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0 Introduction 

The Dedekind eta function, defined by 

o~ 

~(z) = e ~z/12 l - I (1  - e 2€ 
n = l  

for z in the upper half plane H, plays a central role in number theory. It is a 
modular form of fractional weight whose 24 th power is proportional to the fundamental 
discriminant cusp form of weight 12. In particular ~?(z)24dz 6, is invariant under the 
modular group PSL(2, Z), and so there is a function r  PSL(2, Z) ---* Z given by 

(0.1) r  ) for A =  
7r~ c 

where #(A) = ~ log if c =~ 0, and #(A) = 0 if c = 0. Dedekind [D] gave 
a formula \ i sign c~ 

(0.2) r  = 2 if c = 0 

a + d  12sign(c)s(a,c) if c ~ 0  
C 

in terms of  certain arithmetic sums s(a, c) defined for coprime integers a and c by 

Lcl-I 

k = l  

where ((x)) = x - [x] - 1/2. These sums, now called Dedekind sums, arise in many 
contexts and have been intensively studied during the past hundred years. Many of  
their fundamental properties were discovered by Rademacher, and the function r is 
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often called the Rademacher ~ function. References for this classical subject include 
the beautiful monograph [RadG] as well as basic texts in analytic number theory and 
modular forms such as [Ap] and [Kn]. 

Dedekind sums arise naturally in many topological settings. Hirzebruch was the 
first to notice this through computations with the equivariant signature theorem [Hir2]. 
In particular, 4es(a,, c) can be identified with the signature defect of the 3-dimensional 
lens space L(e, a) (appropriately normalized) by means of Rademacher's cotangent 
formula 

(0.4) 
M-1 e ,  

8(~ C) 
4,G ~ \ c / 

[Rad2]. 
It follows that Dedekind sums are present in other signature related invariants 

of lens spaces, such as their c~-invariants [HirZ] and #-invariants [NR]. They also 
appear in formulas for Meyer's signature cocycle rr: SL(2, Z) x SL(2, Z) --~ Z which 
arises in the study of signatures of torus bundles over surfaces [Mey], and in other 
topological contexts as well. An extensive discussion of many of these topological 
aspects of Dedekind sums appears in [Atl] from the point of view of geometry (index 
theory of elliptic operators) and physics (gauge theory). 

More recently, Dedekind sums have appeared in the generalized Casson invariant 
[Wa] and the new SU(2)-quantum invariants [Wi, ResT] of rational homology 3- 
spheres. The connection with quantum invariants was anticipated by our discovery 
of a relationship between the Casson invariant and the quantum invariants of integral 
homology spheres, and was first observed in our calculations for lens spaces in August 
1990 [KM2] (see also [Gar, J]). We were aided in recognizing the Dedekind sum by 
a continued fraction formula in [Hic], brought to our attention by [Wa]. In fact our 
efforts to resolve a discrepancy between Hickerson's formula and ours led us to a 
new elementary geometric definition of the Rademacher ~b function which was the 
starting point for the present paper. 

The first two sections of the paper describe this geometric follnulation of the 
function and Dedekind sums. Many basic properties follow easily, in particular the 
fundamental Dedekind reciprocity taw 12(s(a, c) + s(c, a)) = a / c  + c/a. + 1/ac - 
3 sign(ac), which essentially characterizes the Dedekind sum. 

The remaining sections of the paper show how this formulation illuminates the 
appearance of Dedekind sums in topology. Connections with signature defects and 
#-invariants of lens spaces are discussed in Sect. 3 and Sect. 4, primarily by means of 
associated reciprocity laws. One interesting outcome of our viewpoint is the existence 
of certain integral lifts of the #-invariants of lens spaces L(c, a) which can be thought 
of as part of the associated Dedekind sums s(a, c). These are also related to the Brown 
invariants which arise in the study of quantum invariants (see the end of Sect. 4). In 
Sect. 5 we give formulas for the #-invariants of torus bundles over the circle, which 
are used in Sect. 6 to give a simple formula for the signature cocycle. The paper 
concludes with an appendix which gives surgery descriptions for lens spaces and 
torus bundles, and identifies the characteristic classes associated with various spin 
structures, 

The rest of  this introduction provides a more detailed survey of our results. The 
reader may find it convenient to use this both as an introduction and as a conclusion 
to the paper. 
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Our geometric definition of  the r function arises from the action of  the modular 
group on the upper half plane H. It can be expressed in terms of  continued fractions 
as follows: For A as in (0.1), choose a list a = (0,1, . . . ,  0,n) of integers such that 
a/c  = ( % , . . . ,  an) and b/d = (al, . . .  , an_l>, where 

1 
(0.5) (al' " " '  a n ) ~ e e f -  1 

a2 1 
" . .  - -  - -  

a n 

(We shall always use this non-standard notation for continued fractions, as there is 
no uniformly accepted notation in the literature.) Geometrically c~ corresponds to an 
edge path in a certain ideal triangulation of  H (with vertices at the rational points 
on the circle at infinity) where the a i specify the turns to be made at each vertex of  
the path (see Sect. 1). Let ~r~ and r~ denote the signature and trace of  the associated 

all i/ 1 0, 2 1 

(0.6) M s  = 1 "'. 

~  

whose i j  th entry is 0,i if i = j ,  1 if li - Jl = 1 and 0 otherwise. Now define 

(0.7) qo(A) = 3t7~ - T~ = 3a~ -- ~ a i . 
i=l 

The geometric content of  this definition is explained in Sect. 1, where it is shown 
to yield a well defined function ~o: PSL(2, Z) ~ Z equal to the negative of  the 
Rademacher r function. Our normalization is convenient for many purposes, and we 
shall also call it the Rademache r  ~o function.  

The Dedekind symbol  of any (extended) rational number a/c  can now be defined 
by 

(0.8) S = ~o c c 

where b and d are chosen so that ad - bc = 1. Thus S is viewed as a function 
from Q u oo to itself, which (using (0.2) or Dedekind reciprocity) is related to the 
classical Dedekind sums by the formula S(a/c)  = 12 sign(c)s(a, c). This definition is 
discussed in Sect. 2, where we show how the basic properties of  Dedekind sums are 
easily proved. 

Note that the expression 3a  - r first appeared in Hirzebmch's  study of  Hilbert 
modular surfaces [Hir3], and is there related to Dedekind sums through the work of  
Meyer. This expression also turned up in [FG] in connection with the study of  quantum 
invariants. In particular, for a 3-manifold M obtained by surgery on a framed link 
L (see [K1]), 3a  - r measures the difference between the 2-framing arising from L 
and the canonical 2-framing of  [At2]. (Here cr and "r are the signature and trace of  

a 1 - -  

matrix 
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the linking matrix of  L, and a 2-framing of M is a trivialization of  twice its tangent 
bundle - the choice of  a 2-framing is needed in Witten's formulation of  quantum 
invariants.) 

The Dedekind symbol S and the Rademacher ~ function are at the center of  a 
number of  topics arranged in the schematic diagram in Fig. 1. 

multiplication by 2 
H2(pSL(2, Z)) = Z/6Z , H2(SL(2, Z)) = Z/12Z 

[e] = 2 [~r] = 4 
area cocycle e (Sect. 1) signature cocycle cr (Sect. 6) 

= = + 

% / 

Rademacher ~o function (Sect. 1) 

Dedekind symbol S (Sect. 2) 

signature defects (Sect. 3) 

Fig. 1 

/z-invariants (Sects. 4-5) quantum invariants 

The 9~ function can be viewed as the key to understanding the second cohomology 
of  the special linear group SL(2, Z) (the group of  2 • 2 unimodular integer matrices) 
and its central quotient PSL(2, Z) = SL(2, Z)/(+I)  (the modular group), and thus to 
the understanding of  their central extensions (see [Bro2] as a general reference for 
the cohomology of  groups). 

To fix notation, recall that SL(2, Z) has a presentation (S, T : S  2 = (ST) 3, S 4 = I )  
with respect to the generators 

o) 1) (0.9) S =  1 and T =  0 1 ' 

(see e.g. [Mag, Sect. Ill . l).  Thus PSL(2, Z) = ( S , T : S  2 = (ST)  3 = I),  where 
elements of  PSL(2, Z) are specified by either representative in SL(2, Z) (determined 
up to sign). 

It follows that PSL(2, Z) is isomorphic to a free product C 2 �9 C 3 of  cyclic groups 
of  order 2 and 3, and so H*  PSL(2, Z) = H*C 2 @ H*C 3. In particular 

(0.10) HI(PSL(2, Z),Z) = 0 and H2(PSL(2, Z),Z) = Z/6Z 

since the integral cohomology of  C n vanishes in odd dimensions and is isomorphic 
to Z / n Z  in positive even dimensions. Thus 

(0.11) HI(SL(2,  Z), Z) = 0 and H2(SL(2, Z), Z) = Z/12Z 

by the universal coefficient theorem, or by a spectral sequence argument. 
Now there are two important 2-cocycles that arise in many contexts, the area 

cocycle e on PSL(2, Z) and the signature cocycle cr on SL(2, Z), mentioned above. (We 
thank R. Bott for bringing the former to our attention.) Both have simple geometric 
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ABx 

T 2 > EA, B 

1 

Fig. 2 8(A,B) = area(AA~a) / r~ o(A,B) = signature(EAd ~ ) 

definitions: For unimodular matrices A and B (representing elements of PSL(2, Z) 
or SL(2, Z)), let AA, B denote the oriented ideal triangle in the hyperbolic plane with 
vertices at x, Ax,  A B x  (for some arbitrarily chosen point x on the circle at c~), and 
let EA, B denote the total space of the toms bundle over the twice punctured disk with 
monodromies A and B. Then e(A, B) is defined to be I/Tr times the area of ZAA, e 
(= --1,0 or 1 according to the orientation of AA,B), and cr(A,B) is defined to be 
the signature of the 4-manifold EA, B. (See Fig. 2.) Elementary geometric arguments 
(using Novikov additivity for the latter) show that both are cocycles. 

It is easily shown that the cohomology classes represented by the area and signature 
cocycles are nontrivial. However, since the rational cohomology of PSL(2, Z) and 
SL(2, Z) vanish in dimensions 1 and 2, these cocycles must be coboundaries of unique 
rational l-cochains. Indeed, it is shown in Theorems t.7 and 6.1 that 

where, in the second formula, ~o is viewed as a cochain on SL(2, Z) by composing 
with the natural projection SL(2, Z) -~ PSL(2, Z), and v: SL(2, Z) ~ Z is defined by 

sign(b) if A is a power of T 
u(A) = sign(c(a + d - 2)) otherwise 

for A as in (0.1). 
It follows that cr = e + 5v (where e is viewed, as above, as a cocycle on SL(2, Z)). 

Now e(A, B) has a simple expression in terms of the entries of A and B: 

e(A, B )  = - sign(CACBCA9 ) 

where c x denotes the lower left entry of X. Combining this with (0.t2) we obtain a 
simple formula for the signature cocycle: 

a(A, B)  = u(A) + v(B)  ~ v ( A B )  - sign(cACBeAB ) . 

The first formula in (0.12) is proved by an elementary geometric argument, and 
was in part the motivation for our new definition of qa. It can also be deduced by 
analytic methods using properties of the r/function [RadG] or by purely arithmetic 
methods [Radii, although the latter appear quite lengthy. 

The second formula in (0.12) (which is a simplification of the formula in [Mey]) is 
proved by elementary topological arguments. The key ingredient is the computation 
in Sect. 5 of the #-invariant (mod 8) of the toms bundle Z A over the circle (with 
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monodromy A) for any Lie spin structure (see Sect. 6). The term u(A) is the signature 
of a natural bordism YA between T A and the lens space L A formed by gluing two 
copies of the solid torus together using A (see Lemma 5.2). 

Note that the formula a = 6 (�89 qo + u) together with the continued fraction formula 
(0.7) for ~ yields a formula for the signature cocycle in terms of the signature of 
matrices related to the monodromies. A similar formula was found previously by 
Sczech (see Remark 6.5). 

Topological aspects of the Dedekind sum are discussed in Sects. 3-4, which are 
independent of the last two sections of the paper. The classical connection between 
Dedekind sums and signature defects of lens spaces is established in Sect. 3. Along 
the way a new formula (3.9) is found for the ac-signature of the (a, c)-torus knot. 

The relationship between the #-invariants(s) of a lens space L(c, a) and its 
Dedekind sum S(a/c) is studied in Sect. 4, and (as mentioned above) integer lifts of 
the #-invariants are found which illuminate this relationship and provide connections 
with other 3-manifold invariants. These integer #-invariants arise as follows: 

Choose any edge path c~ = ( a l ,  . . . ,  an) with a /c=  (al, . . . ,  an) (as above). We 
say that a vertex p/q is of type 0 if p/q :- 0/1 (rood 2) and of type 1 if p/q =_ 1/1 
(mod 2). Then for k = 0 and 1, the integers 

#k(a/c) = cr - ~ a i for vertices of type k 

are invariants of L(c, a) provided either c is even or a - k is odd (cf. formula (0.7) 
for ~). Moreover, they reduce (mod 16) to the #-invariant(s) of L(c, a). 

1 The area cocycle and the Rademacher phi function 

The modular group PSL(2, Z) acts by fractional linear transformations on the upper 
half plane H. This action can be encoded in the well known diagram of Fig. 3a (or 
its image in the Poincar6 disc under the transformation carrying 0, 1, ~ to - i ,  1, i, 
shown in Fig. 3b). It consists of the triangulation K of H by ideal triangles obtained 
by successive reflections from the triangle with vertices at 0, 1 and cx~. The vertices 
of K occur at the points of Qp1 = Q u o~, and p/q and r/s  are joined by an edge 
if and only if the determinant ps - qr is • 1. Thus the oriented edges of K can be 
identified with the elements of PSL(2, Z); for example, the edge from oe = 1/0 

t o 0 = 0 / 1  corresponds to I,  andits reverse corresponds to S = (01 O 1 ) .  The 

action of PSL(2, Z) on H induces a simplicial action on K,  which corresponds to 
left multiplication on the edges of K. 

(1.1)Remark. Thedirectionof anedgeZ = ( : ~ )  in K is determined by the sign 

(+1 or 0) of A- loo  = - d / c  where by convention sign(0) = sign(cx~) = 0. Indeed, 
if sign(Aloo) = + l ,  then A - I ~  lies to the left of I,  and so cx~ lies to the left of A, 
i.e. A points to the right. Similarly sign(A -~ cxz) = - 1  implies that A points to the 
left, and sign(A-lcxD) = 0 implies that A is vertical. 

The area cocycle 

Define the area 2-eocycle 

: PSL(2, Z) • PSL(2, Z) ~ Z,  



Dedekind sums,/z-invariants and the signature cocycle 237 

-i -2 -i -i-i 
2 5 3 4 5 

0 !! _i 2 ! 3_ 2- 3_~ i 5 4_ ! 3 
l 54 3 5 2 5 3 4 5  i 4 3 5 2 

Fig. 3a 

31-1 

2/-1 

3 / - ~ / /  

i/0 

4 / - 1  1 ~ - - - < \ \  A / / - h a - ~  4 1 1  

3/1 

~'k 5/2 

2/1 

/2  

i/-i 

-i/I 
I/i 

-4/5~ 
-3/4 

-2/3 

-3/ 

-112 

-2/5 

-1/3 

v" 2 / s  

1/3 

112 

/5 

Fig. 3b 0 / 1 
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1 
- area(AA,B), where AA, B is the oriented ideal triangle in the upper by e(A, B)  = 7r 

half plane H with vertices at c~, Ace and A B e .  (Thus e(A, B)  is 0 or 5:1 depending 
on the orientation of AA,B.) Equivalently e(A, B)  is the sign of ABcx~ - Ac~. A 
straightforward computation gives ABcx~ - Ac~ = --CB/(CACAB),  where c x is the 
lower left entry of X,  and so 

(1.2) e(A, B) = - sign(CACBCAB ) . 

This is well defined for A and B in PSL(2, Z) since changing the sign of either 
changes the sign of AB.  To see that ~ is a cocycle, note that its coboundary 
6e(A, B,  C) = e(B, C) - e (AB,  C) + e(A, BC)  - e(A, B)  is the area of the boundary 
of a collapsed tetrahedron in H (with vertices at oe, Aoe, ABoc  and ABCe~)  which 
is clearly zero. 

(1.3) Lemma.  There exists a unique rational 1-cochain PSL(2, Z) --+ Q whose 
coboundary is the area cocycle ~. 

Proof. Existence is immediate from the fact that H2(PSL(2, Z) ,Q)  = 0, and 
uniqueness follows from HI(PSL(2, Z) ,Q)  = 0 (see (0.10)) since the coboundary 
map on rational 0-cochains is zero. [] 

(1.4) Remark. There is a formula for this cochain in terms of the Rademacher r 
function (see Sect. 0) and thus in terms of Dedekind sums. Indeed, Rademacher has 
proved that 6r = - 3 e  [Radl, Sect. 4] [RadG, Eq. (62)], and so - r  is the desired 
rational cochain. 

It follows that E represents an element of order 3 in HZ(PSL(2, Z), Z) = Z/6Z.  
Note that the other element of order 3 is represented by - e ;  since HZ(PSL(2, Z), Z) 
classifies central extensions of PSL(2, Z) by Z, the two corresponding extensions 
0 ~ Z ~ PSL(2, Z)+~ --4 PSL(2, Z) --* 1 are not isomorphic, although the 
corresponding groups PSL(2, Z)+~ are [Mell, Sect. 4]. 

The cochain qo 

Here we give an elementary geometric construction of a cochain ~ : PSL(2, Z) --~ Z 
with 6qo = 3c, which has its algebraic origins in the work of Rademacher (see [RadG, 
Sect. 4.C]). By the previous remark and the uniqueness statement in Lemma 1.3, ~ is 
the negative of the Rademacher r function, and will also be called the Rademacher  

function.  

(1.5) Definition. For any element A = ( ;  ~ )  in the modular group PSL(2, Z), let 

7A denote the oriented geodesic in H from i to Ai (a Euclidean straight line segment 
in the Poincar6 disc). Thus 7A joins the edge I to the edge A in K.  The intersection 
of "/a with the interior of any ideal triangle A in K is either empty or a geodesic 
segment joining two sides of A. Set ~za(A) = 0 in the former case, and ~A(A) = +1 
or --1 in the latter case according to whether the remaining side of A lies to the left 
or right of 7A. Now define 

~(A) = ( Z ~o~(A)) - O(A) 

where the sum is over all triangles A in K (there are only finitely many nonzero 
terms), and O(A) is an "orientation" term, defined as follows: O(A) = 3 sign(ac) if 
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Fig. 4 0 /1  

A (viewed as an oriented edge in K)  points toward 0 (i.e. if la/c[ > tb/dI) and 

( 1  ~ )  w h e r e 1 3 ( Z ) = 0  O(A) = 0 otherwise. (See Fig. 4 for the example A = 2 
and so ~(A) = 3 -  1 + 0  = 2.) 

(1.6) Remark. The definition of q0 is related to the factorization of elements of 
PSL(2, Z) in terms of the generators 

L = ( l l  0 1 ) a n d  U = T = ( I  0 1 )  
1 " 

Indeed any element A of PSL(2, Z) can be written uniquely in the form S e W S  ~ 
(where r and 6 are 0 or 1, and W is a word in L and U), and ~ ~A(A) is just 
the difference between the total exponents of L and U in W (cf. [RadG, Eq. (70)]). 
This factorization can be seen geometrically in terms of the geodesic 7A: The initial 
direction of "/~A is determined by the factor S ~, the passage of 7A through a triangle 
A with one edge to the left (respectively right) of 7A contributes a factor of L 
(respectively U), and the orientation on the edge corresponding to A is taken care of 
by the final factor S ~. For the example shown in Fig. 4 above, A = LULZS. 

(1.7) Theorem. 6~ = 3E, that is (by (1.2)) 

~(AB)  = ~(A) + ~(B) + 3 sign(CACBCAB ) 

for all A and 13 in PSL(2, Z). 
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(a) (b) (c) 

(d) (e) (f) 

Fig. Sa-i 
(g) {h) (i) 

Proof. Fix A and/3 in PSL(2, Z) and consider the oriented geodesic triangles E (with 
vertices i, Ai, ABi) and F (with vertices w ,  Am,  and A B e ) .  Write sign(E) for the 
sign (• or 0) of the oriented area of E,  and similarly for F. Thus e(A,/3) = sign(F), 
and we must show 

E 69~zx(A' B) - 60(A, B) = 3 sign(F).  

There are two cases to consider. 

Case 1. Some triangle ,50 in K intersects the interiors of all three sides of E. Then 
6~aa0(A, B) = 3 sign(E). Furthermore, any other triangle A in K is either disjoint 
from int(E) or intersects exactly two sides of E,  and so 6~a(A, B) = 0. Thus it 
suffices to show 60(A, B) = 3(sign(E) - sign(F)). The cases to be checked are 
indicated in Fig. 5(a-d), which gives all possible patterns (ignoring orientations) for 
E (shaded) and the edges I, A, AB. This is now a straightforward verification from 
the definition of 0 and will be left to the reader. (It is useful to note that reversing 
the orientation on one edge frequently does not change 60. This is always the case, 
for example, in Fig. 5(a).) 

Case 2. Every triangle ZI in K is either disjoint from int(E) or intersects exactly two 
sides of E. Then ~ 6~zx(A , t3) = 0 by the argument in case 1, and it suffices to 
show 6zg(A, B) = - 3  sign(F). Once again, this is a straightforward verification; the 
cases for E nondegenerate are shown in Fig. 5(e-i). [] 

Continued fractions and signatures 

For many purposes, it is useful to have a formula for ~ in terms of continued fractions. 
Such formulas have been developed in special contexts by [Radl, Sect. 4.59] and 
[Hic], and can be deduced in general from work of Sczech [MeyS, Theorem 3.2] (see 



Dedekind sums,/~-invariants and the signature cocycle 241 

Remark 6.5). It is our purpose here to give a completely general treatment from our 
geomelyic perspective. It turns out that the general formula involves signatures, and 
therefore illuminates the appearance of Dedekind sums in many signature formulas 
in topology (see Sects. 3-6).  

(1.8) Definition. A based  pa th  in K is an oriented edge path a with initial edge I 
(from cx) to 0). 

Note that ct is uniquely specified by the list (al ,  . . . ,  an) of integers defined 
geometrically as follows: the first edge of  a turns through a 1 triangles to reach the 
second (with a I > 0 if and only if the turn is counterclockwise), the second turns 
through a 2 triangles to reach the third, and so on. Thus we often write 

O~:  (al ,  . . . ,  an). 

(See Fig. 6 for an example.) The final edge of  a ,  oriented backwards, determines an 
element A a of  the modular group PSL(2, Z). In particular 

Ao:(a  ;) 
if  the final edge goes from b/d to a/c. 

Algebraically, a based path corresponds to a continued fraction expansion of  its 
final vertex. This is established in the next result, along with various other useful 
identities. (Recall (0.5) the notation (al,  . . . ,  an) = - 1 / ( a  1 - 1/(a 2 - . . . -  1~an). . . )  
for continued fractions used here.) 

(1.9) L e m m a .  Let c~ = (al, . . . ,  an) be a based path whose final edge goes from b/d 
to a/e. Then 

(a) ale  = (al, . . . ,  an) and b / d :  ( a l ,  . . .  , an_l), 
(b) d/c  = (an, . . . ,  al) and b/a = (an, . . . ,  a2), 
(c) A a = S ( T  al S ) . . .  (Ta~S) (in PSL(2, Z)) 

where S and T are the standard generators of the modular group. 

Proof. First observe that there is a simple formula for a l , . . . ,  a n in terms of 
the vertices Po/qo = 1/0  = ec, Pl/ql = 0/1  = 0, P 2 / q z , ' " , P n / q n  = b/d, 
Pn+l/q~+l = a/c of  a .  In particular 

a i = d e t ( P i - I  Pi+l 
kq~- I  q i + l /  

_.0 
1 

1 3 2 x 
~. g 3  1 

Fig. 6 
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provided the Pi and qi are chosen so that each determinant 

d e t ( P i  P i+ l )  = + 1  
qi qi+l 

(cf. [Mel2, Sect. 2]). 
Conversely, the vertices may be recovered from al, . . . ,  a n by solving for Pi+l 

and qi+l in the previous two equations. This gives a recursive formula 

Pi+l = aiPi - -Pi-1  

qi+~ = a~q~ -- q~_~ , 

which yields the continued fraction expression 

Pi+l/qi+l = { a l , ' " ,  ai) 

by a standard inductive argument (see e.g. [HW, Sect. 10.2]). This proves (a). The 
factorization (c) also follows by induction using the recursive formula. 

For (b), consider the based paths -o~ = ( - a l ,  . . . ,  - a n )  and 5~ = (an, . . . ,  ai). 
Then A_ a and A a are given by 

(1.10) A - s = ( 2 c  r i b )  ' A c ~ = (  de : ) "  

The formula for A s is immediate from the fact that - a  is the reflection of c~ in 
its initial edge (the choice of sign for A_~ is immaterial since we are in PSL(2, Z)). 
For A a, first observe that the path -5 '  in K can be obtained from c~ by reversing its 
orientation and then moving the edge A s (from a /c  to b/d) to the edge I (from 1/0 
to 0/1) by the isometry A~ 1 (cf. Remark 1.t). Thus A_ a = Aft 1, and the formula for 
Aa follows. (Alternatively, this formula can be derived using (c).) Now apply (a) to 
the path & [] 

(1.11) Remark. In view of the sign conventions in the proof above, the factorization 
in (c) actually determines A s as a matrix in SL(2, Z), with a = Pn+l, b = _pn, 

( - 1  3 )  cf. Fig. 6. c = qn+l and d = -qn- For example A(_1,2,2,1) = - 2  5 ' 

Now we show how to compute the values of the function p using based paths. 

(1.12) Theorem. Given A in PSL(2, Z), 

9)(A) = 3o-~ - r s 

for  any based path ~ = (%, . . . ,  an) in K with A = A s.  Here (r s and "r a denote the 

a i 

1 a 2 1 

M s =  1 "'. 

0 1 a~ 

whose i j  th entry is a i i f  i = j ,  1 if  li - j[ = 1 and 0 otherwise. 

signature and trace o f  the matrix 
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Fig. 7 La G,~ 

(1.13) Remarks .  (a) The condition A = A s in PSL(2, Z) means that A = -+-An as 
matrices (or equivalently a / c  = (al ,  . . . ,  an)  and b / d =  (al ,  . . . ,  a n _ l )  by (1.9a)). 
The path c~ may be modified if necessary to arrange A = A s in SL(2, Z) (since 
A s o  o = A s T ~ 1 7 6  = A s S  2 = - A s ) ;  this will be needed in Sects. 5-6. 

(b) The matrix M s is the linking matrix of  the framed link L~ shown (along with 
the corresponding weighted graph G~) in Fig. 7. There is an associated 4-manifold 
tu formed by adding 2-handles to B 4 along L~ (or equivalently by plumbing disc 
bundles over  S 2 according to G s )  [ K 1 ] . . M  s represents the intersection form on 
H2(t4~;  Z), and so crs can be thought of  as the signature of  ~ .  

(c) Both ~r~ and "r s have simple geometric interpretations in terms of  the based 
path ~. This is obvious for ~-s = ~ ai,  since the a~ are defined geometrically in 
terms of the turns in o~. For a s ,  observe that M s can be diagonalized formally (from 
the top down) to get a matrix D s with diagonal entries 

1 - 1  

a i = ai - 1 (ai,  . . . ,  al  ) 
a i - ]  . 1 

a 1 

for i = t ,  . . . ,  n. I f  a i ~ c~ for all i, then this gives the formula 
n 

a a  = Z sign(a/)  
i = 1  

which in fact holds in general by an easy induction. But 

sign(m/) = s i g n ( ( - a i ,  . . . ,  - a l )  ) = s i g n ( A ~  1 ..... a0C<~). 

It follows from Remark 1.1 that crs is just the difference between the number  of  edges 
of  a which point left and the number which point right (ignoring the vertical edges, 

( 1 : 3 5 )  = 6 _  4 = 2, cf. Fig. 6" which have c~ as a vertex). For example ~ 2 

(d) The formula 3o" s - T a Can be taken as the definition of  qo(A) once it is shown 
independent of  the choice of  c~. But this is easy: First observe that one may  pass from 
any path ~ with A = A s to any other by a sequence of  moves  of the following two 
kinds (cf. [Mel2, Sect. 2]): 

Move  1. Shift across a triangle 

a b a •  5=1 b=t=l 

Move 2. Retrace an edge 

a + b  a 0 b 
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(From the 4-manifold viewpoint, these correspond to forming the connected sum with 
: i :CP 2 in move 1 and with an S2-bundle over S 2 in move 2.) But e~ and 7-~ change 
by •  and q-3 under move 1 and remain unchanged under move 2, so 3e  m - 7-~ is 
unchanged by either move. Theorem 1.7 can now be proved directly, starting with the 
signature computation in Remark 1.13(c). Its simple geometric content, however, is 
disguised by this approach. 

Proof of Theorem 1.12. The proof is by induction on n, starting with qo(S) --- 0 when 
n = 0. For n > 0, set/3 = (al, . . . ,  an_l) .  Then A = A~(T~nS), by the factorization 
in (c) of  Lemma 1.9. By induction, ~(A~) = 3a~ - 7-;~, and one easily computes 
~(T~ S) = - a .  Thus 

qo(A) = 3(~r~ + sign(dc)) - 7-~ 

by Theorem 1.7. But a;~ + sign(dc) = ~r m by the signature formula in Remark 1.13(c), 
since sign(dc) = sign(d/c) = sign(an), and the theorem is proved. [] 

Certain arithmetic properties of  the function ~ will be discussed in the next section, 
and so we introduce the necessary prerequisites here. These notions will also be used 
in the discussion of  #-invariants in Sects. 4-5.  

(1.14) Definition. For any prime p, the p-type of a vertex a/c of K (i.e. an element 
of Q to co) is 

f a~ (modp) if p is prime to c, where c~ -- 1 (modp) (a/c)p 
co if p divides c.  

This is an element of Z /pZ  U co. 

We are primarily interested in the cases p = 2 and p = 3, where the p-types are 
0, 1, co and 0, 1 , - 1 ,  co respectively. 

The p-type of an oriented edge of  K (i.e. an element of PSL(2, Z)) is the ordered 
pair of  p-types of its vertices. For example, the 2-type of  T-1  is (co, 1), while its 3-type 
is (co, - 1). Note that for p = 2 or 3, the p-type of  any element of  PSL(2, Z) uniquely 
determines it as an element of  PSL(2, Z/pZ).  (This fails for all larger p.) Thus in 
these cases, a diagram Kp for PSL(2, Z/pZ)  can be obtained by identifying triangles 
of  K whenever the p-types of their corresponding edges coincide. In particular, K 2 is 
a triangle (with vertices 0, 1, co) and K 3 is a tetrahedron (with vertices 0, 1, - 1, co). 

For p = 2, it is often useful to consider the full subcomplex of  K containing all 
vertices of  type 0 and 1. This is easily seen to be a tree, called the 01-tree in K (or 
equivalently the 10-tree). Similarly define the 0co-tree and the l co- t ree  in K.  

(1.15) Lemma.  l f  p = 3 and A is any element in the modular group, then ~( A ) (modp) 
depends only on the p-type of A. The same is true for p = 2provided c a ~ 0 (i.e. A 
is not a power of T). 

Proof. Choose a based path c~ in K with A m = A. By Theorem 1.12, qo(A) = 
3a  m + v m. Thus ~(A) - 7-m (mod 3). But it is easily seen that 7- induces a mod 3 
cocycle on K 3, and so 7-m (mod 3) depends only on the 3-type of  Am. 

For p = 2, the signature term 3a~ cannot a priori be ignored. However, if B is 
any other element of  PSL(2, Z) (i.e. oriented edge in K)  of the same 2-type (s, t) as 
A, then c~ can be extended by a path "7 lying entirely in the st-tree to a based path 
/3 = a"7 with A~ = B. Since the turn between any two adjacent edges in this tree 
is even, 7-~ and 7-~ have the same parity. Furthermore, as long as neither endpoint 
of  "7 is co (i.e. neither A n o r / 3  is a power of  T), the path I, must have an even 
number of  non-vertical edges and so 3a  m and 3a~ have equal parities as well (by 
Remark 1.13(c)). Thus ~(A) -=- ~ ( B ) ( m o d  2). [] 
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2 Dedek ind  s u m s  

In this section, Dedekind sums are characterized axiomatically in terms of  Dedekind 
reciprocity (cf. [Hir2]). Their existence and elementary arithmetic properties are es- 
tablished using the function ~ defined in Sect. 1 and another function ~-: PSL(2, Z) --~ 
Q to cx~ defined as follows: 

(2"1) Definiti~ F~ any element A = ( a  bd) in the m~ gr~ 

T(A) = (a + d)/c. Also for any nonzero rational number x = ale (with a and c 
coprime) set {x} = 1/ac. 

(2.2) Theorem.  There exists a unique function S :Q tO c~ --+ Q to c~ (the Dedekind 
symbol) carrying cx~ to itself and satisfying the three axioms 

(D1) S ( - x ) = - S ( x )  
(D2) S(x + 1) = S(x) 
(D3) (Dedekind reciprocity) S(x) + S(1 /x )  = x + 1/x  + {x} - 3 s ign(x)for  all 

rational numbers x (with x 4( 0 in (D3). In particular, S is given by 

S(x) = ~(A) + ~-(A) 

for any A in PSL(2, Z) with Aoo = x. (See Remark 2.3(b) below for the continued 
fraction formula for S.) 

Proof. Uniqueness follows easily from existence. Indeed, (D1-2) force S to vanish 
on any integer. The value on any other rational number can now be computed by 
repeatedly applying (D2-3) to reduce the denominator. 

To prove existence, we first show that the proposed S is well defined, independent 
of  the choice of  A. If  B is any other element of  PSL(2, Z) with B ~  = x, then A 
and B (viewed as edges in K)  share the same initial vertex x. Thus A can be rotated 
about this vertex through some number of  triangles, say k, to reach B. (As usual, the 
sign of k determines the direction of  the rotation, with a positive sign corresponding 
to a counterclockwise turn.) In algebraic terms, B = A T  k. It is now evident that 
~(B)  = g~(A) - k (either from the geometric Definition 1.5 or from Theorem 1.7 
since ~(T) = - 1 ) ,  whereas -r(B) = T(A)+ k. (Also see Remark 2.3(b) below.) Thus 
~(B) + r (B)  = ~(A) + T(A). 

Finally, we verify axioms (D1-3). Observe that K is (setwise) invariant under 
the three hyperbolic isometries Tl, T 2 and T 3 defined as follows: T 1 and T 3 are the 
reflections through the imaginary axis and the unit circle, respectively, and T 2 is 
the translation carrying z to z + 1 (corresponding to the action of  the element T of  
PSL(2, Z)). If  A i denotes the image of  the edge A under T i, then A 1 o0 = - x ,  A2c~ = 
x + 1 and A3cx~ = 1Ix. It is geometrically evident that ~o(A) = -~o(A l) = ~o(A 2) - 1, 
and a straightforward computation gives ~-(A) = --T(A1) ---- T(A2) + 1. Axioms 
(D1-2) follow. Also ~p(A) = -r - 3 sign(x) and T(A3) = (c -- b)/a. Reciprocity 
follows since T(A) + ~-(A3) = (a + d)/c + (c - b)/a = a/c  + c/a + (ad - bc)/ac = 
a / c +  c / a +  1/ac = x + l l x +  {x} D. 

(2.3) Remarks. (a) The classical Dedekind sums s(a, c) provide another construction 
for S by setting S(a/c) = 12s(a, c) for positive a and c, and extending to negative 
rationals using (D1). Thus S(a/c) = 12 sign(c)s(a, c) for general a and c :~ 0, since 
s ( -a ,  c) = - s (a ,  c) = - s ( a , - c )  [RadG, Eq. (33a-b)]. Axioms (D2-3) are well 
known properties of  Dedekind sums. 
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(b) S(x)  can be computed using continued fractions as follows: Choose a based 
path c~ = (al ,  . . . ,  an) in K with final vertex x (i.e. x = (a 1, . . . ,  an)). Note that 
A~eo = x. Now 

S(x)  = 3a~ - Z a~ + (a,, . . . ,  an) + ( a n , . . . ,  a,) 

where a,~ is the signature of  the matrix M s of  Theorem 1.12. (The first two terms 
give ~p(A~) and the last two give ~-(A~) by Lemma 1.9(a-b).) This formula may of 
course be taken as the definition of S. To show that it does not depend on the choice 
of c~, observe that any two based paths with final vertex x can be connected by Moves 
1-2 of Remark 1.13(d) (which do not change ~p or ~-) together with 

Move 3. Shift last edge across a triangle 

.~ ~. 4--4, ~. .~ .~ 

an_ 1 a n an_ 1 a n :t= 1 +1 

which changes cp by + l  and ~- by q=l. The axioms (D1-3) are easily verifed.  
We now derive some well known elementary arithmetic properties of  Dedekind 

sums [RadG, Sect. 3A]. 

(2.4) Theorem.  (a) I f  aft ~ 1 (modc),  then S (a /c )  = S(~/e) .  
(b) S(a/c)  is an integer if  and only if e divides a 2 + 1, in which case it is zero. 
(c) eS(a / e) is always an even integer, and in fact a multiple of  6 for e ~ 0 (rood 3). 

Pr~176  Ch~176 A in PSL(2 'Z)  s~ that Zeo  = a/c '  say A = ( ac b d ) ' B y d e f i n i t i ~  

S(a, c) = ~(A) + T(A). 
For (a), arrange further that d = 5. It follows that A - l e o  = - 5 / c ,  and 

SO S(5 /c )  = -(~o(A -1) + 7-(A-t)) by (D1). Evidently T(A -1)  = -~-(A), and 
~p(A -1)  = - v ( A )  (by Theorem 1.7 for example). Thus S(~/c)  = S(a/c) .  

For (b), observe that S(a /c )  is an integer if and only if c divides a + d (since ~(A) 
is integral) which holds if and only if c divides a 2 + 1 (since a 2 + 1 = a 2 + ad - bc = 
a(a + d) - bc and a and c are relatively prime). This proves the first statement. For 
the second, note that if c divides a + d, then a/c  and - d / c  differ by an integer. Thus 
S(a/c)  = S ( - d / c )  = - S ( d / c )  = - S ( a / c )  by axioms (DI -2 )  and part (a), and so 
S ( a / c )  = o. 

For (c), the congruence c~(A) +~(a + d) - 0 ( m o d p )  must be proved for p = 2, 
and for p -- 3 provided c is prime to 3. By Lemma 1.15, it suffices to first reduce A 
modulo p. The proof is then a simple verification for the 6 elements of PSL(2, Z / 2 Z )  
and the 12 elements of  PSL(2, Z /3Z) ,  which we leave to the reader. [] 

We conclude with a remark about the connection between Dedekind sums and 3- 
dimensional topology, which will be expanded upon in subsequent sections. 

(2.5) Remark. Recall that the lens space L(c, a) (for c > 0) is the quotient of  the unit 
sphere S 3 in C 2 by the action z(u, v) = (zau, zv) of the cyclic group of c th roots 
of  1. We shall give it the natural orientation induced from S 3 as the boundary of 
the unit ball, with the "outward first" convention for orienting boundaries. Equivalent 
descriptions are (1) the Seifert manifold M(0;  (a, c)) (see for example [NR]), (2) - c / a  
Dehn surgery on the unknot in S 3, and (3) surgery on the framed link L~ shown 
in Fig. 7, where c~ = (a~, . . . ,  a n) corresponds to a continued fraction expansion 
a /c  = (al ,  . . . ,  an}, as first discussed in Hirzebruch's  1950 thesis [Hirl]. 
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It is well known that L(c, a) and L(c ' ,  a ' )  are of  the same oriented homeomorphism 
type if and only if c = c p and either a - a p or aa ~ - 1 (modc).  It follows from 
axiom (D2) and Theorem 2.4(a) that S(a /c )  is an invariant of  L(c, a) (it 's Dedekind 
sum), which negates under orientation reversal (by axiom (D1)). It turns out to be a 
very discerning invariant of  oriented lens spaces, although incomplete; for example, 
L(25, 4) and L(25, 9) have equal Dedekind sums. 

3 Signature defects 

It is a well known consequence of the G-signature theorem that Dedekind sums are 
related to the signature defects of  lens spaces [Hir2]. In this section, we establish this 
relationship by elementary means, proving a reciprocity formula (3.3) for defects. 
Our exposition is very much in the spirit of  Hirzebruch's  lovely treatment, but with a 
milder dependence on the signature theorem. As a byproduct we find a simple formula 
- � 8 9  (a 2 - 1)(c 2 - 1) for the ac-signature of  the (a, c)-torus knot (3.9). 

First recall the definition of  the signature defect. Let M be a closed oriented 
3-manifold with a finite regular c-fold cover 7r :~I  --~ M .  It can be shown that 
7r extends to a cover ~T ___, W of  compact  4-manifolds (where 01~T = ~7/ and 
O W  = M )  branched along a closed connected surface Y in W (see for example [CG, 
Lemma 2.2]). Suppose that the branching degree is m (that is the normal circle to 
Y lifts to c / m  circles, each of which covers the normal circle rn times). Then the 
s ignature  defect  of  M with this specific cover 7r is 

rn 2 - 1 
(3.1) def(M, 70 = ccr(W) - (r(~')  - -  Y . Y .  

3 m  

That def(M, 70 is well defined follows from the G-signature theorem (Sect. 4 in 
[Hir2]). Observe that Y -  Y is divisible by rn, and so 3 def(M, 70 is an integer. 

Now set 

(3.2) 6(a/c)  = 3 def(L(c, a), 70 

where 7r:S 3 ~ L(c, a) is the universal cover. With our orientation conventions for 
lens spaces (2.5) this corresponds to - 3  def(c; a, 1) in Sect. 4 of  [Hir2]. 

(3.3) T h e o r e m  (Hirzebruch). 6(a/c) = cS(a /c )  (for c > 0). 

We shall prove the theorem by establishing a reciprocity formula (3.4) for signature 
defects of  lens spaces (cf. Sect. 6 in [Hir2]) - the theorem then follows from the 
uniqueness statement in Theorem 2.2. It can also be proved using Rademacher ' s  
cotangent formula for S by applying the G-signature theorem directly to the action of 
the cyclic group of order c on B 4 whose quotient is the cone on L(c, a) (see Sect. 5 
in [Hir2]). 

(3.4) T h e o r e m  (reciprocity for defects), a6(c/a)  + c6(a/c) = a 2 + c 2 + 1 - 3ac (for 
positive a and c). Thus is general, la[6(c/a) + Icl6(a/c) = sign(ac) (a 2 + c 2 + 1 - 3ac). 

Proof. First build a 4-manifold W 0 by adding a 2-handle to B 4 along the (a, c)-torus 
knot K with framing ac. Then - O W  0 = L(a,  c)#L(c, a). To see this, observe that 
K ties on the torus T of  a genus 1 Heegaard splitting H i U H 2 of S 3 = OB 4, and 
the ac-framing corresponds to the pushoff  of  K in T.  The effect on the boundary 
of adding the 2-handle is to surger S 3 along K .  This turns T into a 2-sphere S 
which decomposes O W  o. Indeed, the solid toms B 2 x S l which is glued in by the 
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surgery splits into two pieces, H~ = B 2 x S~_ and H~ = B 2 x $1_, which may 
be viewed as 2-handles attached to H 1 and H 2, respectively, along the (a, c) and 
(c, a) torus knots. Thus - O W  0 is the union of - H  1 U - H ~  = L(c, a )  - /33 and 
- H  2 U - H ~  -- L(a,  c) - 13 3 along S. (This argument is given in greater generality 
in [MelK, Lemma 1] and originated in [Rou].) 

Next form W by adding a 3-handle to W 0 along the decomposing 2-sphere in 
O W  o, so that - O W  is the disjoint union of L(a ,  c) and L(c,  a). Thus the signature 
defect of  O W  with its ac-fold cyclic cover 7r~ satisfies 

(3.5) - 3  def(0W, 7rac) = a~(c /a )  + c 6 ( a / c ) .  

Now 7ra~ extends to a branched cover 17d --, W,  branched along the surface Y in 
W which is the union of the Seifert surface F f o r / (  (pushed into the interior of /34)  
and the core of  the 2-handle. Thus (3.1) yields 

aZc 2 - 1 
(3.6) def(0W, 7ra~ ) -- a c a ( W )  - a(17V) 3a-----~ Y "  Y 

1 
-~ ac - o-(I7r - ~ (a2c 2 - 1) 

since a ( W )  = 1 and Y . Y = ac. 
It remains to compute cr(17V). Observe that W consists of  the ac-fold branched 

cover V o f / 3 4  along F ,  a 2-handle which is the ac-fold cover of the original 2- 
handle branched along its core, and some 3-handles which can be ignored in the 
calculation of  a(l/vV). The 2-handle contributes exactly 1 to a(lYlz). Indeed, O V  is the 
ac-fold branched cover of  S 3 along K ,  so it contains a copy of K and its Seifert 
surface F.  When the 2-handle is added to V along K (with framing 1), its core union 
F defines a class in H2(IfV; Z) with self intersection 1 which clearly does not intersect 
any class in H2(V; Z). Hence a(~d/') = ~(V) + l, and so substituting into (3.6) and 
combining with (3.5) gives 

(3.7) a6(c /a )  + c6(a /c )  = a2c 2 § 2 + 3or(V) - 3ac .  

Brieskorn has given a formula for a (V)  in terms of integer lattice points inside the 
rectangular solid S = [0, a] x [0, c] x [0, ac] in R 3 [Bri] (see also [L]). In particular, 
let T and T ~ denote the tetrahedra with vertices (0, 0, 0), (a, 0, 0), (0, c, 0), (0, 0, ac) 
and (a, c, ac), (0, c, ac), (a, 0, ac), (a, c, 0), respectively, and M = S - (T  U T~). Write 
t, t t and m for the number of  interior lattice points in T, T '  and M.  Then 

a ( V )  = t + t ~ - m = 2 t -  m 

where the last equality holds since T and T ~ are equivalent  (by an automorphism of 
R 3 preserving lattice points). 

Now it is easy to compute 

2t + m = (a - 1 ) ( c -  1 ) ( a c -  2) ,  

as this is the difference of the total number (a - 1) ( c -  1) (ac - l) of  lattice points in S 
and the number (a - l) (c - 1) on the two interior faces. It is also clear that m is twice 
the number of  interior lattice points in the pyramid P with base [0, a] x [0, c] x ac 
and vertex at the origin - indeed S is the union of two pyramids equivalent to P 
and two tetrahedra equivalent to T. An elementary argument counting lattice points 
in layers parallel to the base of  P [Radl,  Sect. 2.4] gives 

l ( a _ l ) ( c _ l ) ( 4 a c + a + c _ 5 )  m = g  
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and so 

1 2 (3.8) ~r(V) = - ~  (a - 1)(c 2 - 1) 

by a straightforward calculation. The theorem follows by substitution in (3.7). [] 

(3.9) Remark. or(V) can be identified with the total ac-signature aac(K) of the (a, c)- 
torus knot K [V, L] (that is the sum of the signatures of  (1 - ( )A + (1 - ( )A  t for all 
( with (ac __ 1, where A is a Seifert matrix for K) .  Thus (3.8) yields the formula 

1 ( a  2 1) (c 2 1) 
~  : - - 3  --  - -  

which has apparently not been noticed before. 
An alternative proof of (3.8) is based on Mordell 's  beautiful formula for the number 

N(p ,  q, r)  of lattice points in the closed tetrahedron with vertices (0, 0, 0), (p, 0, 0), 
(0, q, 0), (0, 0, r), for p, q, r pairwise coprime: 

12N(p, q, r)  = 2pqr + 3(pq + qr + rp + p + q + r) 

+ p q / r  + qr /p  + rp /q  + 1/pqr + 24 

- S(pq, r) - S(qr, p) - S(rp,  q) 

[Mor] (see also [RadG, Theorem 5], and [Hir2] for a proof  using the G-signature 
theorem). Applying this formula with p = a, q = c and r = ac  q- 1, and adjusting for 
the lattice points on the boundary, gives 12t = (a - 1) (c - 1) (2ac - a - c - 7) and 
(3.8) follows. Of  course, if one is willing to use the G-signature theorem to prove 
Theorem 3.3 then (3.8) follows readily from (3.7). 

4 /~-invariants of lens spaces 

Dedekind sums are intimately related to #-invariants of  lens spaces. In particular, it is 
well known that the Dedekind sum of an odd lens space (see (2.5) for the definition) 
determines its #-invariant (4.12). For an even lens space, there are two #-invariants 
and they are in general not determined by the Dedekind sum (4.14a). We show here 
(4.5) how to define integer lifts of  the #-invariants of  lens spaces which can be 
thought of as part of  the associated Dedekind sums, although neither is determined 
by the other (4.14b). Various reciprocity laws for these lifts are given in (4.8) and are 
applied to establish the connections between #-invariants, Dedekind sums and other 
invariants of  lens spaces (e.g. Brown invariants (4.16)). 

First recall that the #-invariant p (M,  0) of  a spin 3-manifold (M, 0) is defined to be 
the signature (mod 16) of  any compact spin 4-manifold W bounded by (M, 0). (This 
is well defined by Rohlin 's  theorem.) If  W is not spin but merely oriented, then there 
is still a formula in terms of the signature cr(W) and also the self intersection and Arf  
invariant of  a characteristic surface for 0 in W (see Sect. IV.3 in [K2] for a general 
discussion of this formula, which goes back to [Rob]). In particular, if W = W r is 
obtained by attaching 2-handles to B 4 along a framed link L, then 

(4.1) p ( M ,  O) =- (T(WL) -- C . C + 8 Ar f (C) (mod  16) 

where C is the sublink of L consisting of  all components K of L for which 0 does 
not extend across the handle attached to K (see Appendix C in [KM1]). Note that 
C is characteristic (that is, C �9 K - K �9 K (rood 2) for each component K of L). 
In general, there is a natural one-to-one correspondence between the spin structures 
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on M = OW L and the characteristic sublinks of L, equal in number to the order of  
Ha(M;  Z /2Z)  (see for example Sect. C.I in [KM1]). 

Now consider the lens space M = L(c, a). It is called an odd or even lens space 
according to whether c is odd even. Note that M has a unique spin structure in the 
former case (since Hi(M;  Z / 2 Z )  = 0) and exactly two spin structures in the latter 
(since HI(M;  Z/2Z)  = Z/2Z) .  To study the associated p-invariant(s), it is convenient 
to partition the extended rationals as follows: 

(4.2) Definit ion.  Decompose Q u oo as the disjoint union Q0 u Q1 u Qoo, where Qk 
denotes the set of all extended rationals of 2-type k. (Recall (1.14) that a / c is of 2-type 
0, 1 or oo according to whether a/c  - 0/1 ,  1/1 or 1/0(mod2) . )  

To each element a/c  of Q u oo, associate the lens space L(c, a). (Thus Qoo 
corresponds to the even lens spaces and Q0 u Ql to the odd ones.) Define an 
equivalence relation ~ on Q u o o  by ale ~ al/c ' if and only if L(c, a) = L(c' ,  a').  By 
the classification of  lens spaces (see Remark 2.5) ~ is generated by a/c  ,,~ (a + c)/c 
and a/c  ,,~ d/c  for ad --= 1 (mod c). Of course each equivalence class of  ~ lies entirely 
in Qoo or entirely in Q0 u Q1. 

We now propose to define functions #0 and /tl which yield integer lifts of 
the //-invariants of  lens spaces. First consider a based path c~ = (al, . . . ,  an) in 
the triangulation K of  the hyperbolic plane (described in Sect. 1), with associated 
signature cr~ and trace ~-,~ = ~ a ( ( see  Theorem 1.12). Each vertex Pi/qi of c~ (for 
i = 0, . . . ,  n + 1) has a 2-type k i equal to 0, 1 or oo. (See Fig. 8(a) for the associated 
graph G~; note that k 0 = co and k L = 0 always since the first two vertices are 1/0 
and 0/1). Set 

Ta, k = E a~, //,~,k = ~a - "r~,k 
ki=k 

(where a 0 = a n +  1 ---- 0 by convention). Thus ~'~,k is just the sum of the "turns" at the 
(internal) vertices of  2-type k. 

(4.3) Example. Consider the based path ( - 5 ,  2, - 3 )  shown in Fig. 8(b) (and schemat- 
ically in Fig. 8(c)). The internal vertices are of  types 0, 1,0 (respectively) so T~, 0 = 
- 5  - 3 = - 8 ,  T,~,I = 2 and ~-~,~ = 0. Thus #~,0 = 7, #~,l - 3 and #~ ,~  = - 1  
(since a s = - 1 ,  by (1.13c) for example). 
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(4.4) L e m m a .  #~,k = #;~,k provided either (1) c~ and/3 share the same final edge, or 
(2) c~ and/3 share the same final vertex, and this vertex is not of type k. 

Proof For (1) recall that/3 can be obtained from c~ by a sequence of Moves 1 and 
2 (described in Remarks 1.13(d)) and these change both a,~ and 7",~,k by •  For (2), 
it suffices to establish invariance under Move 3 (described in Remark 2.3(c)). Once 
again cr~ changes by +1,  as does ~'~,k since one of the last two internal vertices must 
be of  type k (the three vertices of  any triangle in K are of  distinct 2-types). [] 

It follows that there are well defined functions (for k = 0, 1 and c~) 

~ k : P S L ( 2 , Z ) ~ Z  and # k : ( Q u c ~ ) - Q k - - ~ Z  

given by ~k(A) = #~,k (for any ~ with A = A s)  and #k(a/e) = #~,k (for any c~ 
with final vertex ale). Evidently the functions ~k are related to the function ~ of 
Sect. 1 - indeed ~ = g0 + ~t  + ~Y~ by Theorem 1.12. Similarly the functions #k are 
related to Dedekind sums, and (as we shall see below) to #-invariants of  lens spaces. 

We are primarily interested in the restrictions 

#0, P't :Qo~ -~ z 

of  #0 and #l  to the intersection of their domains, and their union 

# :Q0  u Q1 -~ Z 

on the symmetric difference of their domains (# : / z  o on Q1 and i z = #1 on Qo). 

(4.5) Theorem.  The function # (on Q0 u Q1) and the (unordered) set of functions 
{#o, #1 } (on Q ~ )  provide integer l~ts of the #-invariants of lens spaces. In other words 
# and {/Zo, #1 } respect the equivalence relation ~ of  (4.2), and L(c, a) has #-invariant 
#(a/  c) (mod 16)for c odd and iz-invariants ~,o(a/c) (rood 16) and #1(a/c)  (mod t6) for 
c even. 

Proof Given x ~-, y, we must show #(x)  = #(y) for x in Q0 u QI and 

{/-to(X), # l (x)}  = {#o(Y), #I(Y)} 

for x in Q ~ .  By (4.2) and the definition of #, it suffices to prove the stronger 

(4.6) Assert ion.  (i) #o(X) = # l ( x  • 1)for all x in QI u Q~. 
(ii) Let ad -= 1 (mode).  If  c is odd, then #(a/c) = #(d/c). I f  c is even, then 

I~o(a/c) : po(d/c) and #l(a/c)  : # l (d/c)  when ad ~ 1 (mod2c),  and #0(a /c)  = 
#1 ( d / c) otherwise. 

For (i), choose a based path ~ = ( a l , . . .  , a~)  with final vertex x. Then 
/3 = (0, • 1, a l ,  . . . ,  a,~) has final vertex x •  1, and so we must show #~,0 = ~ , 1 .  The 
first two internal vertices of/3 are of  2-type 0 and c~, and the remaining vertices of /3  
are just unit translations of  the corresponding vertices of  c~. Since this translation maps 
Q ~  to itself and swaps Q0 and QI,  the vertices of  type c~ in c~ and/3  correspond, 
while those of  type 0 in c~ correspond to those of type 1 in/3 (and vice versa). Thus 
~-~,~ = 7-~,~ • 1, ~-B,0 = ~'~,1 and ~'~,1 : T,~,0" Evidently cr~ = cry, and so #,~,0 : #~,l 
as desired. 

For (ii), set b = ( a d -  1)/c (so that a d - b c  = 1). Choose a path c~ = (al ,  . . . ,  an) 
with final edge from bid to a/c. Then 6~ = (an, . . . ,  a t )  has final vertex d/c, so 
#k(a/c) = #a,k and #k(d/c)  = #,~,k" As in the proof  of  (i), set up a correspondence 

between the vertices of  c~ and 6~ by identifying the ith internal vertex of  c~ with the 
(n - i)th internal vertex of  ~. 
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Assume first that c is odd. Then a /c  and d /c  are each of type 0 or 1. If  both are 
of typeO, then vertices of type 1 in a and ~ correspond, and so 7-a, ~ = Ta, 1. Thus 

p(a/c)  = #,~,1 = #a,1 = #(d /c )  (since evidently ~ r  = an). If  a /c  is of  type 0 and 
d ie  is of type 1, then the vertices of  type 1 in a correspond to those of type 0 in 
ft. Thus T~, l = "ca, 0 and so #(a /c )  = Pc~,I  = ~ a , o  ---- I~(d/c). The other cases are 
analogous. 

Now assume that c is even. Then a /c  and d /c  are both of  type ec, and b/d is either 
of  type 0 or type 1 depending upon whether b is even or odd (equivalently whether 
ad =- 1 (rood 2c) or not). In the former case, the correspondence between vertices of a 
and 6~ preserves 2-type, and so Ta, k = ~-a,k for all k. Thus izk(a/c) = lZc~,k = Pc~,k = 
#k(d /c )  for k = 0, 1. In the latter case, vertices of type 0 in a correspond to those of  
type 1 in 6~, and vice versa, and so po(a/c)  = # l (d /c )  as above. This completes the 
proof of  (4.6). 

To establish the relationship with the # invariant, recall (Remark 2.5) that tile lens 
space M = L(c, a) can be obtained by surgery on the flamed link L a shown in Fig. 7, 
where a = (al, . . . ,  an) is a based path with final vertex a/c.  The components Li of  
L~ correspond naturally to the internal vertices of a ,  and so have associated 2-types 
k i (for i = 1, . . . ,  n). As above, set k 0 = oc, the 2-type of  the initial vertex of  a ,  
and write kn+ 1 for the 2-type of  its final vertex ale.  (Thus kn+ | = 0 or 1 if c is odd, 
and kn+ ~ = ~ if c is even.) Let L~, k denote the sublink of all L~ with k i = k. 

Observe that since the three vertices of  any triangle in K are of distinct 2-types, 
the k~ have the following properties: 

(1) k~ # k.s+ 1 (for 0 _< i < n) - i.e. neighboring components have distinct 2-types 
(2) ki_ 1 = ki+ 1 if and only if a i is even (for 0 < i < n). 
It follows that L~, k is characteristic (i.e. L~, k �9 L i = a i (mod2) for 1 < i < n) 

provided k # k 0 and k # kn+ 1. To see this, consider any component L~. If k~ = k, 
then (by (1)) L i is an isolated component of L~, k and so L,~,k �9 L i = a i. So assume 
that k i ~ k. If  1 < i < n, then L~ has exactly two neighbors. If  a~ is odd, then (by 
(2)) exactly one of these is of  type k, and so L~, k �9 L i = • l =- a~ (mod 2). Similarly, 
if a i is even, then either both are of  type k or neither is. Thus L~, k �9 L i = +2  or 0, 
which is congruent to a~ (rood 2). Finally suppose that i = 1 or n. Then L~ has only 
one neighbor which (by (2) and the hypothesis on k) will have type k if and only if 
a i is odd. Therefore L,~,k �9 L~ = •  or 0, depending upon whether a i is odd or even, 
as desired. (See below for an example.) 

We can now compute the #-invariant(s) of M using (4.1) and the 4-manifold 
W = W L .  Observe that a ( W )  = a,~ (Remark 1.13(b)). By the previous paragraph, 
exactly one of  L~, 0 or L~, 1 is characteristic if c is odd (depending upon whether a / c  
is of  type 1 or 0), and both are characteristic if c is even. Noting that the components 
of  L~, k are isolated, we have L~, k �9 L~, k = ~-~,k and Arf(L~,k) = 0. Thus P~,k is 
the p-invariant of  M with the spin structure corresponding to L~, k (provided it is 
characteristic), and the theorem follows. [] 

(4.7) Example. Consider' the lens space M = L(38,7)  given by the based path 
a = ( - 5 ,  2 , - 3 )  with final vertex 7/38 (discussed in Example 4.3). The associated 
link L~ is a chain of  three components with the middle one of  type 1 (comprising 
one characteristic sublink) and the outer two of  type 0 (comprising the other). Thus 
(as in (43))  1~0(7/38) = 7 and #1(7/38) = - 3 ,  and so the p-invariants of  M are 7 
and 13 (mod 16). 

It is tempting to think of  the functions tt 0 and #1 individually as defining p- 
invariants of  lens spaces. Unfortunately they do not respect ,-~, and so it does not 
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make sense to talk about #0 (or/Z1) of a lens space. For  example,  #0 (7/38)  = 7 and 
#1(7/38) = - 3  (as we have just shown) whereas #0(45/38) = - 3  and #1(45/38) = 7 
(by Assert ion4.6(i)) .  Since M = L(38,7)  = L(38,45) ,  the invariant #0(M)  is 
ambiguous. 

Next we derive reciprocity laws for the functions #0 and #1, and thus for 
the #-invariants of lens spaces (by the previous theorem). From these we deduce 
relationships between Dedekind sums, #-invariants of  lens spaces, and the Brown 
invariant (see [Brol]  and Sect. 6 in [KM1]). 

(4.8) T h e o r e m  (reciprocity for #o and Pl)" (a) # l (a /c )  + # l ( c /a )  = - sign(ac) for  
a / c  in Q0 U Q ~ .  

(b) #o(a/c) + #o(c/a)  - ac - s ign(ac) (mod 16)for a / c  in Q1. (Note that I~ = #o 
on QI). 

Proof. The proof  of  (a) is easy. Choose a based path a = (a l ,  . . . ,  an)  ending 
at a/c. Then the path "), = ( 0 , - a l , . . .  , - a n )  ends at c/a,  and we must show 
P~,l + P-~,l = - sign(ac). As in the proof  of  (4.6.i), the vertices of  type 1 in a 
and "7 correspond (after omiting the first vertex of "7), and so r~, 1 + rn, 1 = 0. 
Since a m + a.y = - s i g n ( a c )  (by Remark 1.13(c) for example),  it follows that 
#~,l  + #-~,1 = - sign(ac). 

The proof  of  (b) is similar, except that we are now interested in the vertices 
of  type 0 in a and 7. But the vertices of  type 0 in -y correspond (as above) to the 
vertices of type oo in a ,  and so it suffices to prove the first of  the following three 
useful congruences: 

(4.9) Assertion. (i) #o(a/c)  - #oo(a/c) - ac (mod 16)for a / c  in Q1. 
(ii) /s0(a/c ) - p l (a /c )  = ac (mod8)  for  a / c  in Q ~ .  

(iii) p l (a / c )  - p ~ ( a / c )  = ac (mod8)  for  a / c  in Q0- 

To prove this, choose as above a based path c~ = (a l ,  . . . ,  an) ending at a/c.  
Assume by induction that the assertion has been verified for the endpoints of  all 
shorter paths. (It is trivially verified if n = 0 or 1, so assume n > 1.) Write p/q ,  
bid and (of course) a /c  for the final three vertices of  c~, and t for the "turn" a n 
at b/d. Adopting the usual sign conventions we have pd - bq = bc - a d  = 1 and 
t = pc - aq. Thus a = tb - p and c = td  - q (cf. the proof  of  Lemma 1.9), and so 
ac = bdt 2 - ( p d  + bq)t + pq. Rewriting the coefficient of  t as - 1 + 2pd or 1 + 2bq 
(using pd - bq = 1) and completing the square yields 

(4.10) ac = pq + ~t + bdt(t - 2) + 2ts E 

for s = +1,  where s+l = d(b - p) and s_  1 = b(d - q). 
Now in (i) we are given a / c  of type 1. Suppose first that t is even, or equivalently 

that p /q  is also of  type 1. Then #o(a/c)  - # ~ ( a / c )  = #o(P/q) - # ~ ( P / q )  + et -- 
pq + et (mod 16) (by induction), where e = +1 or - 1  depending upon whether b/d  
is of type c~ or type 0. By (4.10), it suffices to show bdt(t - 2) § 2ts~ - 0 ( m o d  16). 
But this is immediate from parity considerations: t is even, exactly one of  b or d is 
even (the latter iff e = +1) ,  and p and q are odd. This proves (i) when t is even. If  it 
is odd, then consider the path (a l ,  . . . ,  an_ 1 + 1, 1, a n + 1) which has a new vertex 
r / s  of type 1 between p /q  and b/d. The assertion holds for r / s  by induction, and so 
also for a / c  by the preceding argument. 

The arguments for (ii) and (iii) are analogous except that the parity considera- 
tions only yield congruence mod 8. This proves the assertion and thus the theorem as 
well. [] 
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(4.11) Remark. Theorem 4.8(a) provides a recursive computation for the values of 
#1, and coupled with Assertion 4.6(i), for the values of/z 0 as well. This yields a quick 
recursive method for computing the #-invarinat(s) of lens spaces (cf. the algorithm 
in [NR, p. 181] for odd lens spaces). For example, let M = L(38, 7). One computes 
#0(7/38) = #1(-31/38)  = #1(38/31) + 1 = #1( -24 /31)  + 1 = #1(31/24) + 2 = 
. . . .  #1 (10 /3 )+5  = #1 ( -2 /3 )  + 5 = # 1 ( 3 / 2 ) + 6  = # 1 ( - 1 / 2 ) + 6  = #1(2)+7  = 7 
and #1(7/38) = #1 (4 /7 ) -1  = # 1 ( 1 / 4 ) - 2  = # 1 ( - 4 ) - 3  = - 3 .  Thus the/z-invariants 
of m are {/z0(7/38), iz1(7, 38)} (mod 16) = {7, 13} (cf. Example 4.7). 

The well known fact that the #-invariant of an odd lens space is determined by its 
Dedekind sum is easily deduced from Theorem 4.8(b): 

(4.12) Corollary. I f c  is odd, then 3/z(L(e, a)) -= cZS(a/c) (rood 16). 

Proof The left hand side of the congruence is 3#(ale) by Theorem 4.5. Noting that 
the restriction of /~ to Q1 is characterized by the reciprocity law (4.8.b) together 
with the properties # ( - x )  = - # ( z )  and/z(z + 2) = #(x), it suffices to establish the 
corresponding reciprocity law for cZS(a/c) (with a and c odd): 

(4.13) e2S(a/c) + a2S(e/a) =- 3ac - 3 sign(ae) (mod 16). 

(The additional properties c2 S ( - a / c )  = -ca S(a/c) and cz S((a/c)+ 2) = c2 S(a/c) are 
immediate from axioms (D1-2) for the Dedekind sum (2.2).) Using # ( - x )  = - /z(x)  
we need only consider the case when a and c are positive. Then the reciprocity formula 
for Dedekind sums (D3) (multiplied by a2c 2) yields aZ(c2S(a/c)) + c2(a2S(c/a)) = 
ac(a2+e2+ 1)-3a2e  2. The left hand side is congruent to cZS(a/c)+aZS(c/a) (mod 16) 
(since c2S(a/e) =- 0 =--- aZS(c/a)(mod2) by (2.4.c) and a 2 - 1 = e 2 (mod 8)). Thus it 
remains to show ac(a z + c 2 + 1) - 3a2c 2 ---- 3ac - 3 (mod 16), which is readily verified 
(again using a 2 ---- 1 -- c 2 (rood 8)). [] 

(4.14) Remark. (a) For even lens spaces, the #-invariants are not determined by 
the Dedekind sum. For example L(64, 9) and L(64, 25) have the same Dedekind 
sum - 6 3 / 3 2  but different #-invariants: {#0(9/64),#1(9/64)} = { 7 , - 9 }  (both 
congruent to 7 (mod 16)) and {#0(25/64), #1(25/64)} = { -  1, - 1 } (both congruent 
to - 1  (mod 16)). 

(b) In general (i.e. for both even and odd lens spaces), the integer lifts of the #- 
invariants given in Theorem 4.5 are independent of the Dedekind sums. For example 
L(85, 7) and L(85, 22) have the same Dedekind sum 84/17 but different integer #- 
invariants: 12 and - 4  respectively. Similarly for L(64, 9) and L(64, 25), as remarked 
in (a). Perhaps more striking are L(100, 9) and L(100, 29), which have the same 
Dedekind sum 99/50, the same #-invariants {7, 11 }, but different integer lifts of their 
/~-invadants: {11 , -9}  and { 7 , - 5 }  respectively. Conversely, there are lens spaces 
with the same integer #-invariants but different Dedekind sums. For example, L(11,4) 
and L(11,5) both have #-invariant 2 while their Dedekind sums 18/11 and - 3 0 / 1 1  
differ. Similarly L(28, 5) and L(28, 13) have the same set { 3 , -  1 } of #-invariants but 
distinct Dedekind sums, 39/14 and -57 /14 .  

Finally, we establish a relationship between the (integer) #-invariants of a lens 
space and its Brown invariant, which is useful in the study of quantum invariants of 
lens spaces [KM2]. Recall [KM1] that the Brown i n v a r i a n t / 3 ( M )  of a 3-manifold 
M is defined if and only if the #-invariants of M are all congruent rood 4 (which 
for a lens space L(c, a) means that a ~ 2 (mod 4) by (4.9.ii). In that case, describe 
M by surgery on a framed link L in the 3-sphere with linking matrix A. Then 
3(M) = cr A - h a,  where cr A is the signature of A and h A is the Z /8Z  Aft invariant 
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of A (viewed as a Z /4Z-va lued  quadratic form on the Z/2Z- inner  product space 
given by A) [Brol]. This is easily shown independent of  the choice of  L by the 
calculus of  framed links [K1] and is a Z/8Z-valued homotopy invariant. 

It is shown in Sect. 6 of  [KM1] that the Brown invariant of  any Z/2Z-homology 
sphere is determined by its #-invariant and its first betti number. In particular 

(4.15) fl(L(c, a)) = #(L(c,  a)) + (e  2 - 1 ) / 2  (mod 8) 

for c odd. A similar formula holds for c divisible by 4: 

(4.16) Theorem.  / f  c = 0 (mod 4), then fl(L(c, a)) = #1(a /c)  + (a 2 - 1)/2 (mod 8). 

Proof. Set fl(a/c) = fl(L(c, a)). Observe that fl(a/c) satisfies the following reciprocity 
law: 

(4.17) fl(a/c) + fl(c/a) = - sign(ac).  

To see this, choose a based path c~ = (al ,  . . . ,  an) ending at a/c (as in Sect. 1). Thus 
L(c, a) is surgery on the framed link L~ described in Fig. 7, and similarly L(a, c) is 
surgery on L. r for 7 = (0, - a l ,  . . . ,  - % )  (which is a based path to c/a). By definition 
fl(a/c) = cr,~ - A,~, where a,~ and A a are the signature and Z / 8 Z  Arf  invariant of  
the linking matrix M s of  L,~ (see (1.12)), and similarly /3(c/a) = a.y - A.y. Now it 
is easy to show that a,~ + ~77 = - sign(ae) using the geometric interpretation of the 
signatures in Remark 1.13(c) (as in the proof  of  Theorem 4.8(a)). Thus it remains to 
show A a = AT. But this can be seen from the fact that the Arf  invariant A,~ can be 
computed by diagonalizing M s as a Z /4Z-va lued  quadratic form, first stabilizing if 
necessary [KM1]. In particular, diagonalizing M,~ (from the bottom up) yields 0 | D 
for some (rood 2) diagonal matrix D (since c = 0(mod4)) ,  while M7 reduces to 

(01 ; )  | D bY the same process. Thus Aa = A.r and (4.17) is proved- 

Now by (4.15) (with a and c reversed) we have /3(c/a) = # l ( c / a )  - (a 2 - 
1)/2 (mod 8). (Note that the last term is 0 or 4 since a is odd, and so its sign is 
irrelevant.' Combining this with (4.17) gives 

/3(a/c) =_ -#1 (c/a) - sign(ac) + (a 2 - 1)/2 (mod 8) 

=- #l(a/c) + (a 2 -- 1)/2 (mod 8) 

by the reciprocity law (4.9.a) for #1. 

(4.18) Remark. The Brown invariant of  an even lens space L(c, a) is not determined 
by its #-invariants (mod8)  and c. For example L(12, 1) and L(12, 5) have equal 
#-invariants { 1,5} but distinct Brown invariants: 1 and 5 respectively. 

5 /.t-invariants of torus bundles 

The #-invariants of  torus bundles over the circle are related to Dedekind sums, as 
in the case of  lens spaces, but now the situation is subtler. For one thing, there are 
(in general) several spin structures, and so one must find a natural way to distinguish 
between them (this is a problem with even lens spaces as well). In addition, the 
dependence on the Dedekind sum is indirect and is more naturally expressed in terms 
of the qo-function of Sect. 1. Furthermore, there is a sign subtlety due to the fact that 
the monodormy matrix lies in SL(2, Z) rather than PSL(2, Z). 
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X 

Fig. 9 

Here we give a formula (5.4) for the #-invariants associated with the Lie spin 
structures on torus bundles over the circle (i.e. structures which restrict to each fiber 
as the Lie group framing plus a normal vector to the fiber) in terms of the entries of 
the monodromy matrix A (in SL(2, Z)), the image of A under a suitable abelianization 
map SL(2, Z) --* H 1 SL(2, Z) = Z/12Z,  and ep(A). (This formula will be applied in 
the next section to compute the signature cocycle which defines the universal central 
extension of SL(2, Z)).) The formula for non-Lie spin structures involves the functions 
9% in the decomposition ~ = ~0 + g~l + cp~ developed in Sect. 4, and is given in 
Table 1. 

Fix a matrix 

A = ( :  bd) 

in SL(2, Z), and let 
T A = T 2 x I / ( x ,  1) ~ (Ax, O) 

be the torus bundle over the circle with monodromy A. Write L A for the associated 
lens space L(c, a), obtained from the union V U - V  of two solid tori V = B 2 x S l 
by identifying x in OV = T 2 with Ax  in O(-V) .  There is an oriented bordism YA 
between L A and T A, obtained from I x L A by attaching a round 1-handle to 1 x L A 
along the two oriented cores of V and - V .  In particular, O V  A : T A U - L  A. (See 
the Appendix for a more complete discussion of orientation conventions.) 

Recall from (1.13b) (also see Remark 1.11) that any based path c~ = (at, . . . ,  an) 
with A = S T  al S . . .  T an S yields an oriented 4-manifold W,  (obtained by attaching 
2-handles to the 4-ball along the simple chain Lc~ shown in Fig. 7) with OWe, = L A. 
Let X~ denote the union of W~ and YA along L A, so OX,~ = T a (see Fig. 9). 

A framed link picture for X~ is given in the Appendix, obtained from L~ by 
adding two 0-framed components J and K,  where J closes the chain and K (the 
"l-handle") encircles it (Fig. 19). 

To compute the #-invariants of T A (using (4.1) with L = L~ t3 J U K)  we must first 
compute the signature a(X,~), which equals ~r(14~) + a(YA) by Novikov additivity. 
The first term a(Wo) = a~ was computed in Sect. 1 and is related to the ~-function, 
while the second a(YA) is easily determined by a direct topological argument. First 
define u: SL(2, Z) --* { - 1 ,0 ,  1} by 

( :  ~ )  {sign(b) i f c = O a n d a + d = 2  
(5.1) u = sign(c(a + d -  2)) otherwise. 

( (Thus the first case applies only to the powers 0 
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Fig. 10 

@ @ 
(5.2) L e m m a .  c~(YA) = u(A).  

Proo f  In this proof, we drop the subscript A, so L A = L and YA = Y" Note that 
Y / L  has the homotopy type of S ~ V S 1, and so (working with rational coefficients) 
we have H2(Y, L) = Q, generated by the core Z = B 1 • S 1 of  the round handle, and 
H 3 ( Y  , L) = 0. This yields the exact sequence 

0 --~ h ~ ( L )  --~ H2(Y)  -+ Q --. H~(L)  

extracted from the sequence of  the pair  (Y, L). 
First assume c 4 0. Then H I ( L )  = H z ( L  ) = 0 and so Hz(Y)  = Q. A generating 

surface F can be made from c copies of  the core Z of  the round handle capped off 
appropriately in I • L. In particular, O(cZ) consists of  c core circles in each of  V 
and - V ,  the solid toil  which make up L, as drawn in Fig. 10. 

The matrix A takes the c circles in V (after moving them to OV) to cbm + c d f  
in O ( - V ) ,  so the total in O ( - V )  is cbm + c(d - 1 ) / =  (ad - 1)m + c(d - 1 ) f  = 
(a - 1)m + (d - l )  ( a m  + c / ) .  Now we can cap off O(cZ), by letting the a - 1 copies 
of  the meridian m bound disks in - V ,  and the d - 1 copies of  a m  + d ,  which is a 
meridian in OV, bound disks in V. 

We compute the self-intersection F .  F as follows: Take a parallel  copy c Z  ~ of  
cZ.  We capped off c Z  in l • L to get F ,  so to get the push off F t of  F we push 
O(cZ t) through I • L and cap off in 0 • L. Then the intersections of  F with F ~ occur 
between the meridional disks (a - 1 in - V  and d - l in V) in F and the boundary 
components of c Z  ~. Thus we get c(d - 1) positive intersections in V and c(a - l )  
positive intersections in - V  (note that - V  has the left hand orientation.) Altogether,  
F �9 F l = c(a + d - 2) and so ~r(Y) = sign(c(a + d - 2)). (;) (1 

Now suppose that c = 0 and so A = b (when tr(A) = 2) or 
1 0 - 1  

(when tr(A) = - 2 ) .  In either case L = S 1 x S 2 and so H t ( L  ) = H2(L) = Q. This 
gives the exact sequence 

0 ---* Q -~ H=(Y) ~ Q ~ Q 

where the last map A is the boundary map from H2(Y, A)  to t t l (L ) .  If  tr(A) = - 2  
2 1 2 then A is multiplication by 2. Thus H2(Y) = Q with generator S in L = S • S of  

self-intersection zero, and so a ( Y )  = 0 = sign(c(a + d - 2)) as desired. In contrast, 
if tr(A) = 2 then A is the zero homomorphism and so Hz(Y)  = Q2. It is still true 
that S 2 intersects everything zero times, but the other generator ~ may have non- 
zero self-intersection. We construct a surface F representing Q from the cyl inder  Z 
which meets OV in / '  and O ( - V )  in - ~ .  The matrix A takes f to b m  + f ,  so 
OZ = bm + / '  - / / =  bm in O ( - V ) ,  which bounds m disks in either V or - V .  Both 
cases give b positive intersection points, so or(Y) = sign(b). []  
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Now it is a straightforward task to compute all the #-invariants of the torus bundle 
TA: Identify all the characteristic sublinks C of L = L~ U J U K;  the associated 
p-invariants are ~r~ + u(A)  - C .  C + 8 Arf(C) (see Sect. 4). (See [Wo] for formulas 
for the p-invariants of related homology spheres.) 

The result is most interesting for the two Lie spin structures on T A (see the 
Appendix (A.6)) and is expressed in terms of the abelianization homomorphism 
h: SL(2, Z) ~ Z / 1 2 Z  given by 

(5.3) h ( S )  = 3 ,  h ( T )  = - 1 

on the generators S and T (see Sect. 0). 

(5.4) Theorem. Let {9 and t9 ~ be the two Lie spin structures on the torus bundle T A 
over the circle. Then 

#(TA, O) -~ p(TA, ~9') q- 8 (mod 16) 

_ 1 ~ ( A )  + 2 h ( A )  + v ( A )  (mod 8) 

(See Sect. 1, (5.1) and (5.3)for the definitions o f  ~, ~ and h). 

Proof. As above, view T A as the boundary of the 4-manifold X ~  = W~ U Y  A obtained 
by surgery on the link L = L,~ U d U K.  In the Appendix (A.6) it is shown that the two 
Lie spin structures correspond to the characteristic sublinks L - K (the closed chain) 
and L, both with self intersection ~ a i - 2(n + 1) but with distinct Arf invariants. 
The first congruence follows immediately. For the second, use Lemma 5.2 and the 
formula ~p(A) = 3a~ - ~ a i Theorem 1.12) to write 

#(TA, G) =- a s + u(a) - ~ a i + 2(n + 1) (mod 8) 

1 2(3(n + 1 ) -  ~ a 0 + u(A)(mod8).  -= i ~(A) + 

Since h is a homomorphism, h(A)  = h ( S T  a~ S . . .  T an S)  -~ 3(n+ 1 ) -  ~ a i (mod 12), 
which completes the proof. [] 

For the non-Lie spin structures on TA, we must first identify the associated 
characteristic sublinks of the framed link L = L~ U J U K.  Recall that the number 
of spin structures is the order of H i ( T  A, Z/2Z)  = Z /2Z  | coker(A - I )  (where the 
first factor is generated by a section and the second comes from the fiber). This is 
either 2, 4 or 8 (according to whether rkz/2z(A - I )  = 2, 1 or 0), and so the number 
of non-Lie spin structures is either 0, 2 or 6. They naturally come in pairs, just as 
for the Lie spin structures, where each pair has characteristic sublinks S and S U K 
for a suitable sublink S of L - K.  Using the method of proof of Theorem 4.5, it is 
easy to see that S must be of the form Lc~,k (for k = 0, 1 or oo), consisting of all 
the components of L~ of type k, with J thrown in when k = oc. In particular S and 
S U K are unlinks and so the Arf invariant is always zero. The resulting p-invariants 
are then naturally expressed in terms of the #-invariant of the associated lens space 
L A (when it is odd, i.e. c is odd), or in terms of the invariants ~k(A)  defined in 
Sect. 4 (which are also of course related to the p-invariants of LA). 

The results are given in Table 1 below. The first column gives the matrix A (mod 2), 
the second gives the number of pairs of non-Lie spin structures on T A, and the third 
gives the #-invariants for one spin structure in each pair. 
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Fig. 11 

-5 

2 
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Table 1 

Matrices 

('0 0) 
(; 

/z-invariants 

tz(L A) "Jr u(A) 

r + u(A), r + u(A), ~ ( A )  + u(A) 

opt(A) + u(A) 

(378 2 ) =  S T _ S S T 2 S T _ 3 S  ~ i (mod2) ,  the torus (5.5) Example. For A = 1 1 

bundle T A has 6 non-Lie spin structures, corresponding to the characteristic sublinks 
L~,0, L~,I, J (with their partners L~, 0 U K,  L~, 1 U K, J U K) of the framed link for 
T A shown in Fig. 1 1. Here L~, 0 is the union of the components with framings - 5  and 
- 3  and L~, 1 is the 2-framed component. (Note that L~,~ is empty.) Since u(A) = 1, 
~;0(A) = 7, ~I(A) -- - 3  and qoo~(A) = -1  (see Example4.3), the associated #- 
invariants are 8, 14 and 0 (mod 16). 

Finally observe that ~(A) = 3 and h(A) --- 6, and so the Lie spin structures on T A 

have #-invariants �89 3 + -~ 6 + 1 = 6 and 14 by Theorem 5.4. 

6 The signature cocycle 

Central extensions of SL(2, Z) by Z are classified by Hz(SL(2, Z); Z) = Z/12Z (see 
(0.11)). Of particular importance in string theory and Joncs-Witten theory is the central 
extension 

0 ~ Z ~ SL(2, Z) --~ SL(2, Z) --~ 1 

[At2] which corresponds to the signature 2-cocycle 

or: SL(2, Z) x SL(2, Z) --* Z.  

(Thus SL(2, Z) is the set Z x SL(2, Z) with multiplication (m, A)(n, B) = (m + 
n + or(A, B), AB).)  In particular, a(A, B) is defined to be the signature a(EA,B) 
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Fig. 12 

of the T2-bundle E A 13 over the thrice punctured 2-sphere P (a pair of pants) with 
monodromies A, B a~d A B  on the boundary components, oriented as shown in Fig. 12 
so that OEA,13 = T A U T B U --TAB (see Sect. 5). 

A formula for the signature cocycle was first worked out in [Mey] from an algebraic 
point of view, and explained geometrically in [Atl]. We derive a simple formula using 
our calculations in Sect. 5 of the/z-invariants of torus bundles. It is expressed in terms 
of the lift to SL(2, Z) of the Rademacher qo function defined in Sect. 1, which we also 
call ~, and the function u: SL(2, Z) --~ Z defined in (5.1). 

(6.1) Theorem. The signature cocycle is the coboundary of  a unique rational 1- 
1 cochain, namely 5 qo + u. In particular tr = e + 6u, where e is the area cocycle 

(by Theorem 1.7). Equivalently 

e (A ,  B )  = u(A) + u (B)  - u ( A B )  - sign(cAC13CAB ) 

for  all A and B in SL(2, Z). 

Proof. The existence and uniqueness of this 1-cochain follows at once from the fact 
that the 1 and 2-dimensional rational cohomology groups of SL(2, Z) vanish (cf. the 
proof of Lemma 1.3). 

Now fix A and B in SL(2, Z) and assign Lie spin structures 0 A, 013 and OAt  3 
to the torus bundles T A, T13 and T A t  3.  Together these give a spin structure O on 
OE = T A tJT13 t2--TAB (writing E for EA,13), which evidently extends across E -  F 
for any T2-fiber F.  Since F �9 F = 0 it follows from the definition of the #-invariant 
(4.1) that 

or(E) - #(OE, O) (mod 8) 

=-- #(TA, OA) + #(T13, OB)  - #(TAB , OAB) (mod 8). 

Viewing # as a Z/8Z-valued 1-cochain on SL(2, Z), defined by #(A) = #(TA, OA) 
(mod 8) for any Lie spin structure OA on T A (this is independent of the choice of 
0 A by Theorem 5.4), this simply says (7 =- 6# (mod 8). Using the formula for #(A) in 
(5.4), we get ~ ~ 6(�89 ~ + 2 h + u) (mod 8). But 6h = 0 since h is a homomorphism, 
and so 

(6.2) a - 6(�89 qo + u) (mod 8). 

To remove the rood8 restriction, first recall from Theorem 1.7 that 6(�89 ~) = e, 
where e is the area cocycle given by e(A,  B )  = - sign(cAC13CAB) (1.2). ThUS 

(6.3) a(A,  B )  - u(A)  + u (B)  - u ( A B )  - sign(cACBeA13) (rood 8). 

Since lu[ =< 1 (it is a sign), the right hand side is clearly bounded in absolute value by 
4. The left hand side, by the lemma below, is bounded by 3 and so the congruences 
(6.2) and (6.3) are indeed equalities. [] 
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(6.4) Lemma. la(EA,B)I ~ 3. 

Proof. The Euler characteristic of  E = EA, B is zero since E is the union of  T A x I 

and T B x I along T 2 x 1, all spaces of  Euler characteristic zero. Writing b k for 
the rank of Hk(E)  (with integer coefficients), we have b 3 = 2 (by a Mayer-Vietoris 
argument using the same decomposition of  E)  and b 1 < 4 (since H I ( E )  is generated 
by the image of HI(F)  and HI(K) ,  each of rank 2, where F is a fiber in E and 
K is a section over a figure eight retraction of the base P .  Thus b 2 = b 1 + 1 < 5. 
Furthermore, b 1 = 4 if and only if A = B = I in which case E = P x T 2 has zero 
signature. Thus we may assume b 2 <_ 4. Since there is always a class in H2(E) of  
zero self-intersection (namely the fiber F) ,  it follows that Icr(E)[ <= 3. [] 

(6.5) Remark. Substituting the continued fraction expression for ~p in Theorem 1.12 
into the formula in the theorem yields a formula for the signature cocycle in 
terms of  signatures of matrices related to the monodromies. In particular, a = 

~(cr(M) - � 8 9  tr(M) + u) where M ( A )  = M s for ~ = ( a l , . . . ,  aN) satisfying 
A = S T  al S . . .  Tans .  A similar formula was obtained previously by Sczech using 

different methods, a = ~(~ tr(N) - or(N)) where N ( A )  = N~ for c~ = (a0, . . . ,  aN) 
satisfying A = TaoSTa~S-.. .  T mS [MeyS, Sc]. Here N,~ = M_~ with l ' s  placed in 
the upper right and lower left corners. The equivalence of these two formulas for a 
can be deduced from Lemma 3 in Sczech's Diplomarbeit [Sc]. (Note that N,~ is the 
intersection matrix of a "circular plumbing" with boundary T A, as described in the 
Appendix.) This can be used to give an alternative continued fraction formula for qa, 
namely qa(A) = tr(N~) - 3a(N~) - 3u(A). 

Appendix. Framed links 

The purpose of  this appendix is to give framed link descriptions for 3-dimensional lens 
spaces and torus bundles over the circle. For the case of  toms bundles we also identify 
the characteristic sublinks for Lie spin structures. Link pictures for lens spaces are of  
course well known; nevertheless we give a careful treatment, taking orientations into 
account, which makes the pictures for toms bundles more transparent. In particular 
we develop the notion of  surgery on oriented links with framings in SL(2, Z). 

Throughout, we let 

A = ( a c  bd) 

denote a fixed matrix in SL(2, Z). 

Lens spaces 

The oriented lens space L A = L(c, a) is constructed by taking two copies of  the solid 
toms V = B 2 • S 1 , choosing oriented meridians m = OB 2 x 1, longitudes f = 1 x S 1 
and orientations ((n, m,  f )  for V and ( - n ,  m,  ~) for - V )  as in Fig. 13, and forming 
V t2 - V / x  ~ A x  (for x in OV). Thus the meridian and longitude of  OV are glued to 
O ( - V )  by m ~ am + c f  and if ~-* b m +  dr .  

Equivalently, this may be thought of  as a Dehn surgery on the unknot K in S 3, 
identifying V with a tubular neighborhood of  K (so that K and f have zero linking 
number) and - V  with the complementary solid toms V' .  If  we choose the latter so 
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v 
Fig. 13 

01 1 )  with respect to the that O ( - V )  is glued to OV' by the matrix - S  = _ 0 

basis m, f (note that OV ~ is marked with the curves ra and f from its identification 
with OV before surgery), then the surgery is achieved by removing V and regluing 

using the matrix - S A  = ( c-a / b  ) " w e  shall call - S A  the SL (2 'Z ) ' f raming  f~ 

the surgery (see the definition below); the more traditional rational framing is - c / a  
(Fig. 14(a)). 

It is well known (see e.g. [Rol] or [O, Sect. 2]) that L A can also be described by 
the integer framed link L~ in S 3 shown in Fig. 14(b), for any c~ : (al, . . . ,  an) for 
which - c / a  = a 1 - 1/(a 2 - . . . -  1/a,O . . .) (or equivalently A = i S T  al S . . . T an S). 
(Note that a also specifies a 4-manifold W~ with boundary LA, obtained by adding 
2-handles to the 4-ball along L~.) We recall how to show this, taking extra care with 
orientations since we will also want to know the location in Fig. 14(b) of the oriented 
core circles of V and - V .  It is convenient to introduce a notion of surgery on an 
oriented SL(2, Z)-framed link. 

(A. 1) Definit ion.  Let L be an oriented link in S 3 with components labelled by elements 
o f  SL(2, Z) (the framings). Denote by M L (surgery on L) the 3-manifold obtained 
by removing an oriented tubular neighborhood V = B 2 • S 1 o f  each component, and 
regluing using the associated framing matrix (with respect to the usual oriented basis 
m = OB 2•  l and / = l x S1). 

For example, the lens space LSA = V tA  - V  is described by the oriented A- 
framed unknot, as shown in Fig. 15(a) and explicitly described in Fig. 15(b); the 
arrows marked A indicate that the solid torus V A (the removed tubular neighborhood 
of A) should be glued by A to its complement in S 3. 

The oriented core of the surgery on a component K with framing A is the image 
of 0 • S 1 C V after surgery, which can be identified with the (b, d)-cable about K 

g 

- -  a 1 a 2 a gl 

La 

Fig. 14 (a) (b) 
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Fig. 15a, b (a) (b) 

( s i n c e t h e c ~ 1 7 6 1 7 6 1 7 6 1 7 6  lal o l /  f~176  

a, then the framing will be called integral (corresponding to the traditional integer 
surgery with framing a). Note that for integral surgeries on K,  the oriented core of 
the surgery will be a negatively oriented meridian of K (i.e. have linking number - 1  
with K). 

Observe that M L = M L, if L' is obtained from L by reversing the orientation of 
a component and negating its framing. A more interesting move is described by: 

(A.2) Lemma. Let L be an oriented SL(2, Z)-framed link in S 3. Suppose that L has 
two components K A (with integral framing A) and K B (with arbitrary framing B), 
and that K B is a negatively oriented meridian for K A. Let L I denote the framed link 
obtained from L deleting K u and replacing K A by KAB (the same oriented curve 
but with framing AB).  Then there is a homeomorphism between M L and M L, which 
identifies the oriented cores of K B and K AU. (See Fig. 16(a).) 

Proof. Choose appropriately oriented solid tori V A and V B about K A and K B. Since 
A is integral, we can shrink V B down to OV A and then inside V A where it appears 
(after surgery) as the core of V A (preserving orientations) and we see Fig. 16(b). As 
usual, the B-labeled circle means cut out V B and glue back by B, as in Fig. 16(c). 
Thus V B is glued in by the composition AB.  [] 

Repeated application of this lemma shows that the lens space L A = V t3 - V  can 
be obtained by surgery on the framed link L~ (Fig. 14(b)) for any a = (al, . . . ,  a n) 
with A = + S T  a' S . . .  TanS. (Note that - S A  = (T ~ S ) . . .  (TanS) and each T ~ S  
is integral.) The last statement in the lemma shows that the oriented core of V is a 
meridian for the last component of L~ (i.e. the one with flaming an) with orientation 
determined by the sign in the expression for A. In particular: 

f 

AB A 

I 

A 

J 

~B B 

Fig. 16a-c (a) (b) (r 
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Fig. 17 
al a2 an 

(A.3) Corollary. I f  A = S T  al S . . . T"n S, then the oriented lens space L A = W U - V  
can be obtained by surgery on the f ramed link Lc~ shown in Fig. 14(b) (where t~ = 
(al, . . . ,  an) ). Moreover, the oriented core o f  - V  is a positively oriented meridian of  
the first component o f  La (the one with framing al), and the oriented core o f  V is a 
negatively oriented meridian o f  the last component, as shown in Fig. 17. 

Torus bundles 

The oriented torus bundle T a is formed from L A by removing the solid cores 

(1 B 2 x S 1) of V and - V  and gluing the two resulting boundary components by 

the identity. (Of course, this is equivalent to identifying the ends of T 2 x I by 
(z, 1) ~ (A:c, 0), viewing T 2 as 0t32 x SI.) 

Observe that there is a 4-dimensional bordism YA from L A to T A (with boundary 
- L  A U TA) obtained by adding a round 1-handle I x B 2 x S l along the cores of V 
and - V  in I • L a (i.e. attach 0 x/32 • $1 to the solid core of V and 1 x/32 x S 1 
to the solid core of - V ) .  

The union Xa of W a (see above) and YA along L A is a 4-manifold with boundary 
T A whose link picture is now easy to describe. W~ is given by the chain link L,~ 
of Fig. 14(b). Adding the round 1-handle is equivalent to adding a 1-handle and a 
2-handle as indicated in Fig. 18. 

The 1-handle can be shown by an unknotted circle K with a dot on it (see [K2]), 
which can be surgered and replaced by the same circle with a 0-framing (indicating a 
2-handle). The 2-handle is attached by a circle J which passes twice over the 1-handle 
(in opposite directions) and goes over both oriented cores with opposite orientations. 
Thus J closes the chain while K encircles it, giving the framed link L -- L~ U J U K 
for T A (Fig. 19). Note that L has Z / ( n  + 1)Z-fold symmetry (ignoring framings), 
and all linking numbers are - 1  (excepting the "l-handle" K). In summary we have 
shown: 

(A.4) Theorem. I f  A = S T a l S . . . T a n S ,  then the oriented torus bundle T A can 
be obtained by surgery on the f ramed link L~ U d U K shown in Fig. 19 (where 
c~ = (al, . . . ,  an)), corresponding to the 4-manifoM X ~  bounded by T A. 

(A.5) Examples. If A = I ,  then clearly T A = T 3. Since A = S T ~ 1 7 6 1 7 6  in 
SL(2, Z), the resulting link picture is shown in Fig. 20(a), which simplifies to the well 

2-handle 

Fig. 18 1-handle 
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0 0 0 0 0 

(a) (b) 
Fig. 21 

known description of  T 3 as 0-surgery on the Borromean tings�9 Compare this with the 
picture for T A where A : - / - - -  S T ~  shown in Fig. 20(b). 

It is easy to see the torus fibers in the link picture of  T A in Fig. 19. One fiber 
is evidently constructed from the twice puctured disk in S 3 spanned by K (the " l -  
handle"), as shown in Fig. 21. 

We can move to the right across the clasp because the enclosed region is just I x T 2 
(for the same reason that the complement of the Hopf link in S 3 is R • T2), and 
the meridian and longitude are switched (as by the action of  the matrix S). Moving 
still further takes the left annulus (on the al-framed circle) to the right annulus. This 
happens across the sewn in solid torus and amounts to a 1 Dehn twists along the 
meridian (as by the action of  T al ). Of  course if one moves all the way around, one 
gets the monodromy - S A  = T '~ S .  . . Ta'~ S .  

Fig. 20a, b 
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This picture of  the fibration is important for understanding the Lie spin structures 
on T A (i.e. structures which restrict to each fiber as the Lie group framing plus a 
normal vector to the fiber). There are exactly two Lie spin structures on T A since 
7r 0 SL(2, R) = 0 and 7r 1 SL(3, R) = Z / 2 Z  (they differ on a cross section of  the bundle 
by the generator of  7r 1 SL(3, R)). 

(A.6) L e m m a .  The two Lie spin structures on T A do not extend across the 4-manifold 
X~.  In terms of  the framed link picture for X a given in Figure 19, the two associated 
characteristic sublinks (representing integral homology classes dual to the second 
Stiefel-Whitney class) are L and L -  K .  (Recall that K corresponds to the "1 -handle" .) 
The self-intersection of  either characteristic class is ~ a s - 2(n + 1), while their Aft-  
invariants (in Z / 2 Z )  are distinct. 

Proof. Consider  any component  • of  L - K ,  and let # denote a meridian of  A (which 
lies in a fiber). The Lie spin structure obviously frames the tangent bundle of  T A 
restricted to # with the tangent to #, the normal to # in the fiber, and the normal 
to the fiber. This framing is the one which does not extend across the normal disk 
that /z  bounds (after surgery on A). Hence A belongs to the characteristic sublink. The 
formula for the self-intersection of  the characteristic class follows by inspecting the 
linking matrix of  L. Finally,  it. is easily verified that the Arf-invariant of  L - K is 0 
or  1 according to whether n is even or odd, while the reverse is true for L. 
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