < a < 1, we have X0 = 1+a2 ∈ �r
 r ′�. The proof is completed by Lemma
8.126. �

203 Wall pairs. A pair �A
B� of relatively prime polynomials is called a Wall pair
if there are a Wall continued fraction (8.10) and an integer n ∈ N such that An = A,
Bn = B.

Theorem 8.128 A pair �A
B� of relatively prime polynomials is a Wall pair if and
only if:

(a) B�0�= 1 and inf��B�z�� � z ∈ D� > 0;

(b) there exists a positive constant � such that

�B�2−�A�2 ≡ � 
 z ∈ T � (8.258)

Proof The necessity is an easy corollary of the properties of the even convergents to
a Wall continued fraction. To prove the converse statement we assume that it holds for
polynomials A, deg A< n. Since B�0�= 1, the degree of the trigonometric polynomial
�B�2 = BB equals deg B. Now (8.258) implies that deg B � deg A. Hence

A= azn+· · ·+a0 
 a 	= 0 
 B = bzn+· · ·+1 � (8.259)

By (8.258),

�zn = znB̄B− znĀA= B∗B−A∗A= �b− ā0a�z
2n+· · · 
 z ∈ T 
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which implies that b− ā0a = 0. By Corollary 8.11 �A/B�� < 1. Hence �a0� < 1.
Applying Schur’s algorithm to f = A/B, we consider the Schur function f1:

f1 =
f −a0

z�1− ā0f�
= �A−a0B�/z

B− ā0A
= A

′

B′



where the polynomials A′ and B′ are defined by

A′ = A−a0B

z�1−�a0�2�

 B′ = B− ā0A

1−�a0�2
�

It follows that A′ = azn−1 + · · · , degB′ � n− 1. By the definition, B′�0� = 1 and
�B′�z��> 0 if �z�� 1. Next, on T,

�B′�2−�A′�2 = �B− ā0A�2−�A−a0B�2
�1−�a0�2�2

= �B�2−�A�2
1−�a0�2

= �

1−�a0�2



which implies that �B′�∗B′ − �A′�∗A′ = zn−1��1−�a0�2�−1. Hence A′ and B′ are rel-
atively prime and by the induction hypothesis make a Wall pair. It follows from the
definition of Schur’s algorithm that �A
B� is a Wall pair. �

Observe that � ∈ �0
1� for every Wall pair. This follows directly from

�=
n∏
k=0

�1−�ak�2� 


or it can be obtained by the mean value theorem applied to the harmonic function
log �B�:

log�=
∫

T

log�dm<
∫

T

log �B�2 dm= log �B�0��2 = 0 �

If �A
B� is a Wall pair then �−A∗
B� also is a Wall pair, with the same �.

Theorem 8.129 In order that a polynomial A be the first component of a Wall pair
�A
B� it is necessary and sufficient that∫

T

log �A�dm < 0 � (8.260)

The second component B is uniquely determined by A.

Proof We have A/B ∈ � and moreover �A/B�� < 1. By the mean value theorem
applied to the harmonic function log �B�2,∫

T

log �A�2 dm=
∫

T

log

∣∣∣∣AB
∣∣∣∣2 dm+ log �B�0��2 < 0 .

Suppose now that (8.260) holds and consider an auxiliary continuous increasing
function

I���=
∫

T

log��A�2+��dm (8.261)
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on �0
+��. Since I�0� < 0 and I�1� > 0, there exists a unique � in �0
1� such
that I��� = 0. By Fejér’s theorem, see Szegő (1939, Theorem 1.2.2), there exists a
unique algebraic polynomial B such that degB � degA, B�0� > 0, B does not vanish
in �z � �z�� 1� and �B�2 = �A�2+� on T. By the mean value theorem

logB�0�2 =
∫

T

log��A�2+w�dm= I���= 0


implying B�0�= 1. Thus �A
B� must be a Wall pair by Theorem 8.128. �

Corollary 8.130 A polynomial A is the first component of a Wall pair �A
B� if and
only if there exists p > 0 such that∫

T

�A�p dm < 1 � (8.262)

Proof Combining a well–known formula Garnett (1981, Chapter IV, Section 6,
Ex. 6(c)),

lim
p→0+

(∫
T

�A�p dm
)1/p

= exp
{∫

T

log �A�dm
}



with Theorem 8.129 we obtain the result. �

Theorem 8.131 Let B be an arbitrary polynomial such that B�0� = 1 and 0 < � �

inf� �B�z��2 � �z�� 1 �. Then there exists a polynomial A, not vanishing in D, such that
�B�2−�A�2 ≡ � on T, A�0� > 0 and �A
B� is a Wall pair.

Proof By Fejér’s theorem the polynomial A is defined by

A�z�= exp
{

1
2

∫
T

�+ z
�− z log

(�B����2−�2
)
dm���

}

 �z�< 1 
 (8.263)

which completes the proof by Theorem 8.128. �

Definition 8.132 The Wall pairs �A
B� and �Ã
 B̃� are said to be equivalent if A∗A=
Ã∗Ã and B = B̃.

The degree d of a Wall pair �A
B� is defined as d= degA. Every pair �A
B� is deter-
mined by the rational fraction A/B ∈� with Schur parameters a0
 a1
 � � � 
 ad
0
0
 � � �
The parameters �a0
 a1
 � � � 
 ad� are called the parameters of �A
B�. The parameters
of �−A∗
B� are −ād, −ād−1, � � � , −ā0.

204 Periodic measures. If �A
B� is a Wall pair with parameters �a0
 a1
 � � � 
 ad�

then there is a unique f ∈ � with periodic Schur parameters �f = �a0
 a1
 � � � 
 ad�.
Since f = fd+1, the function f is a solution to the quadratic equation

zA∗X2+ �B− zB∗�X−A= 0 � (8.264)

Lemma 8.133 For any Wall pair �A
B� the roots of the polynomials B− zB∗ and
B+ zB∗ are simple, lie on T and are interlaced.
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Proof We have B− zB∗ = 0 exactly at the roots of zB∗/B = 1. The argument of
the Blaschke product zB∗/B increases in the counterclockwise direction of T, which
proves the lemma. �

To simplify the notation we put b+ = B+ zB∗ and b− = B− zB∗. The polynomial b+
is self-adjoint: b∗+ = b, b+�0�= 1. The polynomial b− is anti-self-adjoint: b∗− = −b−,
b−�0�= 1. By (8.17), on the unit circle

�b+�2+�b−�2 = 4�B�2 = 4�A�2+4� � (8.265)

Theorem 8.134 The discriminant �, deg � = 2d+2, of �8�264� is given by

� = b2
+−4�zd+1 � (8.266)

All roots of � are lie on T and coincide with the roots of �b+�2−4�. They are either
simple or of second order. The latter is the case if and only if �b+�2−4� has a local
maximum at this root.

Proof By (8.17) the discriminant � of (8.264) is

� = �B− zB∗�2+4zA∗A= �B+ zB∗�2−4�zd+1 
 (8.267)

where � is a parameter of the Wall pair �A
B�. The discriminant � has degree 2d+2
and is self-adjoint:

�∗ = z2d+2

{(
B �1/z̄�+ z−d−1B�z�

)2−4�z−d−1

}
=� �

Formula (8.266) follows by (8.267). By Lemma 8.133 the polynomial b+ is separable
and its roots lie on T. Let ���z�= z̄�d+1���z� for z ∈ T. Then by (8.266) and (8.265)

���z�=
{ �b+�2−4� 


4�A�2−�b−�2 �
(8.268)

The first formula in (8.268) shows that �� takes the minimal value −4� at the d+1
different zeros �t+j �

d
j=0 of b+. By the second formula of (8.268) �� takes nonnegative

values at the d+ 1 different zeros �t−j �
d
j=0 of b−, which interlace the zeros of b+. It

follows that on each open arc(
t+j 
 t

+
j+1

)= (
t+j 
 t

−
j

)∪{t−j }∪ (t−j 
 t+j+1

)
there are either two simple zeros (+j , (−j of �� in each open interval or one zero of
multiplicity 2, (+j = (−j . The superscript plus on (+j indicates that �� increases when
passing through (+j . The minus on (−j indicates that it correspondingly decreases.
Counting zeros, we get 2d+2 in total. �
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The polynomial �� in (8.268) is called the trigonometric polynomial associated
with �A
B�. Since deg A= d and deg b− = d+1 by (8.268), there is at least one t−j
such that �A�t−j �� > 0. Hence �� > 0 on an interval containing t−j . The graph of the
periodic function 	→ ���exp i	� is obtained by subtracting 4 � from the graph of
	→�b+�exp i	��2. Clearly �b+�2 has local maxima. We denote the smallest by mb. To
keep the number of roots of �b+�2−4� consistent with the degree of �, as in Theorem
8.134, we must have 4��mb. It is the case 4�=mb which generates the roots of �
of second degree.

Choosing the positive root and observing that f�0� = a0, �a0� < 1, we obtain an
explicit formula for f :

f�z�= b−
2zA∗

(√
�

b2−
−1

)
= a0+o�1� 
 z→ 0 � (8.269)

On the unit circle T,
�

b2−
= 1+ 4z1+d�A�2

b2−
= 1− 4�A�2

�b−�2
�

Hence on T

�f � = b−
2A−

∣∣∣∣∣1−
√

4�A�2
�b−�2

∣∣∣∣∣ � (8.270)

Since 1−√1−x2 < x for x ∈ �0
1�, (8.270) implies that

�f �< 1 if �� < 0 
 �f � = 1 if �� � 0 � (8.271)

Hence any periodic f is unimodular on an nonempty interval on T. The sets 	�f� =
�z ∈ T � �f�z�� < 1� and 
�f� = �z ∈ T � �f�z�� = 1� can be easily described in terms
of the roots of �� :

	�f�=
d⋃
j=0

�j
 
�f�=
d⋃
j=0

$j �

Here �j = �(−j 
 (+j � and $j = �(+j 
 (−j+1
. The periodic measure � is absolutely contin-
uous on 	�f� with density defined by (8.7). We say that � is essentially supported on
	�f�. The closure of 	�f� in T is denoted by ����.

Theorem 8.135 Given a pair � , � of measures having periodic Schur functions f�

and f�, 	�f��= 	�f�� if and only if f� and f� have equal discriminants.

Proof Since ���z� = z̄�d+1���z�, periodic Schur functions with equal discriminants
have a common polynomial � , which implies 	�f�= 	�g�. Conversely, if 	�f�= 	�g�
then �bf �2−4�f = �bg�2−4�g, since the zero sets of both trigonometrical polynomials
coincide. This implies by ���z�= z̄�d+1���z� that the discriminants are equal as well.

�
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A periodic measure � may have point masses on arcs $j .

Theorem 8.136 Every closed arc $j , j = 0
1
 � � � d, contains at most one point mass
of the periodic measure � with Schur function f .

Proof If x1 = f , x2 are the roots of (8.264) then by Viète’s theorem,

A∗�zx1−1��zx2−1�= B+A∗ − z�A+B∗� � (8.272)

The polynomial B+A∗ = B�1+A∗/B� does not vanish for �z�� 1, since A/B ∈� and
�A� = �A∗� on T. Therefore the roots of the adjoint polynomial �B+A∗�∗ = A+B∗
must be in D. It follows that the set

1= z�B+A
∗�∗

B+A∗ = zB
∗

B

h

h
(8.273)

contains the roots of zf − 1 = 0. Here h = 1+A∗/B is a smooth outer function in
�z � �z�� 1� with values in the open right half-plane. Notice that the middle expression
in (8.273) is a finite Blaschke product. Since its argument increases when t moves
clockwise, (8.273) has exactly d+1 solutions. Since �� = �B+ zB∗�2−4�, the roots
of B+ zB∗ = 0 are located inside open intervals �j such that each �j has exactly one
root t+j . On �t+j 
 t

+
j+1
 the argument ��t� of the Blaschke product zB∗/B increases from

−� to +�. For h we have

h= �h� exp i"t
 −�
2
< "�t� <

�

2
,

h

h
= exp�−2i"�t�� . (8.274)

It follows that u�t�= ��t�−2"�t� is continuous and u�tj�u�tj+1� < 0. Therefore u�t�
must vanish inside �t+j 
 t

+
j+1
 and by (8.273) the right-hand side of (8.272) also vanishes.

There is exactly one closed arc of 
�f� in �t+j 
 t
+
j+1�, namely $j . Therefore every arc

$j contains at most one root of B+A∗ − z�A+B∗� = 0. Since the number of roots
equals the number of arcs the result follows. �

Remark The result on the location of point masses was obtained in a preliminary form by Geronimus
(1944). In the form in which it is stated here, the result was obtained by Simon (2005). See Simon (2005)
for the inverse problem of the possible locations of point masses.

Discrete masses of � are located at the roots of 1− zf = 0. Since Re �1− zf�� 0,
the order of these roots does not exceed 1. The end-points of the essential support,
where the discriminant has simple zeros, are branching points of order 2 and therefore
the order of the zero is 1/2. This implies that �1− zf�−1 is locally integrable at these
points. The following theorem gives an explicit formula for the density of the periodic
measure associated with a Wall pair.

Theorem 8.137 Let � be the periodic measure with Schur function f associated with
a Wall pair �A
B� of degree d. Then

� ′ =
√
�

B+A∗ − z�B∗ +A� =
√
�

�∗
d+1−�d+1

=
√���

��∗
d+1−�d+1�


 (8.275)
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where �d+1 is the monic orthogonal polynomial of order d+1 and the formula holds
on 	�f�.

Proof Let u= 2A∗/�B− zB∗�. Then by (8.270)

zf =−
(

1−√
1−�u�2

)
u−1

on T. It follows that

1−�f �2 = 2
√

1−�u�2
(

1−√
1−�u�2

)
�u�−2 �

Next,

1−�f �2
�1− zf �2 =

1−�f �2
1+�f �2−2 Re zf

=
(

2
1−Re zf
1−�f �2 −1

)−1

�

It follows that

2
1−Re zf
1−�f �2 −1= 1+Reu√

1−�u�2 �

To find Reu we observe that ū= 2A∗/b̄− = −2zA/b−, which implies that

1+Re �u�= 1+ 1
2
�u+ ū�= B+A

∗ − z�B∗ −A�
B− zB∗ �

Combining the above formulas, we prove the first part of (8.275). The formula in
terms of orthogonal polynomials follows by (8.30). �

Remark A formula for � ′ was first obtained by Geronimus (1944) in a similar form. However, Geronimus’
formula for the denominator of the density was not particularly simple. Later it was used by Peherstorfer
and Steinbauer (1996) to develop the theory of periodic measures on the unit circle. The formula with
�∗d+1−�d+1 was obtained only recently in Simon (2005).

Theorem 8.138 Let � be the periodic measure associated with a Wall pair �A
B� of
degree d. Then

∫
T

�+ z
�− z d����=

A∗ + zA+√�

B+A∗ − z�B∗ +A� =
A∗ + zA+√�

�∗
d+1−�d+1

�

Proof Let x1 = f and x2 be two roots of (8.264). Then by Viète’s formulas we have

z�x1+x2�=−b−/A∗ 
 z�x1−x2�=
√
�/A∗ 
 z2x1x2 =−zA/A∗ �

It follows that

1+ zf
1− zf =

�1+ zx1��1− zx2�

�1− zx1��1− zx2�
= A∗ + zA+√�

�B+A∗�− z�B∗ +A�
as stated. �
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205 Galois’ Theorem for Schur’s algorithm. If f is the periodic Schur function
associated with a Wall pair �A
B� then the Schur function f # associated with �−A∗
B�
is called the Galois dual function for f . The reason for such a terminology is explained
by the following theorem of Galois:

Theorem 8.139 (Galois) Let f = �a0
 � � � 
 ad� be a Schur function in � with periodic
Schur parameters having maxj �aj�> 0, let w be the algebraic function corresponding
to f , and let ( be an automorphism in the Galois’ group Gal�C�z
w�/C�z�� with
(f 	= f . Then

− 1
z(f

= � ād
 ād−1
 � � � 
 ā0 �=−f # �

Proof By (8.74) and (8.73)

bn+1 =−
A∗n
Bn
+ �nz

n+1

Bn�Bn− zAn�

 (8.276)

implying by (8.75) that ��−A∗n/Bn�= �−ān
−ān−1
 � � � 
−ā0
0
 � � ��. If n= d, An=A,
Bn = B then the Wall pair �−A∗
B� corresponds to the quadratic equation, see (8.264),

zAX2− �B− zB∗�X−A∗ = 0 
 (8.277)

satisfied by f # ∈�. Then −f # = �ād
 ād−1
 � � � 
 ā0� is periodic. Since (f 	= f , we have
(f = x2 = 1/zf #. �

206 The measures �ff# . By Galois’ theorem 8.139 the roots of (8.264) are given
by

x1 = f 
 x2 = �zf #�−1 � (8.278)

Viète’s formulas applied to (8.264) imply that f # = −A∗�A�−1f . Solving (8.264) in
the neighborhood of z= 0, we obtain

1− zff # = x2−x1

x2

=−
√
�

zA∗x2


 1+ zff # =− b−
zA∗x2




implying that ∫
T

�+ z
�− zd�ff #���= 1+ zff #

1− zff #
= b−√

�
(8.279)

in D. Since �f � = �f #� on T and ���ff #� = ���� this formula can be extended to
C\�� by symmetry. Using Viète’s theorem, it is easy to check that ff # is a quadratic
irrational with discriminant b2

−�. It corresponds to a probability measure �ff # which
can be written down explicitly.
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Theorem 8.140 If f ∈ � is periodic then �ff # ∈P�T� is absolutely continuous and
is supported by 	�f�, and the following holds:∫

	�f�

�+ z
�− z d�ff #���= b−√

�

 ��ff #�′ = b−√

�
on 	�f� � (8.280)

Proof By (8.267) ��b−�−2 = 1− 4�A�2�b−�−2 on T; it is nonnegative on 	�f� and
nonpositive on 
�f� by (8.270), (8.271). Hence b−/

√
� is real on 	�f� and imaginary

on 
�f�. By Fatou’s theorem 8.4 we obtain the second formula of (8.280).
By Theorem 8.134 the roots of � coincide with those of �b+�2− 4� on T. Only

roots of the second order may generate point masses. If t0 is such a root then by
Theorem 8.134 it occurs at a local maximum for �b+�2− 4� and its value is zero.
Hence t0 ∈ �t+j 
 t+j+1�, where b+�t

+
j � = b+�t+j+1� = 0. Since the zeros of b− and b+

interlace, the zero t−j of b− is also in �t+j 
 t
+
j+1�. Then t−j = t0 by (8.268) and A�t0�= 0.

It follows from (8.267) that b−/
√
� does not have poles. �

Corollary 8.141 For any Wall pair �A
B� the quotient b−/
√
� is positive on 	�f�

and is pure imaginary on 
�f�.

Corollary 8.142 The quotient b−/
√
� � 1 on 	�f�.

Proof By (8.280) The quotient b−/
√
� > 0 on 	�f�. Hence

B− zB∗√
�

=
∣∣∣∣B− zB∗√

�

∣∣∣∣= �B− zB∗�√�B− zB∗�2−4�A�2 � 1

on 	�f�. �

Since b+/
√
� = 1+O�zd+1� as z→ 0 and

b−√
�
= 1− zB∗/B

1+ zB∗/B
b+√
�

 (8.281)

the first d parameters of the finite Blaschke product −B∗B−1 coincide with those of
ff #. Since −B∗/B is a finite Blaschke product, it is the Schur function of a discrete
measure �B ∈P�T� whose point masses are located at the zeros of b+ = B+ zB∗.
Corollary 8.143 For every pair of polynomials p, q such that the spectrum of the
trigonometric polynomial pq lies in �−d
d
 we have∫

T

pq d�ff # =
∫

T

pq d�B . (8.282)

In particular, the measures �B and �ff # have the same orthogonal polynomials up to
and including that of order d.

Proof It follows from (8.281) that F�ff# �z�= F�B�z�+O�zd+1� as z→ 0, which says
that the Fourier coefficients of the two measures coincide up to the index d. This is
equivalent to (8.282). �
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Corollary 8.144 Let f be the periodic Schur function corresponding to a Wall pair
�A
B�. Then ∫

T

�B+ �B∗��k d�ff #���= 0 , k= 1
2
 � � � 
 d .

Proof Apply (8.282) to p= b+, q = �k. Notice that b+ = 0 on �B. �

Corollary 8.145 Let � ∈ P�T�, let f� = �a0
 � � � 
 ad� with max �aj� > 0 and let
��n�n�0 be the orthogonal polynomials in L2�d��. Then ff # is the Schur function of
the limit measure

d��0� = ∗-lim
n
��n�2d� 
 n≡ 0 �mod d+1� �

Proof By (8.276) bn = f #+O�zn+1�, z→ 0, if n≡ 0 �mod d+1�. However, fn ≡ f
for such an n in view of the periodicity of the Schur parameters of f . The result
follows by Theorem 8.67. �

Theorem 8.146 Let P
Q ∈C�z
, deg P = deg Q= d+1, and let Q be separable, the
roots of P and Q be placed on T and

P∗ = −P 
 Q∗ =Q 
 P�0�=Q�0�= 1 � (8.283)

Then, for some real �j ,

P�z�

Q�z�
=

d∑
j=0

zj+ z
zj− z

�j � (8.284)

Proof Since (8.284) decomposes P/Q into partial fractions,

2�j =−z̄j
P�zj�

Q′�zj�
, j = 0
1
 � � � 
 d .

Next, Q̇= �Q/�	 =Q′�z� iz shows that 2�j =−i P�zj�/Q̇�zj�. By (8.283), on T

z̄�d+1�/2Q= z�d+1�/2Q , z̄�d+1�/2P =−z�d+1�/2P .

It follows that ��z� = z̄�d+1�/2Q�z� and '�z� = iz̄�d+1�/2P�z� are real for z ∈ T. Since
Q�zj�= 0, �̇�zj�= z̄�d+1�/2

j Q̇�zj� and '�zj� are also real. Consequently,

d∑
j=0

�j = P�0�/Q�0�= 1 (8.285)

and all the �j are real. �

Corollary 8.147 If P and Q are separable polynomials of degree d+ 1 satisfying
�8�283� and their zeros alternate on T, then in �8�285� all �j > 0.
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Proof Since Q is separable, � is separable too. Then the signs of the derivatives
�̇�zj� alternate. Hence in order that the the numbers �j be positive it is necessary and
sufficient that '�zj� be alternating. �

Definition 8.148 A pair �P
Q� of polynomials satisfying the conditions of Corollary
8.147 is said to be alternating.

Corollary 8.149 A pair of polynomials �P
Q� is alternating if and only if there exists
a polynomial B, B�0�= 1, B�z� 	= 0 for �z�� 1, such that

P = B− zB∗ 
 Q= B+ zB∗ �
Proof By Corollary 8.147 0 < 1 � 1+Re �P/Q�2 = Re �P+Q�/Q. Hence B�z� =
�P�z�+Q�z�� /2 	= 0 in �z� � 1 and B�0� = 1. Next, deg P = deg Q = d+ 1 and
P∗ = −P, Q∗ = Q. Since P�0� = Q�0� = 1, the coefficient of zd+1 in B is zero.
Passing to the adjoint polynomials, we obtain zB∗ = �P�z�−Q�z��/2, which proves
the corollary. �

The description of �ff # given in Theorem 8.140 is now complete.

Theorem 8.150 Let b ∈ C�z
 be separable, deg b = d+1 and b�0�= 1 and b∗ = b,
with roots on T, 0 < 4� � mb. Let � = b2− 4�zd+1 and 	 = �t ∈ T � �b�2 < 4��. If
there is an r ∈ C�z
, deg r � d+ 1, such that r�0� = 1, r∗ = −r and r/

√
� � 1 on

	, then there is a periodic f with discriminant � essentially supported by 	 and for
which r/

√
� = �ff # .

Proof If 4� < mb then 	 is a union of d+ 1 open arcs �j = �(−j 
 (+j �, 0 � j � d,
interlaced with closed arcs $j = �(+j 
 (−j+1
 not reducing to points. By the assumption,

the boundary values of r/
√
� from inside D are real and� 1 on �j and �j+1. Let �

be a smooth path starting in �j , and ending in �j+1, passing along the interior side of
T and a round the zeros of r and

√
� in D. Since � has only two zeros along this

path and r has nj in $j , the increment of the argument must be

��

(
r√
�

)
= ��1−nj� �

It follows that nj is odd and therefore that every $j has at least one zero. Since the
total number of arcs is d+1, each $j contains exactly one zero. It follows that �r
 b�
is an alternating pair. By Corollary 8.149 there is a polynomial B, not vanishing in the
closure clos D, such that B�0�= 1 and

r = B− zB∗ , b = B+ zB∗ . (8.286)

Since �r�2 � ��� on �t ∈ T � �� < 0�, we have that z̄d+1�� − r2� = �r�2 + �� � 0
everywhere on T. It follows that there exists a polynomial A such that

z̄d+1��− r2�= �r�2+�� = �r�2+�b�2−4�= 4�A�2 (8.287)
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on T. By (8.286) and (8.287), 4�B�2 = �r�2 + �b�2 = 4�A�2 + 4� on T, which im-
plies that �A
B� is a Wall pair. Next � = �B− zB∗�2 + 4zA∗A by (8.287), which
shows that the Wall pair �A
B� has discriminant �. The proof is completed by
Theorem 8.140. �

207 The Green’s function of C\����. By (8.268) all periodic Schur functions
of a given discriminant, i.e. with fixed b+�z�= B+zB∗ and �, have the same essential
open support 	 = �t ∈ T � �� < 0� in T, the closure of which is ����. If 	 essentially
supports a periodic f ∈� then there are other periodic Schur functions with the same
support. For instance, this is the case for

f # = −A∗ + zB∗f #

B− zAf #



corresponding to �−A∗
B�, so that f # satisfies (8.277). If �a0
 � � � 
 ad� is a period of
f then �−ād
 � � � 
−ā0� is the period of f #. More examples for d > 0 can be obtained
by a cyclic shift of parameters:

f1 = �a1
 a2
 � � � 
 ad
 a0�

f2 = �a2
 a3
 � � � 
 a0
 a1�
���

fd = �ad
 a0
 � � � 
 ad−2
 ad−1�

(8.288)

The formula

1−�fn�2 =
�1−�an�2��1−�fn+1�2�

�1+ ānzfn+1�2
, z ∈ T ,

shows that 
�f� = 
�fn�. Hence all the periodic functions in (8.288) have the same
essential support. By Theorem 8.135 they have a common discriminant. Since by (E8.1)

B+ zA∗f =
d∏
k=0

�1+ zākfk+1� 
 (8.289)

B+ zA∗f is invariant under the above cyclic shift. Moreover, the same holds for any
periodic f with discriminant �, since by (8.267) both are functions of b+ and �:

#1�z�=
B+ zA∗f√

�
= b++

√
�

2
√
�


 �z�< 1 � (8.290)

Hence #1�z� controls the periodic Schur functions with a given discriminant. Since
�f � = 1 on T \���� 	= �, f = f� extends to C \���� by the Schwarz reflection
principle through T\����. If z ∈ T\���� then

z1+d�B�z�+ zA∗�z� f�z��= �zB∗�z�f +A�z��f−1 = B+ zA∗f 
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implying that #1 extends analytically through T\���� and that for �z�> 1

#1�z�= z1+d#1�z̄
−1� � (8.291)

Compare this formula with (8.234) in §200. The following theorem shows that #1 =
�d+1 in C\����; see §200.

Theorem 8.151 The function set as �1+ d�−1 log �#1� is the Green’s function for
C\����: for z→�

log �#1�z��
d+1

= log �z�+ 1
2d+2

log
1
�
+o�1� � (8.292)

Proof Since f is periodic and corresponds to �A
B�, the identity on T

1−�f �2 = 1−
∣∣∣∣A+ zB∗fB+ zA∗f

∣∣∣∣2 = �1−�f �2��
�B+ zA∗f �2

implies that �#1� = 1 on 	�f� and hence on its closure ����. The algebraic conjugate
to #1 is given by

#2�z�=
B+ zA∗x2√

�
= 1

2
√
�

(
b+−

√
�
)

 �z�< 1 � (8.293)

By Viète’s formulas, #1 and #2 are the roots of the quadratic equation
√
�X2−b+X+

√
�zd+1 = 0 � (8.294)

Since #1�0�=�−1/2 	= 0 and #1#2 = z1+d, #1�z� 	= 0 for every z ∈C. Again by Viète’s
formulas,

1+#2/#1

1−#2/#1

= #1+#2

#1−#2

= b+√
�

 (8.295)

implying that the boundary values of b+/
√
� on 	�f� are pure imaginary. However,

on U�f�= T\	�f� we have(
b+√
�

)2

= b
2
+
�
= �b+�2
�b+�2−4�

� 0 


implying that b+/
√
� is real on U�f�. If 4� < mb then � is separable and any arc

�j of 	�f� is surrounded by two closed consecutive arcs $j , $j+1 of U�f�, that do not
reduce to a point. Then �j = �(−j 
 (+j � contains only one zero t+j of b+, ��(±j � = 0
and � 	= 0 on �j . Let � be a path starting in $j and ending in $j+1. Suppose that it
goes counterclockwise, passing t+j and (±j by small semicircles inside D. There are
three such semicircles on � . The increment of the argument along the first and the
last is �/2 for each whereas along the second it is −�. It follows that all signs of
b+/

√
� on $j are equal. By the mean value theorem applied to Reb+�z�/

√
��z� this

sign is positive since b+�0�/
√
��0� = 1. It follows that Reb+/

√
� > 0 in D. Then
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z1+d/#2
1 = #2/#1 ∈� by (8.295), implying that �#1�> 1 in D. Returning to the boundary

values of b+/
√
� we get the formula

b+√
�
�z�=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�b+�√�b+�2−4�
if z ∈ U�f� 


i
�b+�√

4�−�b+�2
if z ∈ �(−j 
 t+j � 


− i �b+�√
4�−�b+�2

if z ∈ �t+j 
 (+j � �

(8.296)

Hence �#1�z�� > 1 in C \����. Passing to the limit in (8.291) and observing that
#1�0�=�−1/2, we obtain (8.292). If 4�=mb then we first consider 4�<mb and then
pass to the limit as 4�→m−b . �

Since (8.294) is not an equation for a periodic Schur function yet its discriminant is
�, we conclude that even if � is the discriminant of a periodic Schur function there
is an entire nonperiodic Schur function in C�z


√
��.

Corollary 8.152 If � ∈P�T� is a periodic measure, then log �#1�z�� / �d+ 1� is the
Green’s function of C\���� with pole at �. In particular

cap����=
(

log
e

�1/�2d+2�

)−1

(see the start of §200).

Corollary 8.153 If f is periodic then the harmonic measure of every connected
component of 	�f� is rational.

Proof If 4�<mb then every such component is a single interval �j . Since
√
�/b+> 0

on U�f� it extends to C\���� to an analytic function with positive real part. Now by
(8.290),

log#1�z�= logb+�z�+ log

(
1+

√
�

b+

)
− log�2

√
�� � (8.297)

The increment of the argument of log#1�z� along a simple closed contour surrounding
�j is 2�, since b+ has only one zero on �j . Since #1 =�d+1, it follows from (8.241)
that the harmonic measure of �j is 1/�d+ 1�. Passing to the limit as 4�→ m−b or
counting double zeros, we conclude that the harmonic measure of any component ek
is k/�d+1�, where k is the number of �j in ek. �
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208 The inverse problem for periodic measures. By Corollary 8.153 the sup-
port of every periodic measure � =∪rj=1ej is a union of nonintersecting closed arcs ej
with rational harmonic measures &� �ej�, 1 � j � r. A compact � with such a property
is called rational. Rational compacts are invariant under rotations z→ %z, �%� = 1.
However, ��f�%z��= �%nan�n�0 for �%� = 1 shows that periodic measures are not. The
key to understanding which rational compacts may support a periodic measure is given
by the formula (8.291).

Suppose that � is rational with r components �ej� and that &� �ej� ∈ Q for every
j � r. Then there is a smallest integer d� 0 such that �d+1�&� �ej� ∈Z for 1 � j � r .
By (8.241) and (8.237) #1 = �d+1 is single-valued in �1 = C \� . It is unimodular
on � and therefore can be extended through � by the Schwarz reflection to another
single-valued analytic function,

#2�z�=
1

��z̄−1�d+1



in �1. Since ��� > 1 everywhere in C \� , we see that �#1� > 1 in �1 and �#2� < 1
in �1. Since #1 and #2 mutually extend each other through � , we obtain that #1#2

is analytic on C and asymptotically equivalent to czd+1 as z→�. This implies that
#1#2 is a polynomial which is unimodular on T. Hence

#1#2 = %�zd+1 
 �%� � = 1 � (8.298)

By (8.291), if � supports a periodic measure then %� = 1. However, it is clear that
any rational compact can be rotated so as to force the corresponding � to satisfy
(8.298) with %� = 1.

Theorem 8.154 A compact � =∪rj=1ej ⊂ T supports a periodic measure if and only
if it is rational and %K = 1.

Proof The necessity has already been proved. Again, since #1 and #2 extend each
other through � and have polynomial growth at infinity,

b = #1+#2

#1�0�

 #1�0�=��0� > 0 
 (8.299)

is a polynomial of degree d+ 1. Since �#2� < 1 < �#1� on �1, this polynomial has
all its roots on � ⊂ T. It is clear that b�0� = 1. To prove that b∗ = b, by the
uniqueness theorem we can check the identity zd+1b̄ = b on � , where both #1 and #2

are unimodular and satisfy (8.298) with %� = 1:

zd+1b̄ = 1
#1�0�

(
zd+1

#1

+ z
d+1

#2

)
= #1+#2

#1�0�
= b �

Hence #1 and #2 are the roots of the quadratic equation
√
�X2−b�z�X+√�zd+1 = 0 


√
�=��0�−1 
 (8.300)
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with discriminant � = b2−4�zd+1. It remains to prove that there is a Wall pair �A
B�
with discriminant �. By Theorem 8.131 such a Wall pair exists if and only if the
equation b = B+ zB∗ has a solution B not equal to zero in D and such that �B�2 � �
on T. First we describe all solutions B to b = B+ zB∗.
Lemma 8.155 Let b be a polynomial of degree d+1 with roots on T such that b∗ = b,
b�0�= 1. Then all solutions to b = B+ zB∗ in polynomials B not vanishing in �z�� 1
are obtained from the formula

B− zB∗
B+ zB∗ =

∫
b���=0

�+ z
�− z d( , (8.301)

where ( runs over the set of probability measures distributed through the zero set of
b in such a way that each root of b carries a positive mass.

Proof The Schur function of any measure ( located at the zeros of b is a Blaschke
product f = %�/�∗, �%� = 1, see (8.74). Therefore,∫

b���=0

�+ z
�− z d( =

1+ zf
1− zf =

�∗ +%z�
�∗ −%z� �

The requirement that (��s�� > 0 for every zero of b implies that the polynomial
�∗ −%z� has the same zero set as b. Observing that �∗�0�= b�0�= 1, we obtain that
b = �∗ −%z�. Now, taking into account that b∗ = b, we conclude that

b = ��∗ −%z��∗ = z�− %̄�∗ = −%̄��∗ −%z��=−%̄b � (8.302)

It follows that −%= 1, so that B = �∗. �

Thus any choice of ( defines the polynomial B, deg B = d, B�0�= 1:

B = b
2

(
1+

∫
S

�+ z
�− z d(

)

 zB∗ = b

2

(
1−

∫
S

�+ z
�− z d(

)

 (8.303)

where S = �s0
 � � � 
 sd� is the zero set of B.

Lemma 8.156 If b = B+ zB∗ then �B�2 � � on T\� .

Proof Let 	 = �t ∈T � �b�2−4�� 0�. Then 4�B�2 � �b�2 � 4� on 	, since the integral
in (8.303) is pure imaginary on T. Since #1 and #2 satisfy (8.300), we have

#1�z�=
b

2
√
�

(
1+

√
D

b

)

 #2�z�=

b

2
√
�

(
1−

√
D

b

)

in D. The boundary values of
√
Db−1 on the unit circle are either pure imaginary or

real: �b−2 = 1−4��b�−2. If they are pure imaginary then �#1� = �#2� = 1, otherwise
�#1� 	= 1 and �#2� 	= 1. It follows that 	 =� , completing the proof. �
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By Lemma 8.156 it is sufficient to determine a measure ( in (8.303) for which the
corresponding B satisfies �B�2 � � on � . The logarithmic derivative indicates that
(8.303) simplifies if (��sj��= �1+d�−1 for sj ∈ S. Indeed,

b
d∑
j=0

z+ sj
z− sj

= b
d∑
j=0

(
2z
z− sj

−1
)
= 2zb′ − �d+1�b (8.304)

converts (8.303) into

B = b− zb′

1+d 
 B∗ = b′

1+d � (8.305)

Lemma 8.157 We have �b′�� �1+d�√� on T.

Proof Since �B� = �B∗� on T, it is sufficient to prove this inequality on � . Both #1

and #2 satisfy (8.300). Differentiating it in z, we obtain that

#′1
#1

= zb
′ −√��d+1�#2

z
√
D



#′2
#2

=−zb
′ −√��d+1�#1

z
√
D

� (8.306)

It follows that

2z�log#1�
′ = z�log#2

1�
′ = �d+1�+

(
log
#1

#2

)′

= �d+1�+ 2zb′ − �d+1�b√
�

= �d+1�+ b√
�

d∑
j=0

z+ sj
z− sj

� (8.307)

Since the boundary values of log#1 from the zero side on � are i�d+ 1�g̃ (observe
that g = 0 on � ), we obtain by the Cauchy–Riemann equations

0< 2
�g

�n+
= −2

�g̃

�	
=− 2

i�d+1�
d

d	
log#1 =−

2z
d+1

�log#1�
′

= −1− b√
��d+1�

d∑
j=0

z+ sj
z− sj

=−1+ b√
��d+1�

d∑
j=0

sj+ z
sj− z
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on T−. It follows that the combination on the right-hand part of the above identity
equals 2�g/�n++1� 1. Since b/

√
� is pure imaginary on � , we obtain by (8.303) that

4�B�2 = ���
∣∣∣∣∣ b√D + b√

��d+1�

d∑
j=0

sj+ z
sj− z

∣∣∣∣∣
2

= �b�2+
(

2
�g

�n+
+1

)2

�4�−�b�2�� �b�2+4�−�b�2 = 4� 
 (8.308)

completing the proof of the lemma. �

By (8.308) and (8.234) we have

d&� ���=
(

4�B�2−�b�2
4�−�b�2

)1/2
ds���

2�

 � ∈� � (8.309)

Notice that Lemma 8.157 states the reverse of Bernshtein’s inequality for the poly-
nomial b. �

Thus we have found that all supports of periodic measures admit the following algo-
rithmic description. Take any separable polynomial b with roots on T such that b∗ = b
and b�0� = 1. Let mb be the minimal local maximum of �b�2 on T. Then for every
��mb the set �t ∈ T � �b�2 � 4�� is the support of a periodic measure.

Remark . The description of the supports of periodic measures in terms of harmonic measures and polyno-
mials was first obtained in Peherstorfer and Steinbauer (2000) with the help of a result of Widom (1969).
The elementary approach presented here is based on the theory of Wall pairs developed in Khrushchev
(2006a), see also Khrushchev (2006b). More details can be found in Simon (2005).

Exercises

8.1 Show that

An = a0+
(
a1+a0

n−1∑
k=1

ākak+1

)
z+· · ·+anzn 


Bn = 1+
(
n−1∑
k=0

ākak+1

)
z+· · ·+anā0z

n �

8.2 Prove the following identity for the Taylor coefficients of f :

f̂ �n+1�= Ân
Bn
�n+1�+�nan+1 �

Hint: Apply (8.26) and observe that Bn�0�= 1 by (8.25).
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8.3 For every f ∈ � show that the Taylor coefficient f̂ �n� is uniquely deter-
mined by a0
 � � � 
 an and that the Schur parameter an is uniquely determined
by f̂ �0�
 � � � 
 f̂ �n�.

Hint: Apply the equation of Ex. 8.2 and induction.

8.4 If An, Bn are Wall polynomials then the nonlinear mapping

f −→ An+ zB∗nf
Bn+ zA∗nf

maps a convex set � onto a convex set �n and sends the extreme points of �
to the extreme points of �n.

Hint: Apply (8.24) to check the convexity of �n. Apply (8.21) to obtain the
formula

1− An+B
∗
nw

Bn+A∗nw
2

= �n�1−�w�
2�

�Bn+wA∗n�2

for z ∈ T. Apply Theorem 8.54.

8.5 Show that the set D�z�= �f�z� � f ∈�n�, where �n is as in Ex. 8.4, is a circle
with center cn�z� and radius #n�z�:

cn�z�=
AnBn−�z�2A∗nB∗n
�Bn�2−�z�2�A∗n�2


 #n�z�=
�n�z�n+1

�Bn�2−�z�2�A∗n�2
�

8.6 Prove that for d� = �1+ cos	�d	/2� and �z�< 1,

1+ z= 1
2�

∫
T

ei	+ z
ei	− z�1+ cos	�d	


which implies that f��z�= 1/�2+ z�.
8.7 (Schur 1917) Prove that the parameters an and the Schur functions for f�z�=

1/�2+ z� are given by

fn�z�=
1

�n+1�z+ �n+2�

 an =

1
n+2

�

8.8 Prove the following identities for Wall polynomials and Schur functions:

Bn+A∗nzfn+1 =
n∏
k=0

�1+ zākfk+1� 
 (E8.1)

An+B∗nzfn+1 = �a0+ zf1�
n∏
k=1

�1+ zākfk+1� 
 (E8.2)
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Bnf −An = zn+1fn+1

n∏
k=0

�1+ zākfk+1�
−1 
 (E8.3)

Bnf −An = zn+1fn+1

n∏
k=0

�1− ākfk� 
 (E8.4)

B∗n−A∗nf = zn�n
n∏
k=0

�1− zākfk+1�
−1 
 (E8.5)

B∗n−A∗nf = zn
n∏
k=0

�1− ākfk� � (E8.6)

Hint: Formula (E8.1) follows from Lemma 2.31 or can be proved by induction
with the aid of the useful formula

1−�ak�2 = �1− ākfk��1+ ākzfk+1� � (E8.7)

Formula (E8.2) follows from (E8.1) by (8.22). To obtain (E8.3), we multiply
(E8.2) by Bn and subtract (E8.1) multiplied by An from the identity obtained.
Then (E8.3) follows by (8.17) and (E8.7). The identity (E8.5) is proved similarly.

8.9 Let f ∈�∩C�T�. Prove that limn An���/Bn���= f��� for � ∈ T with �f����< 1
if and only if limn fn���= 0.
Hint: apply (8.26).

8.10 Let f ∈� and F = �� ∈ T � �f���� = 1�. If mF > 0 then show that An/Bn⇒ f

on F if and only if �An/Bn� ⇒ 1 on F .
Hint: Take the modulus in (8.26) and apply the Cauchy inequality to the pth
power with p < 1/2; for details in Khrushchev (2001a).

8.11 Prove that for every f ∈� the series (8.150) converges to f in Lp�T�, 0<p< 1.
Hint: Use Theorem 1.14 of Khrushchev (2001a).

8.12 (Njåstad) If � is a Szegő measure with Schur function f = f� then limn�B
∗
n/A

∗
n�

exists at z ∈ D if and only if limn�z
n�A∗n�z��

−1�= 0.
Hint: Apply (E8.5), (E8.6).

8.13 Let ��n�n�0 and �)n�n�0 be two families of monic orthogonal polynomials in
L2�d�� with positive norms such that deg �n = deg )n = n. Then �n =)n for
every n= 0
1
 � � �
Hint: Apply induction in n.

8.14 Prove that
� ∗
n+1

�∗
n+1

− �
∗
n

�∗
n

= 2zn+1an�n−1

�∗
n

2�1+anzbn�
� (E8.8)

Hint: Apply the determinant identity to (8.38) to show that

� ∗
n+1�

∗
n−� ∗

n�
∗
n+1 = 2zn+1an�n−1 �
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8.15 Prove that the Geronimus continued fraction for F� converges uniformly and
absolutely on any compact subset of D.
Hint: Using (8.30) and (E8.8), prove that

� ∗
n+1

�∗
n+1

− �
∗
n

�∗
n

�
2�z�n+1

�1−�z��3 � (E8.9)

8.16 Identify polynomials A ∈ �n with the Hilbert space Cn+1 of their coefficients
a. Check that

�A
B�=
∫

T

AB̄d� =
n∑

k
j=0

ajb̄kck−j = �Cna
b� �

Since Dn = det Cn > 0, the matrix Cn is invertible. Hence there exists a unique
vector a in Cn+1 such that

Cna = �0
0
 � � � 
�−1
n � �

Show that A= �n.
8.17 Prove that �n is the unique polynomial of degree n for which there is a gap in

the Fourier spectrum of the product

�n d� ∼
∑
j>0

djz̄
j+ z

n

�n
+∑
j>n

djz
j �

8.18 Prove that �log+ x�2 < x for x > 0.
Hint: Consider y�x�= x− log2 x. Prove that y′�x� for x > 1 attains its minimum
1−2/e > 0 at x = e.

8.19 Prove that

bn+1 =−
A∗n
Bn
+ �nz

n+1

Bn�Bn− zAn�
�

8.20 Prove that

F��z�+ 'n�z�
�n�z�

= zn

�n�z��
∗
n�z�

{∫
T

�+ z
�− z ��n����

2 d�+1
}
� (E8.10)

Hint: Put z= 1/z̄ in (8.142) and apply complex conjugation.

8.21 (Jensen’s inequality) Let �X
�� be a probability space, v∈L1��� a real function
and � a concave function on R. Then∫

X
��v�d�� �

(∫
X
vd�

)
�

Hint: The result is trivial for linear �. Any concave function is the infimum of
linear functions. See Garnett (1981, Chapter I, Section 6).
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8.22 If � is a Szegő (Erdős) measure then �% is a Szegő (Erdős) measure for every
% ∈ T.
Hint: Apply (8.88). Observe that, by Smirnoff’s theorem, F� ∈Hp, p< 1. Since
C = 1+ i�F� is in the Nevanlinna class,

∫
T

log �C�2dm is finite; see Garnett
(1981) and Koosis (1989).

8.23 Let � ∈ P�T�, let ��n�n�0 be the orthogonal polynomials in L2�d�� and let
( ∈ T satisfy ���(�� > 0. Prove that

�∑
n=0

��n�(��2 � ���(��−1


the equality holding if � is not a Szegő measure.
Hint: Apply Parseval’s inequality to the indicator 1�(� of the set �(�.

8.24 Let � ∈P�T� with f� = f . Then � is a Rakhmanov measure if and only if

1
�∗n+1

= 1+o�1�√
�n�1− zf�

n∏
k=0

�1− ākfk� (E8.11)

uniformly on compact subsets of D.
Hint: Apply (8.73), (8.152) and Theorem 8.67. See Khrushchev (2001a).

8.25 Prove that if � is a Szegő measure then

D��
 z�= 1√
��1− zf�

�∏
n=0

�1− ānfn� 
 z ∈ D 
 (E8.12)

or equivalently
∏�
n=0�1− zān−1fn�=

√
�/D��
 z�, a−1 =−1.

Hint: Apply Theorem 8.70.
8.26 (Khrushchev 2001b) Prove that there is a Blaschke product with Schur param-

eters �an�n�0 satisfying
∑
n�0 �an�p <+� for every p > 2.

Hint: Let f = f� , where � is a Riesz product as in Theorem 8.98. By Frostman’s
theorem, see Garnett (1981), there is an � ∈ D such that the Möbius transform
f�= (� �f is a Blaschke product. Let %�= �1−�ā0��1− �̄a0�

−1. Since �%�� = 1
and

f� =
(��a0�+ z%�f1�z�

1+ (��a0�z%�f1�z�



the Schur parameters of f� are �(��a0�
%�a1
%�a2
 � � ��.
8.27 Let �An�n�0 and �Bn�n�0 be the Wall polynomials corresponding to the constant

parameters an = a > 0, n� 0. Show that

An
Bn
= azB

∗
n/Bn−1
z−1

� (E8.13)

Hint: From the fact that An/Bn are the convergents to (8.28) deduce that An
and Bn are the solutions to the recurrence

Un = �1+ z�Un−1− �1−a2�zUn−2 
 n� 2 � (E8.14)
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Using (E8.14), A0 = a= A∗0 and A1 = a�1+z�= A∗1, show that A∗n = An. Since
B∗n satisfies (E8.14), it is a combination of An and Bn. Determine the coefficients
in order to show that

B∗n =
1
z
Bn+ z−

1
az
An 


which is equivalent to (E8.13).
8.28 Prove that all zeros of the polynomials An from Ex. 8.27 are located inside the

arc ��.
Hint: Use (E8.13) to check that all roots of An are located on T. Prove that

An =
aXn+1

1√
D

{
1−

(
X2

X1

)n+1
}



where X1 = 1+azfa, X2 = z−azfa are two solutions of the recurrence (E8.14).
Observe that �X1�> �X2� on $� = T\�� and X1 = X2on T.

8.29 (Perron) Prove that the Wall continued fraction corresponding to constant pa-
rameters converges uniformly on compact subsets of D.
Hint: By Ex. 8.27,

zB∗n
zA∗n

= B
∗
n

An
= 1
z

Bn
An
+ z−1
az

⇒
1
zf
+ z−1
az

= f �

8.30 Prove that there are Cesàro sequences not satisfying the Máte–Nevai condition.
Hint: Consider � = �2n+ k � n = 0
1
 � � � 
 k = 0
1
 � � � 
 n� and take any se-
quence supported by � with values separate from 0.



Appendix
Continued fractions, observations

L. Euler (1739)1

1. Last year I began an examination of continued fractions, which constitute a relatively new
part of analysis. During this time some observations have appeared, which possibly in the future
will be not without their usefulness for this theory. With this in mind I will show to everybody
who reads this that the basic tools of analysis are important in this science. Let a continued
fraction

A+ B
C +

D

E +
F

G +
H

I + · · · 


be given, the true value of which can be found by the extension to infinity of the series

A+ B

1P
− BD
PQ

+ BDF
QR

− BDFH
RS

+ · · · 


where P, Q, R, S, � � � take the values

P = C 
 Q= EP+D
 R=GQ+FP 
 S = IP+HQ
 · · ·
This series always converges independently of the increase or decrease of the quantities B, C, D,
E, F , � � � only if they are all positive; every term is smaller than the preceding term but greater
than the subsequent term, which immediately follows by the above laws giving the values of P,
Q, R, S, � � � . 23

2. If consequently in turn an infinite series

B

1P
− BD
PQ

+ BDF
QR

− BDFH
RS

+ · · · 


is given, its sum can easily be expressed by a continued fraction. Then

C = P 
 E = Q−D
P


 G= R−FP
Q


 I = S−HQ
R


 · · ·

1 Translated from Latin to Russian by Igor’ Gashkov in Moscow (2005) and from Russian to English
by the present author. To save space, Rogers’ notation has been used, as in the main part of the book;
furthermore the multiplication point used by Euler has been replaced by the multiplication sign × used
elsewhere in the book.

2 This statement if understood literally formally contradicts Corollary 3.9. However, see the first example
in §9 of this appendix and Exercise 4.6.

3 See Theorem 1.4 and formula (1.20) for this section.

426
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determine a continued fraction equal to this series, namely,

B

P +
D

Q−D
P

+
F

R−FP
Q

+
H

S−HQ
R

+
K

· · ·

or
B

P +
DP

Q−D +
FPQ

R−FP +
HQR

S−HQ +
KRS

· · · �

Thus if a series is given by
a

p
− b
q
+ c
r
− d
s
+ e
t
− · · · 


so that

B = a 
 D = b � a 
 F = c � b 
 H = d � c 
 K = e � d 
 · · · 


P = p 
 Q= q � p 
 R= pr � q 
 S = qs � pr 
 T = prt � qs 
 · · · 

then the sum of the series

a

p
− b
q
+ c
r
− d
s
+ e
t
− · · · 


equals the following continued fraction 4

a

p +
b � a

aq−bp
app

+
c � b

p2�br− cq�
bqq

+
d � c

q2�cs−dr�
cp2r2

+
e � d

p2r2�dt− es�
dq2s2

+ · · ·

= a
p +

bp2

aq−bp +
acqq

br− cq +
bdrr

cs−dr +
cess

dt− es +· · · �

3. To illustrate this with some examples let us consider the series

1− 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ · · · 


the sum of which is l25 or
∫
dx/�1+x� if after integration x= 1; then

a= b = c = d = · · · = 1 
 p= 1 
 q = 2 
 r = 3 
 s = 4
 · · ·
and also p= 1, aq−bp= 1, br− cq = 1, cs−dr = 1, � � � It follows that∫ dx

1+x =
1
1 +

1
1 +

4
1 +

9
1 +

16
1 +

and therefore the value of the continued fraction is l2.

4. Let us now consider the series

1− 1

3
+ 1

5
− 1

7
+ 1

9
+ · · · 


4 See §70 in Section 4.1, in particular Theorem 4.5.
5 l2= ln 2, and the integration is taken from 0 to 1.
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whose sum equals the area of a disc of diameter 1 or
∫
dx / �1+x2� with x= 1 after integration.

Then a= b = c= d= · · · = 1 and p= 1, q = 3, r = 5, s = 7, � � � Hence we obtain Brouncker’s
continued fraction, ∫ dx

1+xx =
1
1 +

1
2 +

9
2 +

25
2 +

49
2 +· · · 


discovered in relation with the quadrature of the circle.

5. Similarly, using general series one can obtain formulas converting integrals into continued
fractions, where clearly x = 1 after integration:∫ dx

1+x3
= 1

1 +
12

3 +
42

3 +
72

3 +
102

3 +· · · 
∫ dx

1+x4
= 1

1 +
12

4 +
52

4 +
92

4 +
132

4 +· · · 
∫ dx

1+x5
= 1

1 +
12

5 +
62

5 +
112

5 +
162

5 +· · · 
∫ dx

1+x6
= 1

1 +
12

6 +
72

6 +
132

6 +
192

6 +· · · �

6. This implies the general formula∫ dx

1+xm =
1
1 +

12

m +
�m+1�2

m +
�2m+1�2

m +
�3m+1�2

m +· · · 


with x = 1 after integration. And if m is fractional then∫ dx

1+xm/n =
1
1 +

n

m +
�m+n�2
m +

�2m+n�2
m +

�3m+n�2
m +· · · �

7.6 Let us consider now the formula ∫ xn−1dx

1+xm 


which after integration and substitution of x = 1 gives the following series:

1
n
− 1
m+n +

1
2m+n −

1
3m+n + · · ·

It follows that ∫ xn−1dx

1+xm = 1
n +

n2

m +
�m+n�2
m +

�2m+n�2
m +

�3m+n�2
m +· · · 


and this continued fraction is proportional to the last found.

8. Next I present the formula ∫ xn−1dx

�1+xm��/& 


6 Compare §§3–7 in this appendix with (3.19), (3.25).
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which after integration and substitution of x = 1 gives the following series:

1
n
− 1�
&�m+n� +

���+&�
1×2&2�2m+n� −

���+&���+2&�
1×2×3&3�3m+n� + · · · 


which in turn by comparison with the general formula gives

a= 1 
 b = �
 c = ���+&� 
 d = ���+&���+2&� 
 · · · 

p= n 
 q = &�m+n� 
 r = 2&2�2m+n� 
 s = 6&3�3m+n� 


t = 24&4�4m+n� 
 � � �
and also

aq−bp= &m+ �&−��n 

br− cq = �&�3&−��m+�&�nu−��n 

cs−dr = 2�&2��+&��m�5&−2��+n�&−��� 

dt− es = 6�&3��+&���+2&��m�7&−3��+n�&−��� 


���

resulting after substitution in∫ xn−1dx

�1+xm��/& =
1
n +

�n2

&m+ �&−��n +
&��+&��m+n�2

�3&−��m+ �&−��n

+
2&��+2&��2m+n�2
�5&−2��m+ �&−��n +

3&��+3&��3m+n�2
�7&−3��m+ �&−��n+· · ·

Let �= 1 and & = 2; then we have∫ xn−1dx√
1+xm =

1
n +

n2

2m+n +
6�m+n�2

5m+n

+
20�2m+n�2

8m+n +
42�3m+n�2

11m+n +
72�4m+n�2

14m+n +· · · �

9.7 However, if & were 1 and � were integer then the following continued fractions would
result: ∫ xn−1dx

�1+xm�2 =
1
n +

2n2

m−n +
1×3�m+n�2

m−n +
2×4�2m+n�2

m−n

+
3×5�3m+n�2

m−n +
4×6�4m+n�2

m−n +· · · 
∫ xn−1dx

�1+xm�3 =
1
n +

3n3

m−2n +
1×4�m+n�2

−2n +
2×5�2m+n�2
−m−2n

+
3×6�3m+n�2
−2m−2n +

4×7× �4m+n�2
−3m−2n +· · · �

These do not converge in view of the negative quantities present, but diverge.

7 Compare §§8–9 with Ex. 4.6.
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10. All these observations follow from the conversion of the continued fraction in §1 to the
infinite series

A+ B

1P
− BD
PQ

+ BDF
QR

− BDFH
RS

+ · · ·

After adding pairs of terms of opposite signs, this series is transformed into

A+ BE
1Q

+ BDFI
QS

+ BDFHKN
SV

+ · · ·

Indeed,

C = P = Q−D
E


 G= S−HQ
IQ

− F�Q−D�
EQ




L= V −MS
NS

− K�S−HQ�
IS


 · · ·

Hence the infinite series

A+ BE
Q
+ BDFI

QS
+ BDFHKN

SV
+ · · ·

is transformed into the continued fraction

A+ B

Q−D
E

+
D

E +
F

E�S−HQ�−FI�Q−D�
EIQ

+
H

I +
K

I�V −MS�−KN�S−HQ�
INS

+· · · 


which after elimination of the denominator fractions transforms into

A+ BE

Q−D +
D

1 +
FIQ

E�S−HQ�−FI�Q−D� +
EHQ

1

+
KNS

I�V −MS�−KN�S−HQ� +
IMS

1 +· · · �

11. If now in turn we consider the series

a

p
+ b
q
+ c
r
+ d
s
+ e
t
+ · · ·

then comparing it with the preceding one, we obtain

Q= p 
 S = q
p

 V = pr

q

 X = qs

pr

 Z = prt

qs

 · · ·

and also

E = a

B

 I = b

BDF

 N = c

BDFHK

 · · ·
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These values turn the given series into

a

p−D +
D

1 +
bp � 1

Da�q/p−Hp�−b�p−D� +
DHap � 1

1

+
cq � p

Hb�pr/q−Mq/p�− c�p/q−Hp� +
HMbq � p

1 +
dp � q

Mcqs/pr −· · ·



which contains many quantities that do not enter the initial series.

12. Meanwhile, let the series from §2,

b

p
− bd
pq
+ bdf
qr

− bdfh
rs

+ � � � 


be equal to the continued fraction

b

p +
dp

q−d +
fpq

r−fp +
hqr

s−hq +
krs

� � �
�

If we make this series equal to the preceding one then we obtain

b = BE 
 d = −DFI
E


 f = −HKN
I


 � � � 


p=Q
 q = S 
 r = V 
 s = X 
 � � � 

hence the continued fraction from the preceding paragraph can be transformed into the continued
fraction

A+ BE
Q −

DFIQ

ES+DFI −
EHKNQS

IV +HKNQ −
IMORSV

NX+MORS +· · · 


in which a progression law can easily be detected.

13. The series

A+ B
P
− BD
PQ

+ BDF
QR

− · · · 


which we obtained first from a continued fraction, can be easily transformed to the form

A+ B

2P
+ BE

2Q
− BDG

2PR
+ BDFI

2QS
− BDFHL

2RT
+ · · · 


which in turn, if we express the quantities C, E, G, I , � � � in terms of those remaining, with the
help of the equations given can be transformed into

A+ B

2P
+ B�Q−D�

2PQ
− BD�R−FP�

2PQR
+ BDF�S−HQ�

2QRS
− · · · 


and therefore equals the continued fraction

A+ B
P +

DP

Q−D +
FPQ

R−FP +
HQR

S−HQ+· · · �
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14.8 All these facts follow immediately from considerations of continued fractions, and many
other similar observations are mentioned in my previous dissertation9. Thus, I now continue the
application of these observations to other cases and also present several methods for evaluating
continued fractions, which for such fractions assign values by integration. To begin with, since
Brouncker’s quadrature of the circle was not only proved but, as it would seem, was a priori
invented, I will study other expressions of the type similar to that obtained either by Brouncker
or by Wallis; such expressions were considered by Wallis but it was not clearly mentioned
whether Brouncker did everything himself or only discovered the part related to the quadrature
of the circle. Later in fact I prove how one can find these remaining fractions, which were
discovered using a high degree of intuition, on the basis of quite different principles and also
show how one can find many fractions of this type.

15. These formulas, which Wallis used, lead to the assumption that the product of the two
continued fractions in the following expression must be equal to a2:

a2 =
(
a−1+ 1

2�a−1� +
9

3�a−1� +
25

2�a−1�+· · ·

)

×
(
a+1+ 1

2�a+1� +
9

3�a+1� +
25

2�a+1�+· · ·

)
�

Similarly

�a+2�2 =
(
a+1+ 1

2�a+1� +
9

3�a+1� +
25

2�a+1�+· · ·

)

×
(
a+3+ 1

2�a+3� +
9

3�a+3� +
25

2�a+3�+· · ·

)
�

Repeating this method for an infinite product, we obtain

a
a�a+4��a+4��a+8��a+8��a+12��a+12� · · ·

�a+2��a+2��a+6��a+6��a+10��a+10��a+14� · · ·
= a−1+ 1

2�a−1� +
9

3�a−1� +
25

2�a−1�+ · · · �

16. If we now investigate the constant obtained from the infinite product by the method given
in the previous dissertation10, then we find that

a�a+4��a+4��a+8��a+8� · · ·
�a+2��a+2��a+6��a+6� · · · =

∫
xa+1 dx �

√
1−x4∫

xa−1 dx �
√

1−x4
�

Therefore the value of the continued fraction

a−1+ 1
2�a−1� +

9
3�a−1� +

25
2�a−1�+· · ·

equals the expression

a

∫
xa+1 dx �

√
1−x4∫

xa−1 dx �
√

1−x4



where one must put x = 1 after integration.

8 For §§14–17 see §§60 and 61 in Section 3.2.
9 Euler (1750a).

10 Euler (1750a).
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17. This theorem, which rather explicitly presents values of the continued fraction as integral
formulas, the more so deserves to be mentioned as it is less obvious. Namely, although the case
a= 2 has been considered already in presenting the circle quadrature, other cases do not follow
from it. Indeed, if by the method described above one converts this continued fraction into a
series, then complicated formulas show that its sum can hardly be evaluated, except for a= 2.
Therefore for quite a long time I have undertaken great efforts to prove this theorem, so that its
proof a priori can be related to this function; this research is in my opinion more difficult, but
I believe it could result in great benefits. While any such research has so far been condemned
to failure, I regretted most of all that Brouncker’s method has been nowhere present and most
likely has sunk into oblivion.

18.11 As far as it is known from Wallis’ considerations, Brouncker arrived at his formulas by
interpolating the series

1

2
+ 1×3

2×4
+ 1×3×5

2×4×6
+ · · · 


whose intermediate terms, as Wallis showed, are present in the quadrature of the circle. This
even gives the beginning of Brouncker’s interpolation. The single fractions 1/2, 3/4, 5/6, · · ·
were factored into binary multipliers, which in their totality constituted a continued progression.
Thus if the following is true,

AB = 1

2

 CD = 3

4

 EF = 5

6

 GH = 7

8

 · · ·

and the numbers A, B, C, D, E, � � � represent a continued progression then the series would take
the form

AB+ABCD+ABCDEF + · · · 

which being reduced to this form would interpolate itself; the factor with index 1/2 is A, the
factor with index 3/2 is ABC and so on12. In view of what has been said, this interpolation
brings back single fractions into binary multipliers.

19. It follows from the continuity law that

BC = 2

3

 DE = 4

5

 FG= 6

7

 � � � �

Then

A= 1

2B

 B = 2

3C

 C = 3

4BD

 D = 4

5E

 � � � 


which immediately implies that

A= 1×3×3×5×5×7×· · ·
2×2×4×4×6×6×· · · 


which is nothing other than the very formula invented by Wallis, the formula which represents
the quadrature of the circle and does not at all resemble Brouncker’s expression. Because this
formula can so easily be discovered by the method of interpolation, it is especially surprising
that Brouncker moving in the same direction arrived at a completely different expression; it was
not seen that a way remains leading to a continued fraction. It is hardly possible that Brouncker
actually wanted to develop A into a continued fraction; rather, by some chance and almost
against his wish he discovered this new and completely different method. In his time continued

11 In §§18–19 Euler explains Wallis’ interpolation; see §59 in Section 3.2 and §71 in Section 4.2.
12 See the discussion relating to (3.14).
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fractions were completely unknown, and owing to this lucky chance, to everybody’s benefit,
for the first time their study could be expanded. A new method could be developed from this,
leading to similar continued fractions, although at present it is not clear how this will be done.

20. Although I made numerous unsuccessful attempts to find this method, I did however
come across a different method of realizing the interpolation of such a series by continued
fractions; a method that gave me expressions completely different from those of Brouncker.
Incidentally, I hope that it is not without interest to justify this method; with its help one can
find continued fractions whose values could also be found by quadrature. When, after that, using
a different method I tried to find values of arbitrary continued fractions that could be expressed
by quadrature, I obtained beautiful formulas relating integrals, at least for the case when after
integration the variable is substituted by a definite value; similar equalities for infinite products
of constant terms are presented in my previous dissertation13.

21.14 To explain my method of interpolation let us take a widely known series,

p

p+2q
+ p�p+2r�
�p+2q��p+2q+2r�

+ p�p+2r��p+4r�
�p+2q��p+2q+2r��p+2q+4r�

+ · · ·

where the term with index 1/2 is A, the term with index 3/2 is ABC, the term with index 5/2
is ABCDE etc. It follows that

AB = p

p+2q

 CD = p+2r

p+2q+2r

 EF = p+4r

p+2q+4r

 · · ·

and by the law of continuity

BC = p+ r
p+2q+ r 
 DE = p+3r

p+2q+3r

 FG= p+5r

p+2q+5r

and so on.

22. To eliminate fractions we put

A= a

p+2q− r 
 B = b

p+2q



C = c

p+2q+ r 
 CD = d

p+2q+2r
· · · 


which implies that

ab = �p+2q− r�p 
 bc = �p+2q��p+ r� 

cd = �p+2q+ r��p+2r� 
 cd = �p+2q+2r��p+3r�
 · · ·

Now we have

a=m− r+ 1
�

 b =m+ 1

"

 c =m+ r+ 1

$



d =m+2r+ �
$

 e=m+3r+ 1

�
· · · 


where the integer parts of the substitutions make an arithmetic progression with a constant dif-
ference r , which is exactly what is required by the progression of these multipliers themselves.

13 Euler (1750a).
14 For §§21–26 see Ex. 4.12 and Ex. 4.19.
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Consequently these relations are expressed by a sequence of equalities where for brevity
we set

p2+2pq−pr−m2+mr = P 

2r�p+q−m�=Q 


P�"− �m− r��=m"+1 


�P+Q�"$−m"= �m+ r�$+1 


�P+2Q�$�− �m+ r�$ = �m+2r��+1 


�P+3Q���− �m+2r��= �m+3r��+1 


���

23. These equalities imply that for the quantities �, ", $, � etc. the following identities hold:

�= m"+1
P"− �m− r� =

m

P
+ p�p+2q− r� � P2

−�m− r� � P+" 


"= �m+ r�$+1
�P+Q�$−m = m+ r

P+Q +
�p+ r��p+2q� � �P+Q�2

−m � �P+Q�+$ 


$ = �m+2r��+1
�P+2Q��− �m+ r� =

m+2r
P+2Q

+ �p+2r��p+2q+ r� � �P+2Q�2

−�m+ r� � �P+2Q�+� 


���

Let us put for the sake of brevity

p2+2pq−mp−mq+qr = R 

pr+qr−mr = S

and express the values of under consideration in terms of these quantities. Then we obtain the
continued fraction

�= m
P
+ p�p+2q− r� � P2

2rR � P�P+Q� +
�p+ r��p+2q� � �P+Q�2

2r�R+S� � �P+Q��P+2Q�

+
�p+2r��p+2q+ r� � �P+2Q�2

2r�R+2S� � �P+2Q��P+3Q� +· · ·
�

24. Therefore let a=m− r+1/�; then

a=m− r+ P
m +

p�p+2q− r��P+Q�
2rR +

�p+ r��p+2q�P�P+2Q�
2r�R+S�

+
�p+2r��p+2q+ r��P+Q��P+3Q�

2r�R+2S� +· · · �

From here the term of the proposed series,

p

p+2q
+ p�p+2r�
�p+2q��p+2q+2r�

+ p�p+2r��p+4r�
�p+2q��p+2q+2r��p+2q+4r�

+ · · · 
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with index 1/2 is

A= a

p+2q− r �

Since the general term of this series, with index n, is∫
yp+2q−1 dy �1−y2r �n−1∫
yp−1 dy �1−y2r �n−1




the continued fraction under consideration is given by a= �p+2q−r�
∫
yp+2q−1 dy �

√
1−y2r∫

yp−1 dy �
√

1−y2r



where y = 1 after integration.

25. If in our continued fractions there is an arbitrary letter m, then we have infinitely many
continued fractions with the same value, of which the most remarkable may be studied. First
let m− r = p or m= p+ r; then P = 2p�q− r�, Q= 2r�q− r�, R= p�q− r� and S = r�q− r�,
which implies that

a= p+ 2p�q− r�
p+ r +

�p+2q− r��p+ r�
r

+
�p+2q��p+2r�

r +
�p+2q+ r��p+3r�

r +· · · �

If we take r > q to avoid negative fractions this can be written as

a= p
1 +

2�r−q�
p+2q− r +

�p+2q− r��p+ r�
r

+
�p+2q��p+2r�

r +
�p+2q+ r��p+3r�

r +· · · �

26. Now let m= p+2q; then Q and S disappear and we have P = q�r−q� and R= q�r−q�.
This implies that

a= p+q− r+ q�r−q�
p+q +

p�p+2q− r�
2r

+
�p+ r��p+2q�

2r +
�p+2r��p+2q+ r�

2r +· · · �

It follows that this continued fraction exactly equals the previous ones although they are of
different types.

27. Assuming that m= p+2q, we obtain

P = 2q�r−p−2q�=−2q�p+2q− r� 

Q=−2qr 
 R=−q�p+2q− r� 
 S =−qr �

This gives the following continued fraction:

a= p+2q− r− 2q�p+2q− r�
p+2q +

p�p+2q�
r

+
�p+ r��p+2q+ r�

r +
�p+2r��p+2q+2r�

r +· · · �
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In this way infinitely many continued fractions appear, all having the same value a, which can
be found from the formula15

a= �p+2q− r�
∫
yp+2q−1 dy �

√
1−y2r∫

yp−1 dy �
√

1−y2r

= �p+2q−2r�

∫
yp+2q−2r−1 dy �

√
1−y2r∫

yp−1 dy �
√

1−y2r
�

28. Before going further let us consider a special case. Let r = 2q; then

a= p
∫
yp+2q−1 dy �

√
1−y4q∫

yp−1 dy �
√

1−y4q
�

Then we obtain the quantities

P = p2+2mq−m2 
 Q= 4q�p+q−m�

R= p2+2pq+2qq−mp−mq 
 S = 2q�p+q−m� 


which generate the following formula:

a=m−2q+ P
m +

p2�P+Q�
4qR +

�p+2q�2P�P+2Q�
4q�R+S�

+
�p+4q�2�P+Q��P+3Q�

4q�R+2S� +· · · �

29. If we replace m by other values then we obtain other continued fractions. First, we have

a= p− 2pq
p+2q +

p�p+2q�
2q +

�p+2q��p+4q�
2q +

�p+4q��p+6q�
2q +· · · �

or, instead of this fraction, for r > q,

a= p
1 +

2q
p +

p�p+2q�
2q +

�p+2q��p+4q�
2q +

�p+4q��p+6q�
2q +· · · �

Next, using the data of §26 we obtain the following continued fraction:

a= p−q+ qq

p+q +
pp

4q +
�p+2q�2

4q +
�p+4q�2

4q +· · · �

In the third instance, §27 represents the following continued fraction:

a= p− 2pq
p+2q +

p�p+2q�
2q +

�p+2q��p+4q�
2q +

�p+4q��p+6q�
2q +· · · �

which coincides with the first fraction presented in this paragraph so that in the case r = 2q
there are two such simple fractions.

15 By §21, the infinite product a converts to integrals by Euler (1750a); see (4.32).
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30. Let us assume that q = p= 1, which implies that

a=
∫
yy dy �

√
1−y4∫

dy �
√

1−y4
�

First we have

a= 1− 2
3 +

1×3
2 +

3×5
2 +

5×7
2 +· · · �

Next,

a= 1
2 +

1
4 +

9
4 +

25
4 +

49
4 +· · · �

It follows that

a=
∫
dy �

√
1−y4∫

yy dy �
√

1−y4
= 2+ 1

4 +
9
4 +

25
4 +

49
4 +· · · 


which is a special case of the expression obtained in §16; therefore this formula, although not
completely proved, is confirmed in one more case. After substituting in it a= 3, as a corollary
we obtain

3

∫
x4 dx �

√
1−x4∫

xxdx �
√

1−x4
=

∫
dx �

√
1−x4∫

xxdx �
√

1−x4
= 2+ 1

4 +
9
4 +

25
4 +

49
4 +· · · 


so that now there is no doubt that this formula from §16 may be assumed valid for the cases
a= 2 and a= 3, but soon this fact will be established in the widest sense.

31. Let q = 1/2 and p= 1; under the condition r = 2q = 1 we obtain

a=
∫
y dy �

√
1−y2∫

dy �
√

1−y2
= 2
�



where � denotes the perimeter of a circle of diameter 1. In general, we obtain in consequence

P = 1+m−m2 
 Q= 3−2m


R= 5−3m
2


 S = 3−2m
2




so that

a=m−1+ 1+m−m2

m +
12�4−m−m2�

5−3m

+
22�1+m−m2��7−3m−m2�

8−5m +
32�4−m−m2��10−5m−m2�

11−7m +· · ·

In two special cases we obtain

�

2
= 1

1 −
1
2 +

1×2
1 +

2×3
1 +

3×4
1 +· · · = 1+ 1

1 +
1×2

1 +
2×3

1 +
3×4

1 +· · · 


�

2
= 1

1 � 2 +
1 � 4
3 � 2 +

12

2 +
22

2 +
32

2 +· · · = 2= 1
2 +

12

2 +
22

2 +
32

2 +· · · �
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32. To make clear applications of these formulas to interpolation [by continued fractions], let
us consider the series

2
1
+ 2×4

1×3
+ 2×4×6

1×3×5
+ · · · 


whose term with index 1/2 is to be found; let it be A. Hence

p= 2 
 r = 1 
 q =−1
2
�

we have assumed that

A= a

p+2q− r 


which implies that

A= a
0



from which the fact that these formulas cannot be applied if p+2q− r = 0 is evident. However,
this process could be stopped at the term with index 3/2, which if the latter were equal to Z
would give A= 2Z/3; but Z/2 is the term of index 1/2 for the series

4
3
+ 4×6

3×5
+ 4×6×8

3×5×7
+ · · · 


which when compared with the general series gives

p= 4 
 r = 1 
 q =−1
2



so that we obtain

Z = 2
∫
y2 dy �

√
1−y2∫

y3 dy �
√

1−y2
= 3

∫
dy �

√
1−y2

2
∫
y dy �

√
1−y2

= 3
4
� 


and A= �/2. Consequently, according to §24 let

Z = a and A= 2
3
Z = 2

3
a �

then we obtain finally that

P = 8+m−m2 
 Q= 7−2m


R= 23−7m
2


 S = 7−2m
2




A= 2
3
a= �

2

= 2�m−1�
3

+ 2�8+m−m2�

3m +
2×4×3�15−m−m2�

23−7m

+
3×5�8+m−m2��22−3m−m2�

90−9m

+
4×6�15−m−m2��29−5m−m2�

37−11m +· · ·
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33. In the special cases under study we have

a= 3�
4
= 4− 12

5 +
2×5

1 +
3×6

1 +
4×7

1 +· · ·

= 4
1 +

1×3
2 +

2×5
1 +

3×6
1 +

4×7
1 +· · · 


or

3
4
� = 1+ 3

1 +
1×4

1 +
2×5

1 +
3×6

1 +
4×7

1 +· · · �

Similarly, using what was said in §26, we obtain

a= 3
4
� = 5

2
− 3 � 4

7 � 2 +
2×4

2 +
3×5

2 +
4×6

2 +
5×7

2 +· · ·

= 2+ 1
2 +

1×3
2 +

2×4
1 +

3×5
1 +

4×6
1 +· · · �

Finally, the case presented in §27 gives

a= 3
4
� = 2+ 2

3 +
3×4

1 +
4×5

1 +
5×6

1 +· · ·

or

�

2
= 1+ 1

1 +
1×2

1 +
2×3

1 +
3×4

1 +
4×5

1 +· · · 


which coincides with the expression presented in §31.

34. This method of interpolation results in an infinite number of continued fractions, whose
values can be given in terms of quadratures of curves or integral formulas. If these fractions
are irregular at their beginning then the first terms responsible for this irregularity are dropped
to obtain continued fractions whose values are given as described above. So, from §25 and the
assumption that p+2q− r = f and p+ r = h we obtain the formula

r+ fh
r +

�f + r��h+ r�
r +

�f +2r��h+2r�
r +· · ·

= h�f − r�
∫
yh+r−1 dy �

√
1−y2r −f�h− r� ∫ yf+r−1 dy �

√
1−y2r

f
∫
yf+r−1 dy �

√
1−y2r −h ∫ yh+r−1 dy �

√
1−y2r




and this equality is always valid except for f = h. However, in the case f = h it can be assumed
that f = h+dw and we then obtain

∫
yh+r+dw−1 dy �

√
1−y2r∫

yh+r−1 dy �
√

1−y2r
= 1− rdw

∫ dx

xr+1

∫ xh+2r−1 dx

1−x2r
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on substituting x = 1 after integration. It follows that

r+ hh
r +

�h+ r�2
r +

�h+2r�2

r +· · ·

= r+hr�h− r�
∫
dx � xr+1

∫
xh+2r−1 dx � �1−x2r �

1−hr ∫ dx � xr+1
∫
xh+2r−1 dx � �1−x2r �

= r�h− r�2 ∫ dx � xr+1
∫
xh+2r−1 dx � �1−x2r �

1− r�h− r� ∫ dx � xr+1
∫
xh+2r−1 dx � �1−x2r �

�

The definition of an integral implies that∫ dx

xr+1

∫ xh+2r−1 dx

1−x2r
= −1
rxr

∫ xh+2r−1 dx

1−x2r
+ 1
r

∫ xh+r−1 dx

1−x2r

= 1
r

∫ xh+r−1 dx

1+xr
after substituting x = 1. Therefore the following holds:

r+ hh
r +

h�h+ r�2
r +· · · =

r+h�h− r� ∫ xh+r−1 dx � �1+xr�
1−h ∫ xh+r−1 dx � �1+xr�

= 1− �h− r� ∫ xh−1 dx � �1+xr�∫
xh−1 dx � �1+xr� �

This is the form which coincides with that given in §7.

35. In the same way as §26, under the assumption p= f and p+2q− r = h we have

2r+ fh
2r +

�f + r��h+ r�
2r +

�f +2r��h+2r�
2r +· · ·

= 2�r−f��r−h� ∫ yf−1 dy � �
√

1−y2r �−h�f +h−3r�
∫
yh+r−1 dy � �

√
1−y2r �

2h
∫
yh+r−1 dy � �

√
1−y2r �− �f +h− r� ∫ yf−1 dy � �

√
1−y2r �

�

Since this formula does not change on exchanging f and h, it is obvious that

h
∫
yh+r−1 dy �

√
1−y2r∫

yf−1 dy �
√

1−y2r
= f

∫
yf+r−1 dy �

√
1−y2r∫

yh−1 dy �
√

1−y2r



substituting y= 1 after integrating. In fact this theorem is already included in those presented in
my previous dissertation16, which deals with infinite products of constant terms; there I found
and proved many other theorems of this type.

36. The case f = h+ r deserves equal attention; then both the numerator and denominator
vanish. As before I put f = h+ r+dw and by calculation obtain

2r+ h�h+ r�
2r +

�h+ r��h+2r�
2r +

�h+2r��h+3r�
2r+ · · ·

= h+2h�r−h� ∫ xh−r dx � �1+xr�
−1+2h

∫
xh−r dx � �1+xr� �

16 Euler (1750a).
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Therefore, if one puts h= r = 1 then

2+ 1×2
2 +

2×3
2 +

3×4
2 +

4×5
2 +· · · =

1
2 l2−1

�

However, if the equality of §27 is treated in the same way then exactly the same formula is
obtained.

37. After the statement of these results, to which the interpolation of series by continued fractions
is reduced, I returned to Brouncker’s expressions as well as to the native method not only for
obtaining them but also for obtaining others of this type, which, it appears, Brouncker also used.
Most importantly, the continued fractions invented by Brouncker, for which the values of the
quantities A, B, C, D, if one follows the method presented, depend on each other in such a way
that they can easily be compared, by Brouncker’s method become different from each other, so
that their mutual relationship is not obvious. This very difference finally led me to the invention
of another method worthy of discovery.

38. Before I explain the interpolation method, I will state the following well-known lemma. Let
there exist infinitely many letters �, ", $, �, � etc., which are related in such a way that the
following identities hold:

�"−m�−n"−*= 0 


"$− �m+ s�"− �n+ s�$−*= 0 


$�− �m+2s�$− �n+2s��−*= 0 


��− �m+3s��− �n+3s��−*= 0 


���

If the letters �, ", $, �, � etc. take the values

�=m+n− s+ ss−ms+ns+*
a




"=m+n+ s+ ss−ms+ns+*
b




$ =m+n+3s+ ss−ms+ns+*
c




�=m+n+5s+ ss−ms+ns+*
d




���

then the above-mentioned equalities turn into the identities

ab− �m− s�a− �n+ s�b− ss+ms−ns−*= 0 


bc−mb− �n+2s�c− ss+ms−ns−*= 0 


cd− �m+ s�c− �n+3s�d− ss+ms−ns−*= 0 


de− �m+ s�d− �n+4s�e− ss+ms−ns−*= 0 


���

These substitutions are allowable since under them the formulas remain invariant.
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39. If now in the same way one transforms these last equations into similar ones by corresponding
substitutions, then one obtains

a=m+n− s+ 4ss−2ms+2ns+*
a1




b =m+n+ s+ 4ss−2ms+2ns+*
b1




c =m+n+3s+ 4ss−2ms+2ns+*
c1




d =m+n+5s+ 4ss−2ms+2ns+*
d1




���

After substitution, the relations at the end of §38 are reduced to the equalities

a1b1− �m−2s�a1− �n+2s�b1−4ss+2ms−2ns−*= 0 


b1c1− �m− s�b1− �n+3s�c1−4ss+2ms−2ns−*= 0 


c1d1−mc1− �n+4s�d1−4ss+2ms−2ns−*= 0 


d1e1− �m+ s�d1− �n+5s�e1−4ss+2ms−2ns−*= 0 


���

40. Continuing this process, we obtain

a1 =m+n− s+
9ss−3ms+3ns+*

a2



b1 =m+n+ s+
9ss−3ms+3ns+*

b2



c1 =m+n+3s+ 9ss−3ms+3ns+*
c2




���

From these substitutions we obtain the equalities17

a2b2− �m−3s�a2− �n+3s�b2−9ss+3ms−3ns−*= 0 


b2c2− �m−2s�b2− �n+4s�c1−9ss+3ms−3ns−*= 0 


c2d2− �m− s�c2− �n+5s�d2−9ss+3ms−3ns−*= 0 


���

17 Compare the calculations of §§38–40 with the calculations at the start of Section 4.5.
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41. If now one continues these substitutions to infinity then the values of the quantities �, ", $
etc. are given by the continued fractions

�=m+n− s+ ss−ms+ns+*
m+n− s +

4ss−2ms+2ns+*
m+n− s

+
9ss−3ms+3ns+*

m+n− s +
16ss−4ms+4ns+*

m+n− s +· · · 


"=m+n+ s+ ss−ms+ns+*
m+n+ s +

4ss−2ms+2ns+*
m+n+ s

+
9ss−3ms+3ns+*

m+n+ s +
16ss−4ms+4ns+*

m+n+ s +· · · 


$ =m+n+3s+ ss−ms+ns+*
m+n+3s +

4ss−2ms+2ns+*
m+n+3s

+
9ss−3ms+3ns+*

m+n+3s +
16ss−4ms+4ns+*

m+n+3s +· · · 


and these continued fractions are very similar to those of Brouncker, although the following
continued fractions do not occur in the latter18.

42. To make evident the use of these formulas in interpolation let us consider the series

p

p+2q
+ p�p+2r�
�p+2q��p+2q+2r�

+ p�p+2r��p+4r�
�p+2q��p+2q+2r��p+2q+4r�

+ · · ·

where the term with index 1/2 is A, the term with index 3/2 is ABC, the term with index 5/2
is ABCDE etc19. It follows that

AB = p

p+2q

 CD = p+2r

p+2q+2r

 EF = p+4r

p+2q+4r
· · · 


Now we assume that

A= a

p+2q− r 
 B = b

p+2q



C = c

p+2q+ r 
 CD = d

p+2q+2r
· · · 


which implies that

ab = p�p+2q− r� 
 bc = �p+ r��p+2q� 


cd = �p+2r��p+2q+ r� 
 cd = �p+3r��p+2q+2r� 
 · · ·

18 This shows how close Euler was to Brouncker’s original proof; see Theorem, 4.16.
19 See the discussion centred on (3.14).
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From this one concludes that

a= p+q− r + g

�



b = p+q + g

"



c = p+q+ r + g

$



d = p+q+2r + g

�
�

���

substitution of these values into the formula at the end of §38 makes obvious the following
identities:

�"− �p+q− r��− �p+q�"−q�r−q�= 0 


"$− �p+q�"− �p+q+ r�$−q�r−q�= 0 


$�− �p+q+ r�$− �p+q+2r��−q�r−q�= 0 


��− �p+q+2r��− �p+q+3r��−q�r−q�= 0 


���

43. Comparing these identities with those we found in §38, we obtain

m= p+q− r 
 n= p+q 
 *= qr−qq 
 s = r 

and these relations imply that

ss−ms +ns+*= 2rr+qr−qq 

4ss−2ms +2ns+*= 6rr+qr−qq 

9ss−3ms +3ns+*= 12rr+qr−qq 


���

The following continued fractions for a, b, c, d etc. have the required values:

a= p+q− r+ qr−qq
2�p+q− r� +

2rr+qr−qq
2�p+q− r�

+
6rr+qr−qq
2�p+q− r� +

12rr+qr−qq
2�p+q− r� +· · · 


b = p+q+ qr−qq
2�p+q� +

2rr+qr−qq
2�p+q�

+
6rr+qr−qq

2�p+q� +
12rr+qr−qq

2�p+q� +· · · 
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c = p+q+ r+ qr−qq
2�p+q+ r� +

2rr+qr−qq
2�p+q+ r�

+
6rr+qr−qq
2�p+q+ r� +

12rr+qr−qq
2�p+q+ r� +· · ·

44. If for a given series the term with index n is∫
yp+2q−1 dy �1−y2r �n−1∫
yp−1 dy �1−y2r �n−1




then

A= a

p+2q− r =
∫
yp+2q−1 dy �

√
1−y2r∫

yp−1 dy �
√

1−y2r



or

a= �p+2q− r�
∫
yp+2q−1 dy �

√
1−y2r∫

yp−1 dy �
√

1−y2r
�

Next, because ab = p�p+2q− r� we obtain

b = p
∫
yp−1 dy �

√
1−y2r∫

yp+2q−1 dy �
√

1−y2r
�

Since by a theorem of the preceding dissertation20

p
∫
yp−1 dy �

√
1−y2r∫

yf+r−1 dy �
√

1−y2r
= f

∫
yf−1 dy �

√
1−y2r∫

yp+r−1 dy �
√

1−y2r

= �f + r�
∫
yf+2r−1 dy �

√
1−y2r∫

yp+r−1 dy �
√

1−y2r



where f = p+2q− r, we obtain that

b = �p+2q�
∫
yp+2q+r−1 dy �

√
1−y2r∫

yp+r−1 dy �
√

1−y2r
�

We obtain progressive terms similarly:

c = �p+2q+ r� ∫ yp+2q+2r−1 dy �
√

1−y2r∫
yp+2r−1 dy �

√
1−y2r




d = �p+2q+2r�
∫
yp+2q+3r−1 dy �

√
1−y2r∫

yp+3r−1 dy �
√

1−y2r

 · · ·

20 Euler (1750a).
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45. Consequently, in order that the law of progression be valid, the continued fraction

p+q+mr+ qr− rr
2�p+q+mr� +

2rr+qr− rr
2�p+q+mr� +

6rr+qr− rr
2�p+q+mr�+· · ·

must be equal to

�p+2q+mr�
∫
yp+2q+�m+1�r−1 dy �

√
1−y2r∫

yp+�m+1�r−1 dy �
√

1−y2r
�

Therefore if p+q+mr = s, so that p = s−q−mr, we obtain that the value of the continued
fraction

s+ qr− rr
2s +

2rr+qr− rr
2s +

6rr+qr− rr
2s

+
12rr+qr− rr

2s +
20rr+qr− rr

2s +· · ·

is given by

�q+ s�
∫
yq+r+s−1 dy �

√
1−y2r∫

yr+s−q−1 dy �
√

1−y2r
�

46. Similarly the value of the continued fraction

s+ r+ qr− rr
2�s+ r� +

2rr+qr− rr
2�s+ r� +

6rr+qr− rr
2�s+ r� +· · ·

is given by

�q+ r+ s�
∫
ys+2r+q−1 dy �

√
1−y2r∫

ys+2r−q−1 dy �
√

1−y2r



so that the product of these two continued fractions is �s+q��s+ r−q�, as the product of the
integral formulas shows. By a theorem presented in the previous dissertation21,

f

a
=

∫
xa−1 dx �

√
1−x2r

∫
xa+r−1 dx �

√
1−x2r∫

xf−1 dx �
√

1−x2r
∫
xf+r−1 dx �

√
1−x2r




so that the product of integral formulas may be reduced to this form.

47. The continued fraction obtained can be transformed to a more convenient form, since the
individual numerators can be factored; thus we obtain

s+ q�r−q�
2s +

�r+q��2r−q�
2s +

�2r+q��3r−q�
2s +

�3r+q��4r−q�
2s +· · · 


the value of which is

�q+ s�
∫
yr+s+q−1 dy �

√
1−y2r∫

yr+s−q−1 dy �
√

1−y2r
�

21 Euler (1750a).
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Hence if we add s to the continued fraction to keep to the law of progression then we obtain

�q+ s� ∫ yr+s+q−1 dy �
√

1−y2r + s ∫ yr+s−q−1 dy �
√

1−y2r∫
yr+s−q−1 dy �

√
1−y2r

= 2s+ q�r−q�
2s +

�r+q��2r−q�
2s +

�2r+q��3r−q�
2s +

�3r+q��4r−q�
2s +· · ·

48. If now we put r = 2 and q = 1 then we obtain the continued fractions discovered by
Brouncker, and they all can be found in the continued fraction

s+ 1
2s +

9
2s +

25
2s +

49
2s +

81
2s +· · ·

which equals

�s+1�

∫
ys+2 dy �

√
1−y4∫

ys dy �
√

1−y4



and this expression coincides exactly with that considered in §16; therefore, as we mentioned,
it must be in quite good agreement with the true form.

49. Although so far I have given many continued fractions whose values can be found from
integral formulas, now I explain a method which in turn provides continued fractions from
integrals. This method is based on a formula for an integral that reduces it to two other integrals,
and this reduction is similar to a simple reduction transforming the integration of one differential
to the integration of another differential. Let us consider the infinite sequence of integrals∫

P dx 

∫
PRdx 


∫
PR2 dx 


∫
PR3 dx 


∫
PR4 dx � � � 


which, being compared after each has been integrated, assuming that they vanish at x = 0, on
substituting x = 1, are found to satisfy

a
∫
P dx = b

∫
PRdx+ c

∫
PR2 dx 


�a+��
∫
PRdx = �b+"�

∫
PR2 dx+ �c+$�

∫
PR3 dx 


�a+2��
∫
PR2 dx = �b+2"�

∫
PR3 dx+ �c+2$�

∫
PR4 dx 


�a+3��
∫
PR3 dx = �b+3"�

∫
PR3 dx+ �c+3$�

∫
PR5 dx 


and in general

�a+n��
∫
PRn dx = �b+n"�

∫
PRn+1 dx+ �c+n$�

∫
PRn+2 dx �

50. Given these integral formulas, then by elementary transformations one can obtain continued
fractions from them. We have
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∫
P dx∫
PRdx

= b
a
+ c

∫
PR2 dx

a
∫
PRdx




∫
PRdx∫
PR2 dx

= b+"
a+� +

�c+$� ∫ PR3 dx

�a+�� ∫ PR2 dx



∫
PR2 dx∫
PR3 dx

= b+2"
a+2�

+ �c+2$�
∫
PR4 dx

�a+2��
∫
PR3 dx




∫
PR3 dx∫
PR4 dx

= b+3"
a+3�

+ �c+3$�
∫
PR5 dx

�a+3��
∫
PR4 dx




���

Then expressing the preceding value in terms of the next, we obtain∫
P dx∫
PRdx

= b
a
+ c � a

�b+"� � �a+�� +
�c+$� � �a+��
�b+2"� � �a+2��

+
�c+2$� � �a+2��
�b+3"� � �a+3�� +

�c+3$� � �a+3��
�b+4"� � �a+4��+· · ·

The same expression inverted and with fractions rationalized becomes

∫
PRdx∫
P dx

= a
b +

�a+��c
b+" +

�a+2���c+$�
b+2"

+
�a+3���c+2$�

b+3" +
�a+4���c+3$�

b+4" +· · · �

51. If n is negative in

�a+n��
∫
PRn dx = �b+n"�

∫
PRn+1 dx+ �c+n$�

∫
PRn+2 dx

then we obtain the following formulas:

�a−��
∫ P dx

R
= �b−"�

∫
P dx+ �c−$�

∫
PRdx 


�a−2��
∫ P dx

R2
= �b−2"�

∫ P dx

R
+ �c−2$�

∫
PRdx 


�a−3��
∫ P dx

R3
= �b−3"�

∫ P dx

R2
+ �c−3$�

∫ P dx

R



�a−4��
∫ P dx

R4
= �b−4"�

∫ P dx

R3
+ �c−4$�

∫ P dx

R2



���
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They imply ∫
PRdx∫
P dx

= −�b−"�
c−$ + �a−��

∫
P dx � R

�c−$� ∫ P dx 


∫
P dx∫

P dx � R
= −�b−2"�

c−2$
+ �a−2��

∫
P dx � R2

�c−2$�
∫
P dx � R




∫
P dx � R∫
P dx � R2

= −�b−3"�
c−3$

+ �a−3��
∫
P dx � R3

�c−3$�
∫
P dx � R2




���

From these equalities we obtain∫
PRdx∫
P dx

= −�b−"�
c−$ + �a−�� � �c−$�

−�b−2"� � �c−2$�

+
�a−2�� � �c−2$�
−�b−3"� � �c−3$� +

�a−3�� � �c−3$�
−�b−4"� � �c−4$�+· · ·

or

�c−$� ∫ PRdx∫
P dx

=−�b−"�+ �a−���c−2$�
−�b−2"�

+
�a−2���c−3$�
−�b−3"� +

�a−3���c−4$�
−�b−4"� +· · ·

This gives a second continued fraction for the same quotient
∫
PRdx/

∫
P dx.

52. A special feature of this procedure is that one determines suitable functions P and R
satisfying

�a+n��
∫
PRn dx = �b+n"�

∫
PRn+1 dx+ �c+n$�

∫
PRn+2 dx 


at least in the case when after integration one puts x = 1. In general one assumes that

�a+n��
∫
PRn dx+Rn+1S = �b+n"�

∫
PRn+1 dx+ �c+n$�

∫
PRn+2 dx 


where the functions Rn+1S vanish at x = 1 and x = 0. Passing to differentials and dividing by
Rn, we obtain

�a+n��P dx+RdS+ �n+1�SdR= �b+n"�PRdx+ �c+n$�PR2 dx �

this equality being valid for any n can be solved by the two equations

aPdx+RdS+SdR= bPRdx+ cPR2dx 


aPdx+SdR= "PRdx+$PR2dx �

These equations together imply

Pdx = RdS+SdR
bR+ cR2−a =

SdR

"R+$R2−� 
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whence

dS

S
= �b−"�RdR+ �c−$�R

2dR− �a−��dR
"R2+$R3−�R

= �a−��dR
�R

+ ��b−"a�dR+ ��c−$a�RdR
��"R+$R2−�� �

From this equation one can find S as a function of R; then

P = SdR

�"R+$R2−��dx �

this determines the integrals
∫
Pdx and

∫
PRdx and finally the value of the corresponding

continued fraction.

53. If the quantity R cannot be determined from x then one can find x from R. But when the
condition of investigation requires that Rn+1S must vanish at x = 0 as well as at x = 1 this
determines the nature of the function R. Next, one should take care that the integrals

∫
PRndx

with x = 1 after integration are finite, since if these integrals were equal either to 0 or infinity
then it would be difficult to find the value

∫
PRdx/

∫
Pdx. In what follows it is mostly safe to

separate the values of R so that PRn is never negative when x varies between x= 0 and x= 1.
It is often difficult to make

∫
PRndx finite after the substitution x= 1. There are cases when n

is either a positive or a negative number.

54. Let us begin the development of this method for finding values of continued fractions from
an example which we have already considered; thus we let the following continued fraction be
given:

r+ fh
r +

�f + r��h+ r�
r +

�f +2r��h+2r�
r +· · · �

Its value, found in §34, is given by

h�f − r� ∫ yh+r−1 dy �
√

1−y2r −f�h− r� ∫ yf+r−1 dy �
√

1−y2r

f
∫
yf+r−1 dy �

√
1−y2r −h ∫ yh+r−1 dy �

√
1−y2r

�

Let us make this continued fraction equal to the general continued fraction

a
∫
P dx∫
PRdx

= b+ �a+��c
b+" +

�a+2���c+$�
b+2" +

�a+3���c+2$�
b+3" +· · · �

Thus we obtain b = r , "= 0, �= r, $ = r, a= f − r, c = h. Substituting these values we get

dS

S
= rRdR+ �h− r�R

2dR− �f −2r�dR
rR3− rR

= �f −2r�dR
rR

+ rdR+ �h−f + r�RdR
r�R2−1�

and after integration we obtain

lS = f −2r
r

lR+ h−f
2r

l�R+1�+ h−f +2r
2r

l�R−1�+ lC
or

S = CR�f−2r�/r �R2−1��h−f�/2r �R−1� �
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From this we have

Rn+1S = CR�f+�n−1�r�/r �R2−1��h−f�/2r �R−1�

and

Pdx = CR
�f−2r�/r �R2−1��h−f�/2rdR

r�R+1�
�

55. Since Rn+1S must vanish in two cases, that is, after the substitutions x = 0 or x = 1,
n being a positive number (one need not consider negative n here), we assume that f
h
 r are
positive numbers such that h > f , which is acceptable except for the case when f = h; next we
let f > r. Under the assumptions made, the formula Rn+1S vanishes in two cases, when R= 0
and R= 1, and the same occurs if f = h. Assuming that f > r and putting R= x, we obtain

Pdx = x
�f−2r�/r �1−x2��h−f�/2rdx

1+x 


which is determined by the constant C. Hence for the continued fraction under consideration
we obtain the value

�f − r�
∫
x�f−2r�/ r �1−x2��h−f�/ 2rdx � �1+x�∫
x�f−r�/ r �1−x2��h−f�/ 2rdx � �1+x� �

Substituting x = yr , we obtain the unusual value

�f − r� ∫ yf−r−1�1−y2r ��h−f�/2rdy � �1+yr�∫
yf−1�1−y2r ��h−f�/2rdy � �1+yr� �

56. Thus we have obtained another value for the continued fraction

r+ fh
r +

�f + r��h+ r�
r +· · · 


which, although it contains integral formulas, does not however agree with the value already
found. Next, this expression does not hold except for the case f > r; we denote by h the greater
of two numbers f and h if there are not equal. If f is smaller than r then the value of the
continued fraction could be recovered by consideration the of following one:

r+ �f + r��h+ r�
r +

�f +2r��h+2r�
r +· · · �

The value of this continued fraction is

f
∫
yf−1�1−y2r ��h−f�/2rdy � �1+yr�∫
yf+r−1�1−y2r ��h−f�/2rdy � �1+yr�

and has no restrictions. After putting the value equal to V the value of the continued fraction in
question must be r+fh/V .

57. The [continued fraction in the] case f = h, which in §34 was considered using a special
method and whose value equals

1− �h− r� ∫ xh−1dx � �1+xr�∫
xh−1dx � �1+xr� = �h− r�

∫
xh−r−1dx � �1+xr�∫

xh−1dx � �1+xr� 
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is exhausted by this very expression; for f = h the expression found in §55 leads to

�h− r� ∫ yh−r−1dy � �1+yr�∫
yh−1dy � �1+yr� 


an identical expression, and taking this into account the agreement of these two general expres-
sions is clearly seen.

58. To see the equality of these expressions in every case we will prove the following lemma,
which has already been proved on another occasion. Given the series

1+ p

q+ s +
p�p+ s�

�q+ s��q+2s�
+ p�p+ s��p+2s�
�q+ s��q+2s��q+3s�

+ · · · 


where the numbers p, q, s are positive and q > p, then the sum of this series extended to
infinity is q/�q−p�. The validity of this lemma can be established by my general method for
the summation of series as follows. Let us consider the series

xq+ p

q+ s x
q+s+ p�p+ s�

�q+ s��q+2s�
xq+2s+ · · · 


whose sum on differentiation satisfies

dz

dx
= qxq−1+pxq+s−1+ p�p+ s�

�q+ s� x
q+2s−1+ · · · 


xp−q−s dz= qxp−s−1 dx+pxp−1 dx+ p�p+ s�
�q+ s� x

p+s−1 dx+ · · · �

After integration this implies that∫
xp−q−s dz= qx

p−s

p− s +x
p+ pxp+s

�q+ s� + · · · = qx
p−s

p− s +x
p−qz �

Differentiating this equality, we obtain

xp−q−s dz= qxp−s−1 dx+xp−q dz+ �p−q�xp−q−1zdx 


dz�1−xs�+ �q−p�xs−1zdx = qxq−1 dx 


dz+ �q−p�x
s−1zdx

1−xs = qx
q−1 dx

1−xs �

The integral of the last equation is given by

z

�1−xs��q−p�/s = q
∫ xq−1 dx

�1−xs��q−p+s�/s

= qxq

�q−p��1−xs��q−p�/s −
pq

q−p
∫ xq−1 dx

�1−xs��q−p�/s �

It follows that

z= qxq

q−p −
pq�1−xs��q−p�/s

q−p
∫ xq−1 dx

�1−xs��q−p�/s �

Therefore after substituting x = 1 we obtain

z= q

q−p = 1+ p

q+ s +
p�p+ s�

�q+ s��q+2s�
+ · · · 
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which proves the lemma and at the same time clarifies that the lemma cannot be proved for
cases other than q > p22.

59. The value of the continued fraction

r+ fh
r +

�f + r��h+ r�
r +

�f +2r��h+2r�
r +· · ·

can be expressed in two ways; one is

h�f − r� ∫ yh+r−1 dy �
√

1−y2r −f�h− r� ∫ yf+r−1 dy �
√

1−y2r

f
∫
yf+r−1 dy �

√
1−y2r −h ∫ yh+r−1 dy �

√
1−y2r




and another, found in §56, is

r+ h
∫
yf+r−1�1−y2r ��h−f�/2rdy � �1+yr�∫
yf−1�1−y2r ��h−f�/2rdy � �1+yr� �

it showing the equality of these expressions deserves our attention. Since 1/�1+ yr� =
�1−yr�/�1−y2r �, we obtain∫

yf−1 dy �1−y2r ��h−f�/2r � �1+yr�

=
∫
yf−1 dy �1−y2r ��h−f−2r�/2r −

∫
yf+r−1 dy �1−y2r ��h−f−2r�/2r

and similarly 23∫
yf+r−1 dy �1−y2r ��h−f�/2r � �1+yr�

=
∫
yf+r−1 dy �1−y2r ��h−f−2r�/2r −

∫
yf+2r−1 dy �1−y2r ��h−f−2r�/2r

=
∫
yf+r−1 dy �1−y2r ��h−f−2r�/2r − f

h

∫
yf−1 dy �1−y2r ��h−f−2r�/2r �

Let us write ∫
yf+r−1 dy �1−y2r ��h−f−2r�/2r∫
yf−1 dy �1−y2r ��h−f−2r�/2r

= V �

then the second value of the continued fraction under consideration is given by

r+ hV −f
1−V �

In addition, Let ∫
yh+r−1 dy �

√
1−y2r∫

yf+r−1 dy �
√

1−y2r
=W �

then the first value will be
h�f − r�W −f�h− r�

f −hW 


22 See Exs. 4.41 and 4.42.
23 Apply Lemma 4.11 with m= f , n= 2r, k= h−f .
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which implies that V = f/hW , and hence∫
yf+r−1 dy �1−y2r ��h−f−2r�/2r∫
yf−1 dy �1−y2r ��h−f−2r�/2r

= f
∫
yh+r−1 dy �

√
1−y2r

h
∫
yf+r−1 dy �

√
1−y2r

�

the assumption behind this the equality is based on a theorem of the preceding dissertation 24

and on another theorem: 25∫
yf+r−1 dy �1−y2r ��h−f−2r�/2r∫
yf+2r−1 dy �1−y2r ��h−f−2r�/2r

=
∫
yh+r−1 dy �

√
1−y2r∫

yf+r−1 dy �
√

1−y2r
�

60. Let us now consider the following continued fraction,

2r+ fh
2r +

�f + r��h+ r�
2r +

�f +2r��h+2r�
2r +· · · 


whose value was found in §35 to be

2�r−f��r−h� ∫ yf−1 dy �
√

1−y2r

2h
∫
yh+r−1 dy �

√
1−y2r − �f +h− r� ∫ yf−1 dy �

√
1−y2r

− h�f +h−3r�
∫
yh+r−1 dy �

√
1−y2r

2h
∫
yh+r−1 dy �

√
1−y2r − �f +h− r� ∫ yf−1 dy �

√
1−y2r

�

If now we compare this continued fraction with

a
∫
P dx∫
PRdx

= b+ �a+��c
b+" +

�a+2���c+$�
b+2" +

�a+3���c+2$�
b+3" +· · ·

then we obtain b = 2r , "= 0, �= r , $ = r, a= f − r, c = h. It follows by §52 that

dS

S
= �f −2r�dR

rR
+ 2rdR+ �h−f + r�RdR

r�R2−1�

and after integration that

S = CR�f−2r�/2r �R2−1��h−f−r�/2r �R−1�2 


which implies that

P dx = C
r
R�f−2r�/2r �R2−1��h−f−3r�/2r �R−1�2 dR

and

Rn+1S = CR�f+�n−1�r�/2r �R2−1��h−f−r�/2r �R−1�2 �

This expression vanishes in two cases, R = 0 or R = 1; the only requirements are f > r and
h−3r > f , which can always be attained.

61. Let R= x and the constant C be defined is such a way that

P dx = x�f−2r�/2r dx�1−x2��h−f−3r�/2r �1−x2� 


24 See Lemma 4.11.
25 Corollary 4.13.
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which after substituting R= x = yr becomes

P dx = yf−r−1 dy�1−y2r ��h−f−3r�/2r �1−y2r �2 �

Hence the value of the proposed continued fraction will be

a
∫
P dx∫
PRdx

= �f − r�
∫
yf−r−1dy �1−y2r ��h−f−3r�/2r �1−yr�2∫

yf−1dy �1−y2r ��h−f−3r�/2r �1−yr�2 �

By a theorem from the preceding dissertation26 it reduces to the first type27 if one opens
the parentheses in �1− yr�2. After that the formula reduces to two simpler integrals. I will
demonstrate this for a more general example.

62. If an integral formula is given,∫
ym−1 dy �1−y2r �*�1−yr�n


and �1−yr�n is developed into the series

1−nyr + n�n−1�
1×2

y2r − · · · 


and alternate terms are summed up, then the given form of the integral is reduced to the two
following expressions:

∫
ym−1 dy �1−y2r �*

(
1+ n�n−1�

1×2
m

p

+ n�n−1��n−2��n−3�
1×2×3×4

m�m+2r�
p�p+2r�

+ · · ·
)

−
∫
ym+r−1 dy �1−y2r �*

(
n+ n�n−1��n−2�

1×2×3
m+ r
p+ r

+ n�n−1��n−2��n−3��n−4�
1×2×3×4×5

× �m+ r��m+3r�
�p+ r��p+3r�

+· · ·
)



where we put for brevity m+2*r+2r = p. Therefore, in the case n= 2 considered above,∫
ym−1 dy �1−y2r �*�1−yr�2

= m+p
p

∫
ym−1 dy �1−y2r �*−2

∫
ym+r−1 dy �1−y2r �* �

26 Euler (1750a).
27 See §59.



Continued fractions, observations L. Euler (1739) 457

This implies that, setting r = �h−f − r�/2r,
a
∫
P dx∫
PRdx

= �f − r��f +h−3r� � �h−2r�
∫
yf−r−1dy�1−y2r �r−1

�f +h− r� � �h− r� ∫ yf−1dy�1−y2r �r−1−2
∫
yf+r−1dy�1−y2r �r−1

− 2�f − r� ∫ yf−1dy�1−y2r �r−1

�f +h− r� � �h− r� ∫ yf−1dy�1−y2r �r−1−2
∫
yf+r−1dy�1−y2r �r−1

= h�f +h− r� ∫ yf+r−1dy�1−y2r �r

�f +h− r� ∫ yf−1dy�1−y2r �r −2h
∫
yf+r−1dy�1−y2r �r

− 2�f − r��h− r� ∫ yf−1dy�1−y2r �r

�f +h− r� ∫ yf−1dy�1−y2r �r −2h
∫
yf+r−1dy�1−y2r �r

�

This expression, which must be equal to that found in §35, gives the following equality on
substitution of the expression for r 28:∫

yf+r−1dy�1−y2r ��h−f−r�/2r∫
yf−1dy�1−y2r ��h−f−r�/2r

=
∫
yh+r−1dy �

√
1−y2r∫

yf−1dy �
√

1−y2r
�

This ratio is already contained in theorems of the preceding dissertation 29.

63. Let us now sum up [what we know about] continued fractions by putting

P = xm−1�1−xr�n�p+qxr�* and R= xr �
We must have

�a+&��
∫
PR& dx = �b+&"�

∫
PR&+1 dx+ �c+&$�

∫
PR&+2 dx

and this implies by §52 that

S = 1
r
xm−r �1−xr�n�p+qxr�*�$x2r +"xr −��

and

dS

S
= �m− r�dx

x
+ nrx

r−1dx

−1+xr +
*qrxr−1dx

p+qxr + 2$rx2r−1dx+"rxr−1dx

−1+xr

= �a−��rdx
�x

+ ��b−"a�rx
r−1dx+ ��c−$a�rx2r−1dx

��$x2r +"xr −�� �

Now let �p+ qxr��xr − 1� = $x2r +"xr −�, where $ = q, " = p− q, � = p. In addition let
�a−��r/�=m− r , where a=mp/r. It follows then that

nqr+*qr+2qr = cpr−mpq
p

or

c = mq
r
+nq+ �*+2�q


28 Corollary 4.13.
29 Euler (1750a), in which a= f , b = 2r, c =−1/2, $ = h−f − r/2r.
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and finally that

b = m�p−q�
r

+ �n+1�p− �*+1�q �

Assuming m and n+ 1 be positive numbers, so that R&+1S vanishes at x = 0 and x = 1, we
obtain that the formula ∫

xm+r−1dx�1−xr�n�p+qxr�*∫
xm−1dx�1−xr�n�p+qxr�* =

∫
PRdx∫
P dx




equals the following continued fraction:

mp

m�p−q�+ �n+1�pr− �*+1�qr +
pq�m+ r��m+nr+ �*+2�r�
m�p−q�+ �n+2�pr− �*+2�qr

+
pq�m+2r��m+nr+ �*+2�r�
m�p−q�+ �n+3�pr− �*+3�qr +· · ·

64. To simplify this continued fraction we put

m+nr+ r = a 
 m+*r+ r = b 
 m+nr+*r = c �
which implies that *= �c−a�/r , n= �c−b�/r, m= a+b− c− r and therefore

p�a+b− c+ r�
ap−bq +

pq�a+b− c��c+ r�
�a+ r�p− �b+ r�q

+
pq�a+b− c+ r��c+2r�
�a+2r�p− �b+2r�q +

pq�a+b− c+2r��c+3r�
�a+3r�p− �b+3r�q +· · ·

=
∫
xa+b−c−1dx�1−xr��c−b�/r �p+qxr��c−a�/r∫
xa+b−c−r−1dx�1−xr��c−b�/r �p+qxr��c−a�/r 


where x = 1 after integration. It is necessary that the numbers a+ b− c− r and c− b+ r be
positive. If for brevity we put a+b− c− r = g then∫

xg+r−1dx�1−xr��c−b�/r �p+qxr��c−a�/r∫
xg−1dx�1−xr��c−b�/r �p+qxr��c−a�/r

= pg

ap−bq +
pq�c+ r��g+ r�
�a+ r�p− �b+ r�q +

pq�c+2r��g+2r�
�a+2r�p− �b+2r�q +· · ·




and this equality includes all the continued fractions discovered so far.

65. If of c and g are interchanged then the following continued fraction is obtained:

pc

ap−bq +
pq�c+ r��g+ r�
�a+ r�p− �b+ r�q +

pq�c+2r��g+2r�
�a+2r�p− �b+2r�q +· · ·

Its value is

=
∫
xc+r−1dx�1−xr��g−b�/r �p+qxr��g−a�/r∫
xc−1dx�1−xr��g−b�/r �p+qxr��g−a�/r �
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Then

c
∫
xa+b−c−1dx�1−xr��c−b�/r �p+qxr��c−a�/r∫
xa+b−c−r−1dx�1−xr��c−b�/r �p+qxr��c−a�/r

= �a+b− c− r�
∫
xc+r−1dx�1−xr��a−c−r�/r �p+qxr��b−c−r�/r∫

xc−1dx�1−xr��a−c−b�/r �p+qxr��b−c−a�/r �

This, the most general form, contains most of the partial reductions. For instance, let b= c+ r;
then

c
∫
xa+r−1dx�p+qxr��c−a�/r � �1−xr�∫
xa−1dx�p+qxr��c−a�/r � �1−xr� = a

∫
xc+r−1dx�1−xr��a−c−r�/r∫
xc−1dx�1−xr��a−c−r�/r = c 


which implies that ∫ xa+r−1dx�p+qxr��c−a�/r
1−xr =

∫ xa−1dx�p+qxr��c−a�/r
1−xr �

This consequently implies the following well-known theorem:∫ xm−1dx�p+qxr�*
1−xr =

∫ xn−1dx�p+qxr�*
1−xr 


where the integration is taken from x= 0 to x= 1. An exceptional case is the inconvenient case
where q+p= 0.

66. The continued fractions which are obtained by interpolation may be arranged so that their
partial denominators are constant. To reduce them to a general form let us put p= q = 1. Then
we obtain the following continued fraction:

cg

a−b +
�c+ r��g+ r�

a−b +
�c+2r��g+2r�

a−b +
�c+3r��g+3r�

a−b +· · ·

= c
∫
xg+r−1dx�1−xr��c−b�/r �1+xr��c−a�/r∫
xg−1dx�1−xr��c−b�/r �1+xr��c−a�/r �

its value is also given by

g
∫
xc+r−1dx�1−xr��g−b�/r �1+xr��g−a�/r∫
xc−1dx�1−xr��g−b�/r �1+xr��g−a�/r 


where g = a+b− c− r . Hence a+b = c+g+ r and therefore if a−b = s then

a= c+g+ r+ s
2

and b = c+g+ r− s
2




and we obtain

cg

s +
�c+ r��g+ r�

s +
�c+2r��g+2r�

s +· · ·

= c
∫
xg+r−1dx�1−x2r ��c−g−r−s�/2r �1−xr�s/r∫
xg−1dx�1−x2r ��c−g−r−s�/2r �1−xr�s/r

= g
∫
xc+r−1dx�1−x2r ��g−c−r−s�/2r �1−xr�s/r∫
xc−1dx�1−x2r ��g−c−r−s�/2r �1−xr�s/r �
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67. Let us replace s by 2s in the last formula of §66 and put c = q, g = r−q. Then we obtain
the continued fraction

q�r−q�
2s +

�q+ r��2r−q�
2s +

�q+2r��3r−q�
2s +· · · 


whose value can be written as either

q
∫
x2r−q−1dx�1−x2r ��q−r−s�/r �1−xr�2s/r∫
xr−q−1dx�1−x2r ��q−r−s�/2r �1−xr�2s/r 


or
�r−q� ∫ xq+r−1dx�1−x2r ��−q−s�/r �1−xr�2s/r∫

xq−1dx�1−x2r ��−q−s�/2r �1−xr�2s/r �

The value of such a continued fraction has already been found and it is equal to

�q+ s� ∫ yr+s+q−1 dy �
√

1−y2r∫
yr+s−q−1 dy �

√
1−y2r

− s �

It follows that these formulas with integrals are equal, and this is an essential theorem.

68. If as in §48 r = 2 and q = 1 then

�1+ s� ∫ ys+2dy �
√

1−y4∫
ysdy �

√
1−y4

− s =
∫
x2dx�1−x4��−s−1�/2�1−x2�s∫
dx�1−x4��−s−1�/2�1−x2�s




which is obvious if s = 0. In the case when s is an odd integer, the equality can easily be
derived: if s = 1 then ∫

xxdx � �1+xx�∫
dx � �1+xx� =

x− ∫
dx � �1+xx�∫
dx � �1+xx� = 4−�

�



after substituting x = 1. The previous formula says that

2
∫
y3dy �

√
1−y4∫

ydy �
√

1−y4
−1= 4

�
−1= 4−�

�

as does the preceding one. If s is even then the development of �1−xx�s into monomials easily
shows the equivalence of these two expressions.

69. Besides the continued fractions already found, the general form of the continued fractions
presented above contains numerous other special cases as its corollary. Let g= c; then we obtain
the continued fraction

c2

s +
�c+ r�2
s +

�c+2r�2

s +· · ·

with value
c
∫
xc+r−1dx�1−xr�s/r � �1−x2r ��r+s�/2r∫
xc−1dx�1−xr�s/r � �1−x2r ��r+s�/2r

�

Substituting c = 1 and r = 1, we obtain

1
s +

4
s +

9
s +

16
s +· · · =

∫
xdx�1−xs� � �1−xx��s+1�/2∫
dx�1−xs� � �1−xx��s+1�/2
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which allows us to compute the value of the continued fraction for several important values of
s: for s = 0,

V =
∫
xdx �

√
1−xx∫

dx �
√

1−xx = 1

2
∫
dy � �1+yy� �

for s = 2,

V = 2
∫
dx �

√
1−xx−3

∫
xdx �

√
1−xx

2
∫
xdx �

√
1−xx− ∫

dx �
√

1−xx =
1

2
∫
y2dy � �1+yy� −2 �

for s = 4,

V = 19
∫
xdx �

√
1−xx−12

∫
dx �

√
1−xx

3
∫
dx �

√
1−xx−4

∫
xdx �

√
1−xx = 1

2
∫
y4dy � �1+yy� −4 �

In general we have

V = 1

2
∫
ysdy � �1+yy� − s �

It is clear from this formula that even-s values are related to the quadrature of the unit circle
whereas odd-s values are related to logarithms.

70. Let us consider now the continued fraction

1+ 1
2 +

4
3 +

9
4 +

16
5 +

25
6 +· · ·

and compare it with with the continued fraction in §64. This gives

pqcg = 1 
 pq�c+ r��g+ r�= 4 
 pq�c+2r��g+2r�= 9 


ap−bq = 2 
 �p−q�r = 1 


whence

c = g = r 
 p=
√

5+1
2r


 p=
√

5−1
2r




a= r�1+3
√

5�

2
√

5

 b = r�3

√
5−1�

2
√

5
�

These substitutions into the formulas of §64 give the following formula:

1+ �
√

5−1�
∫
x2r−1dx�1−xr��1−

√
5�/2

√
5�1+√5+ �√5−1�xr�−�

√
5−1�/2

√
5∫

xr−1dx�1−xr��1−√5�/2
√

5�1+√5+ �√5−1�xr�−
√

5−1/2
√

5
�

Because of the complexity of the exponents one cannot derive from this anything deserving any
further attention 30.

71. At the same time [it may be noted that the] partial numerators in these continued fractions
are products of two multipliers; thus I consider now a type of continued fraction of the class in

30 See however (4.66) and Corollary 4.22.
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which these numerators make an arithmetic progression. Let us put in the last formula of §50
$ = 0 and c = 1. Then ∫

PRdx∫
Pdx

= a
b +

a+�
b+" +

a+2�
b+2" +

a+3�
b+3"+· · ·

�

Summarizing, we have

dS

S
= �a−��dR

�R
+ ��b−"a�dR+�RdR

��"R−��
= �a−��dR

�R
+ dR
"
+ ��

2+�"b−"2a�dR

�"�"R−�� 


which implies that

S = CeR/"R�a−��/��"R−����2+�"b−"2a�/�"" �

If R= �x/" then

S = Ce�x/""x�a−��/��1−x���2+�"b−"2a�/�""

and Rn+1S vanishes in both the cases x = 0 and x= 1, provided that �2+�"b > "2a. Hence

Pdx = e�x/""xa−�/�dx�1−x���2+�"b−"2a�/�""

and the value of the continued fraction under consideration is∫
PRdx∫
Pdx

= �
∫
e�x/""xa/�dx�1−x���2+�"b−"2a�/�""

"
∫
e�x/""x�a−��/�dx�1−x���2+�"b−"2a�/�""




where x = 1 after integration31.

72. To illustrate this case with an example, let a = 1, � = 1 and " = 1. Then we obtain the
continued fraction

1
1 +

2
2 +

3
3 +

4
4+· · ·




the value of which is ∫
exxdx∫
exxdx

= e
xx− ex+1
ex−1

= 1
e−1

after substituting x= 1. It follows that

e= 2+ 2
2 +

3
3 +

4
4 +

5
5+· · ·

and this expression soon converges to the number e whose logarithm equals 1.

73. Let us assume now that "= 0 in the continued fraction of §71, so that∫
PRdx∫
Pdx

= a
b +

a+�
b +

a+2�
b +

a+3�
b +· · ·

whence
dS

S
= �a−��dR

�R
− bdR

�
− RdR

�

31 See §87 in Section 4.7.
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and therefore
S = CR�a−��/�e�−2bR−RR�/2� �

There are two cases when Rn+1S vanishes, R = 0 or R = �, provided that both a and � are
positive numbers. Let R= x/�1−x�; then

S = Cx��−a�/� � �1−x���−a�/� exp
{

2bx− �2b−1�xx
2��1−x�2

}
�

Since dR= dx/�1−x�2, we obtain∫
Pdx =

∫ x�a−��/� dx

�1−x��a+��/� exp
{

2bx− �2b−1�xx
2��1−x�2

}
and ∫

PRdx =
∫ xa/� dx

�1−x��a+2��/� exp
{

2bx− �2b−1�xx
2��1−x�2

} �

74. Let us finally put in the last formula in §50 a= 1, c = 1, �= 0, $ = 0; then∫
PRdx∫
P dx

= 1
b +

1
b+" +

1
b+2" +

1
b+3"+· · ·

and
dS

S
= R

2dR+ �b−"�RdR−dR
"R2




whence

S = exp
{
RR+1
"R

}
R�b−"�/" and Pdx = exp

{
RR+1
"R

}
R�b−2"�/"dR


implying that

PRdx = exp
{
RR+1
"R

}
R�b−"�/"dR �

It is necessary that R be a function of x such that Rn+1 vanishes at x = 0 and x = 1. It is more
difficult to find such a function than in previous cases. I am not going to resolve this case with
the same method but consider it with a different one, which will now be presented.

75. I have already mentioned this method of finding continued fractions32, but since then I
considered a special case, now I am going to present this method more generally. Its essence is
not expressed in integral formulas as in the preceding cases but in finding solutions to differential
equations in a way similar to that proposed some time ago by Earl Riccati. I consider the
following equation:

axm dx+bxm−1ydx+ cy2dx+dy = 0 �

By the substitution xm+3 = t and y = 1/cx+1/xxz it transforms into

−c
m+3

t�−m−4�/�m+3�dt− b

m+3
t−1/�m+3�zdt− ac+b

�m+3�c
z2dt+dz= 0 


32 See Euler (1744, §§21–35) and also §4.10 of the present book.
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which is similar to the initial equation. Therefore if the value of z can be found from t then
equally y can be found from x. Similarly, this equation can be reduced to another by the
substitution

t�2m+5�/�m+3� = u and z= −�m+3�c
�ac+b�t +

1
ttv



and such reductions can be continued up to infinity; when this is done, if each subsequent value
is expressed by the preceding value then y can be expressed as

y = Ax−1+ 1
−Bx−m−1 +

1
Cx−1

+
1

−Dx−m−1 +
1
Ex−1 +

1
−Fx−m−1 +· · · 


where the quantities A, B, C, D , · · · have the following values:

A= 1
c

 B = �m+3�c

ac+b 
 C = �2m+5��ac+b�
c�ac− �m+2�b�




D = �3m+7�c�ac− �m+2�b�
�ac+b��ac+ �m+3�b�


 E = �4m+9��ac+b��ac+ �m+3�b�
c�ac− �m+2�b��ac− �2m+4�b�




F = �5m+11�c�ac− �m+2�b��ac− �2m+34�b�
�ac+b��ac+ �m+3�b��ac+ �2m+5�b�


 · · ·

This law of composition is easier to understand using the following identities:

AB = m+3
ac+b 
 BC = �m+3��2m+b�

ac− �m+2�b

 CD = �2m+5��3m+7�

ac+ �m+3�b



DE = �3m+7��4m+9�
ac− �2m+4�b


 EF = �4m+9��5m+11�
ac+ �2m+5�b




FG= �5m+11��6m+13�
ac− �3m+46�b


 · · ·

76. If now one substitutes the values found into the continued fraction, then

cxy = 1+ �ac+b�x
m+2

−�m+3� +
�ac− �m+2�b�xm+2

�2m+5�

+
�ac+ �m+3�b�xm+2

−�3m+7� +
�ac− �2m+4�b�xm+2

�4m+9� +· · · �

It is clear from this expression that the equation is integrable in the case where b equals one of
the terms of the arithmetic progression

−ac 
 −ac
m+3



−ac

2m+5



−ac
3m+7


 � � � 

−ac

im+2i+1



and also in the case where b equals one of the terms of the progression
ac

m+2



ac

2�m+2�



ac

3�m+2�

 � � � 


ac

im+2i
�
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The above continued fraction represents the integral of the differential equation satisfying
cxy= 1 for x= 0, provided that m+2> 0; if m+2< 0 then the integral is controlled by setting
cxy = 1 for x =�.

77. Suppose now that b= 0 and a= nc, and substitute x= 1 after integration; then the equation

ncxmdx+ cy2dx+dy = 0

gives the following continued fraction, which determines the value of y at x = 1: by

y = 1
c
+ n

−�m+3�
c

+
n

2m+5
c

+
n

−�3m+7�
c

+
n

4m+9
c

+· · ·

If c = * then the equation

nxmdx+y2dx+*dy = 0

gives the value of y at x = 1 as

y = *+ n

−�m*+3*� +
n

�2m*+5*� +
n

−�3m*+7*�+· · ·

or equivalently

y = *− n

m*+3* −
n

2m*+5* −
n

3m*+7* −
n

4m*+9*−· · ·

78. Let us consider the following continued fraction:

b+ 1
b+" +

1
b+2" +

1
b+3" +

1
b+4"+· · ·

�

Then *= b, n=−1, �m+2�b = " or m= "/b−2. Hence the value of this continued fraction
equals the value of y at x = 1, satisfying

x�"−2b�/bdx = y2dx+bdy 

which at x = 0 satisfies xy = b provided that m+2> 0 and "/b is positive.



References

Abel N. (1826). Sur l’intégration de la formule différentielle #dx/
√
R, R et # étant des fonctions

entières, J. reine u. angew Math. 1, 185–221 (Œuvres complètes, vol. 1, Kristiania, 1881),
pp. 104–144.

Agnesi M. G. (1748). Instituzioni Analitiche ed Uso Della Gioventu Italiana, vol. 1 (Milan).
English translation by J. Colson (Taylor and Wilks, 1801).

Akhiezer N. I. (1960). On orthogonal polynomials on several intervals, Dokl. Akad. Nauk SSSR
134 (1).

Akhiezer N. I. (1961). The Classical Moment Problem and Some Related Questions in Analysis
(FizMat, Moscow). (English translation, Hafner, 1965).

Amar E. and Lederer A. (1971). Points exposés de la boule unité de H��D�, C.R. Acad. Sci.
Paris Sér. A 272, 1449–1552.

Andrews G. E., Askey R., Roy R. (1999). Special functions, in Encyclopedia of Mathematics
and its Applications, vol. 71 (Cambridge University Press, Cambridge).

Arnold I. (1939). Number Theory (Uchpedgiz, Moscow, in Russian).
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Perron O. (1954). Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbruche (Teubner,
Stuttgart).
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∗-weak topology, 322
Weber–Fechner law, 7
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witch of Agnesi, 136
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