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Abstract This article is a follow up of the previous article of the authors
on the analytic surgery of η– and ρ–invariants. We investigate in detail the
(Atiyah–Patodi–Singer)–ρ–invariant for manifolds with boundary. First we
generalize the cut–and–paste formula to arbitrary boundary conditions. A
priori the ρ–invariant is an invariant of the Riemannian structure and a
representation of the fundamental group. We show, however, that the de-
pendence on the metric is only very mild: it is independent of the metric
in the interior and the dependence on the metric on the boundary is only
up to its pseudo–isotopy class. Furthermore, we show that this cannot be
improved: we give explicit examples and a theoretical argument that differ-
ent metrics on the boundary in general give rise to different ρ–invariants.
Theoretically, this follows from an interpretation of the exponentiated ρ–
invariant as a covariantly constant section of a determinant bundle over a
certain moduli space of flat connections and Riemannian metrics on the
boundary. Finally we extend to manifolds with boundary the results of
Farber–Levine–Weinberger concerning the homotopy invariance of the ρ–
invariant and spectral flow of the odd signature operator.
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1 Introduction

The ρ–invariant of a closed odd-dimensional manifold was defined in [2] as a
difference of two spectral invariants. To a closed Riemannian manifold M and
a unitary representation of its fundamental group α : π1(M) → U(n) Atiyah,
Patodi, and Singer assigned the real number

ρ(M,α) = η(Dα,M) − η(Dτ ,M)

where Dα denotes the odd signature operator with coefficients in the flat bundle
determined by α, and Dτ is similar with respect to the trivial representation
τ , and η(D) denotes the regularized signature of a self-adjoint Dirac operator
D , introduced in [2]. As a consequence of their index theorem they showed that
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(1) ρ(M,α) is independent of the choice of Riemannian metric on M .

(2) ρ(M,α) extends the signature defect, that is, if (M,α) = ∂(W,β) for
some manifold W with unitary representation β : π1(W ) → U(n), then

ρ(M,α) = n Sign(W ) − Signβ(W )

where Signβ(W ) denotes the signature of W with local coefficients in the
flat bundle determined by β .

Thus ρ(M,α) is a fundamental smooth invariant, but it remains largely myste-
rious since its general definition depends on the spectra of differential operators
on M .

In [26] we defined the ρ–invariant ρ(M,α, g) in the case when the boundary
of M is non-empty and proved a non-additivity formula as a consequence of
our cut-and-paste formula for η–invariants of Dirac operators: if M is a closed
manifold split into two parts X and Y along a hypersurface,

ρ(M,α) = ρ(X,α, g) + ρ(Y, α, g) +m(VX,α, VY,α)(g,α) −m(VX,τ , VY,τ )(g,τ).

(For the definitions of the terms see (2.4) and (2.8).)

It is the purpose of this article to explore the properties of ρ(M,α, g), particu-
larly those which flow from this formula. We will describe the behavior of this
invariant with respect to variations in Atiyah-Patodi-Singer (APS) boundary
conditions, bordisms, and variations of α and g . As applications we prove
generalizations of the main results of Farber-Levine-Weinberger [14] concerning
the homotopy invariance of ρ to manifolds with boundary. Special attention is
given to the construction of explicit examples.

The invariant ρ(M,α, g) is defined as a difference of η–invariants for manifolds
with boundary and as such is also a spectral invariant. This has the happy
consequence that it is gauge and isometry invariant. But in contrast to the
closed case, when the boundary of M is non-empty the resulting invariant
depends on the choice of Riemannian metric, g , on the boundary.

Hidden from the notation is the fact that elliptic boundary conditions are re-
quired to define η–invariants on manifolds with boundary. Our choice in [26]
is to use APS boundary conditions with respect to the Lagrangian subspace
of limiting values of extended L2 solutions in the sense of [2]. This choice is
intrinsic, homotopy invariant, and natural in a sense we will describe with re-
spect to bordisms, but is not continuous in families. This fact is apparent when
one considers families for which the dimension of the kernel of the tangential
operator is not constant, but discontinuities can also occur in families for which
the kernel is constant dimensional.
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For this reason it turns out to be useful to allow more general Lagrangian
subspaces; we describe this generalization and derive the corresponding cut-and-
paste formula for η - and ρ–invariants with respect to arbitrary APS boundary
conditions in Theorem 3.2. Among other things, Theorem 3.2 says:

Theorem Suppose that M = Y ∪ΣX, α : π1(M) → U(n) is a representation,
WX ,W Y ⊂ H∗(Σ; Cn

α) are Lagrangian subspaces, and let B be a flat connec-
tion on M with holonomy α in cylindrical form near Σ. Then the difference
η(DB ,M)−η(DB,WX ,X)−η(DB,WY , Y )−m(WX ,W Y )(α,g) equals the integer

σ̃(VX,α, VY,α, γ(W
Y )) − σ̃(γ(VX,α),WX ,W Y ).

In this statement η(DB,W ,X) denotes the η–invariant of the odd signature
operator coupled to a flat connection B on the manifold X with respect to
APS boundary conditions determined by the Lagrangian subspace W of the
kernel of the tangential operator. Moreover, m(V,W )(α,g) is an explicit real-
valued invariant of pairs of Lagrangian subspaces of the Hermitian symplectic
space H∗(Σ; Cn

α) with its induced L2 metric (this is defined in Section 2), γ is
the associated complex structure, σ̃ is the Maslov triple index which appears in
Wall’s non-additivity theorem [36], VX,α = image

(

H∗(X; Cn
α) → H∗(Σ; Cn

α)
)

,
and similarly for VY,α .

This theorem generalizes [26, Theorem 8.8] to arbitrary APS boundary condi-
tions. Taking differences gives a corresponding formula for ρ–invariants.

We next give a topological description of how the spaces VX,α propagate across
a bordism; the result is given as Theorem 4.1 which gives a functorial framework
to keep track of APS boundary conditions and a companion additivity formula
for η and ρ.

With these technical results in place, we can then begin a careful investigation
of how the ρ–invariants for manifolds with boundary depend on the choice of
metric on the boundary and the representation. For example, we show:

Corollary 5.2 The ρ–invariant for a manifold with boundary depends on
the Riemannian metric on the boundary only up to its pseudo-isotopy class.
Precisely, if f0, f1 : ∂X → ∂X are pseudo-isotopic diffeomorphisms, then

ρ(X,α, f∗0 (g)) = ρ(X,α, f∗1 (g)).

In Section 6 we give explicit examples which show that ρ(X,α, g) and m(V,W )
depend on the choice of Riemannian metric:
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Theorem 6.1

(1) There exists a 3-manifold Y with non-empty boundary, Riemannian met-
rics g0 , g1 on ∂Y , and a representation α : π1Y → U(2) so that

ρ(Y, α, g0) 6= ρ(Y, α, g1).

Examples exist with vanishing kernel of the tangential operator, i.e.

kerAb ∼= H∗(∂Y ; C2
α) = 0.

(2) There exist metrics g0 and g1 on the torus T and 3-manifolds X and Y
with boundary T such that setting VX = image

(

H∗(X; C) → H∗(T ; C)
)

and VY = image
(

H∗(Y ; C) → H∗(T ; C)
)

(with θ the trivial conection),

m(VX , VY )(θ,g0) 6= m(VX , VY )(θ,g1).

This theorem drives home the point that the choice of Riemannian metric on
the boundary is an essential ingredient of the ρ–invariant on a manifold with
non-empty boundary.

In Section 7 we extend to manifolds with boundary the results of Farber-Levine-
Weinberger concerning the homotopy invariance of the ρ–invariants and spec-
tral flow of the odd signature operator. Let

χ(π1X,U(n)) = Hom(π1X,U(n))/conjugation

and let M∂X denote the space of Riemannian metrics on ∂X . Notice that
a map F : X → X ′ which restricts to a diffeomorphism on the boundary and
which induces an isomorphism on fundamental groups provides an identification
of M∂X with M∂X′ and χ(π1X,U(n)) with χ(π1X

′, U(n)).

Theorem 7.2 Let F : X → X ′ be a homotopy equivalence of compact mani-
folds which restricts to a diffeomorphism on the boundary. Then the difference

ρ(X) − ρ(X ′) : χ(π1X,U(n)) × M∂X → R

factors through π0(χ(π1X,U(n)))×(M∂X/D
0
∂X) (where D0

∂X denotes the group
of diffeomorphisms of ∂X pseudo-isotopic to the identity) and takes values in
the rational numbers.

In other words there is a commutative diagram

χ(π1X,U(n)) × M∂X R

π0(χ(π1X,U(n))) × (M∂X/D
0
∂X) Q

-ρ(X)−ρ(X′)

?
-

6

Moreover the difference ρ(X,α, g)−ρ(X ′, α, g) vanishes for α in the path com-
ponent of the trivial representation.
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We also show that the spectral flow of the odd signature operator coupled to a
path of flat connections is a homotopy invariant. In the following statement P (t)
denotes a smooth path of self-adjoint APS boundary conditions with prescribed
endpoints. (We show how to construct such a path in Lemma 7.3.)

Theorem 7.4 Suppose that F : X ′ → X is a homotopy equivalence which
restricts to a diffeomorphism f = F |∂X′ : ∂X ′ → ∂X . Assume that Bt is a
continuous, piecewise smooth path of flat U(n) connections on E → X . Use
F to pull back the path Bt to a path of flat connections B′

t on X ′ and to
identify ∂X with ∂X ′ , and choose a path P (t) of APS boundary conditions as
in Lemma 7.3.

Then

SF(X,DBt,P (t))t∈[0,1] = SF(X ′,DB′

t,P (t))t∈[0,1].

In Section 8 we use the machinery of determinant bundles, especially the Dai-
Freed theorem, to study the variation of ρ(X,α, g) modulo Z. By working
modulo Z one loses geometric information but the discontinuities of ρ as a
function of α are eliminated. In particular variational techniques can be ap-
plied.

Theorem 8.4 implies the following. In this theorem ∇Q denotes the connection
on the determinant bundle as introduced by Quillen in [32]. (See [5] for the
construction of ∇Q in general.)

Theorem The assignment of the exponentiated ρ–invariant to a flat SU(n)
connection B on a manifold with boundary X and a choice of Riemannian
metric g on ∂X ,

(B, g) 7→ exp(πi ρ(X,α, g)),

(where α is the holonomy of B ) defines a smooth horizontal (with respect to
the connection ∇Q) cross section of the determinant bundle of the family of
tangential operators to the odd signature operators.

This theorem allows one to relate the mod Z reduction of the ρ–invariant on
manifolds with isomorphic fundamental groups and diffeomorphic boundaries,
and also shows that the manner in which ρ(X,α, g) depends on the choice of
metric g on ∂X is intimately tied to the connection ∇Q .

For example, the following is a consequence of Theorem 8.5. We view ρ(X) as
a function of the conjugacy class of the representation α and the metric g .
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Theorem Let X and X ′ be two odd dimensional manifolds and suppose that
F : X ′ → X is a smooth map which induces an isomorphism on fundamental
groups and such that the restriction f = F |∂X′ : ∂X ′ → ∂X is a diffeomor-
phism.

Then there is a factorization

χ(π1(X), SU(n)) × MΣ R/Z

π0(χ(π1(X), SU(n))) × MΣ

-ρ(X)−ρ(X′)

HHHHHj p

p

p

p

p

p

p

p

p

p

p

p

p*

and ρ(X) − ρ(X ′) is zero on the path component of the trivial representation.
The result holds for U(n) replacing SU(n) if dimX = 4ℓ− 1.

These results, together with the cut–and–paste formula for ρ–invariants (Theo-
rem 3.2) are a step in the program of determining what the homotopy properties
of the ρ–invariant are. A discussion of problems in this topic is given in Section
9, including the following consequence of Theorem 9.2 concerning the homotopy
invariance of the ρ–invariant for closed manifolds.

Theorem Let M and M ′ be closed manifolds, and suppose there exists a sep-
arating hypersurface Σ ⊂M and a smooth homotopy equivalence F : M ′ →M
so that the restriction of F to F−1(Σ) is a diffeomorphism. Write M = X∪ΣY
and M ′ = X ′ ∪Σ Y

′ and suppose that F restricts to homotopy equivalences
X ′ → X and Y ′ → Y . Let α ∈ χ(π1M,U(n)).

If the restriction α|X (resp. α|Y ) of α to π1X (resp. π1Y ) lies in the path
component of the trivial representation of χ(π1X,U(n)) (resp. χ(π1Y,U(n)))
then ρ(M,α) = ρ(M ′, α).

We finish the article with a brief discussion of the relation of our investigations
to one of the approaches to the program of constructing topological quantum
field theories proposed in [1].
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2 The ρ–invariant on manifolds with boundary

We begin by recalling the context and the definition of the ρ–invariant for a
manifold with boundary. More details can be found in [26].

Let X be a (2k + 1)-dimensional smooth, oriented, compact manifold with
(possibly empty) boundary Σ. Fix a Riemannian metric g̃ on X in product
form near the boundary Σ. To keep track of signs it is crucial to fix a convention
for the orientation of a collar of the boundary. In this paper we will use the
convention of [26]: if not indicated otherwise a collar of the boundary will be
written as Σ× [0, ǫ), i.e. the manifold X is “on the right” of the boundary. The
choice of the sign convention has consequences for the definition of Ab and γ
(and hence the Hermitian symplectic structure on H∗(Σ; Cn

α)) below.

Let B be a flat U(n) connection on X in product form near the boundary, i.e.
B|Σ×[0,ǫ) = π∗(b) for some flat connection b on Σ; here π : Σ × [0, ǫ) → Σ de-
notes the projection. Denote by α : π1X → U(n) the holonomy representation
of B . Since it will be central in what follows, denote the restriction of g̃ to the
boundary Σ by g .

The odd signature operator coupled to the flat connection B

DB : ⊕p Ω2p(X;E) → ⊕pΩ
2p(X;E)

is defined by

DB(β) = ik+1(−1)p−1(∗dB − dB∗)(β) for β ∈ Ω2p(X;E).

Here, ∗ : Ωℓ(X;E) → Ω2k+1−ℓ(X;E) denotes the Hodge * operator (which is
determined by the Riemannian metric g̃ on X ), dB : Ωℓ(X;E) → Ωℓ+1(X;E)
denotes the covariant derivative associated to the flat connection B , and E →
X denotes the associated Hermitian Cn vector bundle.

On the collar Σ × [0, ǫ), DB takes the form (after conjugating with a certain
unitary transformation, see [26, (8.1)] for details)

DB = γ(
∂

∂x
+Ab),

where the de Rham operator

Ab : ⊕k Ωk(Σ;E|Σ) → ⊕kΩ
k(Σ;E|Σ)

is defined by

Ab(β) =

{

−(db∗̂ + ∗̂db)β, if β ∈ ⊕kΩ
2k(Σ;E|Σ),

(db∗̂ + ∗̂db)β, if β ∈ ⊕kΩ
2k+1(Σ;E|Σ).
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In these formulas ∗̂ denotes the Hodge ∗ operator on Σ and

γ : ⊕p Ωp(Σ;E|Σ) → ⊕pΩ
p(Σ;E|Σ)

coincides with ∗̂ up to a constant:

γ(β) =

{

ik+1(−1)p−1∗̂ β, if β ∈ Ω2p(Σ;E|Σ),

ik+1(−1)k−q∗̂ β, if β ∈ Ω2q+1(Σ;E|Σ).

One calculates that γ2 = −Id, γAb = −Abγ , and that γ is unitary with respect
to the L2 inner product on Ω∗(Σ;E|Σ) defined by

〈β1, β2〉 =

∫

Σ
β1 ∧ ∗̂β2.

(The Riemannian metric on Σ is used to define the Hodge ∗-operator ∗̂, and
we have suppressed the notation for the inner product in the bundle E .) The
operator Ab is elliptic and self-adjoint and hence one has an orthogonal decom-
position

L2(Ω∗(Σ;E|Σ)) = F−
b ⊕ kerAb ⊕ F+

b (2.1)

into the negative eigenspan, kernel, and positive eigenspan of Ab . The relation
γAb = −Abγ implies that kerAb is preserved by γ and that γ maps F+

b
unitarily onto F−

b .

The kernel of Ab is identified by the Hodge theorem with the twisted de Rham
cohomology of the complex (Ω∗(Σ;E|Σ), db); indeed the elements of kerAb are
just the db -harmonic forms and so the composite

kerAb = ker db ∩ ker d∗b ⊂ ker db →
ker db

image db

is an isomorphism. The de Rham theorem then identifies the cohomology of
(Ω∗(Σ;E|Σ), db) and the (singular or cellular) cohomology H∗(Σ; Cn

α) with local
coefficients given by the holonomy representation α.

The triple (kerAb, 〈 , 〉, γ) gives kerAb the structure of a Hermitian sym-
plectic space. In general a Hermitian symplectic space (H, 〈 , 〉, γ) is a finite
dimensional complex vector space H with a positive definite Hermitian inner
product 〈 , 〉 : H ×H → C and an isomorphism γ : H → H which is unitary,
i.e. 〈γ(x), γ(y)〉 = 〈x, y〉, satisfying γ2 = −I such that the signature of iγ is
zero. The underlying symplectic structure is the pair (H,ω), where ω is the
non-degenerate skew-Hermitian form

ω(x, y) = 〈x, γ(y)〉.

The signature of iγ on kerAb ∼= H∗(Σ; Cn
α) is zero. This is a consequence of

the fact that (Σ, α|Σ) bounds (X,α), and is not true for a general pair (Σ, α).
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However, it is true in many important cases, for example if Σ is a 4ℓ − 2
dimensional manifold and α : π1Σ → U(n) factors through O(n).

In contrast to the Hermitian inner product 〈 , 〉 and the unitary map γ on
kerAb , the symplectic form ω does not depend on the Riemannian metric and
in fact is given by the cup product:

ω(β1, β2) = ir
∫

Σ
β1 ∧ β2 = ir([β1] ∪ [β2]) ∩ [Σ],

where ir is a constant depending on the degrees of the βi .

A subspace W of a Hermitian symplectic space (H,ω) is called Lagrangian if
ω vanishes on W and W is maximal with this property. This is equivalent to
γ(W ) = W⊥ , but being a Lagrangian subspace is a property of the underlying
symplectic structure. Note that dimW = 1

2 dimH . Denote the Grassmannian
of all Lagrangian subspaces of H by L (H).

We summarize: The symplectic structure on H∗(Σ; Cn
α), and hence the Grass-

mannian L (H∗(Σ; Cn
α)), depends only on the cohomology and cup product,

and therefore is a homotopy invariant of (Σ, α). On the other hand, the Her-
mitian symplectic structure on H∗(Σ; Cn

α) depends on its identification with
kerAb via the Hodge and de Rham theorems, since the inner product 〈 , 〉
is the restriction of the L2 inner product (which depends on the Riemannian
metric on Σ) to kerAb .

The following lemma is well–known; it follows by a standard argument using
Poincaré duality (cf. also [26, Cor. 8.4]).

Lemma 2.1 The image of the restriction

H∗(X; Cn
α) → H∗(Σ; Cn

α) (2.2)

is a Lagrangian subspace.

We will denote this subspace by VX,α , and, by slight abuse of notation, its
preimage in kerAb via the isomorphism kerAb ∼= H∗(Σ; Cn

α) will also be de-
noted by VX,α . We emphasize that the Lagrangian VX,α is a homotopy invari-
ant of (X,α). Moreover it gives a distinguished element in the Grassmannian
L (H∗(Σ; Cn

α)). Considered as a subspace of kerAb , VX,α coincides with the
limiting values of extended L2 solutions of DBφ = 0 on (Σ × (−∞, 0]) ∪X in
the sense of [2].

Lagrangian subspaces of H∗(Σ; Cn
α) are used to produce elliptic self-adjoint

Atiyah-Patodi-Singer (APS) boundary conditions for the odd signature opera-
tor DB as follows. Given a Lagrangian subspace W ⊂ H∗(Σ; Cn

α) we consider
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632 Paul Kirk and Matthias Lesch

the orthogonal projection in L2(Ω∗(Σ;E|Σ)) onto F+
b ⊕W . This orthogonal

projection defines a well–posed boundary condition for DB (see e.g. [9]).

Restricting DB to the subspace of sections whose restriction to the boundary
lies in the kernel of this projection makes DB a discrete self-adjoint operator
which we denote by DB,W . The following properties of this operator are the
starting point of the investigations of this article and go back to Atiyah, Patodi,
and Singer’s fundamental articles [2, 3, 4]. In this context the following facts
are explained in [26].

(1) The η function of the operator DB,W ,

η(s) =
∑

λ∈Spec(DB,W )\{0}

signλ |λ|−s,

converges for Re(s) >> 0 and has a meromorphic continuation to the
entire complex plane with no pole at s = 0. Denote its value at s = 0 by

η(DB,W ,X) := η(0).

(2) The kernel of DB,W fits into an exact sequence

0 →
(

imageH∗(X,Σ; Cn
α) → H∗(X; Cn

α)
)

→ . . .

. . .→ kerDB,W →W ∩ γ(VX,α) → 0.
(2.3)

In particular, taking W = VX,α we see

kerDB,VX,α
= imageH∗(X,Σ; Cn

α) → H∗(X; Cn
α).

We next recall the definition of the ρ–invariant for manifolds with boundary
from [26]. Let Θ denote the trivial connection in the product bundle Cn ×X
in the form Θ = π∗(θ) in the collar of ∂X , and τ : π1X → U(n) the trivial
representation. Then define

ρ(X,α, g) = η(DB,VX,α
,X) − η(DΘ,VX,τ

,X). (2.4)

It is shown in [26, Sec. 8] that ρ(X,α, g) depends only on the smooth structure
on X , the conjugacy class of α : π1X → U(n), and the Riemannian metric g
on Σ = ∂X . In particular, it is independent of the choice of flat connection B
with holonomy conjugate to α and also independent of the Riemannian metric
g̃ on X extending g .

When ∂X is empty, then the diffeomorphism invariance of ρ(X,α) was estab-
lished by Atiyah, Patodi, and Singer in [3] and follows straightforwardly from
their index theorem. The cut–and–paste formulae

η(DB ,M) = η(DB,VX,α
,X) + η(DB,VY,α

, Y ) +m(VX,α, VY,α)(b,g) (2.5)
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and

ρ(M,α) = ρ(X,α, g) + ρ(Y, α, g) +m(VX,α, VY,α)(b,g) −m(VX,τ , VY,τ )(θ,g) (2.6)

when M = Y ∪Σ X were proven in [26, Sec. 8] and are the basis for our
investigations in the present article.

In Equations (2.5) and (2.6) the correction term m(V,W )(b,g) is a real valued
invariant of pairs of Lagrangians in H∗(Σ; Cn

α); it depends on the identification
of H∗(Σ; Cn

α) with the kernel of Ab and hence may a priori (and a posteriori

as well, see Section 6) depend on the Riemannian metric g on Σ. It is defined
as follows.

Let kerA+
b denote the +i-eigenspace of γ acting on kerAb and let kerA−

b
denote the −i-eigenspace. Then every Lagrangian subspace W of kerAb ∼=
H∗(Σ; Cn

α) can be written uniquely as a graph

W = {x+ φ(W )(x)|x ∈ kerA+
b }, (2.7)

where φ(W ) : kerA+
b → kerA−

b is a unitary isomorphism. The map W 7→
φ(W ) determines a diffeomorphism between the space L (kerAb) of La-
grangians in kerAb to the space of unitary operators U(kerA+

b , kerA
−
b ). We

take the branch log(reit) = ln r + it, r > 0,−π < t ≤ π and use it to define
tr log : U(kerA+

b ) → iR via tr log(U) =
∑

log(λi), λi ∈ SpecU . Then define

m(V,W )(b,g) = − 1
πi tr log(−φ(V )φ(W )∗) + dim(V ∩W )

= − 1
πi

∑

λ∈Spec(−φ(V )φ(W )∗)

λ6=−1

log λ.
(2.8)

We will abbreviate this to m(V,W ) when (b, g) is clear from context. Since
−φ(V )φ(W )∗ is unitary, its eigenvalues are unit complex numbers, and hence
m(V,W ) is a real number. The term dim(V ∩W ) is added to match conventions
and to simplify formulas; notice that its effect is to remove the contribution of
the −1 eigenspace of −φ(V )φ(W )∗ to tr log(−φ(V )φ(W )∗). Thus m is not
in general a continuous function of V and W . The function m has been
investigated before, the notation is taken from [10].

3 Cutting and pasting formulas with arbitrary

boundary conditions

The η–invariants appearing in the definition of ρ of Equation (2.4) are taken
with respect to the boundary conditions VX,α ⊂ H∗(Σ; Cn

α) and VX,τ ⊂
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H∗(Σ; Cn). More precisely, the Lagrangian VX,α ⊂ H∗(Σ; Cn
α) determines a

subspace (still denoted VX,α ) of kerAb , and this in turn determines the orthog-
onal projection to F+

b ⊕ VX,α , (recall that F+
b is shorthand for the positive

eigenspan of Ab ). A similar comment applies to VX,τ . Since these Lagrangians
are canonically determined by the homotopy type of the pair (X,α) and the
Riemannian metric on Σ, they present a natural choice for the boundary con-
ditions. Nevertheless it is useful to use other Lagrangians in H∗(Σ; Cn

α) to
define boundary conditions. One important reason is that the VX,α do not vary
continuously in families, even if kerAb does.

Definition 3.1 Let X have boundary Σ and let α : π1X → U(n) be a
representation. Given Lagrangian subspaces Wα ⊂ H∗(Σ; Cn

α) and Wτ ⊂
H∗(Σ; Cn), define ρ(X,α, g,Wα,Wτ ) by

ρ(X,α, g,Wα,Wτ ) := η(DB,Wα ,X) − η(DΘ,Wτ ,X).

Thus ρ(X,α, g) is shorthand for ρ(X,α, g, VX,α, VX,τ ).

We next recall the definition of σ̃ from [26, Sec. 8]. Given Lagrangian subspaces
U, V,W of a Hermitian symplectic space, define

σ̃(U, V,W ) := m(U, V ) +m(V,W ) +m(W,U).

Then σ̃ is integer-valued, depends only on the symplectic form ω , and coincides
with Wall’s correction term for the non-additivity of the signature [36] as well
as the Maslov triple index of [11].

The following theorem gives a complete formulation of the dependence of the
η - and ρ–invariants for a manifold with boundary on the choice of Lagrangians
used for APS boundary conditions.

Theorem 3.2 Suppose that M = Y ∪Σ X , α : π1(M) → U(n) is a repre-
sentation, WX

α ,W
Y
α ⊂ H∗(Σ; Cn

α) and WX
τ ,W

Y
τ ⊂ H∗(Σ; Cn) are Lagrangian

subspaces, and let B be a flat connection on M with holonomy α in cylindri-
cal form near Σ. Orientation dependent quantities like γ etc. are taken with
respect to X according to the convention explained on page 629.

Then:

(1) η(DB,WX
α
,X) − η(DB,VX,α

,X) = m(γ(VX,α),WX
α ).

(2) ρ(X,α, g,WX
α ,W

X
τ ) depends only on the diffeomorphism type of X , the

representation α, the Lagrangian subspaces WX
α ,W

X
τ and the Rieman-

nian metric g on Σ = ∂X .
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(3) The difference η(DB ,M) − η(DB,WX
α
,X) − η(DB,WY

α
, Y )−m(WX

α ,W
Y
α )

is an integer. In fact it equals

σ̃(VX,α, VY,α, γ(W
Y
α )) − σ̃(γ(VX,α),WX

α ,W
Y
α ).

(4) η(DB ,M) = η(DB,VX,α
,X) + η(DB,γ(VX,α), Y ) and so

ρ(M,α) = ρ(X,α, VX,α, VX,τ ) + ρ(Y, α, γ(VX,α), γ(VX,τ )).

Proof We use the results of [26]. Recall the notation η̃(D) = 1
2(η(D) +

dimkerD). For the proof of (1) we omit the sub- and superscripts of W :

By [26, Theorem 4.4] we have

η̃(DB,W ,X) − η̃(DB,VX,α
,X)

= 1
2πi

(

tr log(Φ(P+(W ))Φ(PX)∗) − tr log(Φ(P+(VX,α))Φ(PX )∗)
)

.
(3.1)

Here, P+(W ) denotes the orthogonal projection onto W ⊕ F+
b , PX denotes

the Calderòn projector for DB acting on X , and Φ is the infinite–dimensional
version of φ: it denotes the diffeomorphism from the (infinite–dimensional)
Lagrangian Grassmannian onto U (ker(γ−i), ker(γ+i)) (cf. [26, Sec. 2]). Using
[26, Lemma 6.9] we identify the right side of (3.1) with

τµ(P
+(VX,α), P

+(W ), PX) − 1
2πi tr log

(

Φ(P+(VX,α))Φ(P+(W ))∗
)

, (3.2)

where τµ is the Maslov triple index defined in [26, Sec. 6].

In view of [26, Lemma 8.10] the quantity τµ(P
+(VX,α), P

+(W ), PX) is invariant
under adiabatic stretching and equals

τµ(VX,α,W, VX,α) = dim
(

VX,α ∩ γ(W )
)

, (3.3)

where the last equality follows from [26, Prop. 6.11].

As in the proof of [26, Theorem 8.12] one calculates

tr log
(

Φ(P+(VX,α))Φ(P+(W )∗)
)

= tr log
(

φ(VX,α)φ(W )∗
)

. (3.4)

The identity γ2 = −I shows that dim(VX,α ∩ γ(W )) = dim(γ(VX,α) ∩W ) and
clearly φ(γ(W )) = −φ(W ). These facts together with the definition of m(V,W )
and Equation (3.4) imply

η̃(DB,W ,X) − η̃(DB,VX,α
,X)

= dim(γ(VX,α) ∩W ) − 1
2πi tr log(φ(VX,α)φ(W )∗)

= 1
2

(

m(γ(VX,α),W ) + dim(γ(VX,α) ∩W )
)

.

(3.5)
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Using the definition η̃(D) = 1
2(η(D) + dimkerD) we see that η(DB,W ,X) −

η(DB,VX,α
,X) −m(γ(VX,α),W ) equals

− dimkerDB,W + dim kerDB,VX,α
+ dim(γ(VX,α) ∩W ). (3.6)

But (3.6) vanishes, as one sees by using the exact sequence (2.3). This proves
the first assertion of Theorem 3.2.

The second assertion follows from the first part and [26, Lemma 8.15].

Using (2.5) and the first assertion one sees that

η(DB ,M) − η(DB,WX
α
,X) − η(DB,WY

α
, Y ) −m(WX

α ,W
Y
α )

equals

m(VX,α, VY,α) −m(γ(VX,α),WX
α ) +m(γ(VY,α),W

Y
α ) −m(WX

α ,W
Y
α ). (3.7)

(There is one subtlety: the sign change of the term m(γ(VY,α),W Y
α ) occurs

because viewed from the “Y ” side, the Hermitian symplectic structure changes
sign.)

Using the identities m(V,W ) = −m(W,V ) and φ(γ(W )) = −φ(W ), so that
m(γ(V ), γ(W )) = m(V,W ), we can rewrite (3.7) as

−m(γ(VX,α),WX
α ) −m(WX

α ,W
Y
α ) +m(VX,α, VY,α) +m(VY,α, γ(W

Y
α )),

which equals

σ̃(VX,α, VY,α, γ(W
Y
α )) −m(γ(W Y

α ), VX,α)

− σ̃(γ(VX,α),WX
α ,W

Y
α ) +m(W Y

α , γ(VX,α))

=σ̃(VX,α, VY,α, γ(W
Y
α )) − σ̃(γ(VX,α),WX

α ,W
Y
α )

as desired. This proves the third assertion.

The last statement follows straightforwardly from the previous or, alternatively,
can be immediately recovered from [26, Theorem 8.8].

4 Lagrangians induced by bordisms

Theorem 3.2 gives splitting formulas for the η and ρ–invariants of DB in the
situation when a manifold M is decomposed into two pieces X and Y along
a hypersurface Σ. To develop this into a useful cut-and-paste machinery for
the ρ–invariant requires keeping track of the Lagrangian subspaces VX,α =
imageH∗(X; Cn

α) → H∗(Σ; Cn
α) and their generalizations. It is clearest to give
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an exposition based on the effect of a bordism on Lagrangian subspaces and we
do this next.

Let X be a Riemannian manifold with boundary −Σ0 ∐ Σ1 (we allow Σ0 or
Σ1 empty). Let α : π1X → U(n) be a representation. Fix a flat connection B
on X with holonomy α in cylindrical form near Σ0 and Σ1 . The tangential
operator Ab of DB acting on X decomposes as a direct sum Ab = Ab,0 ⊕Ab,1
since L2(∂X) = L2(Σ0) ⊕ L2(Σ1). In particular

kerAb = kerAb,0 ⊕Ab,1 ∼= H∗(Σ0; C
n
α) ⊕H∗(Σ1; C

n
α).

We view X as a bordism from Σ0 to Σ1 .

We explained in the previous section that kerAb ∼= H∗(∂X; Cn
α) is a Hermitian

symplectic space. At this point we add the hypothesis that both kerAb,0 ∼=
H∗(Σ0; C

n
α) and kerAb,1 ∼= H∗(Σ1; C

n
α) be Hermitian symplectic spaces. This

is not automatic, but follows for example if there exists a manifold Y with
boundary Σ0 over which α|Σ0 : π1Σ0 → U(n) extends. It is in this context
that we will usually work.

We use X to define a function LX,α from the set of subspaces of H∗(Σ0; C
n
α)

to the set of subspaces of H∗(Σ1; C
n
α) by

LX,α(W ) = P1

(

VX,α ∩ (W ⊕H∗(Σ1; C
n
α))

)

, (4.1)

where P1 : H∗(∂X; Cn
α) → H∗(Σ1; C

n
α) denotes the projection onto the second

factor:

P1 : H∗(∂X; Cn
α) = H∗(Σ0; C

n
α) ⊕H∗(Σ1; C

n
α) → H∗(Σ1; C

n
α).

In the following theorem, let Y be a Riemannian manifold with boundary Σ0

with a product metric g0 + du2 near the collar. Write

Z = Y ∪Σ0 X

and assume that α extends over Z . Let γ0 be the restriction of γ to kerAb,0 .
Notice that γ0(VY,α) ⊕ LX,α(VY,α) is a Lagrangian subspace of kerAb .

Theorem 4.1 The function of Equation (4.1) takes Lagrangian subspaces to
Lagrangian subspaces, i.e. it induces a function

LX,α : L (H∗(Σ0; C
n
α)) → L (H∗(Σ1; C

n
α)).

This function has the properties:
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(1) If Y , Z = Y ∪Σ0 X are as above then

VZ,α = LX,α(VY,α).

In short, the bordism propagates the distinguished Lagrangian. Moreover

η(DB,VZ,α
, Z) = η(DB,VY,α

, Y ) + η(DB,γ0(VY,α)⊕LX,α(VY,α),X)

and hence ρ(Z,α, g1) equals

ρ(Y, α, g0)+ ρ(X,α, g0 ∐ g1, γ0(VY,α)⊕LX,α(VY,α), γ0(VY,τ )⊕LX,τ (VY,τ )).

where gi is a metric on Σi .

(2) If X1 is a bordism from Σ0 to Σ1 and X2 is a bordism from Σ1 to Σ2

and α : π1(X1 ∪Σ1 X2) → U(n) then

LX1∪Σ1
X2,α = LX2,α ◦ LX1,α.

Proof The map of (4.1) is just the map taking VX,α to its symplectic reduction
with respect to the subspace W ⊕H∗(Σ1; C

n
α) ⊂ H∗(Σ0; C

n
α)⊕H∗(Σ1; C

n
α) (cf.

[26, Sec. 6.3]). Symplectic reduction takes Lagrangians to Lagrangians.

To prove the the first part of (1) consider a ξ ∈ VY ∪Σ0
X,α . Then there is a

w ∈ H∗(Y ∪Σ0 X; Cn
α) with i∗Σ1

w = ξ . We put ξ0 := −i∗Σ0
w . Since certainly

w|X ∈ H∗(X; Cn
α) we infer ξ0 ⊕ ξ = i∗∂Xw ∈ VX,α . Thus ξ = P1(ξ0 ⊕ ξ) ∈

P1(VX,α ∩ (VY,α ⊕H∗(Σ1; C
n
α))).

Conversely, let ξ ∈ P1(VX,α ∩ (VY,α ⊕ H∗(Σ1; C
n
α))) be given. Then there is

ξ0 ∈ VY,α such that ξ0 ⊕ ξ ∈ VX,α . Thus we may choose wX ∈ H∗(X; Cn
α) with

i∗∂XwX = ξ0 ⊕ ξ and wY ∈ H∗(Y ; Cn
α) with i∗Σ0

wY = ξ0 .

From the Mayer–Vietoris sequence of Y ∪Σ0 X we obtain an w ∈ H∗(Y ∪Σ0

X; Cn
α) with w|Y = wY and w|X = wX . Then ξ = i∗Σ1

wX = i∗Σ1
w ∈ VY ∪Σ0

X,α

and we reach the conclusion.

Consider now the second part of (1). We have explained in [26, Sec. 7] that
the gluing formula for η–invariants remain true if one glues (a finite union of)
components of the boundary and fixes a boundary condition at the remaining
components. The result now follows from VZ,α = LX,α(VY,α) and Theorem 3.2.

The proof of (2) proceeds along the same lines as the proof of the first part
of (1). Consider W ⊂ H∗(Σ0; C

n
α) and a ξ ∈ LX1∪Σ1

X2,α(W ). Then there
is a w ∈ H∗(X1 ∪Σ1 X2; C

n
α) with i∗Σ2

w = ξ and ξ0 := −i∗Σ0
w ∈ W . Put

ξ1 := i∗Σ1
w . Then it is immediate that ξ0 ⊕ ξ1 ∈ VX1,α ∩ (W ⊕H∗(Σ1; C

n
α)) and

−ξ1⊕ξ ∈ VX2,α∩(LX1,α(W )⊕H∗(Σ2; C
n
α)). This proves ξ ∈ LX2,α ◦LX1,α(W ).
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Conversely, let ξ ∈ LX2,α ◦ LX1,α(W ) be given. Then there exists a ξ1 ∈
H∗(Σ1; C

n
α) such that −ξ1 ⊕ ξ ∈ VX2,α ∩ (LX1,α(W ) ⊕H∗(Σ2; C

n
α)) and a ξ0 ∈

H∗(Σ0; C
n
α) such that −ξ0 ⊕ ξ1 ∈ VX1,α ∩ (W ⊕H∗(Σ1,C

n
α)).

A Mayer–Vietoris argument as in the proof of the first part of (1) shows the
existence of a w ∈ H∗(X1 ∪Σ1 X2; C

n
α) such that i∗Σ2

w = ξ and i∗Σ0
w = −ξ0 .

This proves −ξ0 ⊕ ξ ∈ VX1∪Σ1
X2,α ∩ (W ⊕ H∗(Σ2; C

n
α)), and hence LX2,α ◦

LX1,α(W ) ⊂ LX1∪Σ1
X2,α(W ).

Theorem 4.1 easily extends to the situation

Z = Y ∪Σ0 X1 ∪Σ1 · · · ∪Σn Xn+1.

This gives a useful strategy for computing ρ–invariants by decomposing a closed
manifold into a sequence of bordisms, e.g. by cutting along level sets of a Morse
function.

We use Theorem 4.1 and the definitions to write down a formula which expresses
the dependence of ρ(Y, α, g) on the metric g on ∂Y .

Corollary 4.2 Let Y be a compact manifold with boundary Σ. Let α : π1Y →
U(n) be a representation. Suppose that g0 , g1 are two Riemannian metrics on
Σ. Choose a path of metrics from g0 to g1 and view this path as a metric on
Σ × [0, 1].

Then

ρ(Y, α, g1) − ρ(Y, α, g0)

= η(DB,γ0(VY,α)⊕VY,α
,Σ × [0, 1]) − η(DΘ,γ0(VY,τ )⊕VY,τ

,Σ × [0, 1])

= ρ(Σ × [0, 1], g0 ∐ g1, γ0(VY,α) ⊕ VY,α, γ0(VY,τ ) ⊕ VY,τ ).

Here, Σ is oriented such that a collar of the boundary takes the form Σ×(−ǫ, 0].

Proof Apply Theorem 4.1 with X = Σ × [0, 1] and note that for the cylinder
X = Σ × [0, 1] the map LX,α is the identity.

In Section 6 we will use Corollary 4.2 to give examples that show that ρ(Y, α, g)
depends in general on the choice of g , in contrast with the ρ–invariant for closed
manifolds.
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5 Diffeomorphism properties

We next tie topology to the issue of the dependence of the ρ–invariant on the
Riemannian metric on the boundary by exploiting the isometry invariance of
spectral invariants.

Let X be a manifold with boundary Σ. Suppose we are given a diffeomorphism
f : Σ → Σ which extends to a diffeomorphism F : X → X . We may assume
that F preserves a collar of the boundary. Then F can be used to pull back
flat connections and metrics. Moreover, the diagram

H∗(X; Cn
α) H∗(Σ; Cn

α)

H∗(X; Cn
F ∗(α)) H∗(Σ; Cn

f∗(α))

-

? ?
-

shows that f∗(VX,α) = VX,F ∗(α) . Pulling back a metric on X via F gives an
isometry which induces a unitary transformation on L2(Ωev

X (E)) taking DB to
DF ∗(B)) and taking F+

b ⊕VX,α to F+
b ⊕VX,F ∗(α) . Hence the spectra of the two

operators are the same. Therefore

η(DB,VX,α
,X) = η(DF ∗(B),VX,F∗(α)

,X).

Applying this formula first with B a flat connection with holonomy α and then
with B the trivial connection (and using the definition (2.4)) we immediately
conclude the following.

Theorem 5.1 Let X be a manifold with boundary Σ and α : π1X → U(n) a
representation. Let g be a Riemannian metric on Σ. Suppose that F : X → X
is a diffeomorphism. Let f : Σ → Σ denote its restriction to Σ. Then

ρ(X,α, g) = ρ(X,F ∗(α), f∗(g)).

As an example, recall that two diffeomorphisms f0, f1 : Σ → Σ are pseudo-

isotopic if there exists a diffeomorphism F : Σ×[0, 1] → Σ×[0, 1] which restricts
to f0 and f1 on the boundary. In particular an isotopy is a level-preserving
pseudo-isotopy.

Corollary 5.2 The ρ–invariant for a manifold with boundary depends on
the Riemannian metric on the boundary only up to its pseudo-isotopy class.
Precisely, if f0, f1 : ∂X → ∂X are pseudo-isotopic diffeomorphisms, then

ρ(X,α, f∗0 (g)) = ρ(X,α, f∗1 (g)).
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Proof We may assume f0 is the identity by replacing f1 by f−1
0 ◦ f1 and

g by f∗0 g . If f0 is the identity then using a collar we see that f1 extends
to a diffeomorphism F : X → X which induces the identity on π1X . Thus
F ∗(α) = α and the claim follows from Theorem 5.1.

As another application, suppose that F : X → X is a diffeomorphism whose
restriction to the boundary is the identity (or pseudo-isotopic to the identity).
Then for any metric g on Σ

ρ(X,α, g) = ρ(X,F ∗(α), g).

These facts can be summarized as follows. Let MΣ denote the space of Rie-
mannian metrics on Σ, and FX the space of flat connections on E → X . If
∂X = Σ, let DX denote the diffeomorphism group of X and let D0

X denote
subgroup of those diffeomorphisms which induce the identity on π1(X). This
group acts on MΣ .

The assignment

(g,B) 7→ ρ(X,α, g)

defines a function

ρ(X) : FX × MΣ → R.

Theorems 3.2 and 5.1 say that ρ(X) descends to a function on the quotient

ρ(X) : χ(π1X,U(n)) × (MΣ/D
0
X) → R, (5.1)

where

χ(π1X,U(n)) = Hom(π1X,U(n))/conj. = FX/GX (5.2)

with GX the group of gauge transformations of E → X . The quotient DX/D
0
X

acts diagonally on χ(π1X,U(n)) × (MΣ/D
0
X) and the function of (5.1) is in-

variant under this action.

6 Dependence on the metric

In this section we prove the following theorem which shows that the ρ- and
m–invariants depend on the choice of metric on the boundary.
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Theorem 6.1

(1) There exists a 3-manifold Y with non-empty boundary, Riemannian met-
rics g0 , g1 on ∂Y , and a representation α : π1Y → U(2) so that

ρ(Y, α, g0) 6= ρ(Y, α, g1).

Examples exist with vanishing kernel of the tangential operator, i.e.

kerAb ∼= H∗(∂Y ; C2
α) = 0.

(2) There exist metrics g0 and g1 on the torus T and 3-manifolds X and Y
with boundary T such that setting VX = image

(

H∗(X; C) → H∗(T ; C)
)

and VY = image
(

H∗(Y ; C) → H∗(T ; C)
)

(with θ the trivial connection),

m(VX , VY )(θ,g0) 6= m(VX , VY )(θ,g1).

In the first statement of Theorem 6.1 the point of taking an example with
H∗(∂Y ; Cn

α) = 0 is to emphasize that the metric dependence of the ρ–invariant
is much more subtle than just being a consequence of the dependence of
m(V,W ) on the metric.

To understand the significance of the second statement, observe that the choice
of Riemannian metric on ∂X = Σ enters into the definition of m(V,W ) only
through the restriction of the induced L2 metric on L2(E|Σ) to the harmonic
forms kerAb ∼= H∗(Σ; Cn). There are clearly many Riemannian metrics on
Σ which restrict to the same metric on the space of harmonic forms. It is
perhaps at least intuitively clear that the invariant m(V,W ) of pairs of La-
grangian subspaces in a Hermitian symplectic space can vary as the inner prod-
uct varies. But our argument shows more: the metrics we use are restrictions
of L2 metrics to the harmonic forms (i.e. the kernel of the tangential operator)
and the Lagrangian subpaces we consider are of the form image

(

H∗(X; Cn
α)) →

H∗(∂X; Cn
α)

)

. Notice that these Lagrangians VX are always graded direct sums;
i.e. VX = ⊕iV

i
X with V i

X = image
(

H i(X; Cn
α) → H i(∂X; Cn

α)
)

.

As an illuminating non-example the reader might consider the case when ∂X is
a 2k -sphere, and α is trivial. Then kerAb = H∗(S2k) = H0(S2k) ⊕H2k(S2k).
Certainly one can find families of Riemannian metrics on S2k so that the
induced metric on the harmonic forms H∗(S2k) varies (e.g. by scaling the
metric) and from that it is not hard to produce a pair of Lagrangian sub-
spaces V,W ⊂ H∗(S2k) for which m(V,W )(θ,g) varies with g . But, if α
is the trivial representation on π1X , then (for any such X ) the subspace
VX = image H∗(X; Cn

α) → H∗(∂X; Cn
α) is just H0(S2k). Therefore, given a

similar Y , VX = VY and so φ(VX)φ(VY )∗ = Id. This implies that the geomet-

ric invariant m(VX , VY )(θ,g) is independent of g in this situation.
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6.1 ρ(X, α, g) depends on g

We begin with the proof of the first part of Theorem 6.1 by providing an
explicit example which shows that ρ(Y, α, g) depends in general on the choice
of Riemannian metric g on the boundary ∂Y . We will show that there exists a
3-manifold Y with boundary a torus, a non-abelian representation α : π1Y →
SU(2) with H∗(∂Y ; C2

α) = 0, and Riemannian metrics g0 and g1 on the torus
so that ρ(Y, α, g1) − ρ(Y, α, g0) is non trivial. The metrics g0 and g1 can be
taken to be flat.

The manifold Y we take is the complement of the right-handed trefoil knot
in S3 . The analysis of the space of SU(2) representations of the fundamental
groups of knot complements has a long history in the literature, starting with
the beautiful article [27]. Details and proofs of most of the facts we use here
can be found in [7].

The fundamental group of Y is

π1Y = 〈x, y | x2 = y3〉.

The boundary of Y is a torus, and the meridian µ and longitude λ of Y
generate π1(∂Y ) = Z2. They are given in this presentation of π1Y by

µ = xy−1 and λ = x2(xy−1)−6.

The space of conjugacy classes of non-abelian SU(2) representations of π1(Y )
is an open arc. Moreover, given any pair (φ,ψ) in the open line segment in R2

{(t,−6t+ 1
2) | 1

12 < t < 5
12} (6.1)

there exists a unique conjugacy class of non-abelian SU(2) representations of
π1(Y ) which satisfies

µ 7→

(

e2πiφ 0
0 e−2πiφ

)

, λ 7→

(

e2πiψ 0
0 e−2πiψ

)

. (6.2)

Therefore, letting

(φ1, ψ1) = (1
5 ,−

7
10) and (φ2, ψ2) = (2

5 ,−
19
10), (6.3)

we obtain two non-abelian representations α1, α2 : π1Y → SU(2) in the open
arc of (6.1).

Fix an identification of the boundary of Y with the 2-torus T = R2/Z2 such
that µ corresponds to the x-axis and λ to the y -axis. Give T the induced flat
metric g0 .
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Consider the matrix

f =

(

1 3
2 7

)

∈ SL(2,Z). (6.4)

Then f acts by right multiplication on R2 preserving the standard lattice Z2 ,
and hence induces a diffeomorphism f : T → T .

The first part of Theorem 6.1 follows from the next theorem.

Theorem 6.2 The difference ρ(Y, α1, g0)−ρ(Y, α1, f
∗(g0)) does not equal the

difference ρ(Y, α2, g0) − ρ(Y, α2, f
∗(g0)). Hence the ρ–invariant for manifolds

with boundary depends in general on the choice of Riemannian metric on the
boundary, and moreover ρ(Y, α, g)−ρ(Y, α, f∗(g)) is not a function of f : ∂Y →
∂Y alone.

Proof Let α̂i : π1T → SU(2) denote the restrictions of αi to π1(∂Y ). Let g1
denote the pulled back metric g1 = f∗(g0).

Fix a Riemannian metric g̃ on Y in product form near the boundary so that
the restriction of g̃ to the boundary equals g0 .

Choose a smooth path gt of Riemannian metrics on T from g0 to g1 which is
stationary for t ∈ [0, ǫ] and [1 − ǫ, 1]. Then gt determines the metric gt + dt2

on T × [0, 1].

Let B1 be a flat connection on Y with holonomy α1 and in cylindrical form
B = π∗(b1) near ∂Y . Let DB1 denote the corresponding odd signature operator
on Y . Then DB1 has an obvious extension to Y ∪ (T × [0, 1]) by defining it to
be the pullback of b1 via the projection T × [0, 1] → T . Similarly choose a flat
connection B2 with holonomy α2 and extend it to T × [0, 1].

Lemma 6.3 H∗(T ; C2
α̂i

) = 0.

Proof Applying the Fox calculus to the presentation

π1(∂Y ) = 〈µ, λ | µλµ−1λ−1〉

we conclude that H∗(T ; C2
α̂i

) is the cohomology of the complex

0 → C2 ∂0−→ C2 ⊕ C2 ∂1−→ C2 → 0,

where

∂0 =
(

α̂i(µ) − I α̂i(λ) − I
)

and ∂1 =

(

I − α̂i(λ)
α̂i(µ) − I

)

.

A simple computation using (6.2) and (6.3) shows that the cohomology of this
complex vanishes.
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Continuing with the proof of Theorem 6.2, It follows from Corollary 4.2 that
(

ρ(Y, α1, g1) − ρ(Y, α1, g0)
)

−
(

ρ(Y, α2, g1) − ρ(Y, α2, g0)
)

= η(DB1 ,Σ × [0, 1]) − η(DB2 ,Σ × [0, 1])
(6.5)

(Note: Lemma 6.3 implies that kerAbi = 0 so that there are no Lagrangian
subspaces to specify in the η–invariants in (6.5).)

We will show that the right side of (6.5) is not an integer, from which Theorem
6.2 follows.

Let Mf denote the mapping torus of f :

Mf = T × [0, 1]/(t, 0) ∼ (f(t), 1).

The metric on T × [0, 1] descends to a metric on Mf since the gluing map
f : (T, g1) → (T, g0) is an isometry.

Recalling that µ and λ in π1(T ) denote the two generators,

π1(Mf ) = 〈µ, λ, τ | [µ, λ] = 1, τµτ−1 = µλ2, τλτ−1 = µ3λ7〉.

It follows that given a pair of real numbers φ,ψ , the assignment

µ 7→

(

e2πiφ 0
0 e−2πiφ

)

, λ 7→

(

e2πiψ 0
0 e−2πiψ

)

and τ 7→

(

0 1
−1 0

)

(6.6)

determines a representation π1(Mf ) → SU(2) if and only if e−2πiφ = e2πi(1φ+2ψ)

and e−2πiψ = e2πi(3φ+7ψ) , i.e. if and only if
(

φ ψ
)

(f∗ + Id) ≡ 0 (mod Z). (6.7)

Equation (6.7) holds for (φ1, ψ1) and (φ2, ψ2) as in (6.3).

Thus taking (φ1, ψ1) and (φ2, ψ2) in (6.6) we obtain two representations

βj : π1(Mf ) → SU(2), j = 1, 2,

with the property that their restrictions to the fiber T × {0} equal α̂j .

View Mf as the union of two cylinders T × [0, 1] ∪ T × [0, 1] using the gluing
map Id∪f . Give Mf the product metric g0 +dt2 on the first piece and gt+dt

2

on the second. Equation (2.5) shows that

η(DBj
,Mf ) = η(DBj

, (T × [0, 1], g0 +dt2))+η(DBj
, (T × [0, 1], gt+dt2)). (6.8)

It follows from Corollary 4.2 that

η(DB1 , (T × [0, 1], g0 + dt2)) − η(DB2 , (T × [0, 1], g0 + dt2)) = 0
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(alternatively Lemma 7.1 of [26] shows directly that η(DBj
, (T × [0, 1], g0 +

dt2)) = 0).

Thus combining (6.8) for j = 1, 2 with (6.5) we obtain
(

ρ(Y, α1, g1) − ρ(Y, α1, g0)
)

−
(

ρ(Y, α2, g1) − ρ(Y, α2, g0)
)

= η(DB1 ,Mf ) − η(DB2 ,Mf )

= ρ(Mf , β1) − ρ(Mf , β2).

(6.9)

The last equality follows from the definitions of η and ρ for a closed manifold.

We have thus reduced the problem to showing that the difference of the ρ–
invariants for β1 and β2 on the closed manifold Mf is not an integer. On a
closed manifold, the ρ–invariants and the Chern-Simons invariants are related
by the Atiyah-Patodi-Singer theorem [2, 3]; the formula is (see [7, Sect. 5.3-5.5]):

SF(DBt) = 2(cs(B1) − cs(B2))

+ 1
2(ρ(Mf , β1) − ρ(Mf , β2) − dimkerDB1 + dim kerDB2).

Here SF(DBt) denotes the spectral flow (an integer) of the family of self-adjoint
elliptic operators DBt where Bt is any family of connections from B1 to B2 .
This implies

ρ(Mf , β1) − ρ(Mf , β2) ≡ 4(cs(B2) − cs(B1)) (mod Z). (6.10)

Theorem 5.6 of [19] calculates the Chern-Simons invariant mod Z of flat con-
nections on Mf in terms of the vector (φ,ψ) and the matrix f : if (m,n) =
(φ,ψ)(I + f−1), then the Chern-Simons invariant of the flat connection with
holonomy representation determined by (φ,ψ) equals φn− ψm mod Z.

Since (φ1, ψ1)(I + f−1) = (3,−2) and (φ2, ψ2)(I + f−1) = (7,−5) this gives

cs(B1) ≡
7

10
(mod Z) and cs(B2) ≡

3

10
(mod Z). (6.11)

Hence
4(cs(B1) − cs(B2)) ≡

28
10 − 12

10 ≡ 3
5 (mod Z). (6.12)

Combining (6.9), (6.10), and (6.12) we see that
(

ρ(Y, α1, g1) − ρ(Y, α1, g0)
)

−
(

ρ(Y, α2, g1) − ρ(Y, α2, g0)
)

6= 0,

proving Theorem 6.2 and hence the first assertion of Theorem 6.1.

An interesting problem suggested by Corollary 4.2 and Theorem 6.2 is to find
a description of the function χ(Σ, U(n)) × DΣ/D

0
Σ → R which takes (α, f) to

ρ(Σ× [0, 1], α, g∪f∗(g)) (i.e. the ρ–invariant of the cylinder with a fixed metric
g at Σ × {0} and f∗(g) at Σ × {1}). Theorem 6.2 implies that this map is
non-trivial, and depends on α.
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6.2 m(VX,α, VY,α)(b,g) depends on g

We next prove the second assertion of Theorem 6.1.

Consider the 2-torus T 2 = S1 × S1 with its standard oriented basis of 1-forms
{dx, dy}. We consider these forms as sections of the trivial 1-dimensional com-
plex bundle over T 2 endowed with the trivial connection.

For each t > 0, give T 2 the Riemannian metric for which {dx, t dy} is an
orthonormal basis at each point. Letting ∗̂t denote the corresponding Hodge
∗-operator we have

∗̂tdx = t dy, ∗̂tdy = −1
t dx, ∗̂t1 = t dx ∧ dy, and ∗̂t(dx ∧ dy) = 1

t .

Hence

γt(dx) = t dy, γt(dy) = −1
t dx, γt(1) = t dx ∧ dy, and γt(dx ∧ dy) = −1

t .

This defines the de Rham operator At = ±(∗̂td+ d∗̂t) as above.

The harmonic forms H ∗
t = kerAt with respect to this metric are independent

of t as one can readily compute: the harmonic 0-forms H 0 are the constant
functions, the harmonic 1-forms H 1 are a dx + b dy with a, b constant, and
the harmonic 2-forms H 2 are a dx ∧ dy with a constant.

We can compute the L2 inner product 〈 , 〉t restricted to the hamonic forms:

〈1, 1〉t =

∫

T
1 ∧ ∗̂t1 =

∫

T
t dx ∧ dy = 4π2t.

Similarly

〈dx, dx〉t = 4π2t, 〈dx, dy〉t = 0, 〈dy, dy〉t = 4π2/t,

and 〈dx ∧ dy, dx ∧ dy〉t = 4π2/t.

The Hermitian symplectic space of harmonic forms (H ∗, γt, 〈 , 〉t) is a direct
sum (H 0 ⊕ H 2) ⊕ H 1 of two Hermitian symplectic spaces. Thus there is a
corresponding splitting of the ±i eigenspaces of γt . One checks that the ±i
eigenspaces of γt acting on H ∗ are (with the obvious notation)

(H 0 ⊕ H
2)± = span{1 ∓ it dx ∧ dy}

and

(H 1)± = span{dx∓ it dy}.
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Suppose that X is a compact 3-manifold with ∂X = T . Then (taking C

coefficients)

VX = image
(

H∗(X) → H∗(T )
)

= image
(

H0(X) → H0(T )
)

⊕ image(H1(X) → H1(T )
)

⊕

⊕ image
(

H2(X) → H2(T )
)

= H0(T ) ⊕ image
(

H1(X) → H1(T )
)

⊕ 0.

Write V 1
X for image

(

H1(X) → H1(T )
)

. Similarly if Y is another manifold
with ∂Y = T we have VY = H0(T )⊕ V 1

Y with V 1
Y = image

(

H1(Y ) → H1(T )
)

.

Notice that since the coefficients are obtained by tensoring the integer coho-
mology with C, there exist integers a, b,A,B so that V 1

X = span{a dx+ b dy}
and V 1

Y = span{A dx + B dy}. Moreover, given any pair of (not both zero)
integers (a, b) one can find a 3-manifold X with V 1

X = span{a dx+ b dy}.

For example, take X = S1 × D2 . By clearing denominators we may assume
that a and b are relatively prime. Suppose that p, q are integers satisfying
ap − bq = 1. Then there is a diffeomorphism ∂X = S1 × S1 to T 2 covered by
the linear map R2 → R2 with matrix

(

a q
b p

)

.

The closed 1-form dx on ∂X is identified with a dx + b dy on T 2 . Since dx
extends to X , this gives an example with V 1

X = span{a dx+ b dy}.

In terms of the ±i eigenspace decomposition of H ∗ one can easily check that

φ(VX) = φ0,2(H0(T )) ⊕ φ1(V 1
X),

where
φ0,2(H0(T ))(1 − it dx ∧ dy) = 1 + it dx ∧ dy

and

φ1(V 1
X)(dx− it dy) =

ita+ b

ita− b
(dx+ it dy).

(See Equation (2.7) for the definition of the unitary map φ(V ) associated to a
Lagrangian subspace V .) These equations imply that

φ(VX)φ(VY )∗ =

(

1 0

0 ( ita+bita−b )(
itA−B
itA+B )

)

.

Therefore (see (2.8))

m(VX , VY )(τ,gt) = − 1
πi

(

πi+ log(−(
ita+ b

ita− b
)(
itA−B

itA+B
))

)

+ dim(VX ∩ VY ).
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For example, taking B = 0 this reduces to

m(VX , VY )(θ,gt) = −1 + dim(VX ∩ VY ) − 1
πi log(

b+ ita

b− ita
).

But b+ita
b−ita = (b+ita)2

|b+ita|2
and so log( b+itab−ita ) is equal to the argument of (b + ita)2

which varies non-trivially as t varies provided both a and b are non-zero.

Thus we have given an example of a family of Riemannian metrics gt on the
torus T and shown how to find 3-manifolds X and Y so that (with respect to
the trivial U(1) representation τ ) m(VX , VY )(θ,gt) varies non-trivially as t is
varied. This proves the second part of Theorem 6.1.

7 An extension of the Farber–Levine–Weinberger

theorem to manifolds with boundary

Suppose that F : M → M ′ is an orientation preserving homotopy equivalence
of smooth compact manifolds. Then F induces an isomorphism of fundamental
groups, and hence a homeomorphism (in fact a real-analytic isomorphism)

Hom(π1(M
′), U(n))

F ∗

−−→ Hom(π1(M), U(n)).

Taking the quotient by the action of conjugation eliminates the dependence on
base points, and one obtains an identification (see Equation (5.2))

χ(π1(M
′), U(n)) = χ(π1(M), U(n)).

If M and M ′ are closed, then taking ρ–invariants defines functions (write
π = π1M for convenience)

ρ(M) : χ(π,U(n)) → R and ρ(M ′) : χ(π,U(n)) → R.

In [14] M. Farber, J. Levine, and S. Weinberger proved the following remarkable
theorem.

Theorem 7.1 (Farber-Levine, Weinberger) The difference

ρ(M) − ρ(M ′) : χ(π,U(n)) → R

factors through the set of path components of χ(π,U(n)) and takes values in
the rationals. Briefly, there is a commutative diagram

χ(π,U(n)) R

π0(χ(π,U(n))) Q

-ρ(M)−ρ(M ′)

?
-

6
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Moreover the difference ρ(M) − ρ(M ′) vanishes on the path component con-
taining the trivial representation.

Their proof has 3 ingredients. First Farber and Levine show that the difference
ρ(M)− ρ(M ′) modulo Z factors through the set of path components using the
Atiyah-Patodi-Singer theorem and a computation of the index density. We will
generalize this fact using the Dai-Freed theorem in Theorem 8.5.

Next they show that the “Z part”, i.e. the spectral flow of the odd signature
operator along a path of flat connections on a closed manifold, is a homotopy
invariant which can be derived from a certain linking form. (A slightly different
argument for this part was given in [23].)

Finally in an appendix Weinberger uses algebraic techniques to show that the
difference is rational.

In this and the following section we will extend these results to manifolds with
boundary, with respect to homotopy equivalences which restrict to diffeomor-
phisms on the boundary. (One cannot hope to prove a generalization for homo-
topy equivalences which do not behave nicely on the boundary; see Theorem
7.5.)

Suppose that F : X → X ′ is a smooth map between compact manifolds which
restricts to a diffeomorphism f = F |∂X : ∂X ∼= ∂X ′ on the boundary. Pulling
back representations of π1(X

′) and Riemannian metrics on ∂X ′ induces a func-
tion (an analytic isomorphism if F induces an isomorphism on fundamental
groups):

χ(π1X
′, U(n)) × M∂X′ → χ(π1X,U(n)) × M∂X .

In particular if F is a homotopy equivalence we consider ρ(X) and ρ(X ′) as
functions on the same space via this identification. Write π for π1X .

Theorem 7.2 Let F : X → X ′ be a homotopy equivalence of compact mani-
folds which restricts to a diffeomorphism on the boundary. Then the difference

ρ(X) − ρ(X ′) : χ(π,U(n)) × M∂X → R

factors through π0(χ(π,U(n))) × (M∂X/D
0
∂X) (where D0

∂X denotes the group
of diffeomorphisms of ∂X pseudo-isotopic to the identity) and takes values in
the rational numbers.

In other words there is a commutative diagram

χ(π,U(n)) × M∂X R

π0(χ(π,U(n))) × (M∂X/D
0
∂X) Q

-ρ(X)−ρ(X′)

?
-

6
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Moreover the difference ρ(X) − ρ(X ′) vanishes on the path component of the
trivial representation.

Proof We may asume, by homotoping F slightly, that F restricts to a diffeo-
morphim of collar neighborhoods of the boundary. Identify Σ = ∂X with ∂X ′

via f , and fix a metric g on Σ.

Let α be a U(n) representation of π1(X). Consider the (2k + 2)-manifold
W = X × [0, 1]. Then α clearly extends to π1W . By smoothing the corners of
W we obtain a smooth manifold with boundary ∂W = (−X) ∪Σ X . Since W
is a product, Sign(W ) and Signα(W ) both vanish. The Atiyah-Patodi-Singer
theorem then implies that ρ(∂W,α) = 0.

(Alternatively, there is a direct spectral argument which shows the vanish-
ing of ρ(∂W,α): the reflection which interchanges the two copies of X in
∂W = (−X) ∪Σ X is orientation reversing, hence it anticommutes with the
odd signature operator DB . Thus the spectrum of DB is symmetric and so its
η–invariant vanishes.)

The homotopy equivalence F : X → X ′ induces a homotopy equivalence of
closed manifolds

Id∪F : ∂W = (−X) ∪Σ X → (−X) ∪Σ X
′.

The Farber–Levine–Weinberger theorem then implies that

ρ((−X) ∪Σ X
′, α) = ρ((−X) ∪Σ X

′, α) − ρ(∂W,α) = r ∈ Q (7.1)

for some rational number r which depends only on the path component of α
in χ(π1(W ), U(n)) = χ(π,U(n)).

Using Theorem 3.2, part 4 we conclude that

ρ((−X) ∪Σ X
′, α) = ρ(X ′, α, g) + ρ(−X,α, g, γ(VX′ ,α), γ(VX′,τ )) (7.2)

and

ρ((−X) ∪Σ X,α) = ρ(X,α, g) + ρ(−X,α, g, γ(VX,α), γ(VX,τ )). (7.3)

The commutative diagram (with any coefficients)

H∗(X ′) H∗(Σ)

H∗(X)

-

QQsF ∗ ��3

shows that VX′,α = VX,α and VX′,τ = VX,τ . Therefore,

ρ(−X,α, g, γ(VX,α), γ(VX,τ )) = ρ(−X,α, g, γ(VX′ ,α), γ(VX′,τ )). (7.4)
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Taking the difference of (7.2) and (7.3) and using (7.1) and (7.4) we conclude
that

ρ(X ′, α, g) − ρ(X,α, g) = ρ((−X) ∪Σ X
′, α) = r ∈ Q

for an r that depends only on the path component of α in χ(π,U(n)). Notice
that if α is trivial, then ρ(X,α, g) = 0.

The fact that ρ(X,α, g) depends only on the pseudo-isotopy class of g follows
from Corollary 5.2.

The reader should keep in mind that the ρ–invariants in the context of Theo-
rems 7.1 and 7.2 are not continuous in α. This is because eigenvalues of the odd
signature operator can become zero, or change sign, as α is varies. Thus what
is being asserted in these theorems is that the discontinuities of ρ are homotopy
invariants, provided the homotopy equivalence restricts to a diffeomorphism on
the boundary.

We formalize and extend this remark in Theorem 7.4 below which shows that the
spectral flow of the odd signature operator coupled to a path of flat connections
on a manifold with boundary is a homotopy invariant. For a closed manifold this
is the main result of [14], and the principal ingredient in the proof of Theorem
7.1. Partial results for manifolds with boundary were obtained in a series of
articles by E. Klassen and the first author, including [24, 22, 25] as well as in
the articles [21, 7] which also contain applications of these ideas to calculations
of Floer homology, SU(3) Casson invariants, and TQFT.

Consider, then, a path Bt, t ∈ [0, 1] of flat U(n) connections, in cylindrical
form near the boundary, on a compact smooth manifold X with boundary ∂X .
These give a path DBt of odd signature operators in the form DBt = γ( ∂∂x+Abt)
on a collar neighborhood of ∂X .

To obtain a path of self-adjoint operators on X whose kernels have a topological
meaning we assume that we are given a continuous path of APS boundary
conditions. Precisely, we assume that we are given a continuous path P (t)
of Lagrangian subspaces of L2(E|∂X ) so that for each t there exists a (finite-
dimensional) subspace W (t) ⊂ kerAbt for which

P (t) = F+
bt

(t) ⊕W (t).

The path of operators DBt,P (t) (recall this means DBt with the boundary con-
dition given by P (t)u = 0) is a path of self-adjoint discrete operators (see
Section 2, [26], and in particular [8, Sec. 3]) and hence has a spectral flow
SF(X,DBt,P (t))t∈[0,1] ∈ Z. We use the (−ǫ,−ǫ) convention for spectral flow;
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this implies that the spectral flow is additive with respect to composition of
paths.

To ensure that the spectral flow of the resulting path of self-adjoint operators
DBt,P (t) is a topological invariant we furthermore assume that

P (0) = F+
b0

⊕ VX,α0 and P (1) = F+
b1

⊕ VX,α1 .

As before F+
bt

(t) denotes the positive eigenspan of Abt . The following lemma
shows that such a path can always be found, and that the resulting spectral
flow is independent of the choice of the Riemannian metric. What makes the
proof of Lemma 7.3 tricky is that we do not assume the kernels of the family
Abt have constant dimension.

Lemma 7.3 Suppose that B0 and B1 are two flat U(n) connections on X
whose holonomies α0, α1 lie in the same path component of χ(π1X,U(n)).

Then, perhaps after gauge transforming B1 , there is a continuous piecewise
smooth path Bt of flat U(n) connections joining them and a continuous piece-
wise smooth path P (t) = F+

bt
(t)⊕W (t) of self-adjoint APS boundary conditions

for the corresponding odd signature operators, with P (0) = F+
b0

⊕ VX,α0 and

P (1) = F+
b1
⊕VX,α1 . In fact this path can be taken to be piecewise real analytic.

Moreover, the spectral flow of the path DBt,P (t) of self-adjoint operators,
SF(DBt,P (t)) ∈ Z, depends only on the path α : I → χ(π1X,U(n)) of
holonomies of Bt and the choice of W (t). In particular it is independent of the
choice of Riemannian metric on X (and ∂X ).

Proof We prove the last assertion first. Note that the kernel of DBt,P (t) is
isomorphic to

image
(

H∗(X,∂X; Cn
αt

) → H∗(X; Cn
αt

)
)

⊕
(

W (t) ∩ γ(VX,αt)
)

by (2.3) (as usual αt denotes the holonomy representation of Bt ). This is
not quite a homotopy invariant since it is possible that by varying the metric
one could change the intersection of W (t) (which is metric independent) with
γ(VX,αt) (which can vary with the metric since γ does). However, at the
endpoints W (i) = VX,αi

, i = 0, 1, and since γ(L) = L⊥ for any Lagrangian,
W (i) ∩ γ(VX,αi

) = 0 for i = 0, 1. Thus the dimension of the kernel of DBi,P (i)

is independent of the choice of Riemannian metric on X and ∂X .

Varying the Riemannian metric on X varies the path DBt,P (t) continuously in
the space of self-adjoint operators ([8, Sec. 3]). Moreover, since the dimensions
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of the kernels at the endpoints are homotopy invariants it follows that varying
the metric does not change the spectral flow.

Suppose that B′
t is another continuous path of flat connections with the same

holonomy as Bt . Then one can find a continuous path of gauge transformations
gt so that gt · Bt = B′

t . It is then straightforward to use gt to define unitary
transformations which conjugate the operators DBt,P (t) to DB′

t,P
′(t) , and so the

spectral flows of the two paths coincide. We leave the details to the reader

We turn to the problem of constructing the paths Bt and W (t). Using the main
result of [15] one can find a piecewise real analytic path Bt of flat connections
joining B0 to B′

1 , where B′
1 is a flat connection gauge equivalent to B1 . Indeed

we can pick a piecewise analytic path αt in χ(π1X,U(n)) from α0 to α1 ,
and the main theorem of [15] shows that one can find a finite covering of the
interval [0, 1] and analytic paths of flat connections in each subinterval with
the corresponding holonomy.

By relabeling assume that B1 = B′
1 . Then by subdividing further if necessary,

the interval [0, 1] can broken down into subintervals [ti, ti+1] so that on each
such subinterval:

(1) The path Bt is real-analytic.

(2) The kernel of the tangential operator, kerAbt , has constant dimension on
the interior of the interval.

The reason why the second condition can be met is that the subspaces

Sk := {α ∈ χ(π1X,U(n))|dimH∗(∂X,Cn
α) ≤ k} ⊂ χ(π,U(n))

form a real-analytic subvariety and so an analytic path intersects it in a finite
number of points.

For convenience, reparametrize the path so that on alternate intervals the path
is constant, i.e. Bt is constant on [0, t1], [t2, t3], · · · , [t2m, t2m+1], · · · , [t2ℓ, 1].

We now construct the path W (t).

The W (i) have already been chosen at the endpoints: we take W (0) = VX,α0 ⊂
H∗(Σ; Cn

α0
) and W (1) = VX,α1 ⊂ H∗(Σ; Cn

α1
).

Next, on each interval [t2m−1, t2m], by the Kato selection lemma [18] we can find
analytically varying eigenvectors ψj(t) with analytically varying eigenvalues
µj(t) for j ∈ {±1,±2, · · · }.

The set {ψj} can be partitioned into the finite subset

K := {ψj | µj(t) = 0 for all t ∈ [t2m−1, t2m]}

Algebraic & Geometric Topology, Volume 3 (2003)



On the rho invariant for manifolds with boundary 655

and its complement. Moreover, by relabeling we may assume that

K = {ψj | j = ±1,±2, · · · ,±ℓ}.

We further assume, by changing bases, that γ(ψj(t)) = ψ−j(t) for j = 1, · · · , ℓ
and ψj(t) ⊥ ψk(t) for j, k ∈ {±1, · · · ± ℓ} for all t ∈ [t2m−1, t2m]. This is
possible because

S(t) := span{ψj(t) | j = ±1, · · · ± ℓ}

is preserved by γ for each t ∈ [t2m−1, t2m] and hence is an analytically varying
family of Hermitian symplectic spaces (note that S(t) = kerAbt for t in the
interior of [t2m−1, t2m]). The spaces S(t) contain an analytically varing family
of Lagrangian subspaces

L(t) := span{ψj(t) | j = 1, · · · , ℓ} ⊂ S(t).

Then define W (t) on [t2m−1, t2m] as follows.

(1) For t2m−1 < t < t2m take

W (t) = L(t).

(2) For t = t2m−1 ,

W (t2m−1) = L(t2m−1)⊕

⊕ span
{

ψj(t2m−1)
∣

∣µj(t2m−1) = 0 and µj(t) > 0 for t2m−1 < t < t2m
}

.

Briefly, W (t2m−1) is the span of limt→t+2m−1
L(t) and those zero eigenvec-

tors that deform to positive eigenvectors for t > t2m−1 .

(3) For t = t2m ,

W (t2m) = L(t2m)⊕

⊕ span
{

ψj(t2m)
∣

∣µj(t2m) = 0 and µj(t) > 0 for t2m−1 < t < t2m
}

.

Thus W (t2m) is the span of limt→t−2m−1
L(t) and those zero eigenvectors

that deform to positive eigenvectors for t < t2m .

By construction, P (t) = F+
bt

(t)⊕W (t) is smooth (even analytic) on the interval
[t2m−1, t2m]. That the W (t) are Lagrangian is immediate except possibly at the
endpoints. But at the endpoint t2m−1 the decomposition of kerAbt2m−1

into the
nullvectors that “stay null” and those that deform into non-zero eigenvectors is
a decomposition as a symplectic direct sum, and in the summand corresponding
to the eigenvectors that deform into non-zero eigenvectors the subspace of those
that deform into positive eigenvectors is Lagrangian. Thus W (t2m−1) is a direct
sum of Lagrangian subspaces, and hence is Lagrangian. A similar argument
applies to W (t2m).
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It remains to define W (t) on the intervals [t2m, t2m+1]. On these intervals the
connection Bt is constant. Hence the symplectic space kerAbt is constant also.
The Lagrangians W (t2m) and W (t2m+1) have already been defined, so just pick
some smooth path W (t) interpolating between these two. With care this path
can be chosen to be analytic. Clearly the path P (t) = F+

bt
(t)⊕W (t) is smooth

on this interval.

The following theorem says that the spectral flow, which by Lemma 7.3 is a
diffeomorphism invariant, is in fact an invariant of homotopy equivalences which
restrict to diffeomorphisms on the boundary.

Theorem 7.4 Suppose that F : X ′ → X is a homotopy equivalence which
restricts to a diffeomorphism f = F |∂X′ : ∂X ′ → ∂X . Assume that Bt is a
continuous, piecewise smooth path of flat U(n) connections on E → X . Use
F to pull back the path Bt to a path of flat connections B′

t on X ′ and to
identify ∂X with ∂X ′ , and choose a path P (t) of APS boundary conditions as
in Lemma 7.3.

Then
SF(X,DBt,P (t))t∈[0,1] = SF(X ′,DB′

t,P (t))t∈[0,1].

Proof Since spectral flow is additive with respect to composition of paths, we
may assume that the path DBt,P (t) is a smooth path of self-adjoint operators.
Denote this path by Dt ; thus η(Dt) = η(DBt,W (t),X).

Theorem 3.2, part 1 and the definitions imply that

η(Ds) − η(D0) = η(DBs,VX,αs
,X) +m(γ(VX,αs),W (s))(αs ,g)

− η(DB0,VX,α0
,X) −m(γ(VX,α0),W (0))(α0 ,g)

= ρ(X,DBs , g) +m(γ(VX,αs),W (s))(αs ,g)

− ρ(X,DB0 , g) −m(γ(VX,α0),W (0))(α0 ,g),

(7.5)

where αt denotes the holonomy of Bt and g is the metric on ∂X .

The reduction of the η–invariants η(Dt) modulo Z is smooth in t. Combining
the formula (see e.g. [26, Lemma 3.4])

η(Ds)−η(D0) = 2SF(Dt)t∈[0,s]−(dimkerDs−dim kerD0)+

∫ s

0

dη(Dt)

dt
dt (7.6)

with (7.5) yields

ρ(X,αs, g) − ρ(X,α0, g)

+m(γ(VX,αs),W (s))(αs ,g) −m(γ(VX,α0),W (0))(α0 ,g)

= 2SF(Dt)t∈[0,s] − (dim kerDs − dimkerD0) +

∫ s

0

dη(Dt)

dt
dt.

(7.7)
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Similarly

ρ(X ′,αs, g) − ρ(X ′, α0, g)

+m(γ(VX′,αs
),W (s))(αs ,g) −m(γ(VX′,α0),W (0))(α0 ,g)

= 2SF(D′
t)t∈[0,s] − (dim kerD′

s − dim kerD′
0) +

∫ s

0

dη(D′
t)

dt
dt.

(7.8)

where D′
t denotes the odd signature operator on X ′ coupled to the path B′

t

with boundary conditions given by the projection to P (t).

Taking the difference of (7.7) and (7.8) and using Theorem 7.2, the fact that
VX,αs = VX′,αs

, and (2.3) one concludes

2 SF(Dt)t∈[0,s] − 2 SF(D′
t)t∈[0,s] =

∫ s

0

dη(D′
t)

dt
dt−

∫ s

0

dη(Dt)

dt
dt.

The left side is an integer-valued function of s. The right side is a smooth
real-valued function of s which vanishes at s = 0. Thus both sides vanish for
all s and so

SF(Dt)t∈[0,s] = SF(D′
t)t∈[0,s]

as desired.

Theorems 7.2 and 7.4 do not hold without some assumption about the re-
striction of the homotopy equivalence to the boundary. Here is an an exam-
ple. Consider the complements X = S3−nbd(K) of the Square knot K and
X ′ = S3−nbd(K ′) of the Granny knot K ′ . (The Square knot is a connected
sum of a right-handed Trefoil knot and a left-handed Trefoil knot. The Granny
knot is the connected sum of two right-handed Trefoil knots.) The spaces X
and X ′ have isomorphic fundamental groups and are aspherical, and so they
are homotopy equivalent (see e.g. [34] and [17]). Each has a torus boundary.
But there does not exist a homotopy equivalence which restricts to a diffeomor-
phism (or even a homotopy equivalence) on the boundary. This follows from
Waldhausen’s theorem [35] (it also follows from the following argument and
Theorem 7.4).

Since H1(X; Z) = Z = H1(X
′; Z), the U(1) character variety of π1X = π1X

′

is a circle, parameterized by the image z = eix of the generator of the first
homology. Fix a generator µ ∈ H1(X; Z). Let F : X → X ′ be a homotopy
equivalence. Let αz : π1(X) → U(1) be the representation which takes µ to
z = eix . Let Bz be a path of flat connections on X with holonomy αz and
restriction bz to the boundary. Let B′

z = F ∗(Bz).
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Theorem 7.5 The 3-manifolds X and X ′ are homotopy equivalent, have
diffeomorphic boundaries, but for no choice of metrics g , g′ on ∂X , ∂X ′ is
ρ(X,α, g) equal to ρ(X ′, α, g′) for all α ∈ χ(π1X,U(1)).

Proof Suppose that g is a metric on ∂X and g′ a metric on ∂X ′ .

Lemma 6.3 shows that for z 6= 1, H∗(∂X; Cαz ) = kerAbz = 0. Thus the
boundary conditions given by the projection to the positive eigenspan F+

bz ,g
of

Abz are self-adjoint (for z 6= 1) and vary smoothly in z . Similarly for X ′ .

The kernel of the operator DBz with these boundary conditions is zero except
for those z which are roots of the Alexander polynomial of the Granny knot
K . Moreover, the spectral flow as z moves through the root is given by the
change in the Levine-Tristram signature (see e.g. [30]) of K . These facts are
proven e.g. in [21].

Since the Square and Granny knots have isomorphic groups, their Alexander
polynomials are the same, namely (z2 − z + 1)2 . Thus eigenvalues of DBz and
DB′

z
cross zero for the same values of z , namely e2πi/6 and e5πi/6 .

The spectral flow through these values of z is different for X and X ′ . Indeed,
the Square knot is slice and hence has vanishing Levine-Tristram signatures;
thus SF(DBz ) is zero. But the Levine-Tristram signatures for the Granny knot
are non-trivial (they detect the non-sliceness of the Granny knot). Thus if J is
a small interval in U(1) containing a root of the Alexander polynomial (to be
explicit, we can take J = exp(2πi[16 − ǫ, 1

6 + ǫ]))

SF(X,DBz ,F
+
bz

)z∈J = 0 and SF(X,DBz ,F
+

b′z

)z∈J = 2.

The reduction of ρ(X,αz , g) to R/Z is continuous in z . Since the integer jumps
of ρ(X,αz , g) as z varies are given by the spectral flow (see (7.6)), it follows
that for some z near e2πi/6 ,

ρ(X,αz , g) 6= ρ(X ′, αz, g
′).

8 Determinant bundles and variation of the

ρ–invariant mod Z on manifolds with boundary

As before let X be a compact odd-dimensional manifold with boundary Σ. We
are given a bundle E → X and a flat connection B on E in cylindrical form
b+ ∂

∂u near the boundary, and a Riemannian metric g̃ on X in cylindrical form
g + du2 near the boundary, for some Riemannian metric g on Σ.
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Recall that the determinant line of the operator Ab is the (complex) vector
space

det(kerAb) = (det kerA+
b )−1 ⊗ det kerA−

b ,

where kerA±
b := kerAb ∩ ker(γ ∓ i), i.e. kerAb is considered as a Z2–graded

vector space with grading operator −iγ . For details about graded determinant
lines we refer to [13, Sec. II].

Given a Lagrangian W ⊂ kerAb , it can be written as the graph of the uni-
tary isomorphism φ(W ) : kerA+

b → kerA−
b . Thus det(φ(W )) is naturally an

element of det(kerAb). Theorem 3.2 shows that

e2πiη̃(DB,W ,X) det(φ(W ))−1 = e
2πiη̃(DB,VX,α

,X)
det(φ(VX,α))−1. (8.1)

Hence the expression s(X,α, g) := e2πiη̃(DB,W ,X) det(φ(W ))−1 is independent
of W , and so well–defines an element in (det kerAb)

−1 . As a consequence, we
obtain a well–defined element

e2πiη̃(DB,Wα ,X)e−2πiη̃(DΘ,Wτ ,X) det(φ(Wα))−1 ⊗ det(φ(Wτ ))

∈ (det kerAb)
−1 ⊗ det kerAθ,

(8.2)

independent of the choice of Wα and Wτ . Here Θ denotes the trivial connection
on Cn×X → X and θ its restriction to Σ. By slight abuse of notation we will
denote the element s(X,α, g)s(X, τ, g)−1 of (det kerAb)

−1⊗det kerAθ given in
(8.2) by eπiρ(X,α,g) .

For the spin Dirac operator the fact that the expression on the left hand side of
(8.1) gives a well–defined element of the inverse determinant line was observed
first by X. Dai and D. Freed [13, Sec. I]. As pointed out in [13] the result easily
transfers to general Dirac operators. Due to the exponentiation, (8.1) does not
need the full strength of Theorem 3.2. As in [13] it can be derived already from
[29] where the dependence of the mod Z reduced η–invariant on the boundary
condition is investigated.

We now follow Dai and Freed in [13] and generalize (8.1) and (8.2) to the
parameterized context. As a general reference for the analysis of elliptic families
we refer to the book [5].

As parameter space we take

PΣ = FΣ × MΣ,

where MΣ denotes the space of Riemannian metrics on Σ and FΣ denotes the
space of flat connections on the bundle E|Σ → Σ.

Given a manifold X with ∂X = Σ, we will also use the parameter space

PX = FX × MΣ,
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where FX denotes the space of flat connections on E → X in cylindrical form
B = b + ∂

∂x on a collar. Notice that we take the space of Riemannian metrics
on Σ, not X , to define PX .

Also note that in contrast to [13] the parameter spaces PΣ and PX are infinite–
dimensional. For the discussion of the determinant line bundle, however, this
does not cause any additional difficulties. The reader who prefers not to worry
about the manifold structure of PX ,PΣ may think of having chosen a finite–
dimensional submanifold of PX ,PΣ .

To be more precise we consider the trivial fibration

π : X × PX → PX . (8.3)

Give the fiber Xp over p = (B, g) a Riemannian metric so that in a fixed collar
of ∂X the metric takes the form g+du2 . This can be done in a smooth way over
PX ; for example, fix a metric on the interior of X and use a cutoff function
in a slightly larger collar to interpolate between this fixed metric and g + du2 .
Call the resulting extended metric g̃ . The fiber of the relative tangent bundle
T (X ×PX/PX) := ker Tπ : T (X ×PX) → TPX over the point (x, (B, g)) ∈
X×PX is given by TxX⊕ 0 and the metric on T(x,(B,g))(X×PX/PX) is g̃x .

Since π is a product we have a natural horizontal structure which is given by
the kernel of the tangent map of the projection X × PX → X onto the first
factor.

Summing up we have a Riemannian structure on the fibration π in the sense
of [13, p. 5159] resp. [5, Sec. 10.1].

Given p = (b, g) ∈ PΣ we modify the previous notation slightly and de-
note by Ap the odd signature operator coupled to b in order to emphasize
its dependence on the Riemannian metric g . Then Ap acts on the bundle
(ΛT )p := ΛT ∗(Σ;E) := ⊕q≥0Λ

qT ∗(Σ;E), where the notation (ΛT )p also em-
phasizes the dependence on p through the metric. In fact (ΛT )p is the restric-
tion of the bundle ΛT := ΛT ∗(Σ×PΣ/PΣ, E) := ⊕q≥0Λ

qT ∗(Σ×PΣ/PΣ, E)
(the exterior power bundle of the relative cotangent bundle) to the fiber Σ×{p}.
Thus, the (Ap)p∈PΣ

form a smooth family of Dirac type operators in the sense
of [5, Sec. 9.2].

We then form the associated determinant bundle det kerA → PΣ whose fiber
over p ∈ PΣ is det kerAp = (det kerA+

p )−1⊗det kerA−
p . One can find a careful

construction of det kerA in many articles, e.g. [5, 6], as well as the construction
of the Quillen metric and connection on det kerA. We outline briefly the reason
why the fibers det kerAp glue together to form a smooth bundle for the benefit
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of the reader. The space PΣ is covered by open sets Uµ , µ > 0, consisting of
those p so that µ 6∈ Spec(Ap). If F±

p (µ) denotes the span of those eigenvectors
of Ap whose eigenvalues lie in (−µ, µ) \ {0}, then the vector spaces H(µ)p
defined by

H(µ)p := F+
p (µ) ⊕ kerAp ⊕ F−

p (µ)

form a smooth, finite dimensional vector bundle over Uµ , whose fibers are in-
variant under γp , since γpAp = −Apγp . Thus H(µ)p is a Hermitian symplectic
space and so has a decomposition

H(µ)p =
(

H+(µ)p ⊕ kerA+
p

)

⊕
(

kerA−
p ⊕H−(µ)p

)

(8.4)

into the ±i eigenspaces of γp acting on H(µ)p . The decomposition (8.4) yields

detH(µ)p = det(kerAp) ⊗ det(H+(µ)p)
−1 ⊗ det(H−(µ)p). (8.5)

The crucial observation now is that det(H+(µ)p)
−1 ⊗ det(H−(µ)p) is canoni-

cally trivial since det(A+
p : H+(µ)p → H−(µ)p) is a canonical nonzero section

of det(H+(µ)p)
−1 ⊗ det(H−(µ)p). Consequently detH(µ)p is canonically iso-

morphic to det kerAp . Identifying det kerA|Uµ with detH(µ)|Uµ shows that
det kerA indeed is a smooth line bundle over PΣ .

For future reference we denote the canonical (bundle) isomorphism

ϕ(µ) : det(kerA)|Uµ −→ detH(µ)|Uµ, ξp 7→ ξp ⊗ det(A+
p |H

+(µ)). (8.6)

From (8.1) one now infers (cf. [13]):

Proposition 8.1 Given p = (bp, gp) ∈ PΣ , let Aθ,p denote the odd signature
operator on the trivial bundle Cn × Σ → Σ with respect to the Riemannian
metric gp on Σ.

Then the vector spaces det(kerAp)
−1 ⊗ det(kerAθ,p) form a smooth vector

bundle

det(kerA)−1 ⊗ det(kerAθ) → PΣ.

Moreover, if ∂X = Σ the ρ–invariant defines a smooth lift

det(kerA)−1 ⊗ det(kerAθ)

PX PΣ

?
-i∗

������*eπiρ

where i∗ denotes the restriction.
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Proof From the previous discussion and in view of (8.1) the statement of
the proposition is clear except the fact that eπiρ defines a smooth lift into
det(kerA)−1 ⊗det(kerAθ). Although this fact was proved in [13] it also follows
from our results. The key is that (8.1) can be generalized in such a way that
one obtains smooth sections over Uµ . For a Lagrangian W ⊂ H(µ)p denote
by η(DB,W ,X) the η–invariant of DB with respect to the boundary condi-
tion given by the orthogonal projection onto (F+

p ⊖ F+
p (µ)) ⊕W . Denote by

φ(µ)p(W ) the analogue of φ(W ) for the space H(µ)p . Then det(φ(µ)p(W )) is
a canonical element of detH(µ)p .

Given two such subspaces W1,W2 then by [26, Thm. 4.2] we have the following
generalization of (8.1):

e2πiη̃(DB,W1
,X) det(φ(µ)p(W1))

−1 = e2πiη̃(DB,W2
,X) det(φ(µ)p(W2))

−1. (8.7)

This shows that the expression e2πiη̃(DB,W1
,X) det(φ(µ)p(W1))

−1 is independent
of W1 and choosing a smooth family of Lagrangians in (H(µ)p)p∈Uµ over Uµ
gives a smooth section of det(kerA).

The (tensor product of two) determinant bundle(s)

det(kerA)−1 ⊗ det(kerAθ) → PΣ

admits the Quillen metric [32] and its natural compatible connection ∇Q [6].
The main result of [13] can be used to compute ∇Q(eiπρ).

Let us first briefly recall the main facts about metrics and connections on
det(kerA) (resp. det(kerA)−1 ⊗ det(kerAθ)). We use the notation from page
661. Since the fiber of the relative tangent bundle T (Σ × PΣ/PΣ, E) over
(x, p) ∈ Σ×PΣ is TxΣ⊕ 0, the relative tangent bundle is naturally a Rieman-
nian vector bundle. Consequently, ΛT inherits a natural metric from the rela-
tive tangent bundle. Furthermore, by [5, Prop. 10.2] T (Σ× PΣ/PΣ, E) has a
natural connection which is induced solely by the Riemannian structure of the fi-
bration π . This connection induces a connection on the bundle ΛT . Finally, we
note that for each p the metric on ΛT induces an L2–structure on sections of
(ΛT )p . In the terminology of family index theory the space C∞(Σ×{p},ΛTp)
of sections of (ΛT )p is viewed as the fiber over p of an infinite–dimensional
Hermitian bundle π∗ΛT whose sections are C∞(Σ × PΣ,ΛT ). By [5, Prop.
9.13] there is a natural connection ∇π∗ΛT on π∗ΛT which is compatible with
the inner product. For details we refer to [5, Chap. 9].

The bundle H(µ) is a finite–dimensional sub–bundle of (C∞(Σ×{p},ΛTp))p∈Uµ

and ∇π∗ΛT projects to a connection ∇µ on H(µ). Furthermore, H(µ) inherits
a metric h from the L2–structure on (C∞(Σ × {p},ΛTp))p∈Uµ .
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However, the bundle map ϕ(µ) (8.6) is not an isometry with respect to the met-
ric h and thus h does in general not descend to a smooth metric on det kerA|Uµ .
The norm of ϕ(µ) (with respect to the natural metrics on det kerA|Uµ and on
detH(µ)) is given by

‖ϕ(µ)p‖ =
(

detA+
p A

−
p |H

+(µ)p
)1/2

=
∏

λ∈Spec(Ap),0<λ<µ

λ.

Therefore, the Quillen metric defined by

hQ(ξ) := h(ξ)
∏

λ∈SpecAp

λ := h(ξ) detζ(A
+
p A

−
p | kerA

⊥
p )

for ξ ∈ det kerAp is a smooth metric on det kerA. Here detζ(A
+
p A

−
p | kerA

⊥
p )

denotes the ζ–regularized determinant of the operator A+
p A

−
p | kerA

⊥
p .

The natural connection ∇det,µ on det kerA|Uµ induced by ∇µ is in general not
compatible with the Quillen metric. However, there is a connection, ∇Q , on
det kerA which is compatible with the Quillen metric. Formally, one has over
Uµ

∇Q = ∇det,µ + tr
(

(A+)−1∇µA+
)

(8.8)

=: ∇det,µ + βµ+.

The right hand side of (8.8) has to be suitably regularized; for details we refer
to [5, Sec. 9.7].

As explained on page 661 the fibration X ×PX has naturally the structure of
a Riemannian fibration in the sense of [13, p. 5159] resp. [5, Sec. 10.1]. Thus
by [5, Prop. 10.2] the relative tangent bundle T (X × PX/PX) has a natural
connection, ∇T (X×PX/PX) . Let RX ∈ Ω2

X×PX
(EndT (X × PX/PX)) be the

curvature of this connection.

Next, let E → X×PX be the pullback of the bundle E → X via the projection
X × PX → X . Let ∇B denote the connection on E whose restriction to each
fiber XB,g is B . This can be constructed by choosing an arbitrary connection
on E and then adjusting it by the appropriate 1-form. The curvature of ∇B ,
FB ∈ Ω2

X×PX
(EndE ) restricts to zero in each fiber XB,g since B is flat.

Similarly we construct the trivial connection ∇Θ by replacing E by the trivial
bundle and B by the trivial connection in the above formula. Its curvature FΘ

is zero and so the Chern character ch(FΘ) = n (as a form).

Then with these preparations, the Dai-Freed theorem implies the following.
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Proposition 8.2

∇Q(eiπρ) = 2(dimX−1)/2
(

∫

X
L(RX)(ch(FB) − ch(FΘ))

)

[1]
· eiπρ, (8.9)

where
∫

X denotes integration over the fibers and the subscript “[1]” means the
1-form part of an inhomogeneous differential form. Furthermore,

L(RX) = det1/2
( RX/2

tanh(RX/2)

)

denotes the Hirzebruch L–form associated to RX .

Proof In [13] the theorem was stated for a smooth family of spin Dirac op-
erators. However, as they pointed out, their result remains true for twisted
Dirac operators. Since the integrand in the right hand side of (8.9) is local and
since every manifold is locally spin let us assume for the moment that X is
spin. The complex Clifford algebra Cl2k+1 (remember dimX = 2k + 1) has
two inequivalent irreducible respresentations ∆± and hence

Cl2k+1
∼= End(∆+) ⊕ End(∆−). (8.10)

Denote by S±
C
→ X ×PX the spinor bundles corresponding to ∆± associated

to the relative tangent bundle T (X×PX/PX). These inherit natural connec-
tions, ∇± , from the connection ∇T (X×PX/PX) on the relative tangent bundle
T (X × PX/PX).

From the decomposition (8.10) one easily infers (cf. also [5, Sec. 4.1] for the even
dimensional case) that the odd signature operator DΘ is the spin Dirac operator
coupled to the twisting bundle (S+

C
⊗ Cn,∇+ ⊗ id + id⊗∇Θ). Analogously,

DB is the spin Dirac operator coupled to the twisting bundle (S+
C
⊗ E,∇+ ⊗

id + id⊗∇B). Consequently, [13, Theorem 1.9] yields

∇Q(eiπρ) =
(

∫

X
Â(RX) ∧ ch(S+

C
,∇+) ∧ (ch(FB) − ch(FΘ))

)

[1]
· eiπρ. (8.11)

It remains to identify the differential form Â(RX) ∧ ch(S+
C
,∇+). By the fol-

lowing Lemma we have

Â(RX) ∧ ch(S+
C
,∇+) = 2kL(RX) = 2k det1/2

( RX/2

tanh(RX/2)

)

. (8.12)

Note that although (8.12) is an identity between differential forms, it is in fact
a statement about invariant polynomials on the special orthogonal group and
hence it follows indeed from the next lemma.
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We point out that it is crucial in the following that Â(RX) ∧ ch(S+
C
,∇+) =

2kL(RX) is a Pontrjagin form and hence is a sum of differential forms of degree
divisible by four.

Lemma 8.3 Let M be a differentiable manifold and E → M a real oriented
vector bundle of rank 2k + 1 which carries a spin structure. Let S±

C
(E) be the

corresponding spinor bundles. Then Â(E) ∧ ch(S±
C

(E)) = 2kL(E).

Proof A similar result for even rank bundles is well–known (the lemma is
probably well–known also, however standard texts refer to the even dimensional
case only; see [5, Sec. 4.1], [16, Sec. 3.3.5], [28, Sec. III.11]) and we will reduce
the lemma to the even dimensional case. By the splitting principle and since
the bundle is orientable we may assume that

E ≃ Ẽ ⊕ RM , (8.13)

where Ẽ is a real oriented bundle of rank 2k and RM denotes the trivial R

bundle over M (cf. [28, Rem. III.11.3]). Denote by SC(Ẽ) the unique complex
spinor bundle associated to the spin structure on Ẽ . Then the representation
theory of the complex Clifford algebras immediately implies that

S+
C

(E) ≃ S−
C

(E) ≃ SC(Ẽ) (8.14)

(isomorphisms as complex vector bundles). Hence we are reduced to the even
rank case and it follows (see the references above)

Â(E) ∧ ch(S±
C

(E)) = Â(Ẽ) ∧ ch(SC(Ẽ)) = 2kL(Ẽ) = 2kL(E).

Proposition 8.2 implies the following.

Theorem 8.4 If one restricts to SU(n) connections on E → X or if X is
(4ℓ− 1)-dimensional then

∇Q(eπiρ) = 0.

Proof Recall that X is a (2k − 1)-dimensional manifold. Decompose the
differential form ch(FB) − ch(FΘ) into its homogeneous components:

ch(FB) − ch(FΘ) = ch2(F
B) + ch4(F

B) + ch6(F
B) + · · ·

Similarly decompose

L(RX) = L0(R
X) + L4(R

X) + L8(R
X) + · · ·
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Thus
(

∫

X
L(RX)(ch(FB) − ch(FΘ))

)

[1]
=

∑

q≥1

∫

X
L2k−2q(R

X) ch2q(F
B). (8.15)

Since the restriction of FB to Xp is flat, ch2q(F
B) = const(q)Tr((FB)q) has

at most q components in the “X ” direction, i.e. writing ch2q(F
B) locally as a

sum

ch2q(F
B)x,p =

2q
∑

i=0

f ix,pαi ∧ β2q−i

with αi ∈ Ωi
X and β2q−i ∈ Ω2q−i

PX
, then f i = 0 for i > q .

This implies that the only possible non-zero summand in the right side of (8.15)
is the term with q = 1, i.e.

∫

X
L2k−2(R

X) ∧ ch2(F
B). (8.16)

But since ch2(F
B) = c1(F

B) and L2k−2(R
X) = 0 if 2k − 2 is not divisible by

4, (8.16) vanishes if B is an SU(n) connection or if 2k − 2 6= 4ℓ. The result
now follows from Proposition 8.2.

The following theorem exhibits a functoriality property of ρ modulo Z for
manifolds with boundary. It is closely related to Theorem 7.2, but the weaker
hypothesis (F need not be a homotopy equivalence) gives a weaker conclusion:
the ρ–invariants agree only modulo Z.

Theorem 8.5 Let X and X ′ be two odd dimensional manifolds and suppose
that F : X ′ → X is a smooth map such that the restriction f = F |∂X′ : ∂X ′ →
∂X is a diffeomorphism. Let α0, α1 : π1(X) → SU(n) be two representations
in the same path component of χ(π1(X), SU(n)). Let g0 and g1 be two metrics
on ∂X . Then

ρ(X,α1, g1) − ρ(X,α0, g0)

≡ ρ(X ′, F ∗(α1), f
∗(g1)) − ρ(X ′, F ∗(α0), f

∗(g0)) (mod Z).

In particular, if F : X ′ → X induces an isomorphism on fundamental groups
then there is a factorization

χ(π1(X), SU(n)) × MΣ/D
0
Σ R/Z

π0(χ(π1(X), SU(n))) × MΣ/D
0
Σ

-ρ(X)−ρ(X′)

HHHj p

p

p

p

p

p

p

p*

and ρ(X) − ρ(X ′) is zero on the path component of the trivial representation.
The result holds for U(n) replacing SU(n) if dimX = 4ℓ− 1.
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Proof The map F : X ′ → X induces a map F ∗ on flat connections FX →
FX′ by pulling back connections. Using f to pull back metrics on the boundary
we see that F induces a map F ∗ : PX → PX′ so that

PX PX′

PΣ

-F ∗

@
@

@Ri∗X

�
�

�	 i∗
X′

commutes.

Let αt be a path of representations from α0 to α1 . Such a path can be chosen
to be piecewise analytic and a corresponding piecewise analytic path of flat
connections Bt with holonomy αt can be found ([15]). By adding the results in
the end we may assume that the path Bt is analytic, and hence smooth. Let gt
be a smooth path of metrics on ∂X from g0 to g1 . We identify ∂X and ∂X ′

via f .

Choose a Lagrangian subspace Vt in kerA(bt,gt) for each t so that V0 = VX,α0

and V1 = VX,α1 . (See Lemma 7.3.) Similarly choose a Lagrangian subspace Wt

of kerA(θ,gt) with Wt = VX,τ .

Let c be the real number c = ρ(X,α0, g0) − ρ(X ′, α0, g0). Notice that by
definition c = 0 if α0 is trivial. The smooth sections

φ1 : t 7→ exp(πi(ρ(X,αt, Vt,Wt), gt)) det(φ(Vt)) det(φ(Wt))
−1

and
φ2 : t 7→ ecπi exp(πi(ρ(X ′, αt, Vt), gt)) det(φ(Vt)) det(φ(Wt))

−1

agree at t = 0 and by Theorem 8.4 satisfy ∇Q(φ1) = 0 = ∇Q(φ2) (since ecπi

is constant). In other words, φ1 and φ2 are two horizontal lifts of the path
[0, 1] → PΣ, t 7→ (bt, g). Since they agree at t = 0, they agree for all t. In
particular, at t = 1 we conclude

eπiρ(X,α1,g1) = eπiρ(X
′,α1,g1)ecπi.

This proves the first part of the theorem. The second part follows from the first
and the discussion following Theorem 5.1.

The second statement in Theorem 8.5 should be compared to [14, Theorem 7.1].

We end this section with a discussion which shows that finding an explicit
dependence of the ρ–invariant on the metric on the boundary is ultimately tied
to the delicate construction of the connection ∇Q .
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Suppose that a representation α : π1X → U(n) is fixed and consider the func-
tion of metrics on the boundary

ρ(X,α) : MΣ → R. (8.17)

This function is smooth, since eiπρ is smooth and since the dimension of the
kernel of DB,VX,α

is independent of the metric by (2.3).

Proposition 8.6 With the denotations of (8.8) we have

dρ(X,α) = −
1

πi

detφ(VX,α)

detφ(VX,τ )
∇Q detφ(VX,τ )

detφ(VX,α)

= −
1

πi

detφ(VX,α)

detφ(VX,τ )
∇

detφ(VX,τ )

detφ(VX,α)
−

1

πi
β+.

Proof For the purpose of this proof the abusive notation eiπρ introduced at
the beginning of this section is too confusing. During this proof we write
s(X,α, g)s(X, τ, g)−1 for the element of (det kerAb)

−1 ⊗ det kerAθ defined by
(8.2) and eπiρ denotes the number obtained by exponentiating the ρ–invariant.

We cannot apply Theorem 8.4 directly. However, since the parameter space is
MΣ and α is fixed we have ch(FB) − ch(FΘ) = 0 and hence by Proposition
8.2 and (8.15)

∇Q(s(X,α, g)s(X, τ, g)−1) = 0. (8.18)

Over MΣ we have

s(X,α, g)s(X, τ, g)−1 = eπiρ(X,α,g) detφ(VX,α)−1 detφ(VX,τ ).

Consequently, (8.18) implies

dρ(X,α, g)

= −
1

πi
detφ(VX,α) detφ(VX,τ )

−1∇Q
(

detφ(VX,α)−1 detφ(VX,τ )
)

= −
1

πi
detφ(VX,α) detφ(VX,τ )

−1∇
(

detφ(VX,α)
−1 detφ(VX,τ )

)

−
1

πi
β+.

Looking at the definition of β+ we see that this result gives a link between the
dependence of ρ on the metric and the variation of the (regularized) determinant
of the operator Ab . This perhaps explains why we cannot expect the ρ–invariant
to be independent of the metric on the boundary.
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9 Topological consequences

It is known that the ρ–invariants distinguish homotopy equivalent lens spaces
[37]. By contrast, Neumann showed in [31] that ρ is a homotopy invariant for
manifolds with free abelian fundamental groups.

This leaves the problem of deciding exactly to what extent the ρ–invariant is a
homotopy invariant open. One interesting aspect of this problem is that it can
be studied one fundamental group at a time.

A conjecture of Weinberger states (see [38]):

Conjecture A (Weinberger) If M is a closed (2k−1)-manifold with torsion-
free fundamental group then ρ(M,α) depends only on the homotopy type of
M .

Thus Neumann showed that Conjecture A holds for free abelian groups. The
Farber-Levine-Weinberger theorem solves the problem for those groups whose
U(n) character varieties are connected, such as free groups. Wall’s calculations
for lens spaces shows that the extension of the conjecture to all groups is false:
cyclic groups provide examples.

We make the following extension of the conjecture of Weinberger.

Conjecture B Suppose that F : X → X ′ is a homotopy equivalence of man-
ifolds with torsion free fundamental groups which restricts to a diffeomorphism
on the boundary. Endow the boundaries with Riemannian metrics g , g′ so that
the restriction to the boundary is an isometry.

Then for any any unitary representation α : π1X → U(n)

ρ(X,α, g) = ρ(X ′, α, g′).

This implies Weinberger’s conjecture. In this instance our Theorem 7.2 implies
Conjecture B for those manifolds whose U(n) character varieties are connected.

This reveals the following strategy for attacking Conjecture A.

Definition 9.1 We say a homotopy equivalence F : M ′ →M between closed
manifolds can be split along a separating hypersurface Σ ⊂M if, after a homo-
topy of F ,

(1) F is smooth and transverse to Σ and the restriction F : F−1(Σ) → Σ is
a diffeomorphism, and
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(2) writing M = X ∪Σ Y and M ′ = X ′ ∪Σ Y ′ , F restricts to homotopy
equivalences X ′ → X and Y ′ → Y .

The problem of determining when a homotopy equivalence can be split along a
hypersurface has been extensively studied; see e.g. [37, Chapter 12A] or [12].

We have the following result.

Theorem 9.2 Let F : M → M ′ be a homotopy equivalence between closed
manifolds which can be split along a hypersurface Σ ⊂ M . Write M = X ∪Σ

Y . Suppose that α : π1M → U(n) is a unitary representation such that the
restriction α|X (resp. α|Y ) lies in the path component of the trivial U(n)
representation of π1X (resp. π1Y ). Then ρ(M,α) = ρ(M ′, α).

In particular, if the image of the restriction map χ(π1M,U(n)) → χ(π1X,U(n))
lies in a path component of χ(π1X,U(n)) and similarly for Y (this holds e.g.
when χ(π1X,U(n)) and χ(π1Y,U(n)) are path connected), then ρ(M,α) =
ρ(M ′, α) for all α ∈ χ(π1M,U(n)).

Proof This follows by combining Theorems 3.2 and 7.2.

Notice that it is much more likely that the restrictions α|X and α|Y lie in the
path component of the trivial connection than that α itself does, since π1M is
the free product of π1X and π1Y amalgamated over π1Σ. Hence in trying to
deform α|X and α|Y in their representation spaces one is no longer constrained
by the relations imposed by amalgamating over π1Σ.

As an application, if X and Y are manifolds with boundary which have path
connected character varieties, and f, g : ∂X → ∂Y are homotopic diffeomor-
phisms, then X ∪f Y and X ∪g Y are homotopy equivalent and ρ(X ∪f Y, α) =
ρ(X ∪g Y, α) for all U(n) representations α. One can construct such examples
so that X ∪f Y and X ∪g Y are not diffeomorphic.

The problem of determining the number of path components of χ(π,U(n)) is
tricky. Some examples of groups with χ(π,U(n)) path connected include π free
or free abelian. An interesting family of torsion-free groups with path connected
unitary representation spaces are the 2-generator groups 〈x, y, | xp = yq〉 for
p, q relatively prime. For a taste of the problem for some 3-manifold groups π
the reader might glance at [27] and [20]. Notice that the isomorphism class of
the bundle E → X is fixed on any path component of χ(π1X,U(n)), and so
if X admits non-isomorphic flat bundles (e.g. if H2(X; Z) contains non-trivial
torsion) then χ(π1X,U(n)) cannot be path connected.
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Conjecture B does not hold without the requirement that the homotopy equiv-
alence behave nicely on the boundary; this is exhibited by the example at the
end of Section 7. We will explore examples and applications of Theorem 9.2 in
a later article.

We end this article with speculation concerning the similarity between the con-
structions of Section 8 and the approach to studying TQFTs advocated in
Atiyah’s book [1].

Take Σ to be a 2-manifold and restrict to Riemannian metrics on Σ which have
constant curvature 1, 0, or −1. Then MΣ/D

0
Σ = TΣ is the Teichmüller space

of Σ. Thus Theorem 8.4 defines a complex line bundle with connection over
χ(π1Σ, U(n))×TΣ , and given any 3-manifold X with boundary Σ one obtains
from ρ(X,α, g) a horizontal cross section:

det(kerA)−1 ⊗ det(kerAθ)

χ(π1X,U(n)) × TΣ χ(π1Σ, U(n)) × TΣ

?
-i
∗

������1eπiρ

(9.1)

In [1] a similar diagram is obtained: a determinant bundle over χ(π1Σ, U(n))
is constructed as follows. A metric g ∈ TΣ defines a holomorphic structure on
Σ. This defines a complex structure on χ(π1Σ, U(n)) by identifying it with the
moduli space of semi-stable holomorphic bundles over Σ. Then one takes the
determinant bundle D → χ(π1Σ, U(n)) whose fiber over a point corresponding
to a holomorphic bundle is the determinant of the corresponding ∂̄ -operator.
The Quillen metric and the holomorphic structure on this determinant bundle
determines a connection [32] which coincides with ∇Q [6]. Viewing holomorphic
sections of this bundle as the fiber of a vector bundle over TΣ defines a bundle
which was shown to admit a projectively flat connection.

Defining a horizontal cross-section of D

D

χ(π1X,U(n)) χ(π1Σ, U(n))
?

-i
∗

������1

for a 3-manifold X with boundary Σ is problematic from this point of view.
An alternative set-up is described in [33]. In that article a complex line bundle
L→ χ(π1Σ, SU(2)) is constructed using the Chern-Simons invariant cs. From
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the construction one immediately obtains the cross section

L

χ(π1X,SU(2)) χ(π1Σ, SU(2))
?

-i
∗

������1e2πics

for any 3-manifold X with boundary Σ (this is a formalization of the fact that
on a manifold with boundary, the Chern-Simons invariant is not a U(1) = R/Z
valued function but rather a cross section of a U(1) bundle over the moduli
space of the boundary). This part of the construction is independent of the
choice of Riemannian metric on Σ. However, endowing Σ with a metric defines
a connection on L for which the cross section is horizontal. It is shown in [33]
that the line bundles L and D are isomorphic, linking the two approaches.

On a closed 3-manifold, the SU(n) Chern-Simons invariants and ρ–invariants
agree modulo Z. This suggests that the set-up described in [1, 33] is related to
our approach (encapsulated in the diagram (9.1)). It would be an interesting
project to establish a precise relationship. Several complications arise. First,
the ρ–invariant depends on the metric on Σ, as we have established, but the
Chern-Simons invariant (viewed as a cross section of L) of a manifold with
boundary is metric independent. Second, it is not clear how to relate the ρ and
Chern-Simons invariants for a manifold with boundary. In the closed case the
Atiyah-Patodi-Singer index theorem provides the relationship, but generalizing
this argument would require an extension of the Atiyah-Patodi-Singer theorem
to manifolds with corners; a problem of significant interest that so far does not
have a complete solution. Another interesting point is that the ρ–invariant is
well–defined in R, not just R/Z as for the Chern-Simons invariant, and the
cut-and-paste formula (2.6) holds in R. This may give a clue as to how to
refine the approach of [1]. Finally, since the set-up described in the present
article works in any odd dimension, it may provide a direction to the problem
of constructing some TQFTs in higher dimensions.
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