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Splitting the spectral flow and the Alexander matrix 

PAUL KIRK l, ERIC KLASSEN 2 AND DANIEL RUBERMAN 3 

1. Introduction 

This paper is concerned with a procedure for computing the spectral flow of a 

path of self-adjoint operators of  the form D, = *dA, -- dA,*, where the At are SU(2) 
connections on a 3-manifold Z which is split along a torus, and A0 and A~ are fiat. 
Recent theorems of Yoshida [Y1, Y2] show how to carry this out when Z is 
obtained by surgery on a knot, under certain nondegeneracy conditions. Under the 
assumption that there is a path A, of flat connections on the knot complement and 
that the space of flat connections modulo gauge transformation is a smooth 
l-dimensional variety near this path, Yoshida shows with an explicit formula that 
the spectral flow is determined by the restriction of the path to the boundary torus. 

As a consequence of our main result we show that when the path A, has 

singularities, the spectral flow is not determined by its restriction to the boundary 
torus. We give explicit computations in w comparing the spectral flow on a surgery 
of a Whitehead double of  a knot to the spectral flow on the corresponding surgery 

of the Whitehead double of the unknot. These examples have paths of  flat 
connections on the knot complements whose restrictions to the boundary are the 
same, while their spectral flows differ. 

Suppose Z = X w  Y, where X is the complement of  a knot in S 3. Let A0 and Al 
be flat connections on Z whose restrictions to X are reducible. Then there are 

corresponding flat connections A ~ and At on Z '  = X ' u  Y, where X'  is the unknot 
complement (i.e., a solid torus). In ~4 we show that the difference between the 

spectral flow from A~ to AI on Z '  and the spectral flow from Ao to A~ on Z is a 
classical knot signature, and in fact is equal to the spectral flow of the Alexander 
matrix of  the knot. Applying this theorem to satellite knots yields examples in 
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which Yoshida's pillowcase result fails for paths of  representations having singular- 
ities. For this special case, Theorem 4.4 gives the precise correction term needed to 
make Yoshida's theorem apply. In w we demonstrate how to calculate this 
correction in a number of  examples. 

By combining this splitting device with the technique of [FS2], we can compute 
the spectral flows between arbitrary flat connections on a large class of 3-manifolds 
split along tori, including graph manifolds. In w we describe the moduli space of 
flat irreducible connections on a manifold obtained by gluing together two Seifert- 
fibered homology knot complements X and Y along their boundaries, and show 
how to compute the spectral flow between any two such connections using the 
techniques of Fintushel and Stern. In this case we obtain an explicit formula which 
shows the spectral flow is a sum of 3 terms. The first term involves only X and is 
an analogue for Seifert-fibered manifolds with boundary of the R(e) invariant of 
Fintushel and Stern. The second term is analogous and involves only Y. The third 
term is an "interaction" term arising from the restrictions to the boundary. 

These results are applied in w to compute the Floer chain complexes of certain 
surgeries on twisted Whitehead doubles of torus knots. 

To put our results in proper perspective we will explain briefly the algorithm of 
Yoshida, in the cases where his work applies. Here and for the rest of the paper, we 
write R(n) for the space of representations of  a group n in SU(2), modulo 
conjugation. An elementary but vital fact is that R(Z 2) is a 2-sphere with 4 singular 
points, called the pillowcase. Suppose that Z is a 3-manifold and that X c Z is the 
exterior of  a knot in Z. Suppose further that Po and p~ ~ R(n~(Z)) are representa- 
tions which happen to lie on a smooth 1-dimensional component of  irreducible 
representations of  n,(X) which we parameterize as p,. Restricting Pt to the 
boundary torus gives a smooth path in the pillowcase R(Z2). There is a tangent line 
field on the complement of the singular points in the pillowcase and Yoshida shows 
that the spectral flow is just the degree of  the tangent vector field to the restriction 
of  Pt in this line field. 

The intuitive reason for this is that each operator in the path whose spectral 
flow we are interested in has l-dimensional kernel when restricted to X, and when 
restricted to the neighborhood, S, of the knot. These kernels are identified with the 
aforementioned tangent fields, and an eigenvalue (for the operator on Z)  passes 
through 0 whenever these tangent fields coincide. 

Yoshida assumes that the two representations lie on a smooth, 1-dimensional 
component of the representation space of  the knot complement and proceeds by 
drilling out holes, thus splitting along a higher genus surface where non-degen- 
eracy is easier to verify. T. Mrowka [M] has a more general approach - he shows 
that in any case there is an infinite dimensional Maslov index which equals the 
spectral flow. Under the nondegeneracy conditions, Mrowka identifies this Maslov 
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index (via "symplectic reduction") with the degree of the vector fields in the 
pillowcase. However, the reduction process breaks down when the path Pt passes 
through a singular point of the representation variety R(rr~ (X)). More recently 
Cappell, Lee, and Miller [CLM] have announced a formula which expresses the 
spectral flow as a sum of  3 terms given a splitting of a 3-manifold along any surface. 
Our results can be viewed as explicitly identifying the terms in their formula in the 
special cases outlined above. 

Our methods do not involve the delicate analysis of [Y1] but instead use the 
machinery of the Atiyah-Patodi-Singer  index theorem for manifolds with 
boundary, together with Wall nonadditivity. Along the way, we clear up some 
delicate points about orientations, and about Chern-Simons invariants for SO(3) 
bundles which seem confused in the literature. 

A few general remarks can be made here. The results in this paper are of a 
computational nature, and as such they provide explicit computations of spectral 
flow which can then be combined with the abstract splitting results of [Y1], [M], 
and [CLM]. For example, Yoshida shows how to compute the Floer homology of 
any surgery on the figure 8 knot starting with only two pieces of data: the image of  
the space of  SU(2) representations of the figure 8 knot in the pillowcase, and 
Fintushel and Stern's computation of the Floer homology of Z(2, 3, 7). The 
computation then follows from an algorithm, as explained in [Y2]. Similarly, the 
results of this paper show how to relate the spectral flow for representations of 
3-manifolds to the spectral flows for simpler 3-manifolds. These computations 
depend on understanding the representation varieties of 3-manifold groups, and 
although this is a hard problem in general there are many partial results. Of course, 
computing the Floer homology will require understanding the boundary operators 
in the Floer chain complex, a difficult problem. Although this paper does not 
address this question in general we point out that the correction term in Theorem 
4.4 is usually even. (This fact is used to compute the Floer homology of certain 
graph manifolds.) 

2. The p~ invariants and spectral flow 

We will explain some of the terms which appear in our formula for spectral 
flow. See also [T], [F], [FS3]. Our first remark is about orientations. There are two 
conventions for orienting the boundary for a 4-manifold N. We will use the 
convention "outward normal first". This is convenient when dealing with differen- 
tial-geometric objects, for example, with this convention Stokes' theorem says 

IN = 
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Let P - - . Z  be a principal SU(n) bundle over a compact, closed, and oriented 
Q-homology 3-sphere Z. The bundle P is trivial and a fixed trivialization enables us 
to identify the space ~ of connections on P with the lie algebra valued 1-forms 
t21 | su(n). 

Given a connection a ~ ~r we form its covariant derivative 

d a : f2 p | su(n) --* f2 p + l | su(n). 

So dab = db + [a, b] in the trivialization. Let d* denote the adjoint. We then define: 

D a : I 2 ~ 1 7 4  O)f21 @su(n)  - -*12~174 t~t21 |  

by the formula: 

Da(C~, "c) = (da*T , *daT -t- da~ ). 

The operator Da is self-adjoint and elliptic, and has a discrete real spectrum. 
In general, if Dt is a one-parameter family of  self-adjoint operators with discrete 

spectrum on a Hilbert space, the s p e c t r a l f l o w  of the family from Do and D~ is the 
intersection number of the graph of the eigenvalues of Dt with a line segment from 
( 0 , - 6 )  to (1, 6) in [0, 1] x R where ~ is a number such that 0 < 6  <inf[2 I, the 
infimum taken over the set of non-zero eigenvalues of  Do and D~. (Note that all 
eigenvalues are real since the operators are self-adjoint.) See Figure 1. 

0 

- 8  

Figure 1 
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This is just the difference between the number of eigenvalues which change from 
negative to positive and the number of eigenvalues which change from non-negative 
to non-positive. (The 5 is introduced in case Do or D~ have kernel.) 

Now if a,, t e [0, 1] is a smooth 1-parameter family of connections we define the 
Spectral f low f rom ao to a~ to be the spectral flow of the family of self-adjoint 
operators D~. We denote this by SF(ao, a~). 

To resolve the dependency of SF(ct o, cq) on the choices made such as the choice 
of trivialization, the path a,, and the basepoint of Z, we pass to the quotient ~r 
of the space of connections modulo gauge transformations. Then the spectral flow 
becomes well defined in Z/2k ,  Z, where k~ is an integer defined as follows. Let 
ad : SU(n) ~ SU(n 2 - 1) be the (complexified) adjoint representation. Then: 

ad* : H4(BSU(n 2 - 1)) ~ H4(BSU(n))  

takes c2 to k ,  c2. For example k 2 -  4 so the spectral flow between two connections 
on an SU(2) bundle is well defined mod 8. (See w for more details.) 

The spectral flow has the following easily verified properties: 
1. SF(a, c) = SF(a, b) + SF(b, c) + dim Ker Db. In particular SF(a, a) = - d i m  

Ker D~. 
2. If - Z  denotes Z with the opposite orientation, then 

SF(a, b ) ( - Z )  = - S F ( a l  b)(Z)  - (dim Ker Da + dim Ker Db). 

A more sophisticated invariant derived from the spectrum of D~ is its eta-invari- 

ant, ~lo,(s), defined for Re(s) >> 0 by: 

t/Do(S) = E sign -s, 
E S p e c D  a - -  0 

In [APSI] it is shown that r/oo(s ) meromorphically continues to a function with 
a finite value at s = 0. Heuristically, r/oo(0) measures whether D~ has more positive 
or negative eigenvalues. 

As a special case, suppose that ~ : n I Z - , S U ( n )  is a representation and let 
ad ~ : n~ Z --, SU(n 2 - 1) denote the adjoint representation, Let a be a fiat connection 
on P with holonomy ~ and let 0 denote the trivial SU(n) connection. Then the 
quantity q o a ( 0 ) -  700(0) is independent of the Riemannian metric and in fact 
equals the Atiyah-Patodi-Singer  invariant Pad,(Z)  introduced in [APS2]. In 
particular, if N is an oriented 4-manifold with oriented boundary Z and 
f l : n t N  ~ S U ( n  2 -  1) extends ad ot then 

Pad ~ t ( Z )  = ( /12 - -  1) Sign N - Sign~ N. 
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In this formula Signt~ N denotes the signature of N with local coefficients in the 
flat bundle defined by ~ induced by the cup product and the invariant inner product 
on su(n) | C ~- C "2 - 1 

The spectral flow may be expressed in terms of r/-invariants using the main 
theorems of [APS1, 2]. One more quantity is needed, the C h e r n - S i m o n s  invariant 
of a connection. It is defined for a connection a E ~ / b y  

cs(a) = Tr da A a + ~ a A a ^ a 

where we think of a E f2~|  su(n). In this formula wedging of su(n) valued forms 
means to wedge the form parts and matrix-multiply the coefficients. Taken in R / Z ,  

the Chern-Simons invariants are independent of the choice of trivialization or 
gauge transformation. Moreover, the Chern-Simons invariant of a flat connection 
is a flat cobordism invariant. 

With these definitions in place, we can now write the formula for spectral flow. 
Although this formula is well-known we could not find it explicitly derived in the 
literature and so we give an argument in the last section of this paper. We also show 
how to relate the spectral flow to the index of the self-duality operator on Z x L 
suitably oriented. In this formula we assume the group of  the bundle is SU(2). 

1 
SF(a ,  b) = 8(cs(b) - cs(a)) + ~ (qo~ ( O) - qoa ( O)) 

1 
- ~ (dim Ker Da + dim Ker Do). 

In the special case where a and b are f la t  connections with holonomy represen- 
tations �9 and fl respectively then the kernel of D~ is just H~ ad ~) ~ Ht (Z;  ad ~) 
by the Hodge theorem. We then denote the dimension of the kernel by h,. In this 
case the formula becomes: 

1 1 
SF(~,  fl) = 8(cs(fl) - cs(~)) + -~ (P,d t~(Z) - P,d ~(Z) )  - ~ (h, + ha). (2.1) 

In [T] it is proven that if Z is a homology sphere such that H~(Z;  ad,) vanishes 
for all irreducible SU(2) representations ~, then Casson's homology sphere invari- 
ant is equal to 

_ ~ ( _ !  l)SF([Ol,[a] ) 
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where the sum is taken over the finite set of conjugacy classes of  irreducible SU(2) 
representations. More generally one must perturb the flatness equations to obtain a 
finite sum. 

REMARK.  Taubes shows his invariant is equal to Casson's invariant, not its 
negative. However, we are using the sign convention of [AM] for Casson's invariant. 
Akbulut and McCarthy first define Casson's invariant up to an overall sign which 
they later nail down by requiring the surgery formula to hold with respect to a 
specific normalization of  the Alexander polynomial. It turns out that the sign (S on 
pages 65 and 125 of [AM]) equals - 1. We will see this later in our computations. 

In [F], Floer makes use of the fact that spectral flow is well-defined mod 8 to 
construct a Z/8-graded chain complex whose generators in dimension k are those 
SU(2) representations a such that SF([O], [ct]) = k Mod 8. The homology of this 
complex is called the Floer homology or Instanton homology of Z. 

3. The basic geometric construction 

We introduce the geometric construction which will be our main tool. The idea 
is simple: if we can decompose the 3-manifold Z into simpler pieces, say X and Y 
and find 4-manifolds with boundary containing X and Y over which the representa- 
tions extend, then we can glue the 4-manifolds together to get a fiat cobordism from 
Z to a less complicated space for which we can compute the terms appearing in the 
formula for spectral flow directly. 

So, let Zo be an oriented rational homology sphere and let T c Zo be a torus 
separating Z0 into two pieces Xo and Y0. Let fl : rr I Zo--" SU(n) be a representation. 
(In our applications fl = ad ~t for some SU(2) representation a.) Denote by fix and 

fir the restrictions of  fl to Xo and Y0. 
Suppose there exist 4-manifolds M x  and M y  such that: 

1. Xo c aMx  . 
2. /~x extends over 7r I Mx.  
3. dMx = X o u ( T  2 x I) u X~ l l Lx  where Lx  is some closed manifold, and X~ is 

a rational homology knot complement. See Figure 2. 
We view M x  as a rel boundary cobordism of X0 to Xt + Lx, and view M r  

similarly. 
Then we can glue M x  to M r  along T x I to get a fiat cobordism N with 

boundary Zo u Z~ u Lx  u Lr.  Here Zi = X~ u Y~. We orient N so that: 

ON = - Z o  + Z1 + L x  + Lr .  
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X 0 

X 1 

T •  

F igu re  2 

The main examples to keep in mind are the following: 
1. ,To is the complement of a knot in S 3, XI is the complement of the unknot, 

Mx is a fiat cobordism from X0 to X1, and Mr  = Y x L Thus Lx and L r  are 
empty. 

2. Xo is Seifert fibered, Mx is obtained from the mapping cylinder of the Seifert 
fibration by deleting neighborhoods of the singularities, and so Lx is a union of lens 
spaces and X~ = S l x D 2. We will take M r  to be Y0 x I or, if Yo is also Seifert 

fibered, we will construct Mr from its mapping cylinder. 
Consider now the terms appearing in the formula for the spectral flow between 

two flat SU(2) connections. The Chern-Simons invariant can be computed for 
splittings along tori in various ways, for example using the results of [KK2]. The h~ 
terms are dimensions of cohomology groups which can usually be computed 
explicitly. This leaves the pp invariants. These are not flat cobordism invariants but 
from the At iyah-Patodi -Singer  signature theorem we know: 

pa(Zo) = pa(Zl) + pa(Lx ) + pa(Lx) -- n Sign N + Signa N. 

In our situation Lx and Lr  will either be empty or lens spaces, whose pa invariants 
can be computed directly since they have finite fundamental groups. It remains then 
to compute the signature terms. 

These are computed using Wall's non-additivity formula [Wa]. We are gluing 
Mx to My along T x / ,  so the signature of N differs from the sum of the signatures 
of Mx and My by a correction term which we explain. Fix either trivial R or 
non-trivial fiat coefficients. We have: 

Sign N = Sign Mx + Sign M r  - Sign 

where ~ is a non-degenerate bilinear form on the vector space defined as follows. 
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Consider: 

A = Image (H~(XouX,) , H ' (T  x {0, 1})), 

B = Image (HI(T x I) , H1(T x {0, 1})), 

and 

C = Image (HI(Yo U YI) ~' Ht(T x {0, 1})). 

Then ~ is defined on: 

B n ( A  +C) 
(B n A) + (B n C) 

Write HI(T x {0, I}) = H ~ H ,  so that B is just the diagonal subspace. We can 
write A = Ao~At  and C = Co,C1.  There is an isomorphism: 

B n(A  + C) .., (Ao + Co) n(Al + Ci) 
( B n A )  + ( B n C )  = (AonAl)  + (C0nCl ) "  

For the definition of the form ~ we refer to Wall's paper. In the cases we consider 
we will use this isomorphism to show that ~ is the zero form. 

We end this section with a well-known lemma (see, for example, [H]). 

LEMMA 3.1. Let X be a 3-manifoM with torus boundary, and/et fl : ~ I (X)  --~G 
be a representation into some semi-simple Lie group G. Let E be a representation of 
G which has a'non-degenerate, positive-definite, G-invariant inner product. Then the 
image of H~(X; Ea) in H~(SX; Ea) is half-dimensional. 

Proof. By Poincar6 duality the composition of the cup product and the inner 
product E x E ~ R 

Hi(X; E~) x H2(X, 8X; Et~ ) , H3(X, 8X; R) 

is non-degenerate. The orientation of X defines an isomorphism H3(X, 8X; R) ~ R 
and one obtains an isomorphism: 

Ht(X; Ea) , H o m  (H2(X, OX; Ea), R). 

Similarly we get HI(SX; E,) -~ Hom (HI(SX; E,),  R). 
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Consider now the part of  the long exact sequence: 

f g 
H'(X; Ea) , H'(dX; Ea) , H2(X, dX; Ea). 

The maps f and g are dual maps with respect to Poincar6 duality and so 
dim im ( f ) =  dim Ker ( g ) =  dim H~(dX; E a ) -  dim im ( g ) =  dim H~(dX; E a ) -  
dim im ( g * ) = d i m  HI(dX;E / j ) -d im  i m ( f )  so that the image of f is half 
dimensional. [] 

4. Representations which are abelian on a knot complement 

In this section we consider the set-up of the previous section where Xo is the 
exterior of a knot in S 3 and ~ : nl Zo---, SU(2) restricts to an abelian representation 
on Xo. For example, suppose Zo is a homology sphere obtained from surgery on a 
satellite of a knot K. Then the companion torus splits Zo into the exterior of K and 
surgery on a knot in a solid torus. The representation space of 7q Zo divides into 
two pieces, R1 and RR depending on whether the restriction of  a representation to 
the exterior of  K is irreducible or reducible. The piece RR is naturally homeomor- 
phic to the space of representations of  the corresponding satellite of the unknot. So 
if we write Zo = Xow W w ( S  1 • D 2) where W is the exterior of a knot in a solid 
torus and we are given a path ~t of representations of rq(XoW W) which restrict to 

reducible representations on Xo such that ~o and ~l extend over Zo, there is a 
corresponding path of  representations of nl(X1u W) where X1 is the unknot 
complement. Restricting these two paths to the boundary d(Xiw W) gives the 
identical path in the pillowcase, and so one might expect the spectral flow from ~o 
to ~ on Zo to agree with the spectral flow on Z~ = X1 u W u S  l • D 2 if the theorem 

of  Yoshida continued to hold in this setting. We will show that this is not the case 
and that the difference is measured by equivariant signatures of K. In terms of 
splitting the spectral flow this should correspond to the spectral flow of the path o~ t 
on Xo being non-zero, since as we shall see the dimension of the cohomology of Xo 
with coefficients in ~, jumps precisely when the Alexander matrix of the knot has 
kernel, i.e. when ~(/~)2 is a root of  the Alexander polynomial of K, where ~ is the 
meridian of  K. 

So let )to be the exterior of  a knot K in S 3 and let Yo be a homology knot 

complement. Let Zo = Xou Yo, glued in such a way that HI(Zo; Z ) =  0. (A good 
example to keepin  mind is to let Zo be 1In surgery on a satellite of K and we split 
Zo along the incompressible companion torus.) We suppose that ~ : n ~ Z  o --, SU(2) 
is a representation whose restriction to Xo is abelian. 
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Our  first task is to find manifolds Mx,  M r  as in the previous section and 
compute  their signatures. We t h a n k  Steve Boyer for suggesting the statements and 
proofs o f  the following lemma and theorem. 

Consider the following 4-manifold. Let U = D 4 u H ,  where H is a 2-handle 
attached to O 4 along K with the zero framing. Choose a Seifert surface F for K and 
let F be the union of  F pushed slightly into D 4 and the core of  the 2-handle. Let 
W = U -  nbd(F). So c~W = (0-surgery on K ) w ( F  x $1). Let B be a handlebody of  

genus equal to the genus o f  F. Then let 

Mx  = W w ( B  • SI). 

The p roof  o f  the following lemma is then an application o f  Van Kampen ' s  theorem. 

L E M M A  4.1. 

1. x lMx ~ -  Z. 
2. The map nl ( $3 - K) ~ 7171 Mx induced by inclusion is y ~ [y], where [7] denotes 

the image of  ~ under the abelianization rq (S 3 - K) ~ Hi (S 3 - K) ~ Z. 

Notice that M x  can be viewed as a rel boundary  cobordism of  X0 to 
XL --- S ~ x D 2. Furthermore,  from the previous lemma any abelian representation o f  

rcjXo extends over nLMx. Extend ~t over Mx. We next wish to compute  the 
signature and ad ~t-signature o f  Mx. Since B x S ~ has a deformation retract 
( v iS  t) x S l in its boundary,  Sign (B x S 1) = 0 and Signad ~ (B x S I) = 0. Hence by 

Novikov  additivity Sign Mx = Sign W and Sign,o ~ Mx = Signed ~ W. 
To compute  these signatures, let if" be the universal cover o f  W. Notice that 

rr~ W ~ Z .  Let 

B : H 2 f f ' •  H 2 1 ~ Z [ t , t  '] 

denote the equivariant intersection form of  if'. 

T H E O R E M  4.2. H2(ff ' ;  Z) ~ (Z[t, t - l ] ) 2 g ~ ) z  where Z[t, t -1] acts trivially on 
the Z summand. The matrix for the equivariant intersection form, B, on the free 
summand is given by 

(I  -- t)V + (I -- t - l ) V  r 

where V is the Seifert matrix for K, so V~j = lk(xi, x + ). Furthermore the Z summand 
is in Ker B. 
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The proof  of  this theorem follows standard arguments and we only indicate the 
idea. Let C be obtained by cutting D 4 along F x I where F x 0 c 0D 4 and F x 1 is 
the pushed in Seifert surface. Then the universal cover of  D 4 - F x 1 is obtained by 

gluing a Z's  worth of  copies of  C in the usual way. This gives a manifold with 
second homology the free Z[Z] module on the 2-cycles constructed from discs in C 
whose boundary in F are the generators of  H1F. Thus the Seifert matrix determines 
the intersection form on this part  of if" in the manner indicated. 

To get if" one adds the universal cover of the 2-handle minus its core, which is 
homeomorphic to D 2 x I x R. This last piece contributes the trivial Z in/-/2 if', and 

its intersection with the other part  of  the homology is trivial since it is carried by 
a cycle which lives in the boundary Off'. 

For more details of  this construction see [CG], or [Ka]. [] 

Let Bx(t) denote the matrix (1 - t ) V +  (1 - t - I ) V  r. (Of  course BK(t) depends 

on the choice of  Seifert surface F.) Recall that the symmetrized Alexander matrix 
for K is 

Ax(t) = t u 2 V -  t- l /2Vr.  

These are related by: 

(t-a/2 _ tl/2)Ax(t) = Bit(t)" 

Let f l :n lXo  ~ U(1) be a representation which sends the meridian Px to e g~ 
Extend fl over Mx. Notice that Bx(e ~~ is hermitian, and Ar(e  ~~ is skew-hermitian. 

It follows from the previous theorem that the signature of  M x  with coefficients 

in the fiat bundle determined by fl is equal to the signature of  Bx(ei~ Furthermore, 
if 0 is not a multiple of  2n, then Br(e ~~ is singular if and only if the Alexander 

polynomial of  K vanishes at e ~~ 
Let us now return to the situation of  the preceding section. Let �9 : nl Z0 ~ SU(2) 

be a representation whose restriction to Xo is abelian. Think of  M x  as a flat rel 
boundary cobordism of  X0 to Xi = S l x D 2. By gluing M x  to M r  = Yo x I along 

T x L we obtain a cobordism N from Zo = X0w Yo to ZI = S I x D2w(y0  x 1) over 
which �9 extends. Notice that ZI is in general a simpler manifold than Z0 since it is 
just a Dehn filling of  Y. (For  example, if Z0 is a surgery of  a satellite of  K, then ZI 
is a surgery on the corresponding satellite of  the unknot.) By conjugating ~ we may 

assume ~(nl (T)) lies in the circle of  diagonal matrices. Thus if/~x, ;tx denote the 
natural meridian and longitude of K, then ~(2x) = 1 and 
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CrUx) = (  e~~ e_iO ). 

The corresponding adjoint representation ad ct takes 2x to 1 and takes the 
meridian to the 3 x 3 matrix: 

/e 2i0 I 
ad ~(#x) = ( \ e-2i~ 1 " 

T H E O R E M  4.3. Orient N so that dN = -Zo  + Z~. Then: 
1. S i g n N = 0 .  
2. Signaa ~ N = - 2  Sign Bx(e2i~ 

REMARK.  The idea of the proof is to use Wall's non-additivity theorem [W] 
to show that Signao ~ N = Signao ~ Mx. 

Proof. 
1. From the remarks immediately preceding Lemma 3.1 we know that 

S i g n N = S i g n M x - S i g n ( ~ ) ,  where ~u is a form on (Ao+Co)r~(AI+C~)/ 
(Aoc~A1)+(ConCl) (see w for the definitions). We claim that Ao=AI and 
Co = C1. This obviously implies that t/, is the zero form. 

Recall that Ao = Im [H1Xo--}HIT] and A~ = Im [HI(S 1 • D 2) --}H1T] (say with 
real, untwisted coefficients). But since aMx is just 0-surgery on K, the pair 
(Xow(S ~ x D2), T) is homologically the same as (S ~ x S 2, S ~ x S~). Clearly then 

A o = A I .  Since Mr = Yo • L Co = Ci. 
Therefore Sign (~)  = 0 and, since Sign (Y x I ) =  0, Wall's formula gives Sign 

N = Sign Mx. One can see directly from the construction that Sign Mx = Sign 
W = 0; equivalently Sign Mx = - Sign Bx(I) = 0. 

2. We will again show that Ao = A~ and Co = C~. This time we must use local 
coefficients in ad ~. 

We can identify H~(A; ad 0t) with the group cohomology H~(rq A ; a d  ct) for any 
path-connected space A and homomorphism n~A ~ S U ( 2 ) .  By taking the first 
cohomology with ad ct coefficients in the diagram of groups: 

~lXo 
/ \ 

n i T  7 h W  ~ , S U ( 2 )  

nj (S  1 x D 2) 
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one sees that the map HI(S ~ • D2; ad ct) ~H~(T;  ad ct) factors through 
H'(Xo; ad ~t) and so A~ c Ao. But now Lemma 4.1 implies that Ao = A1, since they 
are both middle dimensional subspaces. Again Co = C1 because M r  = Yo x L So ~v 
vanishes in this case also. Now Signed ~(Y x I )  vanishes since Y x I deforms to its 
boundary and so Wall's theorem implies that Signad ~ N = Signad ~ Mx. 

The adjoint representation ad a: n~ Mx ~ U(3) splits into three U(1) representa- 
tions sending the generator to e 2~~ e-2i~ and 1. Thus the signature Signed ~ Mx is 

the sum 

Signad ~ M x  = - S i g n  BK(e 2i~ -- Sign Bx(e 2,o) _ Sign BK(1). 

(the minus signs arise because of our choice of  orientations. The orientation which 
N inherits from O 4 has Zo in its boundary. Since we want t~N = - Z o  + Zt ,  we must 
give it the opposite orientation.) Now Sign BK(1) = 0, and since BK(t-1) = Bx(t)r, 
the signatures Sign BK(e 2~~ and Sign Br(e -2~~ are equal. Therefore 

Signed ~ Mx = - 2  Sign Br(e wi~ 

as claimed. [] 

As a consequence of  this theorem we can compare the Pad �9 invariants of  Z0 and 
Z1. In fact, 

Pad =(ZI) -- Pad =(Z0) = 3 Sign N - Signad, N 

= 2 Sign Br(e2i~ 

T H E O R E M  4.4. Let ~o and ct I be SU(2) representations of rqZo which are 
abelian on the knot complement Xo. By conjugating we may assume that 

~tJ(#) = (  ei~ e- i~  for j = 0 , 1 ,  

with the 0j~[0,~], xf ~j is non-central let 
Hl(Xo; ad 0~j) --- RI+2~L ff~tj is central, let aj = 0 .  

Then the difference of spectral flows 

aj = Dim Ker Bx(e2i~ so that 

SF(ao, ~, )(Zo) - S F ( ~ ,  ~, )(Z, ) 

is equal to: 

Sign BK(e 2t0~ -- Sign BK(eEi~ 0 -- (a 0 + al ). 
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I f  e 2i~ is not a root o f  the Alexander polynomial of  K for j = 0 and 1 then this 
difference is even. 

Proof. We use the formula of w which relates the spectral flow to the Chern-  
Simons invariants, the Pad �9 invariants, and the h~j. We first dispose of the h~j. 

By computing with the Mayer-Vietoris  sequences of  (Zo, Xo, Y) and 
(Z~, X~, Y ) =  (Z1, S ~ x D 2, Y) with ad ~j coefficients one can easily show that 
H~ ad ~r g H~ ad ~j). If  the restriction of ~j to Xl is trivial or if e2~~ is not 
a root of  the Alexander polynomial of  K, then H~(Xo; ad ~j) ~ H~(X~; ad :r It 
follows that H~(Zo; ad ~9) ~- H~(ZI; ad ~j). The only case in which the first coho- 
mology groups do not agree is when e2;~ is a root of  the Alexander polynomial of  
K, in which case H~(Xo;ad~j)~R~-~2"J and H ~ ( X 1 ; a d ~ j ) ~ R .  In this case 
h,j(Zo) -- h~,(Z, ) = 2aj. So 

1 . 1 Z 
2 (h~o(Zo) + h~, (Zo))  + ~ ( h , o ( , )  + h~, (Z , ) )  = - (ao + a, ). 

Next, we must compare the Chern-Simons invariants. Since the Chern-Simons  
invariants are flat cobordism invariants, cs(~o)(Zo) = cs(oto)(Z~). Similarly for ~q. 

Putting these facts together with the formula for spectral flow we obtain: 

SF(~o, ~, )(Zo) - SF(u o, ~l)(Z, ) l =.~  ((p~d ~, (Zo) -- p ~  ~, (Z , ) )  -- ((P~d ,o(Zo)  

- Pad ~ 0 ( Z , ) )  - -  (ao  + a , )  

1 
= ~ ( - 2  Sign Bx(e 2i~ + 2 Sign Bx(e2i~ 

- (ao  + a , )  

= Sign Bx(e 2~~176 - Sign Bx(e 2ie') - (ao + al). 

I f  e 2i~ is not a root of  the Alexander polynomial of K and is not equal to 1, then 
Bx(e2i~ 0 is a non-singular 2g-dimensional matrix and hence has even signature; 
moreover aj = 0. I f  0j = 0 then BK(I) is the zero matrix so its signature is even. 

[] 

In the special case of  a surgery on a satellite of a knot in S 3, there are two ways 
to interpret this formula as a splitting result depending on whether we think of the 
separating torus as the boundary of the satellite or the boundary of the companion. 
In this setting let W be the complement of  the knot in the solid torus, so that Y0 
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is a Dehn filling of one of the two boundary components of W. Then if we are given 
a path of representations of n~ (-2(o u W) whose restrictions to 2"o are abelian, we can 
find a path of connections on Zo which are flat on X0 w I4I. As above this gives rise 
to a path of connections on XI u Y0 which is fiat on X~ u W, where X1 is the unknot 
complement. If  we restrict the paths to one of the tori in a W, the image 
R(Xo u W) ~ R(T) coincides with the image R(X1 u W) ~ R(T) for either torus T in 
d I4,'. In particular, restricting to a(X0 w W) and t3(X~ u W) gives examples of paths 
of representations of two knots in S 3 whose image in the pillowcase coincide, which 
are non-abelian in general (see the examples in w but for which the spectral flows 
(and Floer homology) are different. In particular, Yoshida's theorem fails to extend 
to this case. 

The results of this section can be generalized to include surgeries of satellites of 
knots in arbitrary homology spheres Y~ by replacing the pair (D 4, S 3) by (M, 'r.) 
where M is a 4-manifold bounded by Z. The correction term will then involve the 
signature of M as well as the Alexander matrix. 

5. Splitting the spectral flow for graph manifolds 

In this section we consider homology spheres Z = X w Y where X and Y are 
Seifert fibered homology knot complements. For simplicity we will assume that X 
and Y are the complements of a tubular neighborhood of a regular fiber in a 
Seifert-fibered homology sphere. This restriction is not essential but makes some of 
the formulas less messy. Nor is it essential to take Z to be a homology sphere. 
Finally, one can do the computation for any graph manifold, that is, any 3 
manifold obtained by gluing together Seifert-fibered spaces along tori in their 
boundary. 

We will give a "splitting theorem" for the spectral flow between two connections 
whose restrictions to X and Y are irreducible. This theorem expresses the spectral 
flow as the sum of 3 terms Fx, Fr, and F~ where Fx (resp. Fr)  depends only on the 
restriction of ~t to X (resp. Y) and F~ is an interaction term involving the gluing 
map ~ : dX--*aY. 

This section closely parallels the computations of [FS2] for Seifert fibered 
homology spheres, in particular the starting point is the observation of  Fintushel 
and Stern that Seifert fibered manifolds bound canonical 4-manifolds over which 
SO(3) representations extend. Although our emphasis is different, the methods are 
similar. We refer the reader to their beautiful papers [FS2] and [FS1] for details. 

Seifert fibered manifolds are characterized by the property that their fundamen- 
tal groups have a cyclic center. Since the centralizer of  any non-abelian subgroup of 
SU(2) is just + 1, it follows that any irreducible representation of the fundamental 
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group of  a Seifert fibered 3 manifold must send the generator of the center to _ 1, 
and hence the adjoint representation sends this element to 1. 

Given a Seifert fibered manifold X =  S(F; (al, hi) . . . . .  (am, bm)), the mapping 
cylinder of  the Seifert fibration X ~ F is a singular 4-manifold whose singularities 
are cones on L(ai, b~). Removing neighborhoods of the singularities leaves a 4 
manifold Mx whose boundary is the union Lx = ~. L(a~, b~) together with the Dehn 
filling of  X which caps off the generic fibers in t~X. 

The fundamental group of M is the quotient of n~ X by its center. In particular, 
if ~t : n~X ~ SU(2) is an irreducible representation then ad �9 extends over Mx. This 
gives a canonical fiat 4-manifold with X in its boundary. 

Now let X be the complement of a regular fiber in a Seifert fibered homology 

sphere. So X = S(D'-; (al, b l )  . . . . .  (am, bin)) and 

IrlX = (Xl . . . . .  xm, h [ h central, x~,h b, = 1). 

The center of  rq X is the cyclic subgroup generated by the generic fiber h. 
We assume X has been given some fixed orientation. 
Let ~t : rr~ X ~ SU(2) be an irreducible representation and let 0 denote the trivial 

SU(2) representation. Both of these send the homotopy class of the regular fiber of  

X to +_1 ~ SU(2). 
From the presentation of nl(X) we see that �9 must take each xi to a 2a~ h root 

of 1. Following [FSI], we can unambiguously define the rotation numbers of  ~ to be 

the collection of integers p~, i = 1 . . . . .  m so that 0 < p~ < a~ and ct(x~) is congugate 
to exp (2nipJ2ag) in SU(2). To ~ we associate the integer m~(X) which is the 

number of  x~ which are not sent to + 1 by ~; equivalently the number ofp~ strictly 

between 0 and a~. 
The manifold Mx has boundary X w ( T  2 x I) w(S ~ x D:) 11 Lx. We orient Mx 

so that - X c dMx. Thus we view Mx as a rel boundary cobordism from X to 

S ~ x D2+ Lx. The representation ad ~t extends over n~Mx. 

L E M M A  5.1. 
(1) Hl(Mx; R) = 0 = H2(Mx; R). 
(2) HI(X; ad Qt) ~ HI(Mx; ad ~t) ~ R 2"-(x)- 3 and H2(Mx; ad ~) = 0. 

Proof 
(1) Let W denote the mapping cylinder of  the Seifert fibration. Since X fibers 

over D 2, W is contractible. By excision, H"(W, Mx; R) = Hn(cLx, Lx; R), which is 

zero for n = 2  or 3. The exact sequence for the pair (W, Mx) shows that 
H~(Mx; R) = 0 = HZ(Mx; R) since W is contractible. 
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(2) Let P be the complement  of  m small open discs in D 2 centered at the images 
(under  the Seifert fibration) of  the singular fibers in X. We decompose  M x  as: 

M x = ( P x D  2) U D 2 x S  I x 0, 
i = 1  i '  

(,) 

In this decomposi t ion,  each D 2 x S ~ x {0} corresponds to a ne ighborhood of  a 
singular fiber in X. For  each point p �9 D 2 x S I, the arc p x [0, l] corresponds to 
half  o f  the mapp ing  cylinder arc emanat ing  from p. Define 

( T 2 x  0, = ( P x D 2 )  n D 2 x S I x  0, 
i i" 

In what  follows, we will repeatedly use that  fact that if Q is a CW-complex  and 
p : r r~Q--*Aut (V) is a homomorph i sm,  then for i = 0 ,  1, 

H ' ( Q ;  Vp) ~- H ' ( n l Q ;  Vp) 

where the latter denotes group cohomology.  
We have the presentat ion 

• , M  x = <x I . . . . .  x,,, txT, = 1 for i =  ! . . . . .  m>. 

We compute  nl(TZl M x ;  ad ~t) using the usual bar  resolution as follows. A l-cocycle 
tr : 7t I M x  ~ s u ( 2 )  is determined by its values on the generators  {xl . . . . .  xm }. Using 
the cocycle condit ion on the relations implies that  these values must satisfy the 
equations 

0 = a(x~") = ( 1 + ad o~(xi) " ~ - ' "  " + ad a(x~' ')) �9 tr(x,) 

I f  at(x~) = _+ 1, this implies tr(x~) = 0. I f  ~t(xg) ~ _4- 1, this implies tr(x~) �9 R 2 = the 
or thogonal  complement  in su(2) of  the one-dimensional  subspace fixed pointwise by 
ad at(xi). 

It  follows that  Z t ( n i M x ;  ad ~) _-__ R z~-tx). Since ~t and hence ad :I are irreducible, 
B l ( r q M x ;  ad ct) -~ R 3, so H I ( M x ;  ad ~t) ~ R 2ra=tx) 3 

Similar (but  easier) computa t ions  give: 

{,~ 
HI(T~;  ad e) ~ R2 

if or(x i) = ++_ 1 

if ot(xi) v ~ + 1 

if o[(xi) = ~- 1 

if ~t(x~) ~ + 1 
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Also, H~ I x D2)g; ad ~) ~ H ~  ad ~) is surjective since im (~ [ nl (S  1 x D2)~) 
= im (~ [ r h T2). Clearly, 

H2(p 2 x D2; ad ~) = H2((S 1 x D2)i; ad ~) = 0 

since these spaces are homotopy  equivalent to 1-complexes. Plugging this data into 
the Mayer-Vie tor i s  sequence for the decomposit ion ( . )  above implies that  
H2(Mx; ad ct) = 0. 

Finally, to see that HI(n~X; ad ~) ~ H~(n~Mx; ad ~t), it suffices to check that if 
a is a 1-cocycle on ~ X ,  then the relations imply that a(h) = O. [] 

Now let Y = S ( D  2, (el, d~) . . . . .  (c,, d,)) be the complement  o f  the regular fiber 
in the Seifert fibered homology  sphere. Assume Y has been given a fixed orientation 
and let M r ,  Ly  be defined as for X. As before, 

r~l Y = (Yl . . . . .  y , ,  k ] k central, y~ikdi = 1). 

We glue X to Y using an orientation reversing map r : OX ~ O Y to form the 
oriented homology sphere Z o. We can then glue Mx to M r  along T x I using $ x I 
to obtain the 4-manifold N o = Mx UoMr. The oriented boundary  o f  N o is 
- Z  o + Lx  + L v + Lr where L o is the lens space obtained by gluing two solid tori 
together along T so that h bounds in one and k bounds in the other. (So for 
example, if Z o is itself Seifert fibered, then r = k +l so that L o -~ S 1 x S 2. 
Another  easy case is when r and k intersect in one point  in which case L o ~ $3.) 

Let ~ : lr~ Z ,  ~ SU(2) be a representation whose restrictions ~t x and ~t r to X and 
Y are irreducible. So ad ct extends to r h N , .  We denote by p~ the rotat ion numbers 
of  ct x and by qi the rotat ion numbers o f  ct r. We also define m,(X),  m , ( Y )  as before. 

L E M M A  5.2. 
(1) H2(No ; R) = R 2. 

(2) I f  Z o is not Seifert-fibered, then H2(No ; ad ~) = 0. 
(3) I f  Z O is Seifert fibered, then the 4-manifold obtained by gluing S l • D 3 to N O 

along L O = S ~ x S 2 is just M z (i.e. the mapping cyclinder with the cone points 
removed). 

Proof. 
1. Using the Mayer -Vie tor i s  sequence for N o = M x w M y  and the previous 

lemma we see that Ht(T; R)--* HZ(No; R) is an isomorphism. 
2. With ad ~ coefficients, the Mayer-Vie tor i s  sequence is: 

, H t ( M x ; a d o t ) ~ H l ( M r ; a d o t )  , HI (T ;  ad ~) , H2(N0; ad ~) ,0 .  
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Suppose first that the restriction of �9 to n i T  is not central. Then 
HI(T; ad ~ ) ~  R 2. By conjugating ~ we may assume that ~t(nl T) lies in the circle 

subgroup of  diagonal matrices. The image HI(Mx; ad ~) ~ H~(T; ad ~) is the same 
as HI(X; ad ~ ) ~ H I ( T ;  ads) ,  which is half-dimensional. Thus it suffices to show 
that the images HI(X; ad ~) ~ H I ( T ;  ad ~t) and H I ( y ;  ad ~) --,H~(T; ad ~) are 

transverse. 

Let z z Zl(rh T; ad ~) be a cocycle which extends to zx and z r  on rqX and zt Y. 
By subtracting a coboundary we may assume z(x)~ iR for x E zl T, where we 

identify su(2) with the pure quaternions. Since ~ is diagonal on the fundamental 
group of T, the adjoint action on z is trivial and so z is just an ordinary 
homomorphism from Z 2 ~  iR. We have z(h) = zx(h) = 0 and z(k) = zr(k) = 0 since 

z extends over X and Y. But since Z~ is not Seifert fibered h # k -+~ and so z 
vanishes on a (rational) basis which implies z = 0. 

This argument modifies to handle the case when ~ restricts to a central 
representation of ~ T since in that case the adjoint action is trivial. Thus a cocycle 
z e Z~(n~(T); ad~)  is just a homomorphism rrl(T ) ---~R 3. Again this is trivial if it 

vanishes on h and k. 
3. We leave this to the reader. Notice that if Z ,  is Seifert fibered, then 

H2(N, ;  ad ~) is 1-dimensional. However, by gluing S i x  D 3 to the boundary we 

obtain Mz with H2(Mz; ad ~) -~ 0. [] 

We will temporarily assume that Z ,  is not Seifert fibered. Since 

H2(N~,; ad ~) = 0, Signed ~ N ,  = 0. Computing the ordinary signature of  N~ is a bit 
trickier, and depends on the choice of  orientations. We digress momentarily to 
discuss the orientation point. 

First note that a Seifert fibered homology sphere E(al . . . . .  a,,) has a canonical 
orientation as the link of a complex singularity [JN]. I f  M,- denotes the deleted 

mapping cyclinder of  E ~ S 2 then H2(M~; R) ~ R and the orientation which makes 

M,~ negative definite gives Z the correct boundary orientation. We are assuming 
X = Y:(az . . . . .  am)-regular fiber, and Y = Y.(Cl . . . . .  cn)-regular fiber, but we are 

not assuming the orientations are compatible. So define ex to be + 1 according to 
whether or not the fixed orientation of  Y agrees with the induced orientation as a 

subspace of  I2(a, . . . . .  a,,) and similarly define Er. We have oriented Mx so that 

dMx = - X  + Lx (tel boundary) where Lx is the union of L(a~, b~). These lens 
spaces have a canonical orientation, namely the one induced by the covering 

S 3 ~ L(a, b) where S 3 is oriented as the boundary of the unit ball in CL With this 

orientation, Lx = ex(l l~ L(a,  bt)). 
At this point we can express the gluing map ~b in coordinates as follows. The 

pair of  curves mx ~ xx . . . . .  x,,, Ix = h ~x form an oriented symplectic basis for 
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1rl(0X). Similarly m r  = yl . . . . .  Yn and lr  = k ~Y. (The lx are not longitudes in the 
usual sense; they are not nullhomologous in X and Y.) Then ~b can be written as a 
2 • 2 integer matrix with determinant - 1  using these bases. Write: 

then L ,  = L(v, z), and Z ,  is a homology sphere if and only if 

au + exv - Cer(aw + exZ) = +_ 1 

where a = II  i ai and c = II i q- 

LEMMA 5.3. The signature o f  N ,  is equal to ex + er.  

Proof. Recall that we have oriented N,  so that - Z e  ~ ON e. We have seen that 
H2(N~;R) ~ R  2. It is convenient to split N,  into N~ = M ~ u ( Y  x I )  and 
N2 = (S  ~ x D2) w My as in Figure 3. 

Then H2(N~; R) ~ R ~ H2(N2; R) and since N,  is the union of N~ and N2 along 
a closed submanifold of their boundary, Sign N,  = Sign N~ + Sign N2. That 
Sign NI = ex is a consequence of the fact proven in [FS1] that the mapping cylinder 
M~ for Y~(al . . . . .  am) oriented with 0M~ = -l~(al . . . . .  am) is positive definite. [] 

The following lemma is easily proven using the Atiyah-Singer G-signature 
theorem and the formula from [APS2] which expresses the P0 invariants as the 
"Fourier transforms" of the G-signature defects. 
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L E M M A  5.4. Let L(a,b)  be a lens space, oriented as the quotient of  
S 3 = aB 4 ~ B 4 ~ C 2. Let fl : rqL(a, b) ~ U(1) be a representation which takes the 
generator g to e(2n"P/~). Then: 

pp(L(a,b)) 2 a ~  ' f~zbk\ (nka) ( ~ )  
: - - a k = l  cot ~--a--) COS sin 2 . 

Let fl : rqL(a, b ) ~ S O ( 3 )  be a representation. Orient L(a, b) as the quotient of 
S 3 OB 4 c B 4 c C 2 where the action is ~a " (Z, W) b = = (~a~, ~w).  Suppose fl(~a) is a 
rotation of angle 2pn/a 5 0 .  Then the complexification splits into three U(1) 
representations with rotation numbers 2p, - 2 p  and 0. Thus 

4 a - I  i/TzbkX~ (~ka) (~) 
PB = - - a k ~ l  cot ~--~--) cot sin 2 . 

L E M M A  5.5. Let fl : niL(a, b) ~ SO(3) be a representation with rotation number 
p as above. Let r be an inverse for b Mod a. Then 

2rp 2 1 
- - - -  + pl~(L(a, b)) 

a 

is an integer. 

Proof. Let E--*L(a,b)  denote the flat bundle defined by ft. Since 
H3(BSO(3); Z) = 0, this bundle extends over some 4-manifold W. The Pontriagin 
form of  a connection on this bundle extending fl then defines the SO(3) Chern-Si-  
mons invariant much as in the SU(2) case. Using the At iyah-Pa tod i -S inger  

theorem (as in the final section) we see that the index of the self-duality operator 
on W is congruent mod Z to - 2  times this SO(3) Chern-Simons  invariant plus 
1/2fl,(L(a, b)). The computation of  the Chern-Simons  invariant may be done in 

several ways: by directly writing down the integral as in w in [MMR], or via the 
method of [KK3]. For the reader's convenience we sketch the latter. Notice that the 
bundle over either of  the two solid tori $1, $2 which make up L(a, b) is trivial. So 

given a flat connection on L(a, b), there are paths of  flat connections on the S; to 
the trivial SO(3) connections. Use these paths to construct a connection on 

L(a, b) x I = (L(a, b) x I )  UL<a,b) • o (SI • I )  ULCa,b) • o ($2 • I )  

extending the given fiat connection. As in [KK3], Chern-Simons  invariant may  be 
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computed as a sum of two integrals which reduce via Stokes' theorem to integrals 
on T 2 x L The result of  the calculation is rp2/a, yielding the formula in the lemma. 

[] 

REMARK.  In the case when the representation ~ lifts to an SU(2) representa- 
tion, then we can take p even and -2rp2/a is just 8 times the Chern-Simons  
invariant of  the SU(2) connection. The only subtlety occurs when the bundle over 
L(a, b) is non-trivial. This can happen only when a is even. 

Let X, Y, ct, 4, be as above. Define 

ex = E  ap' 
i a i  

and 

e, = E  eq  ̀
i r 

where a = 1-I i a; and c = I-I i c;. 
The next lemma appears as Theorem 4.5 of  [KK3]. 

LEMMA 5.6. The Chern-Simons invariant of (Zo, =) is equal to 

e2x e~ p~u wx 2 
- ~ x  4a  --  e r 4--c 4v 4 (2p~ + z) 

where x is defined by ct(k) = ( - 1) K. [] 

The basic idea is to compute the Chern-Simons integral separately on X and Y 
by using an explicit path of  fiat connections from the given connection to the trivial 
connection for each piece. One then applies Stokes theorem and the definition of 
Chern-Simons  invariants as the integral of  a 4-form over X x L See [KK3] for the 
detailed proof. 

A few brief remarks are in order. The first two terms in this formula are the 
analogues of  the Chern-Simons  invariants of Seifert-fibered homology spheres. In 
particular, a representation of the homology sphere Z(a~ . . . . .  am), with rotation 
numbers p; has Chern-Simons  invariant e2/4a. The third term is a Chern-Simons  
invariant of  the extra lens space L~, at least when the SO(3) representation lifts to 
an SU(2) representation. 

The last term can be considered a correction term in the following way. The fiat 
SO(3) cobordism N ,  shows that the SO(3) Chern-Simons invariants o f  Zr equal 
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those of  the union of  lens spaces Lx ULr  UL, .  However, one cannot conclude that 
the SU(2) Chern-Simons invariants coincide, firstly because some of  the lens 
spaces may have even order and so the SO(3) representations do not lift to SU(2), 
but also because even if they do, the flat cobordism need not lift to an SU(2) flat 
cobordism. The best one can say at this point is that these Chern-Simons 
invariants are equal mod �88 However, we need the result mod Z. Notice that this 
last term has denominator equal to 4. This brings to light the technical point that 
one loses too much information using the SO(3) cobordism to reach conclusions 
about the mod 8 SU(2) spectral flow. This SO(3) cobordism could at best give the 
spectral flow mod 2. 

We can now prove the main result of this section. 

THEOREM 5.7. Let ~ : n~ (Z , )  ~ SU(2) be a representation of  the graph mani- 
fold Zr = X ~ Y whose restriction to each piece is irreducible. Assume Z4, is not 
Seifert fibered. Choose pr ~ {0 . . . . .  v} so that ~(Yl '"  "Y,) is conjugate to 
exp (2ni(pr Choose x so that g(k) = ( -  1) ~. Finally let C = 2 if  the restriction 
of  �9 to rCl T is non-central and 3 if it is central. Then: 

f2eZx 2ai~ 1 (gbik ~ (gk) ( ~ 1 ) )  
e = 1 - cot cot sin 2 - mx(a) SF(O, o t ; Z ~ ) - - g x ~ - - 7 - +  ~. aik=l \ a, / -~i 

__ ~y(~-~ %1_ i ----~ 2 el-- 1 1  ~/. ky.l= cot \(nd'k)c, / cot ( n k ) s i n 2 ( n q ' k ] ] - m v ( ~ t ) ~  \ c~ / /  

(2wk(2pr + z) + ~ sin 2 _ _ _  cot ~--v--) cot V Vk= 1 
3 

- ~ (ex + e r )  + C (mod 8). 

Proof. Suppose first that �9 is non-central. Then H ~  and 
H ~ ( T ; a d a ) - ~ R  2. Since Z ,  is not Seifert fibered, it follows that 
HI(X; ad ~) ~ H I ( y ;  ad ~) --*HI(T; ad ~) is onto. From the Mayer-Vietoris se- 
quence one then has 

1 
(h~(Z~,) + ho(Z~)) = rex(a) + mr(a)  - 2. 

If a restricts to a central representation of nl (T), then similarly: 

1 
(h~(Z,) + ho(Z,))  = mx(OO + mr(a)  - 3. 
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The Pad ~ invariants are computed using the fact that 

P.d ~ (Z , )  = P.d �9 (Lx) + P~d ~ (L r ) + P.d = (L~,) - 3 Sign(N,) + Signed = (Nr 

The terms are computed in Lemmas 5.2 and 5.4. 
The Chern-Simons invariant is given by Lemma 5.6. The result follows using 

equation 2.1. [] 

REMARKS. 
1. This theorem expresses the spectral flow as a sum of three parts. The first 

part involves only X, the second only Y and the third depends only on the 
map t#, the restriction of ~t to n~ T, and the orientations. 

2. This formula generalizes the result of [FS2] for Seifert fibered homology 
spheres. Their result is: 

SF(0, ct; Y,(al . . . . .  a,)) = - 3  -R(ct)  

where 

R(~t) = - -  - 3  + m + ~ 2  ~ cot ( nbik~cOt 
a i = l a i k = l  \ a i ] tl i \ a, ] 

3. We point out the following discrepancy in the literature. From a Kirby 
calculus argument it is easy to see that E(2, 3, 5 ) =  - ( +  1 surgery on the 
right handed trefoil). Thus Casson's invariant, as defined in [AM], of  
Y.(2, 3, 5) must equal - 1 .  On the other hand, Taubes in IT] defines the 
spectral flow SF(O, or) with the same convention that we do here and takes his 
invariant to be the sum over the irreducible representations of the spectral 
flow mod 2. Since R(ct) is always odd by [FS2], it follows that Taubes' 
invariant is actually equal to - 2  times Casson's invariant. This arises 
because in order to make the surgery formula for Casson's invariant work 
out with respect to the correct normalization of the Alexander polynomial, 
there is an extra factor of - 1  introduced in the definition of  Casson's 
invariant (the S on pp. 125 of [AM] is equal to - 1). 

6. Examples 

The results of the previous two sections can be used to compute the spectral 
flows of representations of  certain homology spheres by reducing the computation 
to previously known cases. This enables us to compute the Floer chain complexes 
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and in certain cases the Floer homology of these spaces. We will consider - 1  

surgeries on k-twisted Whitehead doubles of torus knots. This class of  examples 

lends itself well to the methods developed above because they are graph manifolds, 

namely the exterior of the p, q torus knot union the exterior of the left-handed 

trefoil. We remark that one can also consider + 1 surgery on the positive or 

negative clasp Whitehead doubles of torus knots. In this case one also needs the 

computations of spectral flow carried out in [Y2] for the surgeries on the Figure 8. 

For background on representation spaces of knot groups see [K1] and [K2]. 
We will carry out three computations explicitly. The first is - 1  surgery on the 

10-twisted Whitehead double of the 5, 2 torus knot. This homology sphere has the 

property that every non-trivial representation restricts to an abelian representation 

of the companion knot. Thus all spectral flows can be computed using Theorem 4.4. 

By comparison with the representations of  the 10-twisted Whitehead double of  the 

unknot, this example shows that the spectral flow is not determined by the image 

in the pillowcase. For this homology sphere we can compute the Floer homology 
since all boundary operators turn out to be trivial. 

We will also compute the spectral flows and Floer chain groups for - 1 surgery 

on the untwisted and 5-twisted Whitehead doubles of the trefoil. For the untwisted 
example, every non-trivial representation restricts to an irreducible representation 

of the companion, so that the spectral flows are all computed using Theorem 5.7. 

The example involving the 5-twisted double has non-trivial representations of both 

types, so the full computation uses both Theorems 4.4 and 5.7. 

One technical point will arise when trying to compute the Floer chain complex, 

namely one must perturb the Chern-Simons function if it is not a Morse function. 

In general, the representation space R(nlZ) forms the critical points of the 

Chern-Simons function. If R(Z) is a smooth submanifold of ~r with nondegen- 

erate normal bundle then the Floer chain complex can be constructed by taking as 

a basis the critical points of  a Morse function f on R(Z) and assigning to a critical 

point p the index SF(O, ~(p)) + Itp(f) where ~(p) E R(Z) lies in the component 

containing p and/~p(f)  is the index of f a t  p. See [FS2] for the proof  that this gives 
a complex whose homology is Floer homology. 

We begin with some general observations. Let p, q > 0 and choose k e Z. The 

three sphere S 3 can be Seifert fibered so that the (p, q) torus knot is a regular fiber. 

Let ~.,p.q(k) denote the homology 3-sphere obtained by performing - 1  surgery on 

the k-twisted positive clasp Whitehead double of the (p, q) torus knot. See Figure 

4 for (p,q)=(2, 3),k = 3. 

So Y~p,q(k) is the union of the exterior X0 of  the (p, q) torus knot and a Dehn 
filling Yo of  the Whitehead link complement. 
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Figure 4 

PROPOSITION 6.1. The homology sphere Ep,q(k) is a graph manifold. In fact Xo 
in the exterior of  the p, q torus knot and Yo is the exterior of  the left-handed trefoil 
knot. Furthermore, the gluing map dp is given in the natural meridian-longitude 
coordinates by the matrix: 

0=(01) 
(This means that c~(l~x ) = 2r and ~b(2x) = Izr - k2r.) 

Proof. Figure 5 shows a Kirby calculus computation which shows that Yo is the 
exterior of the left-handed trefoil. 

Taking a k-twisted double means that if /z w and 2w are a meridian and 
longitude pair for the Whitehead link exterior which is being glued to X0 along T, 

Figure 5 
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then #x is identified with 2w and 2x is glued to #w - k2w. But if we do - 1 surgery 
on the other component of the Whitehead link, then #w and 2w become a 
meridian-longitude pair for the left-handed trefoil. [] 

Now the regular fiber for the Seifert fibration of Xo (restricted to T) is 

k x  = P q # x  + 2x + 2x = Pr  + (Pq - k)2r. 

The regular fiber for the Seifert fibration of Yo (restricted to T) is 

hr  = -61Zr + 2r.  

Thus if L~ denotes the lens space obtained by capping off the regular fibers in T, 

L~, = -L( -6(pq - k) - I, pq - k). 

Write Z~ = Y.p.q(k) = X0 [.)~ Y0. Notice that if the Seifert fibrations were compat- 
ible then q~(hx) = h ~r ~. But this obviously cannot happen. One might wonder if Z0 
is Seifert-fibered in some other way, but this is not possible since if it was the 
incompressible torus T separating X0 from Y0 would be horizontal. But then 
Z~ - T is a union of/-bundles.  However, we know that Yo is not an/-bundle.  (For  
most Z~ we could instead use Lemma 6.3 below which shows that the SU(2) 
representation space of  ~l Z~ contains circles, and thus Z~ cannot be Seifert fibered 
by the main theorem of [KK1].) 

We first give a convenient set of coordinates for the pillowcase. If 71, Y2 �9 7h T is 
a pair of  curves which generate ~l T, then the map 

R 2 - ,  R(T) 

which takes the pair (x, y) to the conjugacy class of the representation 

is a branched cover. A fundamental domain for the action is the strip [0, 2] x [0, 1]. 
The pillowcase is then seen as the identification space of this strip by folding it in 
two along the segment 1 x [0, 1] and identifying the edges. 

LEMMA 6.2. / f  ~t : It I Z~ -~ SU(2) is a non-trivial representation, then the re- 

striction o f  ~t to It I Y is always irreducible. 
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Proof. Suppose the restriction of ~t to u is abelian. Then in particular the 
restriction of ~t to the Whitehead link complement is abelian. But then ~t must take 
the longitude )-w = ~-r to 1 since 2r lies in the commutator subgroup. Since 
th(#x) = 2w, ct sends the meridian of X to 1. But the meridian normally generates 
n~ 2"0 and so at restricts to the trivial representation of n~ Xo. Thus ct is in fact abelian 
and since Zo is a homology sphere ~ must be the trivial representation. [] 

For a space A, let R*(A) denote the space of conjugacy classes of non-trivial 
representations of 7hA into SU(2). Write: 

R*(Z~) = RR u Rt 

according to whether ~t e R*(Zo) restricts to a reducible or irreducible representa- 
tion of  rq(X0). 

If ~t e RR then the construction of ~4 provides us with a fiat cobordism N from 
Z~ to Zl,  where Z~ is obtained by replacing the exterior of K by the exterior of the 
unknot. In fact, Zj is just the manifold obtained from - 1 / k  surgery on the 
left-handed trefoil knot. Thus 

[ - -E (2 ,  3, 6k - 1) 

Zl = ~E(2, 3, 1 - 6k) 

if k > 0: 

if k < 0;. 

i f k  = 0  

The representation spaces and spectral flows were computed for these manifolds by 
[FS2]. (It is also easy to compute the spectral flow between two connections using 
Yoshida's theorem [Y2] since the representation space of the trefoil is connected.) 
Using Theorem 4.4 we can compute the spectral flow for any at e RR. 

On the other hand, if ~t e Rt then by the previous lemma the restriction of  ~t to 
both Xo and Y0 is irreducible. Thus the construction of w applies and we obtain a 
fiat cobordism N from Z~ to Lx + Lr  + L#. Theorem 5.7 then gives the spectral 
flow in this case. 

LEMMA 6.3. The space RR is discrete. I f  a(#x ) = e t~ and e 2i~ is not a root of  the 
Alexander polynomial of  the p, q torus knot then ~t is a non-degenerate representation, 
i.e. H I ( Z ,  ; ad 0t) = 0. 

The space R t is a union of  smooth, non-degenerate circles; in particular i f  or ~ Rt 
then Ht(Zr ; ad ct) ~ R. 

Proof. Suppose ~t e RR. Such representations are in ! - I  correspondence with 
representations of rqZ~. Since Z~ is a Seifert-fibered homology sphere with 3 
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exceptional fibers, its representation space is discrete. It follows from the previous 
lemma that the restriction of �9 to nl T is non-central. Thus H~ ad ~) ~ R and 
H1(T; ad ~) --- R 2. The images of Hi(X0; ad ~) ~HI(T;  ad ~) and H~(Y0; ad ~) 
Hi(T; ad 00 are lines, which must be transverse: If they were tangent, then there 
would be an arc of representations in RR passing through ~. (This is not true for 
general knots; it holds for torus knots because (cf. [KK3]) the image of their 
representation spaces in the pillowcase are straight lines.) 

Now H~ ad a) ~ H~ ad ~) ~ R is an isomorphism, H~(Xo; ad ~) ~ R (this 
is where we use the hypothesis on the Alexander polynomial), and Hi(Y0; ad ~) -~ R 

(This can be computed directly using group cohomology. Alternatively the space of 
conjugacy classes of irreducible representations of a torus knot is a smooth 
1-manifold, see [K1].) The result now follows from the Mayer-Vietoris sequence. 

Now suppose ~ ~ Rt. Again the restriction of ~ to rq T is non-central. So 
H~ ad ~ ) ~  R and H~(T; ad ~ ) ~  R 2. As shown in the proof of Lemma 5.2 the 
images of Hl(Xo; ad ~) ~ HI(T; ad 00 and HI(T; ad ~) ~ HI(T; ad ~) are transverse 
lines. As above HI(X0; ad ~) ~- R --- HI(y0; ad ~). The Mayer-Vietoris sequence 
now implies that the boundary map H~ ad ~) ---, Ht(Z, ; ad ~) is an isomorphism. 
Thus the Zariski tangent space to Rz at ~ is 1 dimensional. By "bending" the 
representation along T we see that ~ can be deformed into a 1-parameter family. 
Thus Rt is smooth and since it is compact it must consist entirely of circles. [] 

REMARK. One interesting (and well-known) consequence of this fact and the 
results of the previous sections, together with the perturbation argument is that 
Casson's invariant of ~p,q(k) is the same as Casson's invariant of ZI. This can of 
course be checked directly using Casson's surgery formula. Alternatively, the circles 
in the previous theorem give rise to pairs of generators of the Floer chain complex 
which lie in adjacent dimensions using the perturbation of [FS2]. Therefore, only 
the points of RR contribute to the euler characteristic of the Floer chain complex, 
which equals - 2  times Casson's invariant. Each point contributes with the same 
sign as the corresponding point in R(Z1) using Theorem 4.4. However, we will see 
in our examples that although the parity of the spectral flow of these points does 
not change, its mod 8 refinement does. 

In the following example we use Theorem 4.4 to compute the Floer homology 
of Y~s,2(10), ~he homology sphere obtained by performing - 1  surgery on the 
10-twisted double of the (5, 2) torus knot. 

THEOREM 6.4. The Floer homology ofZs,2(10 ) is 2 5 in each even dimension, 0 
in each odd dimension. 

We begin by proving the following lemma. 
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LEMMA 6.5. Each representation a : n(Es.2(10))~SU(2) is abelian when re- 
stricted to n t(Xo). 

Proof. Suppose that a is non-abelian on ~ (X0). Recall that Xo is Seifert fibered 
with regular fiber h =2x/~x ~ It follows that a ( P r ) = a ( 2 x / ~ ) =  ___1 in SU(2); 
hence a is abelian on nt(Yo). Then a ( /~x)=a(2~, )=  1, which contradicts the 
hypothesis since #x normally generates rt t (Xo). [] 

To be consistent with the notation of the previous sections, we write 
E5,2(10) = Zo. Lemma 6.5 implies that there is a natural one-to-one correspondence 
between R(Zo) and R(ZI), where we define Zl = (S t x D 2) ~ Yo, with a meridian 
of S ~ x D 2 being glued to /~rg,::t~ in other words Zt is the result of ( - 1 /1 0 ) -  
surgery on the left-handed trefoil. We will now calculate the elements of R(Zt) and 
their spectral flow invariants, and then use Theorem 4.4 to calculate the spectral 
flow invariants of the corresponding elements of R(Zo). 

Recall (see, for example, [K1]) that the set of irreducible representations of 
rtt (Y0) mod conjugacy (which we will denote by Ri (Y0)) is a single arc of the form 

{aft }1/6 < fl < 5/6, where 

al~(pr ) = (  ei'/3 e_i~a). 

Since Yo is Seifert fibered with regular fiber 2 rp ;6 ,  it follows that 
ct/~(2r ) = -a /~(pr)  6. (Here we are using the fact that these representations take the 
regular fiber to - I.) Hence the image of Ri(Yo) in the pillowcase is the arc of slope 
6 shown in Figure 6. 

Clearly a : 7tt (Yo) ~ SU(2) factors through to give a representation of Z1 if and 
only if a( /~r2;  t~ = 1. This condition may be visualized in the pillowcase by 
intersecting the image of Ri(Yo) with the line ~ of slope 1/10, also shown in Figure 
6. It follows that R ( Z t ) =  {aa} for fl = 2j/59 where 5 < j  < 24. From now on we 
write aj to denote o~2i/59. Using the formula of [FS2] or the technique of Yoshida, 
we compute the spectral flow SF(O, aj)(Zl) for each of  these representations of 
Z~ = E(2, 3, 59), and assemble the following table: 

n generators of FI-I.(ZI) 

0 a5, ~7, ~9, ~16, a18 

2 alO, a12, a14, ~21 ~ a23 

4 a6, (gs, ~15~ ~17s a19 

6 ~11 ~ a13, a22, a24 
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pC~ 9 

o 
0 ~ 

~6 5~6 

Figure 6 

Next, we compute the adjustments to these spectral flows required to compute 
FH.(Es,2(IO)) using Theorem 4.4. The Seifert matrix of the (5, 2)-torus knot with 
respect to an obvious genus two Seifert surface is easily computed to be 

0 0  

1 - 1  0 
V =  0 1 - 1  " 

0 0 1 - 

The four eigenvalues of the matrix BK(t)= ( 1 -  t )V+  ( 1 -  t - l )V  r are given by 

,/2(I - cos o) {-,/2(~ - cos o) _+ ,/(3 +_ ,fg)/2}, 

where t = e i~ and the two _.+ signs are taken in all four possible combinations. In 
Figure 7 we graph these eigenvalues as functions of 0. 

For any value of 0, we can read off Sign Bx(e i~ directly from this graph. Note 
that the values of 0 at which this signature changes are n/5 and 3n/5. Recalling that 

/ 

we find (by Theorem 4.4) that SF(O, ej)(Zo) - SF(O, ej)(ZI) = -S ign  

i for j =  5, 10, 15, 20 
= for j = 6, 9, 11, 14, 16, 19, 21, 24 

f o r j  = 7, 8, 12, 13, 17, 18, 22, 23 



eigenvalues 

Figure 7 

0 = 0  

Y 

rd5 3n:5 O = 

2 

In summary, for each n, of the five generators of FH,(Z~ ) one remains a generator 
of FH,(Y-5.2(10)), two become generators of FH,+2(Es.2(10)), and two become 
generators of FHn+4(Y.5,2(IO)). The theorem follows. [] 

We now compute the spectral flow for - 1 surgery on the untwisted double of 
the fight handed trefoil. The representation space has 8 components; each is a 

smooth circle. This manifold is a graph manifold obtained by gluing a right handed 
trefoil complement to a left handed trefoil complement, identifying meridians with 
longitudes and vice versa. In Figure 8 we have drawn the image in the pillowcase 

of the representation spaces of X and Y. The coordinates used are p y and 2 r, the 
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Figure 8 
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meridian and longitude of ;IT. The representation space of a trefoil complement 
consists of an arc of abelian representations (sending the longitude to 1) and an arc 
of  non-abelian representations limiting at the endpoints on an abelian representa- 
tion; see [K1]. From Figure 8 we see that there are exactly 8 components of the 
representation space of  ]~2,3(0), and each representation restricts to a non-abelian 
representation of both X and Y. By Lemma 6.3, each component is a circle. We 
label the components ~, i = 1 . . . . .  8. 

We will apply Theorem 5.7 and so we need the various quantities appearing in 
the formula. First we need the gluing map 4~ in terms of  the curves m x =  #x ,  Ix = h, 

mr = #r ,  and l r  = k. Using the relationship between the meridians, longitudes, and 
the regular fibers we obtain: 

;):(0 3:) 
Since X = - Y we have ex = 1, ey = 1, er = - 1. The rotation numbers for the 

restrictions of each representation to X or Y are (1, 1). (These numbers are 
independent of the representation since the space of irreducible representations of 
the trefoil is connected. They are easy to compute for any particular representation. 
See for example [KKI].) For each representation the regular fiber is sent to - l, so 
that x = 1. Each representation is non-central when restricted to the torus since 
none of the eight points lie on a corner of the pillowcase, so that the terms C are 
equal to 2 for each representation. The terms rex(Or) and mr(at) are equal to 2. It 
remains to compute the rotation numbers for each of the eight representations and 
then apply the formula of Theorem 5.7. These are easily computed from Figure 8. 
Notice that most of the terms in the formula of Theorem 5.7 cancel since X = - Y. 

n po (~ . )  SF(O,~.) 

1 9 1 
2 11 5 
3 15 7 
4 17 3 
5 21 5 
6 23 1 
7 27 3 
8 29 7 

The Floer chain complex can be obtained from this by perturbing the circles. 
We obtain: 

F C ,  = ( Z  2, Z 2, Z 2, Z 2, Z 2, Z 2, Z 2, Z2). 
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Computing the Floer homology is of course harder, since one must compute the 
boundary operators. 

We next show how to compute the spectral flows and the Floer chain complex 
of - 1  surgery on the 5-twisted positive clasped Whitehead double of the right- 
handed trefoil. 

In Figure 9 we have drawn the image of the representaiton spaces of nl Xo and 
n~ Yo in the pillowcase R(T) using the coordinates #y, 2r. 

The lines drawn on R(X) are the images of the restriction maps R(X) ~ R(T) 
and R(Y)  ---, R(T). As in the previous example R(X) and R(Y) are constructed from 
two intervals: one interval consists entirely of abelian representations and the other 
interval consists of irreducible representations except for its endpoints which are 
abelian. 

We can glue together representations of X to Y provided they agree on T. From 
the figure we see that there are 10 isolated, nondegenerate representations whose 
restriction to X are abelian; these are labeled 1-10. So RR consists of 10 points. To 
compute their spectral flow we may use the method of ~4. 

There are two circles in R~ corresponding to where the image of the arc of 
irreducible representation of X intersects the arc of irreducible representations of Y. 
Their image in R(T) are the two points labeled A and B. The two horizontal lines 
delineate where the matrix Bx(e 2i~ has kernel; they correspond to the roots of the 
Alexander polynomial of the trefoil e ";/3 and e-'i/3. 

We first deal with the representations 1-10. We see that the representations 
labeled 2, 4, 5, 7, 9, and 10 lie in the region where the signature of BK(e 2i~ is --2. 
The others lie in the region where this signature is 0. 

Let Si be the spectral flow from the trivial representation to the ith representa- 
tion on Z~ = E(2, 3, 29). Then S I ~-- 4, $2 = 0, $3 = 4, $4 = 2, $5 = 6, $6 = 0, $7 = 4, 

7 9 

(a) 

Figure 9 

--177-.. 

(b) 

\ 

. . . . . .  ~_s. 

', ....... 

B 
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$8 = 0, $9 = 6, Sio = 2. One way to see this is to compute using the formula of  
Fintushel and Stern (see the second remark following Theorem 5.7). However, there 
is a much easier way to compute this Using the main result of  Yoshida's paper [Y2]. 
The following algorithm enables us to compute the spectral flow between any two 
representations of  any homology sphere surgery of the trefoil. Let a and b be 
representations and let y be the loop in the pillowcase made up of the path from a 
to b in the space of irreducible representations of  the trefoil followed by the path 
from b to a of  (abelian) representations of  the surgery solid torus. Then the spectral 
flow from a to b is equal (Mod 8) to 2 times the number of corners contained in the 
region in R(T) = S 2 to the right of  the curve. In Figure 10 we show SF( 1, 2) = 4, 
SF(3, 4) = 6, SF(5, 6) = 2 for the manifold obtained by - 1 / 5  surgery on the left 
handed trefoil. 

We now use Theorem 4.4 to relate the spectral flow SF(O, i)(E(2, 3, 29)) to 
SF(O, i)(Z~,). I f  T,. denotes the spectral flow from 0 to the ith representation on 
Z~ = Z2.3(10), then by Theorem 4.4 Ti = Si - 2 if i = 2, 3, 5, 7, 9, or 10, otherwise 
Ti = S~. So we get the table: 

n SF(O, or.) 

1 4 
2 6 
3 2 
4 2 
5 4 
6 0 
7 2 
8 0 
9 4 

10 0 

Thus the part  of  the Floer complex corresponding to the representations in RR 
is 

(Z 3, O, Z 2, O, Z 3, O, Z 2, 0). 

~ 4  

Figure 10 
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We next consider the two circles A and B. Since Xo = -  Y0, it follows that 
ex = - e r .  Moreover, the rotation numbers for X0 equal those for Y0, since the 
space of irreducible representations of  a trefoil (right or left handed) is connected. 
(In fact the rotation numbers are (1,1).) 

The numbers mx(~t) and mr(~t) are equal to 2, for ~t = A  or B. Applying 
Theorem 5.7 we see that most of  the terms cancel since rotation numbers for each 
side coincide by ex = - e r .  The gluing matrix is given as 

:) 
in the coordinates x~x2, h and Y~Y2, k. 

Thus L ,  = - L ( 7 ,  1). An examination of Figure 10 above shows that the 
rotation number for A is 2 and the rotation number for B is 4. Using Proposition 
5.5 one computes: 

SF(O, ~A) = - 2  - 2 - 2(2- 2 + 1) 

= - 15 - 1 (mod 8). 

2 ' 4 " 6  2 6 ( ~ )  ( ~ - ~ )  
7 + 7 k~=~ c~ sin2 + 2 

Similarly 

SF(O, cts) = 5 (mod 8). 

Thus we can perturb this non-degenerate critical level to conclude that the Floer 
chain complex of - 1  surgery on the 5 twisted positive clasp Whitehead double of  
the right handed trefoil is: 

(Z  3, Z, Z 3, O, Z 3, Z, Z 3, 0). 

Again, the boundary operators must be understood in order to compute the Floer 
homology. 

7. The spectral flow formula 

In this section we derive formula 2.1 for spectral flow in terms of the p~ and 
Chern-Simons  invariants. 

Let X be an oriented 4-manifold and let Y = OX oriented using the convention 
"outward normal first". Give X the product metric near Y and let u be the inward 
coordinate, normalized so that ]ldu II = 1. So near its boundary, d volx = d vo l t  ^ du. 
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Write d for the exterior derivative on X and use 6 on Y to distinguish it from 
d. We will suppress the notation indicating a connection in an auxiliary bundle but 
you should think of d and 6 as covariant derivatives with respect to a connection. 

For any connection on a bundle E, we have the self-adjoint operator 

D : Q ~ 1 7 6  @f2~ 

defined by (a, b) ~ (6*b, *fib + 6a), acting on ad (E)-valued forms. We take rlo(s ) 
to be the q-invariant of  D. 

Consider first the signature operator d + d* : f2 + ~ f2~. In [APS2] it is shown 
that (with respect to a U(n) representation ~) 

Sign, X = n f x  L - rlsg(O ) 

where 

B e  . ~~  (~ ~ 2  -.-~ ~'~~ (~ ~'2 2 

is the twisted signature operator defined on bundle-valued forms by 

Be(a, b) = ( - ,6b ,  3 * b + ,6a).  

(This operator is sometimes written (--1)P/2(,6 - 6 , ) . )  
Notice that the spectrum of  D associated to a representation fl is equal to the 

spectrum of the operator B e associated to ad (/~), and so in the signature formula we 
can replace the ~/ invariant of  B e by the r/invariant of  D. In particular, for a flat 
SU(2) connection b with holonomy /~ we see that 

qDb(O) -- qno(O) = 3 Sign X - Sign a X = Pad a(Y). 

We next want to relate r/n(0 ) to the self-duality operator. So let 

S : f t l  ~f2~ - 

be the self-duality operator on X defined by co ~ (d'co, P_ (dco)) where P_ denotes 
projection onto the anti-self-dual 2-forms. 

Consider the bundle isomorphisms: 

o l _ , A ~ I  
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given by ~(a, b) = a du + b and 

~, : AO e A 1 . A ~  , . |  A ~  I 

defined by ~(a,  b) = ( - a ,  P (b du)). 

Then a careful computa t ion  reveals that  near  the boundary  

S o q ' = h  u C +  

where C : t o  • Q ~. _~ t2o @ t2 ~ is defined by C(a, b) = ( - ~ *b, .~b - ~a). The spec- 

t rum of  C equals that o f  D and so the A t i y a h - P a t o d i - S i n g e r  theorem says that 

Index S = A ( X ) c h ( V _  )ch(ad E) - ~ (t/D (0) + dim Ker  D) 

where S is given the global boundary  conditions 

~1Y ~ Span {4~ I CqS~ = 2~b~., ,~ < 0}. 

We now apply this formula  to X = Z x I where Z is an oriented rational 
homology  sphere and Z x I is oriented as ((.9 z,  dt). (Notice that  with respect to this 
orientat ion O(Z x I )  = Z x 0 - Z x 1.) 

T H E O R E M  7.1. Let  a and b be connections on Z. Choose a path a,, t ~ I joining 

a to b and let A be the corresponding connection on Z x I. Let SF(a, b) denote the 

spectral f low o f  the fami ly  o f  operators D , .  Then: 

SF(a, b) = Index SA 

where the index is taken with respect to the global boundary conditions o f  [APS 1]. 

We sketch the proof: 
Divide the spectrum of  D, into a finite par t  F, and its complement  G, continu- 

ously with respect to t so that  all eigenvalues which pass through 0 lie in Ft. Let 
f , (s)  and g,(s) be the corresponding eta-invariants so that  ~o,(s) = f , ( s )  +g,(s) .  

Let h~ = dim ker D,-, i = 0, 1. Then it is easy to see that  

1 
SF(a, b) =.~ ( f l  (0) - f o ( O )  - h, - ho) 
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with respect to the convention described in section 2. Therefore, the spectral flow 
equals 

1 1 - ~ (g~(O) go(O)). (rio, (0) - ri,,o(O)) - ~ (h, + ho) 

Our orientation convention implies that ~(Z x I) = Z x 0 - Z x 1. Therefore, 

fz  1 Index SA = % (X) -- ~ (rio o (0) -- rlD, (0) + ho + h l). 
x l  

where Co(X) = ,4(Z x I )ch(V_)ch(ad  A). We can then write: 

fz  1 Index SA - SF(a, b) = ao(X) + ~ (gl (0) - g0(0)). 
•  

The left side is an integer and the right side is a real number which varies 
continuously along the path a,. Since g,(0) = go(0) for t small it follows that the 
right side is zero and so the spectral flow equals the index. [] 

Restrict now to an SU(2) connection. The integrand appearing in the index 
formula can be split up: 

A ( Z  x I )ch(V  )ch(ad A) 3A(Z x l ) ch (V  ) - 2c2(ad A). 

in this formula c2(ad A) means 

1 
87t 2 Tr(Fada A Fad a). 

where F ~a ~ means the curvature of the corresponding connection in the adjoint 
bundle. In particular, if a and b are SU(2) connections, 

f z  • ~ c2(ad ".4) = 4(cs(a) - cs(b) ) 

by Stokes' theorem. 
The other term appearing in the inetgrand, 3A(Z x I )ch(V_ ) has zero integral. 

This is most easily seen by considering the spectral flow SF(O, O) of the trivial 
connection to itself. By our conventions this is equal to - 3 ,  by the previous 
theorem it equal 3 S A(Z x 1)ch(V_ ) - ha. But ho = 3 by the Hodge theorem. 
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T h e r e f o r e  we ob t a in  the fo rmula :  

I l 
SF(a ,  b) = - 8(cs(a) - cs(b)) - -~ O1Do -- tlD~) -- ~ ( d i m  K e r  Da + d im K e r  Db). 

Final ly ,  i f  a and  b are  flat c o n n e c t i o n s  wi th  h o l o n o m y  ~, fl, let h= = d i m  

( H ~  ad a) + H I ( Z ;  ad  ~t)) and  s imilar ly  he. We  then  get: 

1 1 
SF(~ ,  fl) = 8(cs(fl) - cs(ot)) + -~ (Pad r - P,d =) -- ~ (h= + h/O. 

Th is  is the des i red fo rmula .  
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