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KILLING THE MIDDLE HOMOTOPY GROUPS OF
ODD DIMENSIONAL MANIFOLDS

BY
C. T. C. WALL

The main object of this paper is to prove the theorem: If W is an m-
parallelisable (2 4-1)-manifold, whose boundary has no homology in dimen-
sions m, m—+1; then W is x-equivalent to an m-connected manifold.

This is written as a sequel to Milnor's paper A procedure for killing
homotopy groups of differentiable manifolds. We attempt to preserve the nota-
tions of this paper, and refer to it as [M].

Milnor proves in [M] that W is x-equivalent to an (m—1)-connected
manifold, and we show in §1 that we can reduce H,(W) to a finite group.
§2 is devoted to the definition and study of a nonsingular bilinear form on
this group, symmetric if m is odd, and skew if m is even. §3 applies these re-
sults to prove the theorem above, It follows, in the notation of [8], that
©2,(07) =0 (this has also been proved by Milnor and Kervaire). In §4 we
prove a more precise version of Milnor’s reduction of (m—1)-parallelisable
to (m—1)-connected manifolds; this is applied in §5 to obtain results about
the topology of certain (m —1)-parallelisable (2m+1)-manifolds. Our results
are complete for a class of 5-manifolds, and yield an interesting test for co-
bordism.

Throughout this paper, “manifold” shall mean “compact connected differ-
ential manifold.” Here, “differential” means “endowed with differential struc-
ture”; it seems a more suitable word for this concept than “differentiable,”
which ought to mean “admitting at least one differential structure.”

1. Preliminaries. We consider manifolds W of dimension 2m+1 (where
1<m). We suppose that W is m-parallelisable, and that we have already
killed the homotopy groups w(W) for 2 <m; we will study the possibility of
killing 7.,(W). Since m < (1/2) dim W, every element of m,.(W) is representa-
ble by an imbedding fo: S*—W. The induced bundle f¢*(r*»*!) is trivial, so
by Lemma 3 of [M ] there exists an imbedding fi: S X D™+'—W extending fo.
In this case we can carry out surgery without trouble; the only snag is that
we are not sure of simplifying m,,(W) when we do it.

We reconsider the proof of Lemma 2 of [M]. It is convenient to give it a
somewhat different form. We first pass from W to the manifold W'’ obtained
by removing the interior of fi(S™XD™+!) from it, and then to the manifold
W’ obtained by glueing D™t X S™ in its place. It is easy to see that m.(W"’)
—mn(W) is onto, and its kernel is generated by the class of fo(e X .S™), where
S2: SmXSm—W" is induced by fi (and we use e indiscriminately to denote an
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unspecified base point). For the same reason, m,(W")—n,.(W’) is onto, and
its kernel is generated by the class of f2(S™Xe). We will usually denote these
two classes in 7,(W"’), or rather, the corresponding ones in H,,(W"), by 3z, x.

We suppose, as in §6 of [M], that H,41(Bd W) and H,(Bd W) vanish,
hence so also does H,,—1(Bd W). The homology sequence for the pair (W, Bd W)
and the Universal Coefficient Theorem, imply that H,(W)=H,(W, Bd W)
and H, .1 (W) =H,...(W, Bd W) with any coefficient group, and similarly for
cohomology, so in these dimensions Poincaré duality for W has the same
form as for a closed manifold.

We first consider the case when H,,(W) has elements of infinite order.

LeEMMA 1. Let x be of infinite order in H,.(W) and be indivisible. Then if we
perform surgery on W starting from x, the new class z in H,(W'") vanishes, so
H,(W'’) is obtained from H,(W) by killing x.

Proof. Denote the chain fi(e X D™*1) by §. Since x is indivisible, by Poin-
caré duality there is a class pE H,11(W) with unit intersection number with
x. Since fi1((S™—e) X D™t1) is a cell, we may choose a representative cycle $
for p which avoids it: and clearly we may suppose that the only simplexes
of $ contained in f;(S”XD™+) form ¢, since the intersection number of p
with x is unity. But now ¢ — § defines a chain in W’ whose boundary
z=f(e XS™) determines z. Hence 2=0 in H,(W") and a fortiori also in
H,.(W").

Now as in §6 of [M ], W’ is m-parallelisable if W is, so we can repeat the
process to kill all elements of infinite order in H,.(W). Hence we may assume
G=H,(W) finite. Let its exponent (the l.c.m. of the orders of its elements) be
0. We shall take homology and cohomology with coefficient group Z;, but
still represent the classes by integral chains. Now H,(W, Z;)=G by the
Universal Coefficient Theorem; we shall identify these groups by this iso-
morphism. Consider the map 5—3d7/8 of chain groups: this induces a homo-
morphism v: Hpu1(W, Zg)—H,(W, Zs) dual to the Bockstein in cohomology.
This is onto since each element of the latter group has a representative 6
times which is a boundary, and (1-1) since if § represents a class y with vy =0,
there exists a chain @ with dw=09%/0, and since H,1(W)=0 (by duality),
§—0w, being a cycle, is a boundary, so j determines the zero element of
Houi(W, Zy).

2. The nonsingular bilinear form. Combining ¥ with isomorphisms de-
duced from Poincaré duality and the Universal Coefficient Theorem we now
have

G = Hu(W) = Ho(W, Zo) = Hur (W, Zo) = H™(W, Zy) = Hom(G, Zs).
Hence we have a pairing of G with itself to Z,. Write b: GQG—Z,.

LEMMA 2. b is a nonsingular bilinear form on G, symmetric if m is odd and
skew if m is even.
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Proof. We have already proved the first part. For the second it is more
convenient to work in cohomology (isomorphic to homology by the above).
Here, b is given by b(x, y)=Bx-y, evaluated on the fundamental class of
(W, Bd W), where 8 denotes the Bockstein. Now

b(x,y) + (=1)"b(y, ) = Bx-y + (—1)"By-x
= Bx-y+ (—1)mx-By
= B(xy).

But xy& H>»(W, Z,), so reverting to homology we get Hy (W, Bd W; Z;). But
every element of this is the restriction of an integer class, so applying 9/60
gives zero, as required.

Note. This result also follows by interpreting b(x, ) as a linking number
(mod 6).

We shall now show how the form b determines the effect of surgery on
H,.(W). Let x be the element chosen to operate on, and let ¥y be of order 7 in
H,.(W). Since ry=0, 0[ rb(y, x), so (r/0)b(y, x) is an integer defined modulo 7.
(] denotes divisibility.) Represent y by an m-cycle 4 not meeting fi(S™ X D™+1),
In W, § represents a homology class ¥/, and 7y’ is a multiple of z.

LeEMMA 3. If we write ry’ =Nz, we have A\=(r/6)b(y, x) (mod 7).

Proof. Let § be an (m-+1)-chain with df=rj. As in the proof of Lemma 1,
if the intersection number of $ and x is A\, we may suppose that the only
simplexes of § contained in f1(S™X D™*1!) form Ag. Now $—\g defines a chain
in W, of boundary 9 —N\Z, hence 7y’ =X\z. But as (3/6)(0/r) =74, the class
mod 0 of 85/r corresponds under v to ¥, so by definition of b,

b(y, x) = (0p/r) N\ x = 6\/r (mod 0)
ie.

A= —b(y, x) (mod r).

o]~

COROLLARY. Let b(y, x) =0. Then there exists a class ¥ in H,(W'"') induc-
ing v in H,(W) and also of order r.

Proof. ry’ =krz for some integer k. We may choose 3"/ =9y' —kz.
Before we can prove our main theorem we need a number-theoretic lemma
about bilinear forms b.

LEMMA 4. Let b: GRG—Z;y be a nonsingular bilinear form on the finite
Abelian group G. Write c(x) for b(x, x).

(1) If b is symmetric and c(x) =0 for all x, then 0 =2 and we can find a basis
{x,-, 7 1§i_$_r} for G such that

b(xi, ;) = 845 b(xs, x5) = b(ys, y;) = 0.
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(i) If b is skew-symmetric, we can find elements x;, y; of order 0; in G
=1=Svr) such that
(1=i=7) such th
b(xi, x.'l') = b(xn yi) = b(yiy yJ) = Ofori ;éj;
c(x;) =0, b(xz, y5) has order 6;,

and G contains the divect sum of the cyclic subgroups generated by the x;, y; as
a direct summand of index at most 2.

CoRrOLLARY. Under the conditions of (ii), if B is the subgroup gemerated by
the x;, then either

G2B®B or GXXB®BO® Zs.
Proof. (i) Under these hypotheses, for all x, ¥ in G,
2b(x, 3) = b(x, y) + b(y, ®) = ¢c(x + 3) — c(x) — c(y) = 0.

Hence the exponent of G is 2. We now pick x;, 9; by induction. Choose any
nonzero x1, then since b is nonsingular there exists y; with b(x1, y1) =1. Since
¢(x1) =0, y15%x:. Now G is the direct sum of the subgroup Gp {1, y:} and H,
the annihilator of Gp{xi, 31}, and b induces a nonsingular form on H, so
we may continue the induction. (All this is of course well known.)

Note. If x,, x2, - - - belong to a group, Gp{xl, Xg, + ¢ ¢ } denotes the sub-
group which they generate.
(ii) Since b is skew, c(x)=0b(x, x) = —c(x), so has order 2. Moreover,

c(x+y)—c(x)—c(y)=b(x, y)+b(y, x)=0, so ¢ is a homomorphism G—Z,.
Now since G is a finite Abelian group it is the direct sum of its Sylow sub-
groups S,, and these are clearly orthogonal under b, so we can take them sepa-
rately.

First, suppose p odd. Let x; be an element of maximal order " in S,.
Then since b is nonsingular there exists y; such that b(x1, y1) has order p.
Then y; has order p (not greater, since this was maximal) and G contains
the direct sum of the cyclic groups generated by x1, y1; for if 0 =x;+uy1, then

0 = b(Ax1 + wy1, y1) = Ab(x1, y1) + we(y) = A(b#x1, 1)

so M\ is divisible by p7; similarly, so is 4. Again we have G=Gp{x1, yl} DH,
where H is the annihilator of x1, y1, since any &G can be written as

2 = b(z, y)o1 — b(z, x1)y: + £

with #E H. b induces a nonsingular form on H, so we may apply induction to
obtain our theorem.

For p=2 we apply the same argument, if 1 <r. The proof of independence
of x1, y1 must be modified as follows. By the equation above, b(x1, y1) has order
at most 2, so \ is divisible by 271, so by 2. Similarly, so is u. Hence uc(y1) =0,
and we may proceed as before. (The modification of the direct sum argument
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is left to the reader.) We may suppose that c(x;) =0, for if not, and ¢(y1) =0,
we interchange x1, y1; whereas if c(x1) =c(y1) #0, we may replace x; by x14y:.

Finally, suppose G has exponent 2. If the order of G is two, G has the re-
quired form. If it is greater, let x; be any nonzero element of Ker ¢, and y;
such that b(x1, 1) #0; then we can split off the direct summand Gp {1, y1}
as before. This concludes the proof.

Note. (i) We can be somewhat more precise in our reduction of (G, b), but
this is of no advantage for the applications we shall make of the lemma.

(ii) The above proof is complicated by the possibility ¢#0 in (ii). We
shall show in §5 that for m-parallelisable W, ¢ must in fact vanish.

3. Proof of theorem.

THEOREM. Let W be m-parallelisable, of dimension 2m-1. If the boundary
of W has no homology in dimensions m, m=+1, W is x-equivalent to an m-con-
nected manifold.

Proof, m even. By Theorem 3 of [M], we may suppose W (m—1)-con-
nected, and by Lemma 1, H,(W) finite. By Lemma 2 it admits a nonsingular
skew form b, so by Lemma 4, we may express G in the special form there
given. First suppose B is not zero. Take the class xi, represent by a sphere,
and perform surgery. Then H,(W') is generated by elements x!, y!, z;
where x},y! are classes mapping to x;, ¥: in H, (W), for uniformity of nota-
tion we have denoted the generator of the “extra” Z,in G (if there is one) by
%0, and x4,z are the classes of fa(S™Xe), f2(¢e X.S™). By the corollary to Lemma
3, we may suppose that for 11, x/,y/ have the same orders as x;, y.. Also by
Lemma 3, we may choose y{ such that 6;y{ = —z, and since ¢(x1) =0, 01x{
=Nb,2, for some integer .

Suppose if possible A#0. Then in W’ ,x{ becomes zero, so we have (using
primes to denote corresponding elements)

013’1” = - Z,, >\912, =0

so y{’ has order M. The orders of other basic elements are unchanged from
G, and there are no new ones. We see that the resulting group fails to have
the form required by the corollary to Lemma 4. Hence A=0. Then in W’ we
have 61y{’ = —2', and y{’ has infinite order. By Lemma 1, we may now kill
vy, and we have then simplified the finite group G. Hence by induction we
may simplify till G is 0 or Zs. In the latter case perform surgery starting with
the nonzero element x of G. Then 2x’ =\z for some odd N\. Hence H,(W’) is
cyclic of some odd order, which by Lemma 4 must be unity, so in this case
also we can make W m-connected.

We must now consider the case when m is odd. The main difference from
the earlier case is that there (using Lemma 4) the effect of surgery was al-
ready determined by the choice of the class x. But for 7 odd there is the addi-
tional question of product structure for S™XS™. Now H"(S™X.S™) is the
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free Abelian group on two generators induced from the projections on the
factors. Any autohomeomorphism of S™ X S™ induces an automorphism of this
group and so a linear transformation of determinant 1. We represent this
by the appropriate matrix
()
¢ d

over Z. If m1, 3, 7, there is no element of Hopf invariant odd in men41(S™+1)
and so no map S™X Sm—S™ with both degrees odd (by [2; 5]). Hence ab, cd
are even, i.e., @, d have the opposite parity to b, c. However,

LEMMA 5. S™XS™ admits diffeomorphisms corresponding to any matrix
a b
( c d )
which is unimodular, and with a, d of opposite parity to b, c.

Proof. This falls naturally into two parts. First we produce a diffeomor-
phism for the matrix
(o -0)
2 —1

and then prove that this, together with the trivially representable matrices
(i 1 0) ( 0+ 1)
0 +1 +1 0
generates the group of all matrices satisfying the conditions above. We define
the diffeomorphism using a map of Hopf [5]. Let (¢, ¢) €S™X S™. Then draw
the great circle through the points p, g of S™, and let ¢’ be the other point of
it at the same distance from p as ¢ is. Thus if ¢ is p or its antipode, ¢'=gq is
unique. Then consider the map S™XSm—S™X S™ defined by (p, ¢9)—(p, ¢).

It is clearly (1-1) and infinitely differentiable (and its own inverse), and since
m is odd it corresponds to the matrix

< )
2 [— I
as pl OIIllsed.

Alternatively we may use a map f: S™—SOn41 of index 2 (it is well known
that such exist), and define a diffeomorphism by F(x, ¥) = (x, f(x)-y): this
corresponds to the matrix

(o )
0o 1/
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The proof about generators for the group parallels Kuro§ [6, Appendix
B]. The only change is where he sets a=gc+a’, 0=<a'<c¢, we must put
a=2¢'c+a"’, —c<a"” Zc. But @'’ =c is impossible, as this would imply that
a had the same parity as ¢. The remainder of the proof is unaltered (working

. ]

which is easily expressed by the matrices above). In fact the corresponding
projective group, a subgroup of index 3 in the modular group, is Z; * Z.

Proof of theorem, m odd. First suppose c¢(x) not identically zero. Choose
x such that c(x) #0. We represent x by an S” and perform surgery. We shall
adhere to our earlier notation, denoting corresponding classes with primes.
We consider the elements x’, z of H,,(W"). By Lemma 3, rx’ = sz, say, where
r is the order of x, and r{s since c(x)#0. Hence the h.c.f. (r, s) =k <r. Set
r=1'h, s=s'h. Choose \, u such that A\'+us’=1: we may suppose \, u of
opposite parity since if they are both odd, 7/, s’ must be of opposite parity
and we may take N\+s’, u—7’.

Write y=Az+ux’. Since N\, u have opposite parity, by Lemma 5 we may
choose the product structure in S™X.S™ so that y corresponds to one of the
factors. Then glue in D™*+1X.S™ to kill y and give W’(!). Now in W,

ra’’ = s3’ ie, k(2" — s'3) =0
and 0=9' =Xz’ +pux", so

xl/ —_ (Arl + #sl)x// —_ A(rlxll — slzl)’

g = ()\r/ + us)e = — u('a" — §'3),

hence the group generated by x'’, 2’ has order a factor of & (in fact equal to
it) which is less than 7. Since the index of this group in H.(W’) equals that
of Gp{x} in H.(W), (for Gp{«’, 2} contains the kernels of both H,(W")
—H,(W) and H,(W'")—H,(W')) we have succeeded in decreasing the order
of H,(W), or more precisely, in replacing it by a divisor of itself.

We may repeat the above process as long as ¢ is not zero. Hence by induc-
tion (G being finite) we may suppose ¢=0, and (G, b) as in (i) of Lemma 4.
Perform surgery on the class x;. If 4 denotes the subgroup of G generated
by «i y: for 1 <4 <7, then by Lemma 3, and corollary, H,(W")
=A®Gpixl, i, 2z}, 2x{ is an even multiple of z, and we may suppose
2y{ =2.

Write 2x{ = (4k+d)z, where d=2 or 4, and kill x{ —2kz. Then d2’' =0, and
so H,(W)=A®Gp{y/’}, and y{’ has order 2d.

(%) This form of surgery is rather more general than that used in [M], but it follows from
our proof of Lemma 5 that it is equivalent to a series of the spherical modifications of [M].
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Write U for W', u for y{’. Then since b is nonsingular, and % is the only
basis element of H,(U) of order greater than 2, the order of ¢(«) equals the
order of #. Now perform surgery starting with the class #. Then in H,(U"’)
we have 2du equal to an odd multiple of the new class w. Then we kill # (we
have no need to worry about the product structure this time), and

H,(U) =A@ 2 if % is the odd order of w.

(The sum is direct as 4 is a 2-group.) But now, by the first part of the proof,
we can replace the order of the group by a divisor of itself such that the new
group has the form of Lemma 4 (i), and so has order not exceeding that of 4.
Hence in the second case also we have succeeded in decreasing the order of
H,.(W), so our induction is complete, and we may reduce the group to zero.

CoROLLARY. Let T?™ be a homotopy sphere which bounds a w-manifold.
Then it bounds a contractible manifold.

For the result is trivial if m =1, and otherwise we may apply the theorem
to find an m-connected manifold with boundary 7. But by relative Poincaré
duality, such a manifold must be contractible.

COMPLEMENT. Let 7" be a homotopy sphere, and W a w-manifold with
boundary T'. Then there is a contractible manifold C with boundary T, such
that if W’ is formed by glueing W to C along T, there is a parallelisable mani-
fold M, with boundary W"'.

Proof. Our construction of C from W by surgery was by choosing at each
stage a class on which to perform the construction.- By Lemma 5 of [M], if
we choose the correct trivialisation of the normal bundle at each stage, the
manifolds w(W, f) are parallelisable: this goes also for the proof of Theorem 2
of [M]. Since the trivialisations given for the tangent bundles of these mani-
folds fit together on the boundary, we may form M by glueing these mani-
folds together, and it will then be parallelisable.

These results are of use for computing the groups ©,, of J-equivalence
classes of homotopy spheres. Our reference is [7]. In the notation of those
notes, the above corollary states’ ©,(dr)=0. Since Milnor proves that
O/ O2m(d7) is finite, it follows that for each m, @,y is a finite group. Also,
using other results of Milnor, ®, and 0, vanish. We may also show ®=0,
and will sketch the proof (we omit details since a simpler proof is known).
By Thom [8], the spinor cobordism group in dimension 6 is isomorphic to the
stable homotopy group m,46(M (Spin 7)). Results of Adams [1] relate these
to a spectral sequence which starts with

Exta,(H*(M(Spin n), Zs), Z3),

where 4, denotes the Steenrod algebra mod 2. A straightforward computation
of this in low dimensions now shows that the group in question vanishes.
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Hence a homotopy 6-sphere, being a spin manifold, bounds another, W say.
But W is a spin manifold, and so 3-parallelisable, and the result now follows
by the theorem above.

All these results have been obtained independently by M. Kervaire (in-
cluding a stronger form of the above complement), and will appear in a
joint paper by M. Kervaire and J. Milnor entitled Groups of homotopy spheres,
which will also contain the substance of [7]. Recent results of Smale and
Munkres have emphasised the importance of the groups 0,,.

4. Simplifying certain (m —1)-parallelisable (2 -1)-manifolds. Suppose
that U is an (m—1)-parallelisable (2m-1)-manifold, and in addition that
H,_(U) is torsion free, hence free Abelian. By Theorem 3 of [M], U is
x-equivalent to an (m—1)-connected manifold. We wish to obtain a slight
refinement of this result. Now since H,1(U) is free, H™(U, 4)
=Hom(H,(U), A). The obstruction p to m-parallelisability of U lies in
H™(U, mn-1(0)), where O denotes the stable orthogonal group. We make the
convention of regarding p as a function on H,(U).

We may now state the reduction lemma.

LemMA 6. If U is a compact (m—1)-parallelisable (2m-+1)-manifold, with
H,._1(U) torsion free, then there is a sequence of surgeries taking U to an (m—1)-
connected manifold U*, and such that

() If m>2, there are induced isomorphisms of Hu(W), Huii(W, Zs) at each
stage, which commute with the Bockstein operator, with intersection numbers
mod 0, and with p.

(i) If m=2, there are forwards maps of Ho(W) at each stage, inducing
isomorphisms of its torsion subgroup, and backwards maps of Hy(W, Zs), com-
muting with the same three invariants, and inducing isomorphisms

Hy(U) = Hy(U*),  Hy(U*, Zy) = Hy(U, Zy).

Proof. If m <2, we can take U*= U (supposed connected).

(i) If m>2, we may first use the procedure of [M] to kill successively
the 7;(U): 0<7<m—1. We note that this induces natural isomorphisms of
H,.(W), Huo1i(W, Zs) at each stage, and if the resulting manifold is Uy,
H,,_1(U)) is naturally imbedded in H,—1(U), hence it also is torsion free. Since
m—1>1, by the Hurewicz isomorphism, mn_1(U)=H.1(U), so is free
Abelian. Now since U is (1 —1)-parallelisable, by construction, we may kill
the generators in turn: it is easy to see that H,(W) and H™t(W, Z,) remain
unaltered. The required commutativities now follow from the naturality of
the several invariants for the successive inclusion maps W"”’—W and W'—W",

(ii) If m=2, we may first choose elements of 71 (U) inducing generators
of Hi(U), and kill these as before. Hence we may assume Hi(U) =0. We now
select a set of generators of m(U) and kill them in order. At each stage, we
have exact sequences
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0— Hy(W") > Hy(W)—>Z—0
112
Hy(W)

0 — Zy — Hy(W", Zg) — Hy(W, Zy) — 0.

IR
Hy (W', Zy)

Let the resulting manifold be U;. Hy(U) is contained in Ha(U;) with free
Abelian quotient group. We lift a set of generators of this quotient group to
H,(Uy): we may suppose that p vanishes on each. For if U is 2-parallelisable,
by Theorem 3 of [M], we may suppose that U, is also, so p vanishes identi-
cally; yet if not, p is a nonzero homomorphism H,y(U)—Z,, and to each
lifted generator on which p does not vanish we may add an element of Ho(U)
with the same property.

Since p vanishes on these generators, they are representable by imbed-
dings of S2X D3, and we may perform x-constructions to kill them. At each
stage of this process we have exact sequences (by Lemma 1)

0—Z— H(W") - H,(W') — 0,
Il
Hy(W)

0 — Hy(W", Zs) — Hy(W, Zs) — Zy— 0.

12
Hy (W', Zy)
The resulting manifold is the required U*. We have exhibited maps of the
homology groups as stated, which induce isomorphisms as stated (this is
clear for H; and will follow by duality for H3). From the diagrams above, and
from the naturality of the invariants for the inclusion maps, follow again the
various commutation relations.

COROLLARY. Suppose in addition that the boundary of U has no homology in
dimensions m, m-+1, so that a bilinear form can be set up as in §2. Then the
transition from U to U* preserves the bilinear form.

This is clear, since the form is defined by Bocksteins and intersection num-
bers.

5. Topology of certain (m — 1)-parallelisable (22 1)-manifolds, (m even).
We may now apply the above lemma to make our manifolds (7 —1)-con-
nected, and the methods of the rest of this paper will then apply. We shall
study the homomorphism ¢ of Lemma 4 (ii), and show in particular that if W
is m-parallelisable, then ¢=0.

We shall suppose in the following that W satisfies the condition:

(A) W is a compact (m—1)-parallelisable (2m+1)-manifold, such that
H,_i(W) is torsion free and H,(W) finite, and the boundary of W has no
homology in dimensions m, m-+1; where m is even.
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The obstruction p to m-parallelisability has coefficient group mm—1(0),
which was evaluated by Bott [3] as Z if m=0 (mod 4); as 0 if m=6 (mod 8);
and as Z; if m=2 (mod 8). But under (A), H™(W) vanishes, so p =0 unless
m=2 (mod 8), when the coefficient group is Z,.

LemmA 7. If W satisfies (A), xEH,.(W) and p(x) =0, then c(x)=0.

Proof. By Lemma 6, we may suppose W (m—1)-connected. Note that
p(x) =01is the condition that x berepresentable (by animbedding of S™ X D™+1),
We take a base of H,(W) as in Lemma 4. Let ¥, be an element of this base
of order greater than 2 with p(y1) =0, c(y1) #0. We shall deduce a contradic-
tion.

Let 27 be the order of y; (it is even since ¢(y1) #0). Let 4 be the subgroup
of H,.(W) generated by x;, ¥; for j#1. Since y, is representable, we can per-
form surgery. As in the proof of the theorem, using Lemma 3, we have
H,(W"=A®Gp{xi, ¥, 2z} where 2nx{ =3z 2ny!{=2M+n)z. Hence
H,(W)=A®Gp{x!, 2} and this last group is cyclic of order =2n>2,
which contradicts the corollary to Lemma 4 (4 being of the type admitted
by that corollary).

Now suppose that H,(W) contains an element x for which p(x)=0,
c(x) #0. Let My be obtained from S™X.S™*! by performing surgery on 20
times a generator of H,(S™XS™t1). Clearly, M satisfies (A). It is easy to see
that H,(M)=2Zy, and since p=0 for S»X S+ by [M] we may suppose
that it is 0 for M, hence ¢=0, since by what we have already proved ¢ van-
ishes on each generator. Let x, be a generator of H,,(M) (of order 26).

Form W # M. Now H,(W # M)=H,(W)®H,(M), and it is clear that b
admits the direct sum decomposition and ¢ and p are additive. Consider the
element x+x, of order 20. We have

pla+ w0) = p@) + o) = 0, clx+ #0) = c(a) + c(w0) = c(x) = 0.

By the proof of Lemma 4, an odd multiple y of x+x, can be chosen as a basis
element of H,(W # M); this will have order greater than 2, and p(y) =0,
¢(y) #0, which contradicts what we proved above. This proves the lemma.

The lemma may be rephrased: ¢=p or ¢=0. For if the kernel of ¢ properly
contains that of p, which has index at most 2, the kernel of ¢ is the whole
group, so ¢=0. If m2 (mod 8), this simply states ¢=0. If m=2 (mod 8),
we shall now show that whether ¢ is p or 0 depends only on . In fact we shall
produce a closed manifold V satisfying (A), and with p(V)#0. Form W § V.
p and ¢ are additive. There are now two cases.

If c(V)=p(V), c(WH V)=c(W)+c(V) 0 since c(V) 0. Hence it equals
p(WE V)=p(W)+p(V), and we deduce c(W) =p(W).

If ¢(V)=0, c(W)+c(V)#£p(W)+p(V) since c(V)#=p(V). Hence c(W)
=c(W#V)=0.

The manifold ¥V may be constructed as follows. Take the nontrivial S»+!
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bundle U over S™ (defined since m=2 (mod 8)). Let x generate H,(U).
p(2x) =2p(x) =0, so we may perform surgery and kill 2x. This yields a mani-
fold V which satisfies (A), and x determines a class ' in V with p(x’) 0.

In the case m =2, we can show that c=p. (We have not yet succeeded in
deciding the question in any other cases.) For the Wu manifold P(1, 2) (see
[4]) satisfies (A) and has H,(P)=Z,. Since b is nonsingular, ¢%0. We may
sum up these results as

ProrosiTION 1. Let W satisfy (A). If m =2 (mod 8), c(W)=p(W)=0. If
m=2 (mod 8), there is an integer v, mod 2 such that c(W) =r,p(W) for all W.
Moreover, ro=1.

Now for m=2, p is the second Stiefel class w? For any closed 5-manifold
W satisfying (A), we know ¢ by elementary homology theory, and may now
use Wu's formulae to deduce from w? the operation of the Steenrod squares in
w.

We finally turn to the problem of deciding when in Lemma 4 (ii) there is
an extra Z,. Since ¢ is a homomorphism and b nonsingular, G has an element
¥o with ¢(x) =b(x, yo) for all x. It is easy to show that the extra Z, appears if
and only if ¢(yo) #0. For 5-manifolds, this fact admits an interesting inter-
pretation. We know that ¢=p=w? Now we have the commutative diagram

HW,Z)—— |, HY W, Z)

TS

HYW, Z,) Hy(W, Zs)—— Hy(W, Zy)

N, b

Hy(W, Zy) —————Hy(W, Zy)

where D denotes duality isomorphisms, 3; is the Bockstein, and the horizontal
maps are induced by the obvious homomorphisms of coefficient groups. But
w2E& H*(W, Z,) maps under B; to w*C H*(W, Z,), and c€ H*(W, Z,) maps to
yo& Ho(W, Zs), so each of w?w3, c(y,) is equal to the Kronecker product of ¢
with its image in Ho(W, Z;). Now since a closed oriented 5-manifold W is
cobordant to zero if and only if the Stiefel number w?w?[ W] vanishes by [8],
we have proved

ProrosITION 2. Let W be a closed oriented S-manifold such that Hy(W) s
torsion free, Hy(W) finite. Then there exists a finite Abelian group B such that
either

(i) H(W) =B & B or (ii) Hy(W) = B® B @ Z,.
W is cobordant to zero if and only if (i) holds.
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