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§o. Introduction

Pin structures on vector bundles are the natural generalization of Spin struc­
tures to the case of non-oriented bundles. Spin(n) is the central Z/2Z extension
(or double cover) of SO(n) and Pin-en) and Pin+(n) are two different central
extensions of O(n), although they are topologically the same. The obstruction to
putting a Spin structure on a bundle e(= Rn ~ E ~ B) is w2(e)eH2(B; Z/2Z);
for Pin+ it is still W2(e), and for Pin- it is W2(e) + w~(e). In all three cases, the
set of structures on eis acted on by Hl(B; Z/2Z) and if we choose a structure,
this choice and the action sets up a one-to-one correspondence between the set of
structures and the cohomology group.

Perhaps the most useful characterization (Lemma 1.7) of Pin± structures is
that Pin- structures on ecorrespond to Spin structures on eEB det eand Pin+ to
Spin structures on eEB 3 det ewhere det eis the determinant line bundle. This is
useful for a variety of "descent" theorems of the type: a Pin± structure on eEB 11
descends to a Pin+ (or Pin- or Spin) structure on ewhen dimf/ = 1 or 2 and
various conditions on TJ are satisfied.

For example, if TJ is a trivialized line bundle, then Pin± structures descend to
~ (Corollary 1.12),.which enables us to define Pin± bordism groups. In the Spin
case, Spin structures on two of e, 11 and eEB 1] determine a Spin structure on the
third. This fails, for example, for Pin- structures on 1] and eEB 1] and eorientable,
but versions of it hold in some cases (Corollary 1.15), adding to the intricacies of
the subject.

Another kind of descent theorem puts a Pin± structure on a submanifold which
is dual to a characteristic class. Thus, if V m - l is dual to Wl (TM) and Mm is Pin±,
then V rtl V gets a Pin± structure and we have a homomorphism of bordism groups
(Theorem 2.5),

that proved useful in [K-T]. Or, if Fm-2 is the obstruction to extending a Pin­
structure on Mm - F over M, then F gets a Pin- structure if M is oriented
(Lemma 6.2) or M is not orientable but FrtlV has a trivialized normal bundle in
V (Theorem 6.9). These results give generalizations of the Guillou-Marin formula
[G-M], Theorem 6.3,

2{1(F) =F · F - sign M

1 Partially supported by the N.S.F.

(mod 16)
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to any characterized pair (M4 ,F2 ) with no condition on H}(AI4 ; Z/2Z).

Here, f3(F) is the Z/8Z Brown invariant of a Z/4Z quadratic enhancement
of the Z/2Z intersection form on H}(F; Z/2Z); given a Pin- structure on F, the
enhancement counts half-twists, mod 4, in imbedded circles representing elements
of H1(F; Z/2ZZ). This is developed in §3, where it is shown that

{3 : nfin- --+ Z/8Z

gives the isomorphism in the following table.

nfpin = Z/2Z n:pin = Z/2Z nipin = 0 n;pin = Z
nfin- = Z/2Z nfin- = Z/8Z nfin- = 0 nfin- = 0
nfin+ = 0 nfin+ = Z/2Z nfin+ = Z/2Z nfin+ = Z/16Z

In §2 we calculate the 1 and 2 dimensional groups and show that the non-zero one
dimensional groups are generated by the circle with its Lie group framing, stie,
(note the Mobius band is a Pin+ boundary for Slie); Rp2 generates nfin-; the
Klein bottle, the twisted S£ie bundle over S1, generates nfin+; and T(ie, the torus

with its Lie group framing generates n~pin. By §5 enough technique exists to
calculate the remaining values and show that nfin+ is generated by the twisted
T 2 bundle over SI with Lie group framing on the fiber torus; nfin+ is generated .
by RP4. The Cappell-Shaneson fake Rp4 represents ±9 E Z/16Z [Stolz]; the
Kummer surface represents 8 E Z/16Z and in fact, a Spin 4-manifold bounds a
Pin+ 5-manifold iff its index is zero mod 32. The Kummer surface also generates
nSpin

4 •

Section 4 contains a digression on Spin structures on 3-manifolds and a geo­
metric interpretation of Turaev's work [Tu] on trilinear intersection forms

This is used in calculating the JL-invariant: let JL(M, 8 1 ) be the J.l-invariant of }'13

with Spin structure 8 1 - The group HI (M3
; Z/2Z) acts on Spin structures, so let

a E HI (M3 ; Z/2Z) determine 8 2 • Then a is dual to an imbedded surface F2 in
M which gains a Pin- structure from 8 1 and

(mod 16)

Four dimensional characteristic bordism n~ is studied in §6 with generalizations
of [F-K] and [G-M]. We calculate, in Theorem 6.5, the J.l-invariant of circle bundles
over surfaces, S(1]), whose disk bundle, D(T/), has orientable total space. Fix a Spin
structure on S(1]), e. Then

J.l(S(11), 8) = sign (D(1]) - Euler class(1]) +2· b(F) (mod 16)
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where b(F) = 0 if the Spin structure e extends across D(7J) and is f3 of a Pin­
structure on F induced on F from e otherwise.

The characteristic bordism groups are calculated geometrically in §7, in par­
ticular,

n~ = Z/8Z E9 ZJ4Z E9 Z/2Z .

Just as Robertello was able to use Rochlin's Theorem to describe the Ad in­
variant of a knot [R], so we can use f3 : nfin- ----+ Z/8Z to give a Z/8Z invariant to
a characterized link L in a Spin' 3-manifold M with a given set of even longitudes
for L (Definition 8.1). This invariant is a concordance invariant (Corollary 8.4),
and if each component of L is torsion in H1(M; Z), then L has a natural choice of
even longitudes (Definition 8.5).

Section 9 contains a brief discussion of the topological case of some of our
4-manifold results. In particular, the formula above must now contain the triangu­
lation obstruction K(M) for an oriented, topological 4-manifold M 4 :

2f3(F) == F· F - sign (M) +8~(M) (mod 16)

(recall that (M,F) is a characterized pair).

§1. Pin Structures and generalities on bundles

The purpose of this section is to define the Pin groups and to discuss the notion
of a Pin structure on a bundle.

Recall that rotations of R n are products of reflections across (n - 1)-planes
through the origin, an even number for orientation preserving rotations and an odd
number for orientation reversing rotations. These (n - 1)-planes are not oriented so
they can equally well be described by either unit normal vector. Indeed, if u is the
unit vector, and if x is any point in R n, then the reflection is given by x - 2(x · u)u.
'rhus an element of O(n) can be given as (±Vl)(±V2)··· (±Vk) where each Vi is
H. unit vector in Rn and k is even for SO(n). Then elements of Pin(n), a double
eover of O(n), are obtained by choosing an orientation for the (n - I)-planes or
(\quivalently choosing one of the two unit normals, so that an element of Pinen) is
Vl·· ·Vk; if k is even we get elements of Spin(n). With this intuitive description as
Illotivation, we proceed more formally to define Pin (see [ABS]).

Let V be a real vector space of dimension n with a positive definite inner prod­
net, ( , ). The Clifford algebra, ClitF(V), is the universal algebra generated by
V· with the relations

2(v w)
VW+WV= '-2(v, w)

for Clitr+(V)
for Clitr(V)

If el, · · · en is an orthonormal basis for V, then the relations imply that eiej =
(~iej, i f:. j and eiei = ±1 in ClifF(V). The elements e/ = eit ... eik' I =
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{I 5 it < i 2 ··• < ik $; n} form a (e/eJ = 0, e/el = ±l) basis for ClifF(V).
So dim ClifF(V) = 2n ; note that as vector spaces, ClifF(V) is isomorphic to the
exterior algebra generated by V, but the multiplications are different, e.g. eiei =
±1 f= 0 = ei A ei·

Let Pin±(V) be the set of elements of ClifF(V) which can be written in the
form VtV2··· Vk where each Vi is a unit vector in V; under multiplication, Pin±(V)
is a compact Lie group. Those elements Vt V2 • • • Vk E Pin±(V) for which k is even
form Spin(V).

Define a "transpose" e} = eik··· eit = (-1)k-l e / and an algebra homo­
morphism aCe]) = (-1)ke] = (-l)IIleI and extend linearly to ClifF(V). We
have a Z/2Z-grading on ClifF(V): ClifF(V)o is the +1 eigenspace of a and
ClifF(V)t is the -1 eie;enspace. For w E ClifF(V), define an automorphism
pew): Clifr±(V) -+ ClifF(V) by

{
wvwt for ClifF-(V)

p(w)(v) = a(w)vwt for Cliff+(V)

We can define a norm in the Clifford algebra, N: ClifF -+ R+ by N(x) = a(x)x for
all x E Clifr±(V). Then we can define Pin:J:(V) to be {w E ClifF(V) I p(w)(V) =
V and N(w) = 1 }. Hence if w E Pin±(v), pew) is an automorphism of V so p is a
representation p: Pin±(V) -+ O(V) and by restriction p: Spin(V) -+ SO(V).

It is easy to verify that p(w) acts on V by reflection across the hyperplane wJ..,
e.g. for Pin-(V),

i rf 1
i = 1

If r and I are basepoints in the components of O(V), where r is reflection
across et, then p-t {r, I} = {±el' ±1} and

-1{ I} c:::! { Z/2Z EB Z/2Z for Pin+(V)
p r, - Z/4Z for Pin-(V)

The Z/2Z = {-I, I} E Pin± is central and Pin±(V)/{±1} = O(V). IT n > 1,
this Z/2Z is the center of Pin±(V) and, since O(V) has a non-trivial center, for "
n > 1, the Z/2Z central extensions Pin± -+ O(V) are non-trivial. ~~

Thus Pin±(V) is a double cover of O(V). As spaces, Pin±(V) = Spin(V) II .~;

Spin(V) but the group structure is different in the two cases. We can think of -1 E .;
p-l(I) as rotation of V ( about any axis) by 21r and +1 E p-l(I) as the identity. :
More precisely, an arc in Pin±(V) from 1 to -1 maps by p to a loop in O(V) which I

generates 1r1 (O(V)); in fact, for 8 E [0,1r], the arc 8 --+ ±el . (cos 8el + sin Be2) is
one such. Even better, we may think of Pin±. as scheme for distinguishing an odd
number of full twists from an even number.

We use Pin±(n) to denote Pin±(V) where V is Rn.
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Remark. The tangent bundle of Rp2, TRP2, has a Pin-(2)-structure.

We can "see" the Pin-(2) structure on TRP2 as follows: decompose Rp2 into a
2-cell, B2, and a Mobius band, MB, with core circle Rpl. Then TRP21MB can be
described using two coordinate charts, Ul and U2 , with local trivializations (el' ei),
in which el is parallel to Rpl and e2 is normal, and with transition function
U1 n U2 --+ Pin-(2) which sends the two components of U1 n U2 to 1 and e2.
Then TRP21aM B is a trivial R 2-bundle over 8 1 = aMB which is trivialized by the
transition function 1 and e~ = -1. Nowel would be tangent to 51 but the e~ = -1
adds a rotation by 21r as 8 1 = aMB is traversed. But this trivialization on TRp 2 1s1

is exactly the one which extends over the 2-cell B2. Thus Rp2 is Pin-. ~ote that
this process fails if e~ = +1, and, in fact, Rp2 does not support a Pin+ structure
(see Lemma 1.3 below).

We now review the theory of G bundles, for G a topological group, and the
theory of H structures on a G bundle. A principal G bundle is a space E with a
left G action, E x G --+ E such that no point in E is fixed by any non-identity
element of G. We let B = E/G be the orbit space and p: E ..... B be the projection.
We call B the base of the bundle and say that E is a bundle over B. We also
require a local triviality condition. Explicitly, we require a numerable cover, {Ui },

ri P
of B and G maps ri:Ui X G --+ E such that the composite Ui x G~E~B is just
projection onto Ui followed by inclusion into B. Such a collection is called an atlas
for the bundle and it is convenient to describe bundles in terms of some atlas. The
functions rj1 0ri are G maps, Ui nUj x G ..... Ui nUj x G, which commute with
the projection. Hence they can be given as transition functions 9ij:Ui n Uj --+ G.
Note 9ii = id, 9;;1 = 9ji and 9ik = 9ijO 9jk on Ui nUj nUk. Conversely, given any
numerable cover of a space B and a set of maps satisfying these three conditions,
we can find a principal G bundle and an atlas for it so the base space is B and the
transitions functions are our given functions.

Suppose Eo and E1 are two G bundles over Bo and B 1 respectively. Let
f: Eo ~ E1 be a map. A bundle map covering f is a G map F: Eo --+ E l so that
PI 0 F = f 0 Po, where Pi is the projection in the i-th bundle. We say two bundles over
B are equivalent iff there exists a bundle map between them covering the identity.

Given a bundle over B, say E, with atlas Ui and 9ij, and a map f: Bo --+ B,
the pull-back of E along f is the bundle over Bo with numerable cover f- l (Ui) and
transition functions 9ijO f. The pull-backs of equivalent bundles are equivalent. A
hundle map between Eo and E1 covering f: Bo --+ B 1 is equivalent to a bundle
(~quiva1encebetween Eo and the pull-back of E 1 along f. Hence we mostly discuss
t.he case of bundle equivalence.

Given any atlas for a bundle, say Ui; gij, and a subcover Vor of Ui we can restrict
the 9ij to get a new family of transition functions gap. Clearly these two atlases
l'(~present the same bundle. Given two numerable covers, it is possible to find a third
Ilumerable cover which refines them both, so it is never any loss of generality when
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considering two bundles over the same base to assume the transition functions are
defined on a common cover.

A bundle equivalence between bundles given by transition functions gij and gi;
for the same cover is given by maps hi:Ui -+ G such that, for all i and j and all

u E Ui nUj, g~j(u) = hi(U)gij(U) (hj(u))-l.

Given a continuous homomorphism 'ljJ: H -+ G, we can form a principal G
bundle from a principal H bundle by applying tP to any atlas for the H bundle.
If p: E --+ B is the H bundle, we let P1/J: E XH G -+ B denote the associated
G bundle. Equivalent H bundles go to equivalent G bundles. We say that a G
bundle, p: E --+ B, had an..,H structure provided that there exists an H bundle,
PI: E I -+ B so that the associated G bundle, (PI)",: E I XH G --i' B is equivalent to
the G bundle. More correctly one should say that we have a "p structure on our G
bundle, but we won't. An H structure for a G bundle, p: E --i' B consists of a pair:
an H bundle, PI: E1 --+ B, and a G equivalence, 1 from (PI)tb: E1 XH G --+ B to the
original G bundle, p: E --. B. Two structures PI: El -+ B, 1'1 and P2: E2 --+ B, 12
on p: E -+ B are equivalent if there exists an equivalence of H bundles f: E1 --+ E2

such that, if ft/J denotes the corresponding equivalence of G bundles, 11 = 12 0 ft/J.

We assume the reader is familiar with this next result.

Theorem 1.1. For any topological group, G, there exists a space Bo such that
equivalence classes of G bundles over B are in 1-1 correspondence with homotopy
classes of maps B -+ BG. (A map B --i' Ba corresponding to a bundle is called a
classifying map for the bundle.) Given"p: H --+ G we get an induced map B"p: BH --.
Ba. If this map is not a fibration, we may make it into one without changing Ba
or the homotopy type of BH, so assume B1/J is a Hurewicz fibration. Given a G
bundle with a classifying map B -+ Ba, H structures on this bundle are in 1-1
correspondence with lifts of the classifying map for the G bundle to B H •

Example. Let p: E --+ B be a trivial O(n) bundle, and suppose the atlas has one
open set, namely B, and one transition function, the identity. One SO(n) structure
on this bundle consists of the same transition function but thought of as taking
values in SOCn) together with the bundle equivalence which maps B to the identity
in O(n). Another SOCn) structure is obtained by using the same transition functions
but taking as the bundle equivalence a map B to O(n) which lands in the orientation
reversing component of O(n). Indeed any map B -+ O(n) gives an SO(n) structure
on our bundle. It is not difficult to see that any two maps into the same component
of O(n) give equivalent structures and that two maps into different components give
structures that are not equivalent as structures. Clearly the SO(n) bundle in all
cases is the same. One gets from here to the more traditional notion of orientation
for the associated vector bundle as follows. Since the transition functions are in
O(n), O(n) acts on the vector space fibre. But for matrices to act on a vector space
a basis needs to be chosen. This basis orients the SO(n) bundle: in the first case
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the equivalence orients the underlying O(n) bundle one way and in the second case
the equivalence orients the bundle the other way.

Finally recall that an O(n) bundle has an orientation iff the first Stiefel­
Whitney class, WI of the bundle vanishes. If there is an SOCn) structure then
HO (B; Z/2Z) acts in a simply transitive manner on the set of structures.

The Lie group Spin(n) comes equipped with a standard double cover map
Spin(n) --+ SO(n), and this is the map 1/J we mean when we speak of an SO(n)
bundle, or an oriented vector bundle, having a Spin structure. There is a fibration
sequence B Spin(n) --+ BSO(n) --+ K(Z/2Z,2), so the obstruction to the existence
of a Spin structure is a 2-dirnensional cohomology class which is known to be the
second Stiefel-Whitney class W2. If the set of Spin structures is non-empty, then
HI (B; Z/2Z) acts on it in a simply transitive manner.

The action can be seen explicitly as follows. Fix one Spin structure, say gij. An
element in H1 (B; Z/2Z) can be represented by a Cech cocycle: i.e. a collection of
maps Cij:Ui nUj --+ ±1 satisfying the same conditions as the transition functions for
a bundle. The new Spin structure consists of the transition functions gij ·Cij with the
same SO(n) bundle equivalence, where we think of ±1 as a subgroup of Spin(n) and
. denotes group multiplication. It is not hard to check that cohomologous cocycles
give equivalent structures.

We now explore the relation between Spin structures on an oriented vector
bundle and frarnings of that bundle. A framing of a bundle is the same thing as an
H structure where H is the trivial subgroup. Hence H is naturally a subgroup of
Spin(n) and an equivalence class offramings of a bundle gives rise to an equivalence
class of Spin structures. Consider first the case n = 1. Recall SO(I) is trivial and
Spin(l) = Z/2Z. Hence an SO(1) bundle already has a unique trivialization, and
hence a "canonical" Spin structure. There are often other Spin structures, but,
none of these come from framings. In case n = 2, 5pin(2) = 8 1 , 50(2) = 51 and
the map is the double cover. If an 50(2) bundle is trivial, frarnings are acted on
simply transitively by HI (B; Z). The corresponding Spin structures are equivalent
iff the class in HI (B; Z/2Z) is trivial. If B is a circle the bundle is trivial iff it has a
Spin structure and both Spin structures come from frarnings. The Spin structure
determines the framing up to an action by an even element in Z, so we often say
that the Spin structure determines an even framing. If n > 2 and B is still a circle,
then the bundle is framed iff it has a Spin structure and now framings and Spin
structures are in 1-1 correspondence.

Of course, given any Spin structure on a bundle over B, and any map f: 8 1 -+

n, we can pull the bundle back via f and apply the above discussion. Since Spin
st.ructures on the bundle are in 1-1 correspondence with HI (B; Z/2Z), which is
detected by mapping in circles, we can recover the Spin structure by describing
how the bundle is framed when restricted to each circle (with a little care if n = 1
or 2). Moreover, if an SO(n) bundle over a CW complex is trivial when restricted
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to the 2-skeleton, then W2 vanishes, so the bundle has a Spin structure. H n -# 2
and the bundle has a Spin structure then, restricted to the 2- skeleton, it is trivial.
If n = 2 this last remark is false as the tangent bundle to 52 shows.

Finally, we need to discuss stabilization. All our groups come in families in­
dexed by the natural numbers and there are inclusions of one in the next. An
example is the family O(n) with O(n) -+ O(n + 1) by adding a 1 in the bottom
right, and all our other families have similar patterns. This is of course a special case
of our general discussion of H structures on G bundles. Given a vector bundle, e,
and an oriented line bundle, €1 , the O(n) transition functions for eextend naturally
to a set of O(n + 1) transition functions for ~ E9 €1 using the above homomorphism,
and any of our structures on ~ will extend naturally to a similar structure on eEB €1 •

We call the structure on ~ EB €1 the stabilization of the structure on e.
A particular case of great interest to us is the relation between tangent bundles

in a manifold with boundary. Suppose M is a codimension 0 subset of the boundary
of W. We can consider the tangent bundle of W, say Tw, restricted to M. It is
naturally identified with TM EB VMCW where v denotes the normal bundle. This
normal bundle is framed by the "inward-pointing" normal, so we can compare
structures on M with structures on W using stabilization.

Since both Pin±(n) are Lie groups and have homomorphisms'into O(n), the
above discussion applies.

Remarks. With this definition it is clear that, if there is a Pin± structure on a
bundle eover a space B then HI (B; Z/2Z) acts on the set of Pin± structures in a
simply transitive manner. It is also clear that the obstruction to existence of such
a structure must be a 2-dimensional cohomology class in H2 (EO(n); Z/2Z) that
restricts to W2 E H2 (BSO(n); Z/2Z) and hence is either W2(~) or W2(e) + w~(e).
Here Wi denotes the i-th Stiefel-Whitney class of the bundle.

We sort out the obstructions next.

Lemma 1.2. Let A be a line bundle over a CW complex B. Then,\ has a Pin+
structure and A E9 A E9 ,\ has a Pin- structure.

Proof: Since Pin+(l) ~ 0(1) is just a projection, Z/2Z (f) Z/2Z ~ Z/2Z, there is
a group homomorphism, 0(1) ~ Pin+(l), splitting the projection. H we compose
transition functions for Awith this homomorphism, we get a set of Pin+ transition
functions for A. Hwe have an equivalent 0(1) bundle, the two Pin+(1) bundles are
also equivalent.

Transition functions for 3A are given by taking transition functions for A and
composing with the homomorphism 0(1) ~ 0(3) which sends ±1 to the matrix

(
±1 0 0)o ±1 0 . It is easy to check that this homomorphism lifts through a
o 0 ±1
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homomorphism 0(1) ~ Pin-(3). If we have an equivalent 0(1) bundle, the two
Pin-(3) bundles are also equivalent.•

Addendum to 1.2. Notice that we have proved a bit more. The homomorphisms
we chose are not unique, but can be chosen once and for all. Hence a line bundle
has a "canonical" Pin+ structure and 3 times a line bundle has a "canonical" Pin­
structure.

Remark. There are two choices for the homomorphisms above. If we choose the
other then the two "canonical" Pin+ structures on a line bundle differ by the action
of WI of the line bundle, with a similar remark for the Pin-case.

Lemma 1.3. The obstruction to lifting an O(n)-bundle to a Pin+(n)-bundle is
W2, and to a Pin- (n )-bundle is W2 + w~. IfeEf) A = trivial bundle, then ehas a
Pin- structure iff ,\ has a Pin+ structure.

Proof: A line bundle has a Pin+ structure by Lemma 1.2, so W2 = 0, but there are
examples, e.g. the canonical bundle over Rp2, for which wi f. O. Hence W2 is the
obstruction to a bundle having a Pin+ structure.

For 3 times a line bundle, W2 = w~, so we can find examples, e.g. 3 times the
canonical bundle over Rp2, for which W2 +w~ = 0 but W2 f. O. Hence W2 +w; is
the obstruction to having a Pin- structure.

The remaining claim is an easy characteristic class calculation.•

The fact that the tangent bundle and normal bundles have different structures
can lead to some confusion. In the rest of this paper, when we say a manifold has
a Pin± structure, we mean that the tangent bundle to the manifold has a Pin±
structure. As an example of the possibilities of confusion, the Pin bordism theory
calculated by Anderson, Brown and Peterson, [ABP2], is Pin- bordism. They do
the calculation by computing the stable homotopy of a Thom spectrum, which as
usual is the Thorn spectrum for the normal bundles of the manifolds. The key fact
that makes their calculation work is that W2 vanishes, but this is W2 of the normal
bundle, so the tangent bundle has a Pin- structure and we call this Pin- bordism.

We remark that a Pin± structure is equivalent to a stable Pin± structure and
similarly for Spin. This can be seen by observing that

Pin±(n) --+

!
O(n) ---+

Pin±(n+1)

!
O(n + 1)

commutes and is a pull-back of groups, with a similar diagram in the Spin case.

In order to be able to carefully discuss structures on bundles, we introduce the
f()llowing notation and definitions. Given a vector bundle, ~, let Pin±(e) denote the
~·i«·t of Pin± structures on it. If eis an oriented vector bundle, let Spin(e) denote
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the set of Spin structures on it. Throughout this paper we will be writing down
functions between sets of Pin± or Spin structures. All these sets, if non-empty are
acted on, simply transitively, by HI (B; Z/2Z) where B is the base of the bundle.

Definition 1.4. We say that a function between two sets of structures on bundles
over bases B I and B2 respectively is natural provided there is a homomorphism
HI (B1 ; Z/2Z) ~ HI (B2 ; Z/2Z) so that the resulting map is equivariant.

One example of this concept is the following construction.

Construction 1.5. Let j: el ~ e2 be a bundle map covering f: B 1 --+ B2 • Given
a cover and transition functions for B2 and e2, we can use 1 and j to construct a
cover and transition functions for B1and e1. This construction induces a natural
function

j*: Pin±(e2) --+ Pin±(el)

with a similar map for Spin structures if we use j to pull back the orientation.

There are two examples of this construction we will use frequently. The first
is to consider an open subset U C M of a manifold M: here the derivative of
the inclusion is a bundle map so Construction 1.5 gives us a natural restriction
of structures. The second is to consider a codimerision 0 immersion between two
manifolds, say f: N ~ M. Again the derivative is a bundle map so we get a natural
restriction of structures.

We can also formally discuss stabilization.

Lemma 1.6. Let ebe a vector bundle, and let e1 be a trivial line bundle, both
over a connected space B. There are natural one to one correspondences

Sr(e): 1'in±(e) --+ 1'in±(e ffi .4 e1
) .

1=1

Ifeis oriented there is a natural one to one correspondence

" r r
Given a bundle map f: el ~ e2, there is another bundle map (I EB .$ 1): el EB .67 e1~

&=1 1=1
re2 ED .61 e1 . The obvious squares involving these bundle maps and the stabilization

1=1
maps commute.

We would like a result that relates Pin± structures on bundles to the geometry
of the bundle restricted over the I-skeleton mimicking the framing condition for the
Spin case. We settle for the next result. Let en be an n-plane bundle over a CW­
complex X, and let det ebe the determinant bundle of en.
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Lemma 1.7. There exist natural bijections

and

\II4k+l (e): Pin-(e) ~ Spin(e EB (4k +1) <let e)

W4k+3(e): Pin+(e) -+ Spince EB (4k +3) det e)

\II4k+2Ce): Pin±(e) -+ Pin+(e EB (4k +2) det e)
'!J4k(e): Pin±(e)~ Pin±(e EB (4k) det e)

q,tk(e): Spin(e) ~ Spin(e EB (4k) det e) ·

A bundle map j: el ~ e2 defines a bundle map det el ~ det e2. Using this map
between determinant bundles, all the squares involving the \II maps commute.

Proof: It follows from Lemma 1.3 that the existence of a structure of the correct
sort on eis equivalent to the existence of a structure of the correct sort on eEBr det e.

Let us begin by recalling the transition functions for the various bundles. There
are homomorphisms 6r : O(n) ~ O(n + r) defined by sending an n X n matrix A to
the (n + r) X (n + r) matrix which is A in the first m X m locations, det A in the
remaining r diagonal locations, and zero elsewhere.

If Ui, 9ij:Ui nUj --. O(n) is a family of transition functions for e, then br 09ij
is a family of transition functions for eEB r det e.

Next, we describe a function from the set of structures on e to the set of
structures on e67 r det e.

Begin with the case in which e has a Pin- structure with transition functions
Gij: Uj nUj -+ Pin - (n) lifting the given set gij into O(n). Pick an element e in
the Clifford algebra for R n EB R 1 so that e2 = -1 and e maps to reflection through
R n under the canonical map to O(n + 1). There are two such choices but choose
one once and for all. Define Hij into Pion-en + 1) by Hij(u) = i(Gij(u) · Xij(U)
where i denotes the natural inclusion of Pin-en) into Pin-en + 1) and Xij(U) is e
if det gij (u) = -1 and 1 otherwise.

It is clear that the Hij land in Spin(n + 1), but what needs to be checked
is that they are a set of transition functions for our bundle. Clearly they lift the
transition functiQns for the underlying SO(n +1) bundle, so we need to c~nsider
the cocycle relation. This says that Hij(u)Hjk(U)Hki(U) = 1. If we replace the
H's by G's, we do have the relation, so let us compute Hij(u)Hjk(u)Hki(u) =
Gij(U)Xij(U)Gjk(U)Xjk(U)Gld(U)Xki(U). Any x commutes past a G if the x associ­
a.ted to the G is 1 and it goes past with a sign switch if the x associated to the G is
(). Also note that either none or two of the x's in our product are e. We leave it to
t.he reader to work through the cases to see that the cocycle relation always holds
and to note that the key point is that e2 = -1.

Next, consider the case in which ehas a Pin+ structure, and let Gij continue
1.0 denote the transition functions. Let el, e2 and e3 denote elements in the Pin+
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Clifford algebra for Rn Ea R 3 : each ei covers reflection in a hyperplane perpendic­
ular to one of the three standard basis vectors for the R3 factor. Define Hij as
above except replace e by ele2ea. The proof goes just as before after we note that
(ele2ea)2 = -1.

For the case in which r = 2 and emay have either a Pin+ or a Pin- structure,
choose el and e2; note that (et e2)2 = -1 and proceed as above.

The last natural bijection is also easy. If gij are transition functions for eit
is easy to choose the cover so that there are lifts Gij of our functions to Pin-(n)
(or Pin+(n) if the reader prefers), but the cocycle relation may not be satisfied.
We can define new functions Hij into Spin(4n) by just juxtaposing 4 copies of Gij
thought of as acting on four copies of the same space. These functions can easily
be checked to satisfy the cocycle condition.

Now that we have defined our functions, the results of the theorem are easy.
The reader should check that the functions we defined are HI ( ; Z/2Z) equivariant
and hence induce 1-1 transfonnations. ~

Remark 1.8. We did make a choice in the proof of 1.7. The choice was global
and so the lemma holds, but it is interesting to contemplate the effect of making
the other choice. It is not too hard to work out that if we continue to use 1, but
replace e by -e, the new Spin structure will differ from the old one by the action
of Wl(e). The same result holds if we switch an odd number of the el, e2, e3 in the
Pin+ case or an one of et, e2 in the r = 2 case.

For later use, we need a version of Lemma 1.7 in which the line bundles are
merely isomorphic to. the determinant bundle. To be able to describe the effect of
changing our choices, we need the following discussion.

There is a well-known operation on' an oriented vector bundle known as "re­
versing the orientation". Explicitly, suppose that we have transition functions,
gij, defined into SO(n) based on a numerable cover {Ui}. Then we choose maps
hi:Ui ~ O(n) - SO(n) and let the bundle with the "opposite orientation" have
transition functions hi o gij o hjl and use the maps hi to get the O(n) equivalence,
with the original bundle. The choice of the hi is far from unique, but any two choices '
yield equivalent SOCn) bundles. In the same fashion, given a Spin(n) bundle, we
can consider the opposite Spin structure. Proceed just as above using Spinen) for '
SO(n) and Pin+(n) or Pin-(n) for O(n). ..::

Note that a Spin structure and its opposite are equivalent Pin+ or Pin- :;
structures. Conversely, given a Pin± structure on a vector bundle which happens to
be orientable, then there are two compatible Spin structures which are the opposites'
of each other. We summarize the above discussion as

Lemma 1.9. If eis an oriented vector bundle, then there is a natural one to one
correspondence, called reversing the spin structure,

Re: Spin(e) -+ Spin( -e)
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where -e denotes ewith the orientation reversed. We have that 'Re0'R-e is the
identity. Finally, given a bundle map j as in Construction 1.5, the obvious square
commutes.

Proof: We described the transfonnation above, and it is not hard to see that it
is HI (; Z/2Z) equivariant. It is also easy to check that the conlposition fonnula
holds.•

In practice, we can rarely identify our bundles with the accuracy demanded
by Lemma 1.7 or Lemma 1.6, so we discuss the effect of a bundle automorphism

r
on the sets of structures. Suppose we have a bundle X = eEB .E9 A, where A is a

1=1

line bundle. We will study the case A is trivial (so called "stabilization") and the
case A is isomorphic_ to det e. Let, be a bundle automorphism of X which is the

r
sum of the identity on eand some automorphism of .$ A. The transition functions

.=1
r

for Ea A are either the identity or minus the identity, both of which are central in
i=1

O(r) so , is equivalent to a collection of maps ,: B --+ O(r), where B is the base of
the bundle. The bundle automorphism induces a natural automorphism of Pin±
structures on x, described in the proof of

Lemma 1.10. Let the base of the bundle, B, be path connected. The map induced
by , on structures, denoted ,*, is the identity if, lands in SOCr). Otherwise it
reverses the Spin structure in the Spin case and acts via Wl(e) in the Pin± case if
..\ is trivial and by r . WI (e) if A is isomorphic to det e.

Proof: To fix notation, choose transition functions for a structure on e(either Spin
or Pin±). Pick transition functions for A using the same cover. If A is trivial, take
the identity for the transition functions and if A is the determinant bundle take the
determinant of the transition functions for e. The new structure induced by , has
transition functions .y(U)Oij(U}y-l(U) where 0ij denotes the old transition functions
and .y(u) denotes a lift of I(U) to Pin±(r) and then into Pin±(n+ r) where ehas
dimension n. There may be no continuous choice of 7', but since the two lifts yield
the same conjugation, the new transition functions remain continuous. The element
Oij(U )Pin±(n + r) has the fonn x with x involving only the first n basis vectors in
the Clifford algebra if det Oij(u) = 1 or if A is trivial: otherwise xen+l .. · en+r with
x as before.

Recall i'x = (_l)a(x)a("Y)x-y and -)ien+l ... en+r = (-1Yl'("Y)(r-l)en+l ... en+r7'
where it on Pin± is the restriction of the mod 2 grading from the Clifford algebra
a.nd it on O(r) is 1 iff the element is in BO(r). The result now follows for Pin±
structures. The result for Spin structures is now clear. H I takes values in SO(r)
t.hen the bundle map preserves the orientation and the underlying Pin- structure,
hence the Spinstructure. H I takes values in O(r) - SO(r), compose the map
iuduced by , with the reverse Spin structure map. The reverse Spin structure map
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is induced by any constant map B --t OCr) - SO(r). Hence the composite of these
two maps is induced by a map B -+ SO(r) and hence is the i,dentity.•

There are a couple of further compatibility questions involving the functions we
have been discussing. Given an SOCn) bundle eand an oriented trivial line bundle
e1 , we get a natural SOCn + r) bundle e EI1 rel and an isomorphism -e ED reI ~

-(e EB reI).

Lemma 1.11. With the above identifications, stabilization followed by reversing
the Spin structure agrees with reversing the Spin structure and then stabilizing:
i.e. n.effirEOS:(e) = s:(-e)oR(e).

Proof: Left to the reader.•

Let Mrn be Pin± and let vrn-l be a codimension 1 manifold of M with normal
line bundle v. We wish to apply Lemma 1.7 to the problem of constructing a
"natural" structure on V. IT there is a natural map from structures on M to
structures on V, we say that V inherits a structure from the structure on M. Of
course, the homomorphism HI (M; Z/2Z) --. HI (V; Z/2Z) implicit in the use of
"natural" is just the one induced by the inclusion.

Corollary 1.12. If v is trivialized then V inherits a Pin± structure from a Pin±
structure on M. If M and V are oriented then V inherits a Spin structure from a
Spin structure on M. \

Proof: When v is trivialized the result follows from Lemma 1.6. If M and V a.re
oriented, then we can trivialize (i.e. orient) v so that the orientation on Tv EB v
agrees with the orientation on TMlv .•

A case much like Corollary 1.12 occurs when M is a manifold with boundary,
V = 8M. In this case, the normal bundle, v, is trivialized by the geometry, namely
the preferred direction is inward. Just as in Corollary 1.12, we put v last getting
TMlaM = TaM EI1 v. On orientations this gives the convention "inward normal last"
which we adopt for orienting boundaries. Furthermore, a Spin or Pin± structure
on M now induces one on 8M, so we have a bordism theory of Spin manifolds and
of Pin± manifolds.

In the Spin case, the inverse in the bordism group is formed by taking the
manifold, M, with Spin structure on TM, and reversing the Spin structure. In
either the Pin+ or the Pin- case, the inverse in bordism is formed by acting on the
given structure by wI(M). Having to switch the Pin± structure to form the inverse
is what prevents n;in:i: from being a Z/2Z vector space like ordinary unoriented
bordism. The explicit formula for the inverse does imply

Corollary 1.13. The image ofn~pin(x) in n~in± (X) has exponent 2 for any C"YV
complex X, or even any spectrum.
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The "inward normal last" rule has some consequences. Suppose we have a
manifold with boundary M, 8M, and a structure on M X R I • We can first restrict
to the boundary, which is (aM) x R 1 , and then do the codimension 1 restriction, or
else we can do the codimension 1 restriction to M and then restrict to the boundary.

Lemma 1.14. The two natural functions described above,

differ by the action ofWt(M). The same map between Spin structures reverses the
Spin structure.

Proof: By considering restriction maps it is easy to see that it suffices to prove the
result for M = (aM) x [0,00), and here the functions are bijections. Consider the
inverse from structures on 8M to structures on aM x R I X [0, 00). The two different
functions differ by a bundle automorphism which interchanges the last two trivial
factors. By Lemma 1.10, this has the effect claimed.•

In the not necessarily trivial case we also have a "restriction of structure" result.

Corollary 1.15. If v is not necessarily trivial, then V inherits a structure from
one on M in three of the four cases below:

V orientable
v = detTM

V not necessarily orientable

v =detTv

Pin+

Spin

Pin­

None

3
Proof: In the northwest case, Tvffiv = TMlv has a Pin+ structure, so TM Ea det TM

3 3 4
has a Spin structure. But TM EB det TM Iv = Tv EB v EB EB det TM Iv = Tv EB det TM Iv
so Tv and hence V acquires a Spin structure. However, there is a choice in the
above equation: we have had to identify v with det TM Iv. When we say that the v
and det TM are equal, we mean that we have fixed a choice.

A similar argument works in the southeast case: Tv E9 det Tv is naturally
oriented, so an identification of v with det Tv gives Tv ED v = TM Iv. Since M has
a Pin- structure, V gets a Pin-structure.

In the southwest case, consider E C M, a tubular neighborhood of V. Since v
and det Tv are identified, and since Tv Ea det Tv is naturally oriented, E is oriented
and hence the Pin+ structure reduces uniquely to a Spin structure. From here the
argument is the same as in the last paragraph.

Lastly, consider the northeast case. If we let V = Rp5 C Rp6 = M, we see
that M has a Pin- structure; v and det TM are isomorphic; V is orientable but
does not have any Spin structures at all.•
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Remark. If we just assume that the line bundles in the table are isomorphic, which
is surely the more usual situation, then we no longer get a well-defined structure.
The new structure is obtained from the old one by first reversing orientation in the
Spin case, and then acting by Wl(V). A similar remark applies to Corollary 1.12.

§2. Pin- structures on low-dimensional manifolds and further generalities.

We begin this section by recalling some well-known characteristic class formu­
las. Every I-dimensional manifold is orientable and has Spin and Pin± structures.
It is easy to parlay this into a proof that n~pin ~ Z and Gfin± ~ Z/2Z, with
the isomorphism being given by the number of points (for Spin) and the number
of points mod 2 for Pin±. Using the Wu relations, [M-S, p. 132], we see that
every surface and every 3-manifold has a Pin- structure, and hence oriented 2
and 3-manifolds have Spin structures. We can also say that a 2 or 3-manifold has
a Pin+ structure iff w~ = O. For surfaces this translates into having even Euler
characteristic or into being an unoriented boundary.

We next give a more detailed discussion of structures on SI. The tangent
bundle to S1 is trivial and I-dimensional, hence a trivialization is the same thing
as an orientation. Since HI (51; Z/2Z) ~ Z/2Z, there are two Spin structures on
the circle. Since the tangent bundle to 8 1 does not extend to a non-zero vector
field over the 2-disk, the two Spin structures on an oriented Slcan be described as
follows: one of them is the Spin structure coming from the framing given by the
orientation (this is called the Lie group framing or the Lie group Spin structure)
and the other one is the one induced by the unique Spin structure on the 2-disk
restricted to SI.

Theorem 2.1. The group n~pin ~ Z/2Z, generated by the Lie group Spin struc­
ture on the circle; nfin- ~ Z/2Z and the natural map n~pin --+ nfin- is an

isomorphism; niin+ = o.
Proof: Since the 2-disk has an orientation reversing involution, the restriction of
this involution to the boundary gives an equivalence between 51 with Lie group Spin
structure and 8 1 with the orientation reversed and the Lie group Spin structure.
Hence n~pin and Orin:!: are each 0 or Z/2Z. Suppose 8 1 is the boundary of an
oriented surface F. It is easy to check that all Spin structures on F induce the same
Spin structure on S1. If we let F denote FU B2 then F also has a Spin structure,
and it is easy to see that any Spin structure on F extends (uniquely) to one on F.
In particular, the Spin structure induced on S1 is the one which extends over the
2-disk, so 51 with the Lie group Spin structure does not bound.

The proof for the Pin - case is ident.ical because any surface has a Pin - struc­
ture.

In the Pin+ case however, Rp2 does not have a Pin+ structure. On the other
hand, Rp2 - int B2 (which is the Mobius band) does have a Pin+ structure. The
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induced Pin+ structure on the boundary must therefore be one which does not
extend over the 2-disk, and hence the circle with the Lie group Pin+ structure
does bound.•

In dimension 4, the generic manifold supports neither a Spin nor a Pin±
structure. A substitute which works fairly well is to consider a 4-manifold with a
submanifold dual to W2 or W2 +wi. We will also have need to consider submanifolds
dual to WI. A general discussion of these concepts does not seem out of place here.

Let M be a paracompact manifold, with or without boundary. Let a be a
cohomology class in Hi (M; Z/2Z). We say that a codimension i submanifold of
M, say W eM, is dual to a iff the embedding of W in M is proper and the boundary
of M intersects W precisely in the boundary of W. The fundamental class of W
is a class iIi H~·!:i(W, aw; Z/2Z), where H'·I. denotes homology with locally finite
chains. With the conditions we have imposed on our embedding, this class maps
under the inclusion to an element in H~~·i(M,aM; Z/2Z). Under Poincare duality,
H~~·i(M,aM; Z/2Z) is isomorphic to Hi (M; Z/2Z) and we require that the image
of the fundamental class of W map under this isomorphism to a. Specifically, in
H~~·i(M,aM;Z/2Z),we have the equation an [M,oM] = i*[W,aW].

A cohomology class in HR (B; A), is given by a homotopy class of maps, B --+

[«A,n), where ]((A,n) is the Eilenberg-MacLane space with 7rn ~ A. IT TO(n)
denotes the Thorn space of the universal bundle over BO(n), then the Thorn class
gives a map TO(n) --+ K(Z/2Z,n). IT M is a manifold, the Pontrjagin-Thom
construction shows that a E Hn (M; Z/2Z) is dual to a submanifold iff the map
M -+ K(Z/2Z,n) representing a lifts to a map M -+ TO(n). Similar remarks
hold if A = Z with BO(n) replaces by BSO(n). The submanifold, V, is obtained
by transversality, so the normal bundle is identified with the universal bundle over
BO(n) or BSO(n) and the Thorn class pulls back to a. Hence there is a map
(M,M - V) -+ (TO(n),*) which is a monomorphism on H n (;Z/2Z) by excision.
The Thorn isomorphism theorem shows Hn (M, M - V; Z/2Z) ~ HO (V; Z/2Z) so
Hn (M, M - V; Z/2Z) is naturally isomorphic to a direct product of Z/2Z's and
the Thom class in Hn (TO(n), *; Z/2Z) restricts to the product of the generators.
It follows that a restricted to M - V is o. It also follows that a restricted to V is
the Euler class of the normal bundle.

Since TO(I) = Rpoo = K(Z/2Z, I) all I-dimensional mod 2 cohomology
classes have dual submanifolds. Since TSO(I) = S1 = K(Z,I) all I-dimensional
integral homology classes have dual submanifolds with oriented normal bundles.
This holds even if M is not orientable, in which case the submanifold need not be
orientable either. Since TSO(2) = Cpoo = !(Z,2), any 2-dimensional integral
cohomology class has a dual submanifold with oriented normal bundle. A case of
interest to us is TO(2). The map TO(2) -+ [«Z/2Z, 2) is not an equivalence, and
not all 2-dimensional mod 2 cohomology classes have duals. As long as the manifold
has dimension ~ 4, duals can be constructed directly, but these techniques fail in di-
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mensions 5 or more. A more detailed analysis of the map TO(2) ~ K(Z/2Z,2) also
shows the same thing: there are no obstructions to doing the lift until one gets to di­
mension 5 and then there are. It is amusing to note that the obstruction to realizing
a class a in a 5-manifold is Sq2 SqI a+aSql a E H 5 (M; Z/2Z) / Sql(H4 (M; Z/2Z)):
in particular, if M is not orientable, then any class can be realized.'

In our case we want to consider duals to WI, w2 and W2 + w~. We begin with
WI' This is an example for which the above discussion shows that we always have
a dual, say V m- I C Mm. We want to use the fact that we have a dual to WI. The
first question we want to consider is when is an arbitrary codimension 1 submanifold
dual to WI. The answer is supplied by

Lemma 2.2. A codimension 1 submanifold V C M is dual to wl(M) iff there
exists an orientation on M - V which does not extend across any component of V.
The set of such orientations is acted on simply transitively by H O (M; Z/2Z).

Remark. We say that an orientation on N - X does not extend across X if there
is no orientation on N which restricts to the given one on N - X. We can take
N = (M - V) U YO and X = Yo, where Vo is a component of V. By varying Vo over
the path components of V we get a definition of an orientation on M - V which does
not extend across any component (= path component) of V. A similar definition
applies to the case of a Spin or Pin± structure on M - V which does not extend
across any component of V.

Proof: Suppose that M - V is orientable and fix an orientation. If Vi denotes
the normal bundle to the component Vi of V, let (D(Vi), S(Vi») represent the disk
sphere bundle pair. Each S(Vi) is oriented by our fixed orientation on M - V
since M - -Ll D(Vi) C M - V is a codimension 0 submanifold (hence oriented) and ,
JL B(Vi) can be naturally added as a boundary. Define b E H 1 (M, M - V; Z/2Z) ~
(fJHl (D(Vi)' S(Vi); Z/2Z) ~ ffiZ/2Z on each summand as 1 if the orientation on
S(Vi) extends across D(Vi) and -1 if it does not. The class b hits wI(M) in
HI (M; Z/2Z). This can be easily checked by considering any embedded circle
in M and making it transverse to the Vi's subject to the further condition that if it
intersects ~ at a point then it just enters S(Vi) at one point and runs downs a fibre
and out the other end. The tangent bundle of M restricted to this circle is oriented
iff it crosses the Vi in an even number of points iff (i*(b),j*[SI]) = 1, where i*(b) is
the image of b in HI (M; Z/2Z) and j*[Sl] is .the image of the fundamental class of
the circle in HI (M;Z/2Z). Since wl(M) also has this property, i*(b) = wl(M) as
claimed. If we act on this orientation by c E HO (M - V; Z/2Z), the new element
in HI (M, M - V; Z/2Z) is just b+ 6*(c), where 6*(c) is the image of c under the
coboundary HO (M - V; Z/2Z) -4 HI (M,M - V; Z/2Z).

Now suppose that M - V has an orientation which does not extend across any
component of V. The bfor this orientation has a -1 in each summand, and is hence
the image of the Thom class. Therefore V is dual to wI(M).
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Next suppose that V is dual to wl(M). Then wl(M) reBtri(~ts () to M ­
V, and hence M - V is orientable. Fix one such orientation and consider the
corresponding b. Since both b and the image of the Thorn class hit, 11)1, we can find
c E HO (M - V; Z/2Z) so that b+8*(c) is the image of the Thorn class. If we alter
the given orientation on M - V by c, we get a new one which does not extend across
any component of V .•

There is also a "descent of structure" result here.

Proposition 2.3. Given Mrn, the Poincare dual to WI (M) is an orientable (m-1)­
dimensional manifold vm-l. There is an orientation on M - V which does not
extend across any component of V and this orients the boundary of a tubular
neighborhood ofV. This boundary is a double cover oiV and the covering transla­
tion is an orientation preserving free involution. In particular, V is oriented. Recall
that a E HO (M; Z/2Z) acts simply transitively on the orientations of M - V whicb
do not extend across any component oiV. Hence a acts on the set oforientations of
V by taking the image of a in HO (V; Z/2Z) and letting this class act as it usually
does.

Remark. If V has more components than M, not all orientations on V can arise
from this construction.

Proof: Suppose there is a loop ,\ in V which reverses orientation in V. If the normal
line bundle v to V in M is trivial when restricted to '\, then ,\ reverses orientation in
M also, so ,\.V =1 (mod 2); but ,\.V = 0 since v is trivial over A, a contradiction.
If viA is nontrivial, then A preserves orientation in M so A.V =0 (mod 2); but
'x.V = 1 since v is nontrivial, again a contradiction. So orientation reversing loops
A cannot exist.

Another proof that V is orientable: As we saw above Wl(V) = i*(Wl(M), where
i: V c M. Since TMlv = Tv E9 v, it follows easily from the Whitney sum formula
that Wl (V) = O.

We now continue with the proof of the proposition. Let E he a tubular neigh­
borhood of V and recall that HI (E, BE; Z/2Z) is HO (V; Z/2Z) by the Thom iso­
morphism theorem. By Lemma 2.2 each component of BE can be oriented so that
the orientation does not extend across E. Clearly BE is a double cover of V classified
by i*(Wl(M)). Since V is orientable, the covering translation must be orientation
preserving and we can orient V so that the projection map is degree 1. It is easy to
check the effect of changing the orientation on M - V which does not extend across
any component of V .•

We continue this discussion for the 2-dimensionaJ cohomology classes W2 and
'(02 + w~. Again we need a lemma which enables us to tell if a codimension 2
submanifold is dual to one of these classes. We have

Theorem 2.4. Let M be a paracompact manifold, with or without boundary. Let
F be a codimension 2 submanifold of M with finitely many components and with
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aM n F = aF. Then F is dual to W2 + w~ iff there is a Pin- structure on M - F
which does not extend across any component ofF. Furthermore HI (M; Z/2Z) acts
simply transitively on the set of Pin- structures which do not extend across any
component ofF. There are similar results for Pin+ structures and Spin structures.

Proof: The proof is rather similar to the proof of the previous result. First, let
F be a codimension 2 submanifold of M with i: F -+ M denoting the inclusion.
Let (D(Vi)' S(Vi») denote the disk, sphere bundle tubular neighborhoods to the
components of F. Suppose M - F has a Pin- structure. (The proof for Pin+ or
Spin structures is sufficiently similar that we leave it to the reader.) From Lemma
1.6, each S(Vi) inherits a Pin- structure. Define b E H2 (M, M - F; Z/2Z) ~

ffiH2 (D(Vi), S(Vi); Z/2Z) ~ ffJZ/2Z on each summand as 1 if the Pin- structure
on S(Vi) extends across D(Vi) and -1 if it does not. The class b hits w2(M) in
H 2 (M;Z/2Z). To see this, let j:N -+ M be an embedded surface which either
misses an Fi or hits it in a collection of fibre disks. As before (i*(b),j*[N]) is 1 if
TMIN has a Pin- structure and is -1 if it does not, since a bundle over a surface
with a Pin- structure over N - Jl D2 such that the Pin- structure does not
extend over the disks has a Pin- structure iff there are an even number of such
disks. Since w2(M) has the same property, i*(b) = w2(M).

Now HI (M - F; Z/2Z) acts simply transitively on the Pin- structures on
M - F and, for c E HI (M - F; Z/2Z), the new b one gets is b+ <5*(c). The proof
is now sufficiently close to the finish of the proof of Lemma 2.2 that we leave it to
the reader to finish.•

There is also a "descent of structure" result in this case, but it is sufficiently
complicated that we postpone the discussion until §6.

There are two cases in which we can show a "descent of structure" result for
Pin± structures. As above, given M we can find a submanifold V dual to wl(M).
We can then form V rtl V which is the submanifold obtained by making V transverse
to itself. If v denotes the normal bundle to V in M, then the normal bundle to V rh V
in V is naturally identified with vi v rh v and hence the normal bundle to V rtl V in
M is naturally identified with vlvrtlvffJvlvrhv' Since V is orientable, 2.3, vlvrtlv is
isomorphic to det TMlvrtlv' Hence by Lemma 1.7, a Pin± structure on M induces
one on VrhV after we identify vlvrtlv with detTMl vrnv ' If we choose the other
identification, the structure on V mV changes by twice WI (M) restricted to V mV:
i.e. the final structure on V rh V is independent of the identification.

Theorem 2.5. The function above

,is a natural function using the map, HI (M; Z/2Z) -+ HI (VrtlV; Z/2Z), induced by
the inclusion. If VI rh VI is another choice then there is a dual to WI, W C M x [0, 1]
which is V at one end and VI at the other, so that W rtl W can be constructed
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as a PinT bordism between the two PinT structures. TJJt1 rnA]' [rlu,ll inducnlf tI,

homomorphism of bordism theories

for any CW complex or spectrum X.

Proof: The naturality result follows easily from the naturality result in Lelnma 1.7.
The first bordism result follows easily once we recall that TO(t) ~ J«Z/2Z, 1) so
I-dimensional cohomology classes in M are the same as codimension 1 submanifolds
up to bordism in M X [0,1]. The bordism result is also not hard to prove.•

For another example of "descent of structure" , we consider the following: given
any manifold, Mm , the dual to WI (M) is a codimension 1 submanifold vm-I. Since
V is orientable, Proposition 2.3, we are in the northwest situation of Corollary 1.15
and V receives a pair of Spin structures. Let (n~in+)o denote the subgroup of

n~in+ consisting of those elements so that the two Spin structures on V are bordant.
It is not hard to see that if the two structures are bordant for one representative in
n~in+, then they are for any representative. Moreover, it is easy to check that the
induced map is a homomorphism:

Lemma 2.6. There is a well-defined homomozphism

[nw ]. (nPin+) ~ nSpin
1· m 0 m-l

Remark. It is not difficult to see that (n~in+)o contains the kernel of the map

[nw~] since any such element has a representative for which the normal bundle to
V is trivial. For such a V, we see a Spin bordism of 2 · V to zero, so V and - V
represent the same element in Spin bordism. Moreover, the cohomology class by
which we need to change the Spin structure is the zero class.

We conclude this section with some results we will need later which state that
different ways of inducing structures are the same.

The first relates structures (Spin or Pin:!:) and immersions. Given an immer­
sion f: N ~ M the derivative gives a bundle map between the tangent bundles and
so we can use it to pull structures on M back to N. The induced map on structures,
denoted f*, is natural in the technical sense defined earlier. Suppose we have an
embedding M o X Rl C M. Let No = f-l(Mo) and note that there is an embedding
No x Rl C N so that f restricted to No X Rl is 9 X id where g: No ~ Mo is also
an immersion.
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Lemma 2.8. The two Spin structures on 8E are the same.

Proof: Begin with the I-dimensional case. Here we are discussing Spin structures
on the circle. Suppose that the line bundle is non-trivial. Thinking of the circle
as the boundary of E, we see that it has the Lie Spin structure from Theorem 2.1.
Thinking of it as the connected double cover we also see that it has the Lie group
Spin structure, so the result is true in dimension 1. The case in which the line
bundle is trivial is even easier.

The proof proceeds by induction on dimension. Suppose we know the result
in dimension m - 1 and let M have dimension m > 1. It suffices to show that the
two Spin structures on BE agree when restricted to embedded circles. We can span
HI (M; Z/2Z) by embedded circles, Sf, i = 1,···, r, where all the circles except
the first lift to disjoint circles in the double cover. The first double covers itself
if the line bundle is non-trivial and lifts to disjoint circles otherwise. The group
HI (BE; Z/2Z) is spanned by the collection of connected components of the covers
from the circles in M.

Let M o be the boundary of the tubular neighborhood of such a circle and let
!VIo be a connected component of the corresponding double cover. It suffices to

Lemma 2.7. The following diagram commutes

Pin±(N)
,.

'Pin±(M)-..-...+

sNl ls~

Pin±(No)
g.

'Pin±(Mo)----.

where we orient R 1 and Lemma 1.6 gives us the natural map 8Mas the composite
s

'Pin±(M) -. Pin±(Mo X R t )---+'Pin±(Mo) with a similar definition for S'tv. There
is a similar result for Spin structures.

Proof: We can easily reduce to the case M = M o X Rl. The required result can
now be checked by choosing transition functions on M o and extending to transition
functions for all the other bundles in sight, The two bundle we want to be isomorphic
will be identical.•

The next result relates double covers and Pin+ structures. Let M be a manifold
with a Spin structure, and let x: 1rI(M) ~ Z/2Z be a homomorphism (equivalently,
x E HI (M; Z/2Z». Let E be the total space of the induced line bundle over M.
By Lemma 1.7, E has a natural Pin+ structure induced from the Spin structure
on M. Hence BE receives a Pin+ structure. Furthermore, BE is orientable and
we orient it by requiring the covering map 11": {)E -+ M to be degree 1. The Pin+;,i
structure and the orientation give a Spin structure on 8E. We can also use the r.

oj

immersion 7r to pull the Spin structure on M back to one on BE. ;J
~

~
.:~
.J

1
.~
.'~

:1
~~
-Jj
'.J.

,I
j
~

11l
o~

~
~

'1
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prove that the two Spin structures on BE agree when restricted to Mo. We can
restrict the line bundle to Mo and consider the resulting ,total space Eo. First note
that Eo has trivial normal bundle in E and that it suffices to show that the two
Spin structures on 8E agree when restricted to BEo.

Consider first the Spin structure induced by the double cover map. This map
is an immersion, so Lemma 2.7 shows that inducing the structure on oE and then
restricting to oEo is the same as first restricting the structure to Mo and then
inducing via the double cover map BEo ~ Mo.

Next consider the Spin structure induced by restricting the Pin+ structure to
the boundary. We can restrict the Pin+ structure on E to Eo and then restrict to
oEo or else restrict to the boundary and then to BEo. These are not obviously the
same: if we let VI be the normal vector to Eo in E, restricted to BEo, and let V2 be
the normal bundle to oE in E, again restricted to BEo. We have a Spin structure
on TEJoEo' and in the two cases we identify this bundle with TaEo EB VI EB V2 in
one case and with T8Eo EB V2 EB VI in the other. By Lemma 1.10, these two ways of
getting the Spin structure via boundaries agree up to a reverse of Spin structure.
But we are using the orientation of M to keep track of all the other orientations,
so the structures turn out to agree.

Our inductive hypothesis applies over Mo and we conclude that the two Spin
structures on BEo agree.•

The other result relates double covers and the '112 • Let M be a manifold and let
E' be the total space of the bundle det TM EB det TM over M. There is a natural one
to one function w2:Pin±(M) ~ 'Pin=f(E'). Let E C E' be the total space of the
first copy of det TM: note aE -+ M is a 2 sheeted cover. The embedding 8E c E'
has a normal bundle which we see as two copies of the trivial bundle, which happens
to be det ToE- This gives a natural function '112'Pin =F(E') ~ Pin±(oE).

Theorem 2.9. The Pin± structure defined above on aE is the same as the one
induced by the double cover map.

Proof: We begin by proving that certain diagrams commute. To fix notation, let
Mo x Rl C M. Let Eo denote the total space of det TMo EBdet TMo and observe that
we can embed Eo x Rl in E. We can arrange the embedding so that on 0 sections
it is our given embedding, and so that (BEo) x Rl is embedded in BE. We begin
with

'11 2
Pin±(M) ~ P=f(E')

L 11 1L 2

'11 2
Pin±(Mo) ~ 'P=f(E~)

where L1 is just S-1 followed by the restriction map induced by the embedding of
Mo x R 1 in M and L2 is defined similarly but using the embedding of Eo x R 1 in
E. This diagraIn ("( ..-.. __ .... oft~ 'h... T ....'rV'..-~ 1 1 () 'i\To ""Q~ fho~ ~oClfor;,.f +h;~ Q+ ...l1~tl1 ...~ tn



200 Kirby & Taylor: Pin structures on low-dimensional manifolds

8E and then further to (BEo) x Rl. Since stabilization commutes with restriction
we see

Pin±(M) ~ Pin±(8E)

La1 1£4
Pin±(Mo) ~ Pin±(8Eo)

commutes, where £3 is defined by restricting from M to Mo x R I followed by the
inverse stabilization map and L4 is defined by restricting from BE to (8Eo) x R 1

followed by the inverse stabilization map.

The proof now proceeds much like the last one. First we check the result for
8 1 . Applying the last diagram to the 2-disk with boundary 51 shows the result for
the structure which bOWlds. Apply the Pin+ diagram to the Mobius band to see
the result for the Lie Pin+ structure. The result now holds for any Pin+ structure
on 8 1 . Hence it holds for Spin structures and hence for Pin- structures.

For M of dimension at least 2 we induct on the dimension. But just like the
proof of the preceding result, this follows from the commutativity of our second
diagram.•

§3. Pin- structures on surfaces, quadratic forms and Brown's arf invariant.

In this section we want to recall an algebraic way of describing Pin - structures
due to Brown [Br].

Definition 3.1. A function q: HI (F; Z/2Z) -+ Z/4Z is called a quadratic enhance­
ment of the intersection form provided it satisfies q(x +y) = q(x) +q(y) +2· x.y for
all x, y E HI (F; Z/2Z) (here 2· denotes the inclusion Z/2Z C Z/4Z and. denotes
intersection number.

The main technical result of this section is

Theorem 3.2. There is a canonical 1-1 correspondence between Pin- structures
on a surface F and quadratic enhancements of the intersection form.

Discussion. One sometimes says that there is a 1-1 correspondence between Pin­
structures on F and HI (F; Z/2Z), but this is non-canonical. Canonically, there is
an action of HI (F; Z/2Z) on the set of Pin- structures which is simply transitive.
Once a base point has been selected, the action gives a 1-1 correspondence between
HI (F; Z/2Z) and the set of Pin- structures.

Note also that HI (F; Z/2Z) acts on the set of quadratic enhancements, by
q x , goes to q,., defined by

(3.3) q-y(y) = q(y) + 2 . ,(y)

and note that this,action is simply transitive. The 1-1 correspondence in Theorem
3.2 is equivariant with respect to these actions. Indeed, the proof of Theorem 3.2 will '
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be to fix a Pin- structure on F and use it to write down a quadratic enhancement.
This gives a transformation from the set of Pin- structures to the set of quadratic
enhancements. We will check that it is equivariant for the HI (F; Z/2Z) action and
this will prove the theorem.

Before describing the enhancement, we prove a lemma that produces enhance­
ments from functions on embeddings. Specifically

Lemma 3.4. Let q be a. function which assigns an element in Z/4Z to each em­
bedded disjoint union of circles in a surface F subject to the following conditions:

(a) q is additive on disjoint union; if L1 and L2 are two embedded collections of
circles such that L1 II L2 is also an embedding then ti(L1 lL L2 ) = q(L1 ) +
q(L2 )

(b) if L1 and L2 are embedded collections of circles which cross transversely at
r points, then we can get a third embedded collection, L3 , by replacing each
crossing: we require q(L3 ) = q(L}) +q(L2 ) +2 . r

(c) if L is a single embedded circle which bounds a disk in F, then q(L) = O.

Then q(L) depends only on the underlying homology class of L, and the induced
function q: HI (F; Z/2Z) --+ Z/4Z is a quadratic enhancement.

Proof: The first step is to show how given L, we may replace it with a single
embedded circle K such that the L and K represent the same homology class
in HI (F; Z/2Z) and have the same q. If L has more than one component, it
is possible to draw an arc between two different components. A small regular
neighborhood of this arc is a disk, and let 1<1 be its boundary circle. By (c),
q(K}) = o. The circle ]{l has two pairs of intersection points with L. Apply (b):
the new embedding consists of a new collection L 1 which has one fewer components
that L, and two small circles ](2 and K3 , each of which bounds a disk. Condition
(b) says that (j(LI II ](2 Jl K 3 ) = q(L) + q(1(1) = (j(L). From (a) and (c) we see
that q(L1 lL K 2 lL K3 ) = q(L1 ), so q(L) = q(L1 ), and L and L1 represent the
same homology class. Continue until there is only one component left.

Next we prove isotopy invariance of q in several steps. First, suppose A C F
is an embedded annulus with boundary Ko II K 1 and core C. We want to show
q(Ko) = q(K}) = q(C). Draw an arc from Ko to C and let K 3 be a circle bounding
a regular neighborhood of this arc. Apply condition (b): the result is two circles,
each of which bounds a disk. From conditions (a) and (c) we see q(C) = q(I<o). A
similar proof establishes the rest. We can also show that q(C) must be even. Let
C1 be a copy of C pushed off itself in the annular structure. Then q(C) = q(C1 )

since they are both q(Ko). Let L = C II C1 • Then q(L) = 2q(C) by (a). On the
other hand, just as above, we can use (b) to transform L into a picture with two
circles bounding disks, so by (a) and (c) we see q(L) = 0 and the result follows.
lfence any curve in F with trivial normal bundle has even q. Finally, suppose that
C'l is embedded in A and represents the same element in mod 2 homology as C.



202 Kirby & Taylor: Pin structures on low-dimensional manifolds

We can find a third curve C2 which also represents the same element in mod 2
homology and which intersects both C1 and C transversely. Consider say C2 and
C. Apply (b): r is even as are both q(C) and q(C2 ). Hence q(C) = q(C2 ). Similarly
q(C1 ) =q(C2 ) and we have our result.

Next suppose that M c F is a Mobius band with core Co. We can push
Co to get another copy, C1 intersecting Co transversely in one point. We can
push off another copy C2 which intersects Co and C1 transversely in a single point
and all three points are distinct. Applying (b) to pairs of these circles, we get
q(Ci ) + q(Cj) = 2 for 0 ~ i,j ~ 2, i f= j. Adding all three equations we see
2(q(CO)+q(C1 )+Q(C2 )) = 2, so at least one q(Ci) must be odd. But then returning
to the individual equations we see that q(Co) = q(C1 ) = q(C2 ), so we see that q(C)
must be odd whenever the normal bundle to C is non-trivial. Let C1 be any
embedded circle in M which represents the core in mod 2 homology. It is possible
to find a third embedded circle, C2 which also represents the core and intersects
Co and C1 transversely. Since q(Ci) must be odd, it is not hard to use (b) to show
that q(Co) = q(C1 ).

To show isotopy invariance proceed as follows. Let !( be a circle with a neigh- .
borhood W. Any isotopy of K will remain for a small interval inside W and the I
image K t will continue to represent the core in mod 2 homology. By the above dis- J
cussion qwill be constant on !{t, the circle at time t. Hence, the subset of t E [0, 1] ~I'
for which q(Kt ) = q(K) is an open set. Likewise the set of t E [0,1] for which .~

q(Kt ) =1= q(K) is an open set, so we have isotopy invariance for a single circle. By
part (a), the result for general isotopies follows as above. I

Next we prove homology invariance. Suppose L1 and L2 represent the same 'I
element in homology. By isotopy invariance, we may assume that they intersect :1
transversely. Let La be the result of applying condition (b). q(La) = q(L1 ) + o'J

q(L 2 ) + 2 · r, and L 3 is null-homologous. If we can prove q(L 3 ) = 0 then we are :1
done. As we saw above, it is no loss of generality to assume that L3 is connected, 'IZ~
and since it is null-homologous, it has trivial normal bundle, so q(L3 ) is even. Also, ;;~

since L 3 is null-homolo~ous, there exists a 2-manifold with bo~ndar!a single circle, ·;'o.o~~o.o
say W, and an embeddIng W c F so that oW = L 3 • If W 18 a dIsk we are done :0,:".

by (c), so we work by induction on the Euler characteristic of W. If W is not a .~~
disk then we can write W = Wj U V where oV = 00V lL 01 V = Sl J.L Sl, V is o:t
either a t~i~e punctured torus or a p~ctured Mobi~ band, ~dWl has large~Eu.ler !I
characterIstIc than W. We are done If we can show q(8oV) = q(Ol V). We begIn WIth 0j'~

the toral case. Using (b) and (c) as usual, we can see that q(BoV) = q(Sa) +q(Sb) oOil

where So, and Sb are two meridian circles, one on either side of the hole. Likewise <~

q(8l V) =q(Sa) +q(Sb) so we are done with this case. In the Mobius band case we ~

can again use (b) and (c) and see that q(80V) +q(81V) = o. Since they are both or,
even, again they are equal. '.~

This shows that Ii induces a function q: HI (F; Z/2Z) -+ Z/4Z, and (b) trans- ;j
lates immediately into the relation q(x + y) = q(x) + q(y) + 2· x-yo • J

1
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Now we describe our function. Let ,\ be a line bundle ()v(~r F with WI ( A) =
w}(F) and let E(A) denote its total space. From Lemma 1.7, 1:\ Spin structure on
E(A) gives a Pin- structure on F. Let K be an embedded cir(~le in F, and let T

denote the tangent bundle of E(A) restricted to K. A Spin structure on E(A) yields
a trivialization of T. It is also true that T = TSl Ef) VKcF €I' VFCE(>.), where v denotes
normal bundle. Note all three of these bundles are line bundles. Pick a point p E !<
and orient each of the line bundles at p so that the orientation on T agrees with
that coming from the Spin structure. Since TSl is trivial, the orientation picks out
a trivialization, and hence VKcF Ef) VFcE acquires a preferred even framing. (Note
that framings of a 2-plane bundle correspond to Z, while those of a 3-plane bundle
correspond to Z/2Z. Hence the framing of the 3-plane bundle picks out a set of
framing of the 2-plane bundle, a set we call even.)

Definition 3.5. Choose an odd framing on VKcF E9 VFcE and using it, count the
number (mod 4) of right half twists that VKcF makes in a complete traverse of
K. This is q(K). Given a disjoint union of circles, Lemma 3.4 (a) gives the value
of q in terms of the individual components.

. We first need to check that q really only depends on the embedded curve and
not on the choice of p or the local orientations made at p or on the choice of odd
framing. It is easy to see that the actual choice of framing within its homotopy
class is irrelevant because we get the same count in either frame. H we choose a
new odd framing the new count of right half twists will change by a multiple of 4,
so the specific choice of odd framing is irrelevant. If we move p to a new point,
we can move around K in the direction of the orientation and transport the local
orientations as we go. If we make these choices at our new point, nothing changes
so the choice of point is irrelevant. Since we must keep the same orientation on T,

we are only free to change orientations in pairs. H we keep the same orientation
on K, the odd framing on the normal bundJe remains the same and so we get the
same count. Finally, suppose we switch the orientation on !{. We can keep the
same framing on the normal bundle provided we switch the order of the two frame
vectors. If we do this and traverse K in the old positive direction we get the same
count as before, except with a minus sign. Fortunately, we are now required to
traverse K in the other direction which introduces another minus sign, so the net
result is the same count as before. Hence qonly depends on the embedded curve.

Since q satisfies Lemma 3.4 (a) by definition, we next show that it satisfies
conditions (b) and (c) also. We begin with (c). In this case, all three line bundles
are trivial, hence framed after our choice of p and the local orientations. However,
this stable framing of the circle is the Lie group one, so it is not the stable framing
of the circle which extends over the disk, Theorem 2.1. Since the framing from the
Spin structure does extend over the disk, the framing constructed above is an odd
framing, and q is clearly 0 for these choices. To show (b), consider a small disk
neighborhood of a crossing. It is not hard to check that in the framing corning from
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13: nfin- --+ Z/8Z

Lemma 3.6. The homomorphism

Aq = L e21riq(x)/4.

zEHt (F;Z/2Z)

is an isomorphism. The composite nrin- !-.Z/8Z - Z/2Z is the mod 2 Euler
characteristic and hence determines the unoriented bordism class of the surface.

This complex number has absolute value JIH1 (F; Z/2Z) I and there exists an ele­
ment (1(q) E Z/8Z such that Aq = JIB! (F; Z/2Z) I e21ri{J(q)/8.

Hence we can think of f3 as a function from Pin- structures on surfaces to
Z/8Z. It also follows from Brown's work, that (1 is an invariant of Pin- bordism:
two surfaces with Pin- structures that are Pin- bordant have the same (3.

that of the disk, we can remove the crossing without changing the count. However,
this is the even framing and we are supposed to do the counting using the odd
framing. This introduces a full twist, and so we get a contribution of 2 for each
crossing. This is (b).

Thanks to Lemma 3.4 we have described a function from the set of Pin­
structures on F to the set of quadratic enhancements on the intersection fonn on
HI (F; Z/2Z). Suppose now we change the Pin- structure by , E HI (F; Z/2Z).
The effect of this change is to reverse even and odd framings on K for which
,([() = -1 and to leave things alone for 1< for which ,([{) = 1. The effect on the
resulting q is to add 2 to q(x) if ,(x) = -1 and add nothing to it if ,(x) = 1. But
this is just q-yo

This completes the proof of Theorem 3.2.

Next we describe an invariant due to Brown, [Brl, associated to any quadratic
enhancement q. Given q, form the Gauss sum

'.i:

}
.:;'

I
I
i
;i
~J
~~

.~

;;~

il
.~
'1
I
I
t
I

Proof: Brown proves that f3 induces an isomorphism between Witt equivalence ..~
classes of quadratic forms and Z/8Z. One homomorphism from the Witt group is .:~~

the dimension mod 2 of the underlying vector space. Since this is just the mod 2 ·•..•.'..::.!.:.~.~.~:...',·.....:.;l

Euler characteristic of our surface, the second result follows. ~

Hence, if f3(F) = 0, the manifold is an unoriented boundary, say of W3
• There '::;~

is an obstruction in H 2 (W, aw; Z/2Z) to extending the Pin- structure on F across ...;;;
.)

W. If this obstruction is 0 we are done, so assume otherwise. There is a dual circle, .~;

K C W - F and the Pin- structure on F extends across W - !{. The boundary
of a neighborhood of [( is either a torus or a I{lein bottle, so if f3(F) = 0, F is
Pin- bordant to a torus or a Klein bottle with f3 still O. Moreover, since the Pin-
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structure is not supposed to extend across the neighborhood of K, one of the non­
zero classes in HI has a non-zero q. For the Klein bottle, two of the non-zero classes
have odd square and the other has even square. It is the class with even square
that must have a non-trivial q on it to prevent the Pin- structure from extending
across the disk bundle. But the Klein bottle with this sort of enhancement has
non-zero (3, so the boundary of K must be a torus. For the torus, q must vanish
on the remaining classes in H l in order to have f3 = 0 and it is easy to find a Pin­
boundary for it.•

Exercise. Show that Rp2 with its two Pin- structures has {j = ±1 E Z/8Z.

The relation between Pin - structures and quadratic enhancements is perva­
sive in low-dimensional topology. In [Ro], [F-K] and [G-M] enhancements were
produced on characteristic surfaces in order to generalize Rochlin's theorem. In
§6, we will show how to find an enhancement without the use of membranes. This
gives some generalizations of the previous work. In the next section we will study
surfaces embedded in "spun" 3-manifolds. An interesting theory that we do not
pursue is Brown's idea of studying immersions of a surface in R 3 . Since R3 has
a unique Spin structure, an immersion pulls back a Spin structure onto the total
space of a line bundle over the surface with oriented total space.

Another point we wish to investigate is the behavior of f3 under change of Pin­
structure. Hence fix a quadratic form q: V ~ Z/4Z: i.e. V is a Z/2Z-vector space;
q(rx) = r2q(x) for all x E V and r E Z; and q(x + y) - q(x) - q(y) is always even
and gives rise to a non-singular bilinear pairing A: V X V ~ Z/2Z.

Given a E V, define qa by qa(X) = q(x) +2· A(a, x).

Lemma 3.7. With notation as above, f3(qa) = f3(q) + 2· q(a).

Proof: There is a rank 1 form (1) consisting of a Z/2Z vector space with one
generator, x, for which q(x) = 1. There is a similar form (-1). It is easy to check
the formula by hand for these two cases. Or, having checked it for (1) and a = x
and a = 0, argue as follows. Given any form q, there is another form -q defined on
the same vector space by ( -q)(x) = -q(x). It is easy to check that p(-q) = -f3(q).
If the formula holds for q and a, it is easily checked for -q and a after we note
(-q)a = -(qa).

Given two forms ql on Vi and q2 on V2, we can form the orthogonal sum ql .L q2
on Vi €a V2 by the formula (ql .L q2)(Vl,V2) = ql(Vl) + q2(V2). Brown checks that
f3(qt .L q2) = f3(ql) + f3(q2). If ai E Vi, note (ql .L Q2)(at,a2) = (ql)al .L (q2)a2' so if
the formula holds for the two pieces, it holds for the orthogonal sum. Moreover, if
it holds for the sum and one of the pieces, it holds for the other piece.

Finally, note that if a = 0, the formula is true.

Now use Brown, [Br, Theorem 2.2 (viii)] to see that it suffices to prove the
formula for a form isomorphic to m(1) + n( -1) and any a and this follows from the
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above discussion.•
Next we present a "geometric" calculation of the Spin and Pin+ bordism

groups in dimension 2.

Proposition 3.8. Any Spin structure induces a unique Pin- structure, so f3 is
defined just as above for surfaces with a Spin structure. We have f3 defines an
isomorphism n:pin --+ Z/2Z. Any surface with odd Euler characteristic with any

Pin- structure is a generator for nfin- and the 2-torus with the Lie group Spin
structure is a generator for ni,in.
Proof: The proof is almost identical to that of Lemma 3.6. The surface F bounds
an oriented 3-manifold W and by considering the obstruction to extending the Spin
structure we see that F is Spin bordant to a torus with the same Spin structure as
in the proof of Lemma 3.6. Just note that the boundary constructed there is actually
a Spin boundary. It is a fact from Brown that (3 restricted to even forms only takes
on the values 0 and 4. The results about the generators are straightforward.•

The Pin+ case is more interesting. We have already seen that the only way a
surface can have a Pin+ structure is for w~ to be O. Hence the [nw;] map must

p' +also be 0, so the [nWI] map is defined on all of 02 In •

Proposition 3.9. The homomorphism [nWl]: nfin+ --+ n~pin ~ Z/2Z is an iso­
morphism. A generator is given by the Klein bottle in half of its four Pin+ struc­
tures.

Proof: A surface, F, has a Pin+ structure iff w2(F) = 0 iff F is an unoriented
boundary, say F = aw. The obstruction to the Pin+ structure on F extending
to W is given by a relative 2-dimensional cohomology class, so its dual is a 1­
dimensional absolute homology class. We can assume that it is a single circle, and
so F is Pin+ bordant to either a torus or a Klein bottle, and the Pin+ structure
has the property that it does not extend over the corresponding 2-disk bundle over
S1.

J

Since SI with either Pin+ structure is a Pin+ boundary it is not hard to see :~

that the torns with any Pin+ structure is a Pin+ boundary. There are two Pin+
structures on the Klein bottle which do not extend over the disk bundle. If one cuts
the Klein bottle open along the dual to WI and glues in two copies of the Mobius
band, one sees a Pin+ bordism between these two Pin+ structures. Hence nfin+
has at most two elements. On the other hand it is not hard to see that the Klein :
bottle with the Pin+ structures which do not extend over the disk bundle hit the i

non-zero element in n~pin under [nWl]' •
For future convenience let us discuss another way to "see" structures on the

torus and the Klein bottle. We begin with the torus, T2.

Example 3.10. We can write T2 as the union of two open sets Uj = S1 X (-1,1)
so that U1 nU2 is two disjoint copies of 51 X (-1,1), say U1 nU2 = Vi2 lL V12 0
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We can frame'SI x (-1, 1) using the product structure and the framings of the two
I-dimensional manifolds, 8 1 and (-1,1). If we form an 80(2) bundle over T2 with
transition function 912 defined by 912(U1 nU2) = 1 then we get the tangent bundle.
H we think of 1 as the identity of 8pin(2) then the same transition functions give
a Spin structure on T2. This Spin structure is the Lie group one: clearly the copy
of 8 1 in the 8 1 x (-1, 1)'s receives the Lie group structure, and it is not difficult
to start with a framing of (-1, 1) and transport it around the torus to get the Lie
group structure on this circle. IT we take as Spin(2) transition functions hI2 defined
by h12 (Vi2) = 1 and hI2(V I2 ) = -1 E Spin(2), then we get a Spin structure whose
enhancement is 0 on the obvious SI and 2 on the circle formed by gluing the two
intervals.

Example 3.11. We can write the Klein bottle, [(2, as the union of two open
sets Ui = 8 1 X (-1,1) so that U1 n U2 is two disjoint copies of SI x (-1,1), say
U1 n U2 = W12 lL W 12 • We can frame 8 1 x (-1,1) using the product structure
and the framings of the two I-dimensional manifolds, SI and (-1,1). If we form
an 0(2) bundle over K2 with transition function 912 defined by 912(Wl ) = 1 and

- (-1 0)912(WI2 ) = OlE 0(2) then we get the tangent bundle (we are writing the

SI tangent vector first). If we define hI2 (Wl ) = 1 and hI2 (WI2 ) = el E Pin(2), we
get a Pin structure on the tangent bundle. The copy of 8 1 in the SI X (-1, l)'s
receives the Lie group structure, so if we are describing a Pin- structure, then we
get the bordism generator.

We conclude this section with two amusing results that we will need later.

Theorem 3.12. Let F be a surface with a Spin structure. Let q: HI (F; Z/2Z) --+

Z/2Z denote the induced quadratic enhancement. Let x E HI (F; Z/2Z). Corre­
sponding to x there is a double cover of F, F which has an induced Spin structure.
There is also a dual homology class a and

[F] = q(a) E Z/2Z .

Proof: We can write F as T 2#F1 where T 2 is a 2 torus and a is contained in
T2. Then F = Tl#Fl #Fl , where T{ is a double cover of T2 given by x E
HI (T2 ; Z/2Z). Note (x, a) = 1 not -l,so a lifts to 2 disjoint parallel circles.
Moreover, HI (T{; Z/2Z) is generated by one component of the cover of a, say a,
and another circle, say bwhich double covers a circle, say b in T 2

•

Note [F] = [Tf] + 2[F1], so [F] = [Ti]. The enhancement q: HI (T[; Z/2Z)
satisfies q(a) = q(a) and q(b) = -1. Hence the Spin bordism class of T; in Z/2Z
is given by q(a).•
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The second result is the following. Given any surface, F, we can take the
orientation cover, F, and orient F so that the orientation does not extend across
any component of the total space of the associated line bundle. Given a Pin±
structure on F, we can induce a Spin structure on F.

Lemma 3.13. The orientation double cover map induces homomorphisms

nPin± nSpin
11£2 ~ 01£2

which are independent of the orientation on the double cover. The Pin - map is
trivial, and the Pin+ map is an isomorpbism.

Proof: H we switch to orientation on P, we get the reverse of the Spin structure
we originally had. Since nipin ~ Z/2Z this shows that the answer is independent
of orientation. By applying the construction to a bordism between two sunaces we
see that the maps are well-defined on the bordism groups. Since addition is disjoint
union, the maps are clearly homomorphisms.

In the Pin- case, Rp2 is a generator of the bordism group. The oriented cover
is S2 which has a unique Spin structure and is a Spin boundary. This shows the
Pin- map is trivial.

In the Pin+ case, a generator is given by the Klein bottle. Consider the
transition functions that we gave for this Pin+ structure in Example 3.11. This give
us a set of transition functions for the torus which double covers the Klein bottle.
We get 4 open sets, but it is not difficult to amalgamate three of the cylinders into
one. The new transition function, h12 , takes the value 1 on one component of the
overlap and the value e~ on the other. Since el E Pin+(2), e~ = 1 so we get the Lie
group structure on T 2 by Example 3.10.•

Remark. H we started with a non-bounding Pin- structure on the I{:Iein bottle,
then the above proof would show that the double cover has Spin transition functions
given by 1 on one component of the overlap and -Ion the other, and, as we saw,
this Spin structure bounds (as Lemma 3.13 requires).

§4. Spin structures on 3-mallifolds.

Let M 3 be a closed 3-manifold with a given Spin structure. We begin by
generalizing some of the basic ideas in the calculus of framed links in S3.

Given any embedded circle k: S1 -+ M 3
, the normal bundle is trivial, and

therefore has a countable nwnber of framings. If the homology class represented by
k is torsion, we can give a somewhat more geometric description of these framings.
Recall that there is a non-singular linking form

l: torHl (M; Z) (8) torHI (M; Z) ~ Q/Z .

Let x E H l (M; Z) be the class represented by k, and assume that x is torsion.
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Lemma 4.1. The framings on the normal bundle to k are in one-to-one corre­
spondence with rational numbers q such that the class ofq in Q/Z is f,(x, x).

Proof: We describe the correspondence. A framing on the normal bundle of k is
equivalent to a choice of longitude in the torus which bounds a tubular neighborhood
of k. Suppose r E Z is chosen so that r · x = 0 in HI (M; Z). Take r copies of the
longitude in the boundary torus and let F be an oriented surface which bounds'
these r circles. Count the intersection of F and k with signs as usual. H one gets
p E Z, then assign the rational number; to this framing. It is a standard argument
that ~ is well-defined once the framing is fixed. It is also easy to see that ~ mod
Z is f(x,x), and that if we choose a new framing which turns through t full right
twists with respect to our original framing, then the new rational number that we
get is ; +t.•

A Spin structure on M gives a Spin structure on the normal bundle to k
as follows. Restriction gives a Spin structure on the tangent bundle to S1 plus
the normal bundle. Choose the Spin structure on the normal bundle so that this
Spin structure plus the one on SI which makes Sl into a Spin boundary gives the
restricted Spin structure.

Definition 4.2. We call the above framings even.

H x as above is torsion and M is spun, then the Spin structure picks out half
of the rational numbers for which the longitude gives a framing compatible with
the Spin structure on the normal bundle. Given one of these rational numbers, say
q, the remaining ones are of the form q + 2t for t an integer. Hence we can define a
new element in Q/Z, namely ~. This gives a map

,:torH1 (M; Z) ~ Q/Z

which is a quadratic enhancement of the linking form:i.e.

,(x+y) = ,(x)+,(y)+f(x,y)
,(rx) = r2 • ,(x) for any integer r .

Suppose now that x is zero in HI (M;Z/2Z), but not necessarily-torsion in
HI (M; Z). Then any Spin structure on M induces the same Spin structure in a
neighborhood of k, and hence the notion of even framing is independent of Spin
structure for these classes.

Theorem 4.3. A knot k which is mod 2 trivial as above, bounds a surface which
does not intersect k. This surface selects a longitude for the normal bundle to k,
and this longitude represents an even framing.

Proof: Let E be a tubular neighborhood for k with boundary T 2 • (This T 2 is
often called the peripheral torus.) We can select a basis for HI (T2; Z/2Z) as
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follows. One element, the meridian, is the unique non-trivial element in the ker­
nel of the map HI (T2; Z/2Z) --+ HI (E; Z/2Z). One calculates that the sequence
HI (T2; Z/2Z) ~ HI (M - k; Z/2Z) ~ HI (M; Z/2Z) is exact, and that the im­
age of HI (T2; Z/2Z) in HI (M - k; Z/2Z) is I-dimensional and generated by the
meridian. Hence there is a unique non-trivial element, the mod 2 longitude, in
the kernel of HI (T2; Z/2Z) -+ HI (M - k; Z/2Z). An even longitude for k is an
element t E HI (T2; Z) which reduces in mod 2 homology to the mod 2 longitude.

Fix an even longitude, t. It follows that there is an embedded surface, F2 C M
such that of = k. This surface can be chosen to intersect T2 transversely in the
even longitude. The southeast corner of Corollary 1.15 assigns a Pin- structure to
F. Restricted to k, the normal bundle to Fin M is trivial, so the surface frames the
normal bundle to k in M. Hence the Spin structure on M restricted to k is seen as
the Spin structure on the circle coming from the restriction of the Pin- structure
on F plus the Spin structure on the normal bundle coming from the framing. We
saw in the proof of Theorem 2.1 that, regardless of the Pin- structure on F, the
boundary circle receives the non-Lie structure. This is the definition of the even
framing.•

1
~

.,
::1

~

I,
~

I,
.~

I
Remarks 4.4. ':J

(i) In S3 with its unique Spin structure, the framing on k designated by an evenJ
number in the framed link calculus is an even framing in the above sense. 1

(ii) IT the class x has odd order, then £(x, x) = ; with r odd. There are then two \~

sorts of representatives in Q for f( x, x): the p is even for half the representatives :j
·1

and odd for the other half. The framings that the Spin structure will call even :~

are the ones with even numerator. :1
(iii) If we change the Spin structure on M by a class 0 E Hl(Mj Z/2Z) the even;

:~:=::~~nc~c~~cle change iff 0 evaluates non-trivially on the fundamental,

(iv) If we attach a handle to a knot in a 3-manifold, M 3 , we get a 4-manifold W :~
with H 2 (W, Mj Z) = Z. If our knot in M 3 is torsion, we get a unique (up to :J
si?tnh){clas~ x E H 2Q(Wf

; Q)Lwhich h
4
it
1
s 0hur rel~tive clatss.. If lfwe ~tthtachala hanfdle i.~

WI ramIng q E rom emma . , t en x Intersec S Itse WI a v ue 0 q. J
Hence the signature of W is sign (q), where sign (q) = 1 if q > 0; -1 if q < 0 ~

:d;o:~:O~.15 the surface F we used in the proof of Theorem 4.3 inherits!
a Pin- structure from one on M. This suggests trying to define a knot invariant '.~;

.~

in this situation. Indeed, for knots in S3, this is one way to define Robertello's Arf J

invariant, [R]. The situation in general is more complicated and needs results from :1
§6, so we carry out the discussion in §8.

An invariant of a 3-manifold with a Spin structure is the It-invariant. We
discuss in Theorem 5.1 the classical result that nfpin = O. It follows that any
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3-manifold, M 3
, is the boundary of a Spin 4-manifold, W.

Definition 4.5. The signature of W, reduced mod 16, is the J.t-invariant of the
manifold M with its Spin structure. It follows from Rochlin's theoreln that J.L(M)
is well-defined once the Spin structure on M is fixed.

Remark. Some authors stick to Z/2Z homology spheres so that there is a unique
Spin structure and hence a p, invariant that depends only on the manifold.

We now turn to a geometric interpretation of some wprk of Turaev [Tu]. Inter­
section defines a symmetric trilinear product

r: H2 (M; Z/2Z) X H2 (M; Z/2Z) X H2 (M; Z/2Z) ~ Z/2Z

We introduce a symmetric bilinear form

which is defined as follows. Let Fx and Fy be embedded sunaces representing two
classes x and y in H2 (M; Z/2Z). To define A(X, y) put the two surlaces in general
position. The intersection will be a collection of embedded circles. The normal
bundle of each circle in M has a sub-line bundle, ex, given by the inward normal
to the surface Fx • Define A(x, y) to be the number of circles with non-trivial ex.

Here is an equivalent definition of A. Any codimension 1 submanifold of a
manifold is mod 2 dual to a I-dimensional cohomology class in the manifold. If
this cohomology class is pulled-back to the submanifold, it becomes WI of the
normal bundle to the embedding. Hence, if x* and y* are the Poincare duals to
x and y, A(X, y) = x* U x* U y*[M], where [M] is the fundamental class of the 3­
manifold. This follows because x*Uy*n[M] is the homology class represented by the
intersection circles, and to count the number with non-trivial ex we just evaluate
WI of the normal bundle on these circles. But WI = x* so we are done. We can
also prove symmetry using this definition. Since M is orientable, 0 = WI (M)x*y* =
SqI(x*y*) = (X*)2 y* +x*(y*)2.

Yet another definition of A is

A(X,y) = r(x,x,y) .

Hence A is symmetric and bilinear.

Given a Spin structure on M, we can enhance A to a function

f: H2 (M; Z/2Z) X H2 (M; Z/2Z) ~ Z/4Z .

To begin, we define f on embedded sunaces Fx and Fy in M as above, but now use
the Spin structure to put even framings on the intersection circles and then count
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the number of half twists in each ex. (Since the collection of circles is embedded,
there is no correction term needed to account for intersections.) Note if we defined
ey in the obvious manner and counted half twists in it instead of in ex, we would
get the same number, so f is symmetric.

Here is another description of f(Fx,Fy ). In M 3
, Fy is dual to a cohomology

class, a E HI (M; Z/2Z), and we could take Q and restrict it to Fx , getting ax E
HI (Fx ; Z/2Z). The Poincare dual of ax in Fx is just the class represented by our
collection of circles, which we will denote by y. Associated to our Pin- structure
on Fz, there is a quadratic enhancement tPx. Note

(4.6)

In particular, note f(Fx, Fy ) only depends on the homology class of Fy , and hence
by symmetry also only on the homology class of Fx •

Once we see the pairing is well-defined, it is easy to see that f(x, 0) = f(O, x) =
ofor all x E H2 (M; Z/2Z). We have lost bilinearity and gained

(4.7) f(x, y + z) = f(x, y) + f(x, z) +2T(X, y, z) .

Proof: With notation as above, we apply formula 4.6. We need to show tPx('y+~x) =
t/lx(Y) + t/lx(.z) +27(X, y, z), which is just the quadratic enhancement property of'l/Jx
and the identification of y.z in F:r; with r(x,y,z).•

If we change the Spin structure on M by a E HI (M; Z/2Z), then we change f
as follows. Let fa denote the new pairing and let a E H2 (M; Z/2Z) be the Poincare
dual to 0:. Then

fa(x, y) = f(x, y) + 2r(x, y, a) ,

or
fa(x, y) = f(x, y + a) - f(x, a) ·

Proof: We prove the first formula. Using 4.6 we see that the first formula is
equivalent to tPcr(Y) = 'l/J(y) + 2T(X, y, a), which follows easily from formula 3.3.•

Finally, we have a function

(4.8) {3: H2 (M; Z/2Z) -+ Z/8Z ·

We define f3 by taking an embedded surface representing x, using the Spin structure
on M to get a Pin- structure on Fx , taking the underlying Pin- bordism class,
and using our explicit identification of this group with Z/8Z.

We need to see why this is independent of the choice of embedded surface.
Given two such surfaces, there is a bordism in M x [0, 1] between them. Let W C
M x [0,1] be a 3-manifold with the two boundary components representing the
same element in H2 (M; Z/2Z). Since M x [0,1] is spun, we get a Pin- structure
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on W which is our given Pin- structure at the two ends. Since Brown's Z/8Z is a
pin- bordism invariant, we are done. It further follows that {3(0) = o.

Reduced mod 2 f3(x) is just the mod 2 Euler class of an embedded surface
representing x, and hence /3 is additive mod 2. We have

(4.9) f3(x + y) = /3(x) + {3(y) + 2f(x,y) ·

which we will prove in a minute. It follows that f(x,x) = -f3(x) reduced mod 4.
Note that, mod 4, f3(x + y) = f3(x) + f3(y) + 2r(x, x, y).

How does f3 change when we change the Spin structure by a E H t (M; Z/2Z)?
The principle is easy. Given a sudace, F, restrict O! to F and consider it to be a
change in Pin- structure on F. Compute the Brown invariant for this new Pin­
structure, and this is the value of the new f3 on F. It follows from Lemma 3.7 that

(4.10) f3a(x) = f3(x) +2f(x, a)

with notation as above.
Given the theorem below, we now prove formula 4.9. From this theorem we

get: U - U a = 2f3(a) and U - U Ot = 2f3(at). Also U a - U 01 = 2{30/(al - a). Hence
f3a(al - a) = f3(a}) - f3(a). Set at = x +a and use formula 4.10.•

The main result concerning /3 is

Theorem 4.11. Let M be a spun 3-manifold with resulting function f3 and J.t­
invariant U in Z/16Z. Let O! E HI (M; Z/2Z) be used to change the Spin structure,
and let UO/ be the new J.t-invariant. Then

U - UO/ = 2f3(a) (mod 16)

where a E H2(M; Z/2Z) is the Poincare dual to O!.

Proof: The proof is just the Guillou-Marin formula, [G-M, Theoreme, p. 98], or
our discussion of it in §6, 6.4. On M x [0,1] put the original Spin structure on
M X 0 and put the altered one on M x 1. We can cap this off to a closed 4-manifold
by adding Spin manifolds that the two copies of M bound to either end. The
resulting 4-manifold has index U a - u. Let F be a surface in M representing a.
Then F X 1/2 is a dual to W2 for the 4-manifold. Since F is in a product, F.F = 0
and the enhancement used in the Guillou-Marin formula is the same as the one we
put on F to calculate f3. By formula 6.4, U - U a = 2f3(a).•

As a corollary we get a result of Turaev, [Tu]

Corollary 4.12. The quadratic enhancement of the linking form gives the J.t­
invariant mod 8 via the Milgram Gauss sum formula.

Proof: This was proved in [Tal for rational homology spheres. Pick a basis for the
torsion free part of HI and do surgery on this basis. The resulting bordism, W, has
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signature 0; both boundary components have isomorphic torsion subgroups of HI;
and the top boundary component has no torsion free part. Put a Spin structure ~n
the bordism, which puts a Spin structure at both ends. The two enhancements on
the linking forms are equal, and they stay equal if we change both Spin structures
by an element in HI (W; Z/2Z). Any Spin structure on M can be obtained from
our initial one by acting on it by an element of the form x + y, where x comes
from HI (W; Z/2Z) and y comes from HI (M; Z). But acting by this second sort
of element does not change the mod 8 IJ-invariant or the quadratic enhancement of
the linking form. •

§5. Geometric calculations of n~~n± •

We begin this section with a calculation for the 3-dimensional Spin, Pin- and
Pin+ bordism groups.

Theorem 5.1. nipin ~ 0; nfin- ~ 0 and [nWI]: nfin+ ~ n~pin ~ Z/2Z is an
isomorphism.

Proof: The Spin bordism result is classical: [ABPl], [Ka] or [Ki].

Given a non-orientable Pin± manifold M 3
, we will try to find a Pin± bordism

to an orientable manifold which then Pin± bounds by the Spin case. The dual to
wl(M) is an orientable surface F by Proposition 2.3. The first step is to reduce to
the case when F has trivial normal bundle. If not, consider F intersected trans­
versely with itself. It can be arranged that this is a single circle C, which is dual int
F to wI(M) pulled back to F. The normal bundle to C in M is VFCMlcEBvFcMlc j

which is also VCCF E9 VCCF which is trivialized. Hence the Pin± structure on M .,'.l.:.l

induces a Pin=F structure on C. Suppose C with this structure bounds y2; let Ej
denote the total space of ( EB ( over Y, where ( is the determinant line bundle for .~
Y. Note that inside BE there is a copy of (BY) x B 2

, and E has a Pin± structure}
extending the one on (aY) X B2. We can form M x [0,1] UE by gluing (ay2) X B 2 .I.;.~.·
to C x B2 X 1 where C x B2 is the trivialized disk bundle to C above. Clearly the
Pin± structure extends across the bordism, and the "top" is a new Pin± manifold
M1 with a new dual surface F1 with trivial normal bundle. "•..~.

In the Pin- case, C has a Pin+ structure which bounds (nfin+ = 0, Theorem ~
2.1) so we have achieved the (M1,FI ) case. In the Pin+ case an argument is needed j;
to see that we never get C representing the non-zero element in niin- = Z/2Z, iJ

Le. C does not get the Lie group Spin structure. ~
j

To show this, let V be a dual to WI and let E be a tubular neighborhood of :~

V. By the discussion just before Lemma 2.7, since E as a Pin+ structure, there is ~
an inherited Spin structure on V (in fact there are two which differ by the action ..~
of x E HI (V; Z/2Z), where x denotes the restriction of WI to V). Note x also :~

describes the double cover BE ~ V. The boundary, BE, also inherits a Pin+ )
structure and we saw, Lemma 2.7, that, if we orient aE and V so that the covering ,
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map is degree 1, the Spin structure on BE is the same as the one induced by the
covering map. The Spin structure on BE bounds the Spin manifold which is the
closure of M - E, so if C is the dual to x and q is the quadratic enhancement on
HI (V; Z/2Z), q(C) = 0 by Theorem 3.12. Recall that the normal bundle to V in
M, when restricted to C is trivial. Hence the framing on C as a circle in V is the
same as the Pin- structure on C as V intersect V in a Pin+ manifold. Hence C
has the non-Lie group Spin structure and hence represents 0 in n~pin.

Hence we may now assume that F has trivial normal bundle in M. Therefore
F inherits a Pin± structure from the one on M, and hence, after choosing an
orientation, F has a Spin structure. If the Spin structure on F is a bou~dary then
it is easy as above to construct a Pin± bordism to an oriented manifold. In the
Pin+ case we are entitled to assume that the surface bounds because that is what
the invariant [nW1] is measuring. In the Pin- case, the Klein bottle X S1 with
the Lie group framing is an example for which the F has the non-bounding Spin
structure. But if we add this manifold to our original M, for the new manifold, F .
will bound and we are done.

We have now proved that [nWl] is injective in the Pin+ case and that nfin­
is generated by !{ x Sl, where K is the Klein bottle and the Pin - structure comes
from some structure on the surface and the Lie group Spin structure on 51. In some
Pin- structures, !{ bounds and hence so does K X Sl. In the others, K is Pin­
bordant to two copies of Rp2, so !{ X SI is bordant to two copies of Rp2 x Sl.
Hence, if we can prove that [nW1] is onto and that Rp2 X Sl bounds, we are done.

If we take the generator of nfin+ and cross it with 8 1 with the Lie group Spin
structure, we get a 3-manifold with [nW1] being the 2-torus with Lie group Spin
structure so by Proposition 3.8, [nW1] is onto.

Consider Rp2 in Rp4: it is the dual to w~ +W2 so there is a Pin- structure on
Rp4 - Rp2 which restricts to the Lie group structure on the normal circle to RP2.
An easy calculation of Stiefel-Whitney classes shows that the normal bundle v of
Rp2 in Rp4 is orientable but W2(V) f: o. So we take the pairwise connected sum
(RP4, RP2)#(CP2, CP1) and then the normal bundle of Rp2 = Rp2#Cpl in
Rp4#Cp2 has W1 = W2 = o. For a bundle over Rp2 this means that the bundle
is trivial, so its normal circle bundle is Rp2 X 51. The two Pin- struct~res on
Rp4#Cp2 - Rp2 bound two Pin- structures on Rp2 X 51 which have the Lie
group structure on Sl. Since this is all the Pin- structures that there are with the
Lie group Spin structure on the S1, we are done.•

Next we turn to the 4-dimensional case. The result is

Theorem 5.2. The group n~pin ~ Z generated by the Kummer surface; nfin- =
0; and the group nfin+ ~ Z/16Z generated by RP4.

Proof: The Spin result may be found in [Ki, p. 64, Corollary]. OUf first lemma
determines the image of n;pin in the Pin± bordism groups.
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Lemma 5.3. The Kummer surface bounds a Pin-manifold hence so does any 4­
dimensional Spin manifold. Twice the Kummer surface bounds a Pin+ manifold,
but the Kummer surface itself does not. Hence a 4-dimensional Spin manifold
Pin+ bounds iff its signature is divisible by 32.

Proof: The Enriques surface, E, [Hal, is a complex surface with 1rI(E) ~ Z/2Z
with w2(E) =F 0. Habegger shows that H2 (M; Z) ~ ZlO E9 Z/2Z and w2(M) is
the image of the non-zero torsion class in H2 (M; Z), see paragraph 2 after the
Proposition on p. 23 of [HaJ. If y E HI (E; Z/2Z) is a generator, then from the
universal coefficient theorem, y2 = W2(W). If L is the total space of the line bundle
over E with WI = y, then it is easy to calculate that L is Pin- (but not Pin+),
and oE is the I{ummer surface. This proves the Kummer surface bounds a Pin­
manifold. Since n:pin ~ Z generated by the Kummer surlace, this proves any Spin
4-manifold bounds as a Pin- manifold.

Let M 4 is a Spin manifold and let W 5 be a Pin- manifold with oW = M
as Pin- manifolds. Consider the obstruction to putting a Pin+ structure on W
extending the one on M 4

• The obstruction is W2(W) = w~(W), so the dual class
is represented by a 3-manifold formed as the intersection to a dual to Wl pushed
off itself. As usual, this 3-manifold has a natural Pin+ structure and it is easy to
see that we get a well-defined element in nfin+ ~ Z/2Z. IT this element is 0, then
we can glue on the trivializing bordism and extend its normal bundle to get a new
Pin- manifold WI which still bounds M and has no obstruction to extending the
Spin structure on the boundary to a Pin+ structure on the interior. Hence, if our
element in nfin+ is 0, M bounds. From this it is easy to see that twice the Kummer
surface bounds. Hence any 4-dimensional Spin manifold with index divisible by 32
bounds a Pin+ manifold.

Suppose that W is a Pin+ manifold with oW = M orientable. Let V C W
be a dual to Wl contained in the interior of W. Let E be a tubular neighborhood
of V with boundary oE. As' usual, BE is orientable and the covering translation is
orientation preserving. Since V is orientable with a normal line bundle, if we fix an
orientation, Spin structures on V correspond to Pin+ structures on E. Since W is
a Pin+ manifold, E has an induced Pin+ structure and Y acquires an induced Spin
structure. The bordism between M and 8E is an oriented Pin+ bordism, so M
and oE have the same signature. But oE is the double cover of V so has signature
twice the signature of V. Since V is Spin, the signature of V is divisible by 16, so
the signature of M is divisible by 32. This shows that the Kummer surface does
not bound a Pin+ manifold and indeed that any 4-dimensional Spin manifold of
index congruent to 16 mod 32 does not bound a Pin+ manifold.•

Since nfpin ~ Z generated by the Kummer surface this lemma calculates the
image of n:pin in nfin± and our next goal is to try to produce a Pin± bordism
from any Pin± manifold to an orientable one.

To this end let M be a 4-manifold with y 3 a dual to WI. Consider the dual



Kirby & Taylor: Pin structures on low-dimensional manifolds 217

to WI intersected with itself. It is a surface F C M and the normal bundle is
two copies of the same line bundle. Indeed, the transversality condition gives an
isomorphism between the two bundles. This line bundle is also abstractly isomorphic
to the detenninant line bundle for F. A Pin± structure on F gives rise to a PinT
structure on the total space of the normal bundle of F in M by Lemma 1.7. Hence
we can use the Pin± structure on M to put a PinT structure on F and it is not
hard to check that we get a homomorphism nfin± -+ nfinT

• If F bounds in this
structure, one can easily see a Pin± bordism to an new 4-manifold M I in which
the dual to WI has trivial normal bundle. This puts a Pin± structure on VI. By
orienting Vi we get a Spin manifold and if VI bounds in this Spin structure, M 1

Pin± bounds an orientable manifold.

Consider the Pin- case. Any element in the kernel of the map [nwl]: nfin- --+

nfin+ is Pin- bordant to a Pin-manifold whose dual to WI, say V, has trivial
normal bundle. Orienting this normal bundle gives a Pin - structure on V, and since
nipin = 0, we can further Pin- bord our element to an orientable representative.
It then follows from Lemma 5.3 that the map [nw~] is injective.

To show that this map is trivial, which proves nfin- = 0, proceed as follows.
Let V c M be a dual to WI (M) and let F2 denote the transverse intersection of
V with itself. Since the normal bundle to F in M is 2 copies of the determinant
line bundle for F, F acquires a Pin+ structure from the Pin- structure on M.
Let E C V be a tubular neighborhood for F in V. Theorem 2.9 applies to this
situation to show that the Pin+ structure on DE induced by the double cover map
BE ---+ F is the same as the Pin+ structure induced on DE C M from the fact that
its normal bundle is exhibited as the sum of 2 copies of its determinant line bundle.
Since the normal bundle to V in M is trivial on V - F, V - F has a Spin structure
which restrict~ to the given one on vE. By Lemma 3.13, the oriented cover map
nfin+ -+ nipzn is an isomorphism, so F is a Pin+ boundary, which finishes the
Pin- case.

So consider the Pin+ case. This time our homomorphism goes from nfin+
to nfin- ~ Z/8Z and the example of Rp4 shows that it is onto. Just as in the
Pin- case, any element in the kernel of this homomorphism is Pin+ bordant to
an orientable manifold. This together with Lemma 5.3 shows that 0 ---+ Z/2Z ---+

p. +n4 an ---+ Z/8Z ---+ 0 is exact.

To settle the extension requires more work. Given a Pin+ structure on a
4-manifold M, we can choose a dual to WI, say V eM, and an orientation on
M - V which does not extend across any component of V. We can consider the
bordism group of such structures, say G4 • There is an epimorphism G4 ---+ n,fin+
defined by just forgetting the dual to WI and the orientation. There is another
homomorphism G4 ---+ Q/32Z defined as follows. Let E be a tubular neighborhood
of V with boundary BE. The covering translation on DE is orientation preserving,
so V is also oriented. The normal bundle to BE in M is a trivial line bundle,
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oriented by inward normal last, where inward is with respect to the associated disk
bundle. Hen~e 8E acquires a Spin structure, and hence a p, invariant in Z/16Z.
The manifold BE is a 3-manifold with an orientation preserving free involution
on it, hence there is an associated Atiyah-Singer a invariant, a(8E) E Q. Define
t/J(M, V) = O'(M - int V) +o:(oE) - 2p,(V) E Q/32Z. It is not hard to check that
1/J depends only on the class of (M, V) in G4 and defines a homomorphism. We
can make choices so that t/J(RP4,Rp3) = +2. Hence '¢'(8(Rp4,Rp3)) = 16 with
these choices. The Pin+ hordism of 8 copies of Rp4 to an oriented manifold is
seen to extend to a. bordism preserving the dual to WI and orientation data. This
oriented, hence Spin manifold has index congruent to 16 mod 32, and so we have
constructed a Pin+ bordism (with some extra structure which we ignore) from 8
copies of Rp4 to a Spin manifold which is Pin+ bordant to the Kummer surface.

p' +This shows 0 4 In ~ Z/16Z.•

§6. 4-dimensional characteristic bordism.

The purpose of this section is to study the relations between 4-manifolds and
embedded surfaces dual to W2 + w~ •

Definition 6.1. A pair (M, F) with the embedding of F in M proper and the
boundary of M intersecting F precisely in the boundary of F is called a charac­
teristic pair if F is dual to W2 +wl. A characteristic pair is called characterized
provided we have fixed a Pin-structure on M - F which does not extend across
any component of F. The characterizations of a characteristic pair are in one to
one correspondence with HI (M; Z/2Z).

We begin by discussing the oriented case.

Lemma 6.2. Let M be an oriented manifold with a codimension 2 submanifold F
which is dual to W2. There exists a function

Char(M,F) --+ Pin-(F) .

The group HI (M;Z/2Z) acts on Char(M,F), the group HI (F;Z/2Z) acts on
Pin-(F) and the map is equivariant with respect to the map induced on HI (; Z/2Z)
by the inclusion F eM.

Remark. Later in this section we will define this function in a more general situ­
ation.

Proof: There is an obvious restriction map from characteristic structures on (M, F)
to those on (E,F), where E is the total space of the nonna! bundle to F in M,
denoted v. Hence it suffices to do the case M = E. In this case we expect our
function to be a bijection. After restricting to the case M = E it is no further
restriction to assume that F is connected since we may work one component at a
time.
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We begin with the case that F has the homotopy type of a circle. In this case
v has a section, so choose one and write v = AE9 e1 . Orient e1 and use it to embed F
in 8E. The normal bundle to 8E in E is oriented; E is oriented; so 8E is oriented.
The normal bundle to the embedding of F in 8E is A so the orientation on E plus
the orientation of e1 pick out a preferred isomorphism between A and det TF. From
Corollary 1.15, there is a Pin- structure on F induced from the one on 8E.

We want to see that this Pin- structure is independent of the section we chose.
It is not difficult to work out the effect of reorienting the section: there is none.

Suppose the bundle is trivial. We divide into two cases depending on the
dimension of E. In the I-dimensional case, we may proceed as follows. The manifold
F is a circle and since the bundle has oriented total space, it must be trivial. Hence
8E = T 2 and HI (T2 ; Z/2Z) has one preferred generator, the image of the fibre,
otherwise known as a meridian, denoted m. Let x denote another generator. Since
the Spin structure is not to extend over the disk, the enhancement associated to
the Spin structure on T 2 , say q, satisfies q(m) = 2. The Spin structure on the
embedded base is determined by q of the image, which is either x or x +m. Check
q(x) = q(x + m).

In the higher dimensional case, there is an 8 1 embedded in F and the normal
bundle to this embedding is trivial. Over the 8 1 in F there is an e~beddedT 2 in
8E and the bundle projection, p, identifies the normal bundle to T2 in 8E with the
normal bundle to 8 1 in F. Fix a Spin structure on one of these normal bundles
and use p to put a Spin structure on the other. The Spin structure on 8E restricts
to one on T2 and it is not hard to check that the Pin- structure we want to put on
F using the section is determined by using the section over 8 1 and checking what
happens in T2. We saw this was independent of section so we are done with the
trivial case.

Now we turn to the non-trivial case, still assuming that F is the total space of
a bundle over 8 1 • The minimal dimension for such an F is 2 since the bundle, v, is
non-trivial. In this case F is just a Mobius band. Since E is oriented, the bundle
we have over F is isomorphic to det v $ el . Sitting over our copy of 8 1 in F is the
Klein bottle, K2, and the normal bundle to K2 in 8E is just the pull-back of v.
One can sort out orientations and check that there is an induced Pin - structure
on K2 so that the Pin- structure that we want to put on F is determined by the
enhancement of the section applied to SI as a longitude of j{2. This calculation
is just like the torus case. In the higher dimensional case, v is a non-trivial line
bundle plus a trivial bundle so we can reduce to the dimension 2 case just as above.

Now we turn to the case of a general F.

Since we have done the circle case, we may as well assume that the dimension
of F is at least 2. If the dimension of F is 2, then we can find a section of our bundle
over F - pt. The embedding of F - pt in 8E gives a Pin- structure on F - pt and
this extends uniquely to a Pin- structure on F. This argument even works if F
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has a boundary and we take as the function on the boundary the function we have
already defined. Now if we restrict this structure on F to a neighborhood of an
embedded circle, we get our previous structure. Since this structure is independent
of the section, the structure on all of F is also independent of the section since Pin­
structures can be detected by restricting to circles.

The higher dimensional case is a bit more complicated. We can define our
function by choosing a set of disjointly embedded circles and taking a tubular neigh­
borhood to get U, with Ht (U; Z/2Z) ~ HI (F; Z/2Z) an isomorphism. We then
use our initial results to put a Pin- structure on U and then extend it uniquely to
all of F. Now let V be a tubular neighborhood of a circle in F. We can restrict
the Pin- structure on F to V, or we can use our "choose a section, embed in aE
and induce" technique. There is an embedded surface, W 2 , in F which has the core
circle for V as one boundary component and some of the cores of U as the others.
Let X be a tubular neighborhood of W in F. The bundle restricted to X has a
section so we can induce a Pin - structure on X using the section. This shows that
the two Pin- structures defined above on V agree. It is not hard from this result
to see that the Pin- structure on F is independent of the' choice of U.•

Remarks. Notice that the proof shows that the Pin- structure on a codimension
osubset of F, say X, only depends on the Pin- structure on the circle bundle lying
over X. It is not hard to check that our function commutes with taking boundary,
we get a well-defined homomorphism, P, from the rth Guillou-Marin bordism group
to n~~~-.

Theorem 6.3. Let M 4 be an oriented 4-manifold, and suppose we have a charac­
teristic structure on the pair (M, F). The following formula holds:

(6.4) 2 · (3(F) = F.F - sign(M) (mod 16)

where the Pin- structure on F is the one induced by the characteristic structure
on (M, F) via 6.2.

Proof: By the Guillon-Marin calculation, their bordism group in dimension 4 is
Z E9 Z, generated by (84 , RP2) and (CP2, 8 2). The formula is trivial to verify
for (CP2, 52). For (84 , RP2) we must verify that RP2.Rp2 = 2 implies that the
resulting q is 1 on the generator. Now Rp2 has two sorts of embeddings in 8 4 •

There is a "right-handed" one, which has RP2.Rp2 = 2, and a "left-hand" one
which has RP2.Rp2 = -2. The "right-handed" one can be constructed by taking
a 'right-handed" Mobius strip in the equatorial 8 3 and capping it off with a ball
in the northern hemisphere. For our vector field, use the north-pointing normal.
The "even" framing on the bundle to Vk, the core of the Mobius band, is the one
given by the o-framing in S3. Hence we may count half twists in S3, where the
right-hand Mobius band half twists once.•
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It would be nice to check that the Pin- structure we put on the character­
ized sudace agrees with those of Guillou-Marin and Freedman-Kirby. For the
Freedman-Kirby case we take an embedded curve k in F and cap it off by an ori­
entable surface, B, in M. We start B off in the same direction as our normal vector
field, so then the normal bundle to B in M, when restricted to the boundary circle,
will be the 2-plane bundle around k we are to consider. The Guillou-Marin case is
similar except that B need not be orientable. Since B is a punctured sudace, the
normal bundle to B in M splits off a trivial line bundle and so is a trivial bundle
plus the determinant line bundle for the tangent bundle. Having chosen one section,
the others are classified by HI (B; ZWl) , where ZWI denotes Z coefficients twisted
by WI of the normal bundle. When restricted to the boundary circle, this gives a
well-defined "even" framing of the normal bundle.

If B does not intersect F except along BB, Theorem 4.3 shows that the framing
on 8B is the even one in the sense of Definition 4.2. We can assume in general that
B intersects F transversally away from BB. The surface iJ = B - Jl D2 lies in
M - F and each circle from the transverse intersection has the non-bounding Spin
structure. Hence, in general, the framing on BB is even iff the mod 2 intersection
number of F and B is even. Moreover, the number of half right twists mod 4 is just
the obstruction to extending the section given by the normal to k in F over all of B.
This shows that our enhancement and those of Freedman-Kirby and Guillou-Marin
agree when both are defined.

The enhancement above is defined more generally since we do not need the
membranes to select the Pin- structure and hence do not need the condition that
HI (F; Z/2Z) ~ HI (M; Z/2Z) should be o. One nice application of this is to
compute the Jl-invariant of circle bundles over surfaces when the associated disk
bundle is orientable.

Any O(2)-bundle, TJ, over a 2 complex, X, is determined by WI (1]) and the Euler
class, X(77) E H2 (X; ZW1), where ZWl denotes Z coefficients twisted by WI(77). In
our case, X is a surface which we will denote by F; the bundle 77 has the same WI

as the surface; and the Euler class is in H2(F; ZW1) ~ z. Let S(1]) denote the circle
bundle. One way to fix the isomorphism is to orient the total space of 77 and then
F.F = X(1]). The signature of the disk bundle is also easy to compute. We denote
it by u(77) since we will see it depends only on 1]; indeed it can be computed from
Wl(77) and X(77). If WI(1]) = 0 then U(77) = sign X(",) (±1 or 0 depending on X(TJ»):
if WI (17) f; 0 then u(77) = O. By Lemma 6.2, Spin structures on S( '1J) which do not
extend across the disk bundle are in 1-1 correspondence with Pin- structures on
F.

Theorem 6.5. With notation as above fix a Spin structure on S(TJ). Let b(F) = 0
if this structure extends across the disc bundle and let b(F) = f3(F) if it does not
and the Pin - structure on F is induced via the function in Lemma 6.2. We have

(6.6) (mod 16) .
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Proof: The result follows easily from 6.4.•

We want to describe a homomorphism from various characteristic bordism
groups into the Pi'n - bordism group in two dimensions less. Roughly the ho­
momorphism is described as follows. We have a characteristic pair (M,F) and we
will see that, with certain hypotheses, F is a Pin- manifold. We then use the char­
acterization of the pair to pick out a Pin- structure on F. The homomorphism
then just sends (M, F) to the Pin- bordism class of F.

To describe our hypotheses, consider the following commutative square

F ---)0

1
M ---)0

BO(2)

1
TO(2)

Let U E H2 (TO(2); Z/2Z) denote the Thom class and recall that U pulls back
to W2 in H 2 (BO(2); Z/2Z). The 2-plane bundle classified by v is just the normal
bundle to the embedding i: F C M, and f*(U) E H2 (M; Z/2Z) is the class dual to
F. Let a denote the class dual to F. Then we see that i*(a) = W2(VPCM), where
VPcM is the normal bundle to the embedding. Let us apply this last equation to
our characteristic situation. The class a is w2(M) +w~(M) and we have the bundle
equation i*(TM) = TF EB VPCM. Now i*Wl(M) = WI (F) + WI(V) and i*W2(M) =
w2(F)+W2(V)+Wl(F)·Wl(V). Hence i*(W2(M)+wi(M)) = w2(F)+W2(V)+Wl(F).
wl(v)+w~(F)+wi(v) and using our equation for W2(V) we see that w2(F)+w~(F)=
Wl(V) · i*WI(M). Hence F is Pin- iff the right hand product vanishes or

Lemma 6.7. The surface F has a Pin- structure iff

To study Wl(V). i*WI(M) we may equally study Wl(V) n (i*Wl(M) n [F,8F]).
The term i*WI(M)n [F, 8F] can be described as the image of the fundamental class
of the manifold obtained by transversally intersecting F and a manifold V in M
dual to WI' Hence, the product Wl(V) • i*Wt(M) vanishes if the normal bundle to
F n V c V is orientable. This suggests studying the following situation.

Definition 6.8 . Let M be a manifold with a proper, codimension 2 submanifold
F (proper means that oM n F = of and that every compact set in M meets F
in a compact set). A characteristic structure on the pair (M,F) is a collection
consisting of

a) a proper submanifold V dual to wl(M) which intersects F transversely
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b) an orientation on M - V which does not extend across any component of V

c) a Pin - structure on M - F that does not extend across any component of F
(so F is dual to W2 +wi)

d) an orientation for the normal bundle of V n F in V.

Let Char-(M, F) be the set of characteristic structures on (M, F).

The next goal of this section is to prove a "reduction of structure" result, the
Pin - Structure Correspondence Theorem.

Theorem 6.9. Tbere exists a function

which is natural in the following sense. If we change the Pin- structure on
M - F which does not extend across any component of F by acting on it with
a E HI (M; Z/2Z), then we change W oftbe structure by acting on it with i*(a) E
HI (F; Z/2Z), where i: F C M is the inclusion. If X denotes a collection of com­
ponents of F n V, then the dual to X is a class in x E HI (F; Z/2Z). If we switch
the orientation to the normal bundle of F n V in F over X and not over the other
components, then we alter \lI by acting with x. If we change the orientation on
M - V which does not extend across any component of V, we do not change W
of tbe Pin- structure. Finally, if MI c M is a codimension 1 submanifold with
trivialized normal bundle such that F and V intersect M 1 transversely (including
the case M 1 = 8M), then the characteristic structure on M restricts to one on MI.
The Pin- structure we get on F I = M 1 n F is the restriction of the one we got on
F.

Remark. The observation that characteristic structures restrict to boundaries al­
lows us to define bordism groups: let n~ denote the bordism group of characteristic
structures.

Reduction 6.10. Given a closed manifold M with a characteristic structure, let
E C M denote the total space of the normal bundle of F in M. The associated
circle bundle, 8E, is embedded in M with trivial normal bundle and without loss
of generality we may assume that V intersects fJE transversally. Hence E acquires
the above data by restriction.

This reduces the general case to the following local problem. We may deal
with one component at a time now and so we must describe how to put a Pin­
structure on a connected Pin- manifold F, given that we have a 2-disc bundle over
F with total space E; a Pin - structure on fJE which does not extend to all of E; a
codimension 1 submanifold V which is dual to WI (E) and intersects F transversally;
an orientation on E - V which does not extend across any component of V; and an
orientation for the normal bundle of Fn V in V. We must also check that the Pin-
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structure that we get on F is independent of our choice of tubular neighborhood.
Note for reassurance that Pin- structures on F are in one to one correspondence
with Pin- structures on 8E which do not extend to E.

Let us consider the following situation. We have a circle bundle p: BE ~ F
over F with associated disc bundle e. We let E denote the total space of e. We have
a codimension 1 submanifold, V, of E which is dual to wl(E) and which intersects
F transversally. We are given an orientation on E - V which does not extend
across any component of V and we are given an orientation of the normal bundle
to F n V in V. We are going to describe a one to one correspondence between
Pin- structures on F and Pin- structures on DE which do not extend across E.
Furthermore, suppose that U C F is a submanifold with trivialized normal bundle.
Suppose that U intersects V transversally and let Eu denote the total space of the
disk bundle for erestricted to U. Then over U we have our data. Notice that any
Pin - structure on F restricts to one on U, and any Pin-structure on BE restricts
to one on 8Eu. Let Pin-(F, U) denote the set of Pin- structures on F which
restrict to a fixed one on U. Define Pin-(8E,8Eu) similarly except we require
that the Pin-structures do not extend across the disk bundles. Below we will
define a 1-1 map '11: 'Pin-(8E, 0) ~ 'Pin-(F, 0). If we fix a Pin- structure on U,
which comes from one on F, and use \It for U to pick out a Pin- structure on 8Eu,
then we also get a 1-1 map

There is an isomorphism, p*: HI (F, U; Z/2Z) ~ HI (8E,8Eu U 8 1 ; Z/2Z), in­
duced by the projection map, p: DE --+ F, where 8 1 denotes a fibre of the bundle
(if U :F 0 then 8Eu U 8 1 = 8Eu). The group HI (8E, 8Eu U 8 1 ; Z/2Z) acts in a
simply transitive fashion on Pin-CoE,8Eu) and the group HI (F, U; Z/2Z) acts in
a simply transitive fashion on Pin-(F, U). The map q, is equivariant with respect
to these actions and p* .

The relative version of the Pin - Structure Correspondence gives the uniqueness
result needed in Reduction 6.10 since any two choices are related by a picture with
our data over E x I with structure fixed over E x 0 and E x 1.

Note first that F has a Pin-structure by the calculations above.

Recall that there is a sub-bundle of ToE, namely the bundle along the fibres,
7]. This is a line bundle which is tangent to the fibre circle at each point in 8E. The
quotient bundle, p, is naturally isomorphic to TF, via the projection map, p. Our
first task is to use our given data to describe an isomorphism between 7] EB det(ToE)
and det(p) EB e1 • To fix notation, let N be a tubular neighborhood of V in 8E and
fix an isomorphism between p E9 7] and ToE.

On 8E - V we have an orientation of ToE. This describes an isomorphism
between det(ToE) and el . Furthermore, the orientation picks out an isomorphism
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between '1 and det(p) as follows. These two line bundles are isomorphic since they
have the same WI, and there are two distinct isomorphisms over each component of
aE - V. Pick a point in each component of BE - V, and orient '1 at those points.
The orientation of TaE picks out an orientation of p, and hence det(p), at each point.
We choose the isomorphism between '1 and det(p) which preserves the orientations
at each point. It is easy to check that if we reverse the orientation at a point for "l,
we reverse the orientation for det(p) and hence get the same isomorphism between
these two bundles. The isomorphism between "l €a det(T8E) and det(p) ED fl is just
the sum of the above two isomorphisms.

We turn our attention to the situation over N. Over F n V, eis the normal
bundle to F nV in V, and hence it is oriented. Hence so is p*(e) in aE, and p*(e)
is isomorphic to ", ED fl. The -outward normal to DE in E orients the fl, and hence
." is oriented over p-l(F n V), and hence over N. This time det(p) and det(T8E)
are abstractly isomorphic, and we can choose an isomorphism by choosing a local
orientation. Since "l is oriented and 0 ~ "l --. T8E ~ P ~ 0 is exact, there is a
n&tural correspondence between orientations of T8E at a point and orientations of
p at the same point, As before, if we switch the orientation on T8E, we still get the
same isomorphism between det(p) and det(T8E). As before, the orientation for ",
defines an isomorphism between '1 and fl, but this time we take the isomorphism
which reverses the orientations. We take the sum of these two isomorphisms as our
preferred isomorphism between ", ED det(TaE) and det(p) EB fl •

Now over N - V, we have two isomorphisms between '1 Ef>det(TaE) and det(p)E9
fl. If we restrict attention to a neighborhood of aN both bundles are the sum of two
trivial bundles, and our two isomorphisms differ by composition with the matrix

(~ -~).
Parameterize a neighborhood of aN in N by aN x [0, 1r/2] and twist one bundle

, h' b th ,(cos(t) -sin(t)) 't1:T 1 ·1somorp Ism if e matnx sin(t) cos(t)' vve can now g ue our two Isomor-

phisms together to get an isomorphism between TJ EB det(TaE) and det(p) €a fl over
all of 8E.

Finally, we can describe our correspondence between Pin- structures. Suppose
that we have a Pin- structure on F. This is a Spin structure on TF E9 det(TF).
Since p is isomorphic via p to TF, we get a Spin structure on p €a det(p), and
hence on p E9 det(p) ED fl. Using our constructed isomorphism, this gives a Spin
structure on p EB "l EB det(TaE). Choose a splitting of the short exact sequence
o--. "l -. TaE ~ p --. 0, and we get a Spin structure on TaE EI1 det(T8E).

H we choose a different splitting, we get an automorphism of TaE and hence an
automorphism of TIJE E9 det(TaE) which takes one Spin structure to the other. But
this automorphism is homotopic through bundle automorphisms to the identity,
and so the Spin structure does not change.
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Finally, let us consider the Pin- structure induced on a fibre SI. We will look
at this situation for a fibre over a point in F where we have an orientation of TaE.
Restricted to 8 1, the bundle TaE splits as fJ plus the normal bundle of 8 1 in BE, so
1] is naturally identified as the tangent bundle of SI and the normal bundle of SI in
aE is trivialized using the bundle map p. The trivialization of the normal bundle
of SI in aE plus the Spin structure on TaE ED det(TaE) yields a trivialization of
77181, which then yields a trivialization of the tangent bundle of SI. Since SO(1)
is a point, any oriented I-plane bundle has a unique framing, which in the case of
the tangent bundle to the circle is the Lie group framing. The Pin- structure that
results from a framing of the tangent bundle of 51 is therefore the one that does
not extend across the disk, so our Pin- structure on aE does not extend across E.

RecaJl that Pin- structures on BE that do not extend across E are acted on
by HI (F; Z/2Z) in a simply-transitive manner by letting p*(x) E HI (aE; Z/2Z)
act as usual on Pin- structures on BE. If we change Pin- structures on F by
x E HI (F; Zj2Z), we change the Pin- structure that we get on BE by the p*(x)
in HI (aE; Z/2Z) so our procedure induces a one to one correspondence between
Pin- structures on F and Pin- structures on BE which do not extend across E.

Next, we consider the effects of changing our orientations. We wish to study
how the choices of orientations on BE - V and on eeffect the resulting map between
Pin- structures on F and Pin- structures on BE which do not extend across E.
Let us begin by considering the effect of changing the orientation on e. This switches
the orientation on 77 and so our bundle map remains the same over BE - Nand

over N it is multiplied by the matrix (-~ _ ~ ). This has the effect of putting

s full twists into the framing around any circle that intersects F n V geometrically
t times where s == t (mod 2). Hence the class in HI (F; Z/2Z) that measures the
change in Pin- structure is just the class dual to F n V. If F n V has several
components and we switch the orientation of eover only one of them then the class
in HI (F; Z/2Z) that measures the change in Pin- structure is just the class dual
to that component of F nV.

Now suppose that we switch the orientation on eand on M - V. This time the

two bundle maps differ over all of aE by multiplication by the matrix ( - ~ _ ~ ) .

The effect of this is to change the Pin- structure on F via w}(F). This follows
from Lemma 1.6.

From the two results above the reader can work out the effect of the other
possible changes of orientations. Finally, the diligent reader should work through
the relative version.

This ends our description of the Pin- Structure Correspondence.•

As an application of the Pin- Structure Correspondence and Reduction 6.10
we present
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Theorem 6.11. There exists a homomorphism R: n~ ~ n~~2- (BO (2»). Given an
object, x E Q~, let F denote the submanifold dual to W2 +wf. This manifold has a
map F ~ BO(2) classifying the normal bundle. Use the above construction to put
a Pin- structure on F: R(x) is the bordism class of this Pin structure on F.

Variants of this map enter into the discussions below.

Corollary 6.12. If MFKr denotes the r-th bordism group of Freedman-Kirby,
then there exists a long exact sequence

nSpin i MF}r? R nSpin(B ) a nSpin
• • • --+ ~£r -+ ·\.r---+~'r-2 80(2) ---+~'r-l --+ •••

where R takes the Spin bordism class of the classifying map for the normal bundle
to F in M, and a takes the Spin structure we put on the total space of the associated
circle bundle. The V we always take is the empty set.

Remark 6.13. There are definitely non-trivial extensions in this sequence.

Remark 6.14. The Freedman-Kirby bordism theory is equivalent to the bordism
theory Spine, the theory of oriented manifolds with a specific reduction of W2 to
an integral cohomology class. This bordism theory has been computed, e.g. Stong
[Stong], and is determine~d by Stiefel-Whitney numbers, Pontrjagin numbers, and
rational numbers formed from products of Pontrjagin numbers and powers of the
chosen integralization of W2.

Remark 6.15. There are versions of this sequence for the bordism theory studied
by Guillou-Marin and for our bordism theory. In both of these cases we replace
n Spin by the Pin- bordism groups nPin-. We also replace n;?:.;n(BSO(2») by the
bordism groups of O(2)-bundles over Pin- manifolds with some extra structure.
The bordism groups of O(2)-bundles over Pin-manifolds can be identified with
the homotopy groups of the Thom spectrum formed from BPin- X BO(2) using the
universal bundle over B pin- and the trivial bundle over BO(2). The associated

bordism groups are denoted n~~2- (BO(2»). In the Guillon-Marin case we define
BGM as the fibre of the map BPin- X B O(2) --+ K(Z/2Z, 1) where the map is the
sum of WI of the universal bundle over B pin- and WI of the universal bundle over
BO(2). In our case we let BE be the fibre of the map B pin - X B O(2) ~ K(Z/2Z, 2)
where the map is the product of two I-dimensional cohomology classes: 0 namely
WI of the universal bundle over B pin- and WI of the universal bundle over BO (2).

Over either BGM or BE we can pull back the universal bundle over BPin- plus the
trivial bundle over BO(2) and form the associated Thom spectrum. The homotopy
groups of these spectra fit into the analogous exact sequences for the bordism theory
studied by Guillou-Marin and by us.

Remark 6.16. All the bordism groups defined in Theorem 6.11, Corollary 6.12
and its two other versions are naturally modules over the Spin bordism ring, and
all the maps defined above are maps of n~pin-modules.



228 Kirby & Taylor: Pin structures on low-dimensional manifolds

§7. Geometric calculations of characteristic bordism.

In this section we will calculate the characteristic bordism introduced in the
last section up through dimension 4.

The first remark is that any manifold M of dimension less than or equal to 4
has a characteristic structure. Hence !-bordism is onto unoriented bordism through
dimension 4. We show next that

Theorem 7.1. The forgetful map

is an isomorphism for r = 0,1, and 2. Hence f2b ~ n~ ~ Z/2Z and ni ~ 0.

Proof: Since the forgetful map is onto, it is merely necessary to show that the
!-bordism groups are abstractly isomorphic to Z/2Z or o. We begin in dimension
0. The only connected manifold is the point and it has a unique characteristic
structure: F and V are empty. Hence n~ is a quotient of Z. It is easy to find a -:(
characteristic structure on [0, 1] which has 2 times the oriented point as its boundary:
F is empty and V = {1/2}. Hence {lh ~ Z/2Z given by the number of points mod 2.

In dimensions at least 1, it is easy to add I-handles to show any object is
bordant to a connected one. Hence in dimension 1, the only objects we need to
consider are characteristic structures on 51. Here F is still empty, and V is an even
number of points. The circle bounds B 2 , the 2-disk, and it is easy to extend V ~~

to a collection of arcs in B 2 and to extend the orientation on 8 1 - V. The Pin- ~

structure on the circle either bounds a 2-disk, in which case extend it over B2, or !i
it does not, in which case take F to be a point in B 2 which misses the arcs and A

extend the Pin- structure over B 2 - pt. Hence ni ~ 0. It

In dimension 2 we can assume that M is connected and that it bounds as j
an unoriented manifold. The goal is to prove that it bounds as a characteristic :j
structure. Note V is a disjoint union of circles, and F is a finite set of points with >,'~.l,·

F nV being empty. Since every surface has a Pin- structure, F is an even number .:~

of points. Let W be a collection of embedded arcs in M x [0,1] which miss M x 1 ~

and have boundary F. Since W is a dual to W2 + wi, there is a Pin- structure ~~
on M X [0,1]- W which extends across no component of W. This induces such a j
structure on M x O. Since HI (M; Z/2Z) acts on such structures, it is easy to adjust :4

tJ
to get a Pin- structure on M x [0,1] - W which extends across no component of W ".i
and which is our original Pin- structure on M x O. Given V C M x 0 we can extend }~

to an embedding V x [0, 1) in M x [0,1]. The orientation on M - V extends to one .~

on M x [0,1] - V x [0,1]. Clearly this orientation extends across no component of .:1
.~

V x [0,1], so this submanifold is dual to Wt. Hence we may assume our surface has
empty F with no loss of generality: i.e. M has a fixed Pin- structure.

Let Ek denote the total space of the non-trivial 2-disk bundle over the circle.
The boundary of Ek is 1(2, the Klein bottle and HI (K; Z/2Z) is spanned by a fibre
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circle,C/, and a choice of circle which maps non-trivially to the base, Ct. Consider
the Pin-structure on K2 whose quadratic enhancement satisfies q(C/) = 2 and
q(Ct ) = 1. This structure does not extend across EK so let F be the core circle in
EK. Let V be a fibre 2-disk. Orient the normal bundle to V nF in F any way one
likes. It is easy to check that this gives a characteristic structure on Ek extending

,. the one on K2 which does not bound as a Pin- manifold. By adding copies of this
structure on K2 to M, we can assume that M is a Pin- boundary, so let W 3 be a
Pin- boundary for M.

Inside W we find a dual to WI, say X2, which extends V in M. There is some
orientation on W - X which extends across no component of X and this structure
restricts to such a structure on M - V. Since M is connected, there are only two
such structures and both can be obtained from such a structure on W - X. Hence
our original characteristic structure is a characteristic boundary assuming nothing
more than that it was an unoriented boundary.•

The results in dimensions 3 and 4 are more complicated. We begin with the
3-dimensional result.

Theorem 7.2. The homomorphism R of Theorem 6.11, followed by forgetting the
map to BO(2) yields an isomorphism

Proof: We first show that R is onto and then that it is injective.

Let Ek denote the disk bundle with boundary the Klein bottle as in the-last
proof. The Pin- structure received by F in this structure is seen to be the Lie
group Pin- structure. There is a similar story for the torus, T 2 • There is a 2-disk
bundle over a circle, E}, and a Pin- structure on the torus which does not extend
across the disk bundle so that the core circle receives the Lie group Pin - structure.
Indeed, E} is just a double cover of Ek. IT we take two copies of K2 with its Pin­
structure and one copy of T 2 with its Pin- structure, the resulting disjoint union

2

bounds in nfin-. Let W 3 denote such a bordism. Let M 3 = JlE~. II E~ lL W 3

with the boundaries identified. Let F be the disjoint union of the three core circles,
and note F is a dual to W2 + wf since the complement has a Pin-structure which
does not extend across any of the cores. Let V be a dual to WI and arrange it to
meet F transversely. Indeed, with a little care one can arrange it so that V n F
consists of 2 points, one on each core circle in a Ef(. This is our characteristic
structure on M. Our homomorphism applied to M is onto the generator of niin- .

It remains to show monicity. Let M be a characterized 3-manifold. By adding
I-handles, we may assume that M is connected. First we want to fix it so that
V nF is empty. In general, V nF is dual to W2WI +wr and, for a 3-manifold, this
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vanishes. Hence V n F consists of an even number of points. We explain how to
remove a pair of such points.

Pick two points, po and PI, in V n F. Each point in F has an oriented normal
bundle. The normal bundle to each point in V is also trivial and V is oriented,
so the normal bundle to each point in V is oriented. Attach a I-handle, H =
(BI X [0, 1]) X B2 so as to preserve the orientations at po and Pl. Let W 4 denote the
resulting bordism. Inside W 4 , we have embedded bordisms, Vl and Fl beginning
at V and F in M. Notice that at the "top" of the bordism, the "top" of VI and
the "top" of F1 intersect in 2 fewer points. Moreover, the orientation of the normal
bundle of V n F in F clearly extends to an orientation of the normal bundle of
Vi n FI in Fl.

Since F1 is a codimension 2 submanifold of W, it is dual to some 2-dimensional
cohomology class. Since H* (W, M; Z/2Z) is 0 except when * = 1 (in which case
it is Z/2Z), this class is determined by its restriction to H2 (M; Z/2Z). Hence
F I is dual to W2 + wi, so choose a Pin - structure on W - F I which extends
across no component of Fl. This restricts to a similar structure on M, and since
HI (W; Z/2Z) --. HI (M; Z/2Z) is onto, we can adjust the Pin- structure until it
extends the given one on M - F.

The above argument does not quite work for Vi, but it is easy in this case to see
that W - Vi has an orientation extending the one on M - V. Any such orientation
can not extend over any components of VI. Hence we have a characteristic bordism
as required.

We may now assume that V n F is empty. Since F is a union of circles and
V n F = 0, F has a trivial normal bundle in M. If our homomorphism vanishes
on our element, F is a Pin- boundary, which, in this dimension, means that it is
a Spin boundary: i.e. F bounds Q2, an orientable Pin-manifold. Glue Q2 x B 2

to M x [0, 1] along F X B 2 C M x 1 to get a bordism X 4
• Since Q is orientable,

V x [0, 1] is still dual to WI, and it is not hard to extend the Pin-structure on
M - F to one on X - Q which extends across no component of Q. Since Q and
V x [0, 1] remain disjoint, the "top" of X is a new characteristic pair for which the
dual to W2 + wi is empty: i.e. the "top", say N3, has a Pin- structure. Since
nfin- = 0, N3 bounds a Pin- manifold, y4. Since M was connected, so is Nand
there is no obstruction to extending the dual to WI in N, say VI, to a dual to WI

in Y, say U, and extending the orientation on N - Vi to an orientation on Y - U
which extends across no component of U. The union of X 4 and y4 along N3 is a
characteristic bordism from M 3 to o.•

The last goal of the section is to compute n~. Since the group is non-zero,
we begin by describing the invariants which detect it. Given an element in n~,

we get an associated surface F2 with a Pin - structure, and hence a quadratic
enhancement, q. We may also consider 1], the normal bundle to F in our original
4-manifold. We describe three homomorphisms. The first is {3: n~ -+ Z/8Z which
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just takes the Brown invariant of the enhancement q. The second homomorphism
is W: 01 ~ Z/4Z given by the element Q(Wl("'» E Z/4Z. The third homomorphism
is w2:n1 ~ Z/2Z given by (W2(1J), [F]) E Z/2Z. We leave it to the reader to check
that these three maps really are homomorphisms out of the bordisID group, n~.

Theorem 7.3. The sum of the homomorphisms

f3 ED WEf) W2: n~ ~ Z/8Z EB Z/4Z EB Z/2Z

is an isomorphism.

Proof: First we prove the map is onto and then we prove it is 1-1. Recall from
Lemma 6.7 that a surface, M, with a Pin- structure and a 2-plane bundle, 7], can
be completed to a characteristic bordism element iff (WI (M) + WI (7]» U WI (7]) = O.
Notice that this equation is always satisfied since cupping with WI (M) and squaring
are the same. Hence we will only describe the surface with its Pin- structure and
the 2-plane bundle.

First note that Rp2 with the trivial 2-plane bundle generates the Z/8Z and
maps trivially to the Z/4Z and the Z/2Z.

The Hopf bundle over the 2-sphere maps trivially into the Z/8Z and the Z/4Z
since 52 is a Pin- boundary and \II vanishes whenever the 2-plane bundle has
trivial WI. However, 82 and the Hopf bundle maps non-trivially to the Z/2Z.

Let [(2 denote the Klein bottle, and fix a Pin- structure for which K2 is a
Pin- boundary. Let 1] be the 2-plane bundle coming from the line bundle with
WI being the class in HI (K2; Z/2Z) with non-zero square. Since K2 is a Pin­
boundary, (3(K2) = O. Since TJ comes from a line bundle, W2(TJ) = O. However,
Q(Wl(7]» is an element in Z/4Z of odd order and is hence a generator.

This shows that our map is onto. Before showing that our map is 1-1, we need
a lemma.

Lemma 7.4. There exists a 2-disk bundle B 2n over the punctured 8 1 x 52, 8 1 X

S2 - int B 3 , whose restriction to the boundary S2 has Euler class 2n, n E Z.

Proof: Start with the 2-disk bundle En over 82 with Euler number n and pull it
back over the product 82 xl. Now add a I-handle to 82 xl, forming 8 1 xS2 -int B 3

,

and extend the bundle B", over the I-handle so as to create a non-orientable bundle
B2n • Then X(B2n ls2) = 2n.•

Suppose M 4, V3, F2, TJ2 is a representative of an element of n~ and that
(3(F2) = 0, 'I1(W] (1]» = 0, and W2(7J) = 0. We need to construct a !-bordism to 0.

Since we may assume that F, M and V are connected, there is a connected
I-manifold, an 81 , which is Poincare "dual to Wl(7]); then the normal vector to
8 1 in F makes an even number of full twists jp. the Pin- structure on F as 8 1

is traversed. It follows that we can form a !-bordism by adding to F a B 2 x B l
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where 51 x B l is attached to the dual 8 1 to wl(71) and its normal Bl bundle.
Clearly the Pin- structure on F extends across the bordism. Since the dual to 8 1

has self-intersection zero in F, 71 restricted to 51 is orientable, so 1] extends over
B 2 x B l

•

Since W2(71) = 0, it follows that X(7])[F] = 2n for some n E Z. By Lemma 7.4
there is a bundle B_2n over a punctured SI x 52 with x(B-2n ls2) = -2n. We form
a 5-dimensional bordism to the boundary connected sum, i.e. in M 4 X 1 C M 4 xl,
choose a 4-ball of the form B 2 x B 2 where B2 x 0 C p2 - (V n F) and p x B 2

is a normal plane of 71 over p, and identify B2 X B2 with B-2nls~ where 5~ is a

hemisphere of 52.
The new boundary to our !-bordism, which we shall denote (M, V, F, 1]) now

has a trivial normal bundle 71.

Since I3(F2) = 0, F Pin- bounds a 3-manifold N 3
, so we add N 3 x B 2 to

M x 1 along the normal bundle TJ to F, F X B 2 , where it does not matter how
we trivialize 71. The Pin- structure on M - F extends over the complement of N
(using the Pin- Correspondence Theorem, 6.9, and the Pin- structure on N), so
the new boundary to our !-bordism consists of a Pin- manifold M with empty F2.
Since'4-dimensional Pin- bordism, nfin-, is zero, we can complete our !-bordism
by gluing on to M x 1 a 5-dimensional Pin - manifold. •

Remark. It is worth comparing this argument with the argument in [F-I(J showing
that if (M4 , P2) is a characteristic pair with M 4 and F 2 orientable and with
sign(M4 ) = 0 and F.F = 0, then (M, F) is characteristically bordant to zero.
The arguments would have been formally identical if we had also assumed that the
Spin structure on F, obtained from the Pin- Correspondence Theorem, bounded
in 2-dimensional Spin bordism, nipin = Z/2Z (corresponding to f3(F) = 0 above).
However, it is possible to show that n~har = Z EB Z without the extra assumption
on F, and this ZJ2Z improvement leads to Rochlin's Theorem (see (F-K], [[{i}, ...).

Further Remark. The image of the Guillou-Marin bordism in this theory can be
determined as follows. The group is Z E9 Z generated by (54, RP2) and (Cp2 , S2 ).
Both f3 and '¥ vanish on (CP2, S2), but W2 is non-zero. On (S4, RP2), W2 evaluates
o(the nonnal bundle comes from a line bundle): f3 is either 1 or -1 depending on
which embedding one chooses. Moreover, '11 is either 1 or -1 (the same sign as (3).

§8. New knot invariants.

The goal here is to describe some generalizations of the usual Ad invariant of
a knot (or some links) due to Robertello, [R].

We fix the following data. We have a 3-manifold M 3 with a fixed Spin structure
and a link L: JJ-51 -+ M 3

• Since M is Spin, w2(M) = 0 and we require that [L] E
I

HI (M; Z/2Z) is also 0, hence dual to w2(M). We next require a characterization of

·"'''40,.•
~. ·~.7·'''' - -.,. ....... , ....... ,~.,.
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the pair, (M, L): i.e. a Spin structure on M - L which extends across no component
of L. We call such a characterization even iff the Pin- structure induced on each
component of L by Lemma 6.2 is the structure which bounds. We say the link is
even iff it has an even characterization.

One way to check if a link is even is the following. Each component of L has a
normal bundle, and the even framing of this normal bundle picks out a mod 2 lon­
gitude on the peripheral torus. The link is even iff the sum of these even longitudes
is 0 in H1 (M - L; Z/2Z)

Remark. Not all links which represent a are even: the Hopf link in S3 is an
example where any structure which extends across no component of L induces the
Lie group Spin structure on the two circles. We shall see later that a necessary and
sufficient condition for a link in S3 to be even is that each component of the link
should link the other components evenly. This is Robertello's condition, [RJ.

Definition. A link, L, in M 3 with a fixed Spin structure on M and a fixed Spin
structure on M - L which extends across no component of L and induces the
bounding Pin- structure on each component of L is called a characterized link.

Given a characterized link, (M, L), we define a class i E HI (M - L; Z/2Z): 1
is the class which acts on the fixed Spin structure on M - L to get the one which is
the restriction of the one on M. The class i is defined by the characterization and
conversely a characterization is defined by a choice of class i E HI (M - L; Z/2Z) so
that, under the coboundary map, the image of i in H2 (M, M - L; Z/2Z) hits each
generator. (Recall that by the Thorn isomorphism theorem, H2 (M, M - L; Z/2Z)
is a sum of Z/2Z's, one for each component of L.)

Let E be the total space of an open disk bundle for the normal bundle of L, and
let S be the total space of the corresponding sphere bundle. Note S is a disjoint
union of a peripheral torus for each component of L. The class '1 is dual to an
embedded surface F C M - E and 8F n S is a longitude in the peripheral torus
of each component of L. Let l denote this set of longitudes. We will call.e a set of
even longitudes. We will call F a spanning surface for the characterized link.

The set of even longitudes is not well-defined from just the characterized link. It
is clear that two surfaces dual to the same / must induce the same mod 2 longitudes.
But if we act on one component of L by an even integer, we can find a new sutface
dual to 1 which has the same longitudes on the other components and the new
longitude on our given component differs from the old one via action by this even
integer. Hence the characteristic structure only picks out the mod 2 longitudes and
any set of integral classes which are longitudes and which reduce correctly mod 2
can be a set of even longitudes. Moreover, any set of even longitudes is induced by
an embedded surface.

Since M is oriented, the normal bundle to any embedded surface, F, is isomor­
phic to the determinant bundle associated to the tangent bundle of F. The total

. ..."...
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space of the determinant bundle to the tangent bundle is naturally oriented. The
total space to the normal bundle to F is M is oriented by the orientation on M.
Choose the isomorphism between the normal bundle to F in M and the determi­
nant bundle to the tangent bundle of F so that, under the induced diffeomorphism
between the total spaces, the two orientations agree. Under these identifications,
Corollary 1.15 picks out a Pin- structure on F from the Spin structure on M. We
apply this to an F which is a spanning surface for our link. Of course we could apply
the same result but use the Spin structure on M - L. It is not hard to check that
the two structures on F differ under the action of wl(F) since this is the restriction
of / to F. Hence it is not too crucial which structure we use but to fix things we
use the structure on M.

We can restrict this structure on F to a component of L. If we put the Spin
structure on F coming from that on M - L it is easy to see that we get the bound­
ing Pin- structure on each component of L. Hence this also holds for the Pin­
structure on F coming from the one on M. Hence, a spanning surface for a char­
acterized link has an induced Pin- structure which extends to the corresponding
closed surface uniquely.

Our link invariant is a mod 8 integer which depends on the characterized link
and the set of even longitudes.

Definition 8.1. Given a characterized link, (M, L), and a set of even longitudes,
f, pick a spanning surface F for L which induces the given set of longitudes. Then
define

f3( L, f, M) = (3(F)

where F is F with a disk added to each component of L; the Pin- structure is
extended over each disk; and f3 is the usual Brown invariant applied to a closed
surface with a Pin-structure.

Remarks.
i) Notice that unlike Robertello's invariant, our invariant does not require that

the link be oriented.

ii) It follows from the proof of Theorem 4.3 that a knot is even iff it is mod 2
trivial.

iii) IT each component of L represents 0 in HI (M; Z/2Z) then the mod 2 linking
number of a component of L with the rest of the link is defined. If F is
an embedded surface in M with boundary L, the longitude picked out for a
component of L is even iff the mod 2 linking number of that component of L
with the rest of the link is O.

iv) IT M is an oriented Z/2Z homology 3 sphere, then it has a unique Spin structure
and there is a unique ~ay to characterize an even link L.

v) Let M be an integral homology 3 sphere containing a link L. Orient each
component of the link. Let fi be the linking number of the ith component of L
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with the rest of the link. Each component of L has a preferred longitude, the
one with self-linking 0, so li also denotes a longitude. The link L is even iff
each ti is even. Robertello's Arf invariant is equal to f3( L, -l, M), where the
Spin structure and characterization are unique and t is the set of longitudes
obtained by using -ti on each component. Notice that ti depends on how the
link is oriented.

It is not yet clear that our invariant really only depends on the characterizations
and the even longitudes.

Theorem 8.2. Let L be a link in a 3-manifold M. Suppose M has a Spin structure
and that L is characterized: Let t be a collection ofeven longitudes. Then (1(L, l, M)
is well-defined. Let W 4 be an oriented bordism between M 1 and M 2 • Let Li C Mi,
i = 1,2 be characterized links. Let FeW be a properly embedded surface with
F n Mi = Li. Suppose W - F bas a Spin structure which extends across no
component of F and which gives a Spin bordism between the two structures on
Mi - L j , i = 1,2, given by the characterizations.

The normal bundle to F in W has a section over every non-closed component
of F so pick one. This choice selects a longitude for each component of each link.
Suppose the longitudes picked out for each Li, say ti, are even. The surface F
receives a Pin- structure by Lemma 6.2. With this structure, each component of
8F bounds and hence F has a f3 invariant. H we orient W so that M 1 receives the
reverse Spin structure then tbe following. formula bolds.

Proof: We begin by discussing some constructions and results involving aSpin 3­
manifold N and a spanning surface, V 2 for a characterized link, L. To begin, given
e: V 2 C N 3

, define V C N x [0,1] as the image of e x I, where I: V --+ [0,1/2] is any
map with 1-1(0) = aVe If N has a Spin structure, N x [0, 1] receives one. The class
represented by [V, L] in H2 (N x [0, 1], N x 0 JL N x 1; Z/2Z) ~ HI (N x 0; Z/2Z)
is the same as that represented by [L] in HI (N x 0; Z/2Z). Hence it represents
o. Since w2(N X [0,1]) is also trivial, there is a Spin structure on N x [0, 1] - V
which does not extend across any component of V. Such structures are acted on
simply transitively by HI (N; Z/2Z), so it is easy t~ construct a unique such Spin
structure which restricts to the initial one on N X 1.

We proceed to identify the Spin structure induced on N X 0 - L. Let X =
V x [0, 1] and embed two copies of V in the boundary so that 8X = V U V where
the union is along 8V thought of as 8V x 1/2. First observe that we can em­
bed X in N x [0, 1] so that ax is V c N x 0 union V x 1 = V. Since X
has codimension 1, the Poincare dual to W is a I-dimensional cohomology class
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x E HI (N X [0,1] - V; Z/2Z). Suppose we take the Spin structure on N x [0,1]
and restrict it to N x [0,1] - V and then act on it by x. This is a Spin structure on
N x [0,1]- V which extends across no component of V and which is the original
one on N x 1. On N x 0- L it can be described as the one obtained by taking the
given Spin structure on N x 0, restricting it, and then acting on it by the restriction
of x. But the restriction of x is just the Poincare dual of FeN x °and so it is
the Spin structure which characterizes the link. By Lemma 6.2, there is a preferred
Pin- structure on V, which is easily checked to be the same as the one we put on
it in §4. The above Spin structure on N x [0,1] - V will be called the standard
characterization of the pair (N x [0, 1], V).

With this general discussion behind us, let us turn to the situation described
in the second part of the theorem. Recall W 4 is an oriented bordism between M I

and M 2 ; L 1 C M I and L 2 C M 2 are characterized links; F2 C W be a properly
embedded surface with FnMi = Li; and W -F has a Spin structure which extends
across no component of F and which gives a Spin bordism between the structures
on Mi - Li. Define sets of even longitudes f,j as in the statement of the theorem.

Let Fi C Mi be a spanning surface for L i • Inside W = M 1 X [-1, 0] U W U M 2 X

[0,1] embed F = FI U F U F2 , where FI is defined with function I: F1 ~ [-1/2,0]
and still 1-1(0) = 8Ft • There is a Spin structure on W - F which extends across
no component of F. It is just the union of the standard characterization of M 1 x
[-1,0], F1 , the given Spin structure on W - F and the standard characterization
of M2 x [0,1],F2 •

By Lemma 6.2 again, there is a preferred Pin- structure on F, which agrees
with the usual ones on F I and F2 • In particular, F also receives a Pin- structure
which only depends on W, not on the choice of FI or F2 • However, from F1 and
F2 , we see that the Pin- structure induced on each component of each link is the
bounding one. Moreover, f3(p) = f3(F) + f3(F2 ) - f3(F1 ).

By construction, F."F is 0, so 6.4 says that

where the J.l invariants arise because 6.4 only applies to closed manifolds.

Apply this to the case W = M x [0, 1], F = L x [0, 1] embedded as a product.
Since we may use different spanning surfaces at the top and bottom, this shows f3 is
well-defined. The formula in the theorem now follows from the formula immediately
above.•

The next thing we wish to discuss is how our invariant depends on the longi­
tudes. Given two different sets of even longitudes, i and i', for a characterized link
L C M 3 , there is a set of integers, one for each component of L defined as follows.
The integer for the ith component acts on the longitude for f, t6 give the longitude
for i'. Since both these longitudes are even, so is this integer.
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Theorem 8.3. Let L C M 3 be a characterized link with two sets ofeven longitudes
R. and it. Let 2r be the sum of the integers which act on the longitudes i to give
the longitudes i'. Then

f3(L,i',M) = f3(L,i,M) + r (mod 8) .

Proof: Given F1 , a spanning surface for the longitude i, we can construct a spanning
surface for i' as follows. Take a neighborhood of the peripheral torus, which will
have the form W = T2 X [0,1]. Inside W embed a surface V which intersects
T2 X 0 in the longitude R., which intersects T2 x 1 in the longitude i', which has no
boundary in the interior of W; and which induces the zero map H2 (V, av; Z/2Z) --+

H2 (W, aw; Z/2Z). The Spin structure on M restricts to one on W which is easily
described: it is the stabilization of one on T2 and this can be described as the
one which has enhancement °on the longitude and °on the meridian. Since the
Pin- structure induced from Corollary 1.15 is local, we see that F2 = V U F1 has
invariant the invariant for F1 plus the invariant for V. We further see that the
invariant for V only depends on the surface and the Spin structure in W. But
these are independent of the link and so we can calculate the difference of the f3's
using the unknot.

Furthermore, we see that the effect of successive changes is additive, so we only
need to see how to go from the 0 longitude to the 2 longitude, and the 2 longitude
is given by the Mobius band, which inherits a Pin- structure. This Pin- structure
extends uniquely to one on Rp2 and this Rp2 has (3 invariant +1.

Remark. Even in the case of links in S3, the longitudes used enter into the answer.
It is just in this case that there is a unique set of longitudes given by using an
orientable spanning surface.

Unfortunately, in general there is no natural choice of longitudes so it seems
simplest to incorporate them into the definition. The drawback comes in discussing
notions like link concordance. In order to assert that our invariant is a link concor­
dance invariant, we need to describe to what extent a link concordance allows us
to transport our structure for one link to another. Recall that a link concordance
between Lo C M and L l C M is an embedding of (Jl.. SI) x [0,1] C M x [0,1] with
is (1L SI) X i being Li for i = 0,1. Suppose Lo is an even link with f o a set of even
longitudes. There is a unique way to extend this framing of the normal bundle to
Lo in M to a framing of the normal bundle of (Jl.. SI) x [0,1] in M x [0,1]. Hence
the concordance picks out a set of longitudes for L 1 which we will denote by R.I.

There is a unique way to extend a characterization of Lo to a Spin structure on
M x [0,1] - (1L SI) x [0,1] and hence to M - L 1 •

Corollary 8.4. Let Lo and L l be concordant links in M. Suppose Lo is charac­
terized and that i o is a set of even framings. Then the transport of framings and
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Spin structures described above gives a cbaracterization of L1 and £1 is a set of
even framings. Furtbermore P(Lo, f o, M) = f3( L1 , £1 , M).

Proof: The proof follows immediately from Theorem 8.2 and the fact that (ll
8 1 ) X [0, 1], when capped off with disks, is a union of 8 2 's and so has f3 invariant
o.•

We do know one scheme to remove the longitudes which works in many cases.
Suppose that each component of the link represents a torsion class in HI (M; Z).
Each component has a self-linking and by Lemma 4.1 the framings, hence longitudes
are in one to one correspondence with rational numbers whose equivalence class in
Q/Z is the self-linking number. There is a unique such number, say qi for the ith
component, so that qi represents an even framing and 0 ~ qi < 2. We say that this
is the minimal even longitude. To calculate linking numbers it is necessary to orient
the two elements one wants to link, but the answer for self-linking is independent
of orientation.

Definition 8.5. Let L be a link in M so that each component of L represents a
torsion class in HI (M; Z). Suppose L is characterized. Define

P(L,M) = f3(L,i,M)

where /, is the set of even longitudes such that each one is minimal.

Remark. It is not hard to check that /3 is a concordance invariant.

As we remarked above, (3 and /3 (if it is defined) do not depend on the orien­
tation of the link. H we reverse the orientation of M, and also reverse the Spin
structure on M and on M - L, it is not hard to check that the new Pin- structure
on F is the old one acted on by WI (F) so the new invariant is minus the old one.

The .remaining point to ponder is the dependence on the two Spin structures.
To do this properly would require a relative version of the (3 function 4.8. It does
not seem worth the trouble.

Remark. We leave it to the reader to work out the details of starting 'with a
characteristic structure on M 3 with the link as a dual to W2 + w~ (i.e. represents 0
in HI (M; Z/2Z)).

§9. Topological versions.

There is a topological version of this entire theory. Just as Spin(n) is the
double cover of SO(n) and Pin±(n) are the double covers of O(n), we can consider
the double covers of STop(n) and Top(n). We get a group TopSpin(n) and two
groups TopPin±(n). A Top(n) bundle with a TopPin±(n) structure and an O(n)
structure is equivalent to a Pin±(n) bundle.
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Any manifold of dimension $ 3 has a unique smooth structure, so there is no
difference between the smooth and the toplogical theory in dimensions 3 and less.
The 3-dimensional bordism groups might be different because the bounding objects
are 4-dimensional, but we shall see that even in bordism there is no difference.

We turn to dimension 4. First recall that the triangulation obstruction (strictly
speaking, the stable triangulation obstruction) is a 4-dimensional cohomology class
so evaluation gives a homomorphism, which we will denote ~, from any topological
bordism group to Z/2Z. Since every 3-manifold has a unique smooth structure,
the triangulation obstruction is also defined for 4-manifolds with boundary. Every
connected 4-manifold M 4 has a smooth structure on M - pt, and any two such
structures extend to a smoothing of M x [0,1] - pt x [0,1].

Some of our constructions require us to study submanifolds of M. In particular,
the definition of characteristic requires a submanifold dual to WI and a submanifold
dual to W2 + w~. We require that these submanifolds be locally-fiat and hence,
by [Q], these submanifolds have normal vector bundles. Of course we continue to
require that they intersect transversely. Hence we can smooth a neighborhood of
these submanifolds. The complement of these smooth neighborhoods, say U, is a
manifold with boundary, which may not be smooth. If we remove a point from the
interior of each component of U, we can smooth the result. With this trick, it is not
difficult to construct topological versions of all our "descent of structure" theorems.
In particular, the [nw~], [nWl] and R maps we defined into low-dimensional Pin±
bordism all factor through the corresponding topological bordism theories.

Theorem 9.1. Let Smooth-bordism. denoten;pin, n;in:l:, n~, or the Freedman­
Kirby or Guillou-Marin bordism theories. Let Top - bordism* denote the topolog­
ical version. The natural map

Smooth - bordism3 -+ Top - bordism3

is an isomorphism.

It

Smooth - bordism4 -+ Top - bordism4-+Z/2Z -+ 0

is exact.

Proof: The Es manifold, [F], is a Spin manifold with non-trivial triangulation
obstruction. Suppose M 3 is a 3-manifold with one of our structures which is a
topological boundary. Let W 4 be a boundary with the necessary structure. Smooth
neighborhoods of any submanifolds that are part of the structure. This gives a new
4-manifold with boundary U4 • If the triangulation obstruction for a component of
U is non-zero, we may form the connected sum with the Es manifold. Hence we
may assume that U has vanishing triangulation obstruction. By [L-S] we can add
some 8 2 x 8 2 's to U and actually smooth it. The manifold W can now be smoothed
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so that all submanifolds that are part of the structure are smooth. Hence M 3 is
already a smooth boundary.

The Es manifold has any of our structures, so the map Top-bordism4 ~ Z/2Z
given by the triangulation obstruction is onto.

Suppose that it vanishes. We can smooth neighborhoods of any submanifolds,
so let U be the complement. Each component of U has a triangulation obstruction
and the sum of all of them is O. We can add Es's and - Es 's so that each component
has vanishing triangulation obstruction and the new manifold is bordant to the old.
Now we can add some S2 x 52 's to each component of U to get a smooth manifold
with smooth submanifolds bordant to our original one.•

Theorem 9.2. The topological bordism groups have the following values. OTopSpin

~ z; nropPin- ~ Z/2Z; OrOpPin+ ~ Z/8Z Ea Z/2Z; and n[op-! ~ Z/8Z $ Z/4Z EB
Z/2Z e1 Z/2Z. The triangulation obstruction map is split in all cases except the
Spin case: the smooth to topological forgetful map is monic in all cases except
the TopPin+ case where it has kernel Z/2Z. The triangulation obstruction map
is split onto for the topological versions of the Freedman-Kirby and Guil1ou-Marin
theories and the smooth versions inject.

Proof: The TopPin- case is easy from the exact sequence above. The TopSpin
case is well-known but also easy. The Es manifold has non-trivial triangulation
obstruction and twice it has index 16 and hence generates nfpin.

There is a [nw~] homomorphism from nropPin+ to nfin- ~ Z/8Z which is
onto. Consider the manifold M = ES#S2 X RP2. The oriented double cover
of M is Spin and has index 16, hence is bordant to a generator of the smooth
Spin bordism group. It is not hard to see that the total space of the non-trivial
line bundle over M has a Pin+ structure, so the !{ummer surface is a TopPin+
boundary. Hence there is a Z/2Z in the kernel of the forgetful map and the [nw~]

map shows that this is all of the kernel. Furthermore, Es represents an element of
order 2 with non-trivial triangulation obstruction.

The homomorphisms used to compute n~ factor through nJop-!, so Orop
-! ~

n~ E9 Z/2Z.

Likewise, the homomorphisms we use to compute smooth Freedman-Kirby or
Guillou-Marin bordism factor through the topological versions.•

Corollary 9.3. Let M 4 be an oriented topological 4-manifold, and suppose we
have a characteristic structure on the pair (M, F). The following formula holds:

2· (J(F) = F.F - sign(M) +8· K(M) (mod 16)

where the Pin- structure on F is the one induced by the characteristic structure
on (M, F) via the topological version of the Pin-Structure Correspondence, 6.2.
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Proof: Generators for the topological Guillou-Marin group consist of the smooth
generators, for which the formula holds, and the E g manifold, for which the formula
is easily checked.•

Remark. The above formula shows that the generator of H2 ( ; Z) of Freedman's
Chern manifold, [F, p. 378], is not the image of a locally-fiat embedded 82 •
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