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Abstract. Several proofs have been published of the modZ gluing formula for the h-invariant
of a Dirac operator. However, so far the integer contribution to the gluing formula for the
h-invariant is left obscure in the literature. In this article we present a gluing formula for the
h-invariant which expresses the integer contribution as a triple index involving the boundary
conditions and the Calderón projectors of the two parts of the decomposition. The main
ingredients of our presentation are the Scott-Wojciechowski theorem for the determinant of
a Dirac operator on a manifold with boundary and the approach of Brüning-Lesch to the
modZ gluing formula.
Our presentation includes careful constructions of the Maslov index and triple index in a

symplectic Hilbert space. As a byproduct we give intuitively appealing proofs of two theorems
of Nicolaescu on the spectral flow of Dirac operators.
As an application of our methods, we carry out a detailed analysis of the h-invariant of the

odd signature operator coupled to a flat connection using adiabatic methods. This is used to
extend the definition of the Atiyah-Patodi-Singer r-invariant to manifolds with boundary. We
derive a ‘‘non-additivity’’ formula for the Atiyah-Patodi-Singer r-invariant and relate it to
Wall’s non-additivity formula for the signature of even-dimensional manifolds.
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1 Introduction

An intriguing feature of certain spectral invariants is that they behave nicely with
respect to cutting and pasting. Such a feature has several advantages, in particular
with respect to computations. For example, the index of a Dirac operator behaves
additively with respect to gluing of manifolds. This is not surprising due to the
locality of the index. For higher spectral invariants (e.g. analytic torsion and the h-
invariant) cutting and pasting properties came as a surprise and proofs are non-
trivial. The gluing formula for the h-invariant has a long history (cf. [7] for a histor-
ical account). Basically, there are four di¤erent types of proof due to Bunke [9],
Wojciechowski [33, 34], Müller [25] and Brüning and Lesch [7]. Bunke’s argument
was simplified and generalized by Dai and Freed [12].

While the articles [33, 34, 25, 12] contain proofs of the gluing formula only in
R=Z, the original formula of Bunke [9] o¤ers a formula for the integer contribution
in terms of indices of certain projections. Unfortunately, these projections are not
intrinsically defined and therefore Bunke’s formula is di‰cult to work with. In [7] it is
shown (though not explicitly stated) that the integer contribution can be expressed as
the spectral flow of a naturally defined family of self-adjoint operators.

In the current paper we present another formula for the integer contribution in
terms of Calderón projectors. This is very satisfactory from a theoretical point of
view since all ingredients of the formula are defined intrinsically. Moreover, using
adiabatic techniques our formula can be made rather explicit; we carry out a detailed
analysis for the odd signature operator.

Given an appropriate orthogonal projection P in the Hilbert space of sections over
the boundary, the domain of a Dirac operator D can be restricted to those sections
whose restriction to the boundary lie in the kernel of P. Denote the resulting oper-
ator DP. The self-adjoint Fredholm Grassmannian GrðAÞ (see Definition 2.1) consists
of those projections P so that DP is a self-adjoint discrete Fredholm operator. It con-
tains a distinguished element, namely the Calderón projector for the Dirac operator
D. Denote by ~hh the reduced h-invariant, ~hhðDÞ ¼ ðhðDÞ þ dimkerDÞ=2. Our main
result is the following. (See Theorem 5.9, Theorem 7.4, and Lemma 5.1.)

Theorem. Let D be a Dirac operator on the closed manifold M and let NHM split M

into Mþ and M�. Assume that D is in product form D ¼ g d
dx
þ A

� �
in a collar of N,

with A self-adjoint. Let P A GrðAÞ and let Pt be a smooth path in GrðAÞ from P to the

Calderón projector PMþ for D acting on Mþ. Then

~hhðD;MÞ ¼ ~hhðDP;M
þÞ þ ~hhðDI�P;M

�Þ þ SFðDPt
;MþÞt A ½0;1�

þ SFðDI�Pt
;M�Þt A ½0;1�

¼ ~hhðDP;M
þÞ þ ~hhðDI�P;M

�Þ � tmðI � PM� ;P;PMþÞ:
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In particular, taking P ¼ PMþ ,

~hhðD;MÞ ¼ ~hhðDPMþ ;M
þÞ þ ~hhðDI�PMþ ;M

�Þ:

In these formulas SF denotes the spectral flow, and tm refers to a Maslov triple index
we define for appropriate triples of projections. We also prove a more general for-
mula, Theorem 5.10, which holds for any boundary conditions ðP;QÞ, rather than
the special case ðP; I � PÞ.

It is well-known that spectral flow and h-invariants are intimately related. It is
therefore an interesting feature of our approach that it can be used to give new and
conceptually simple proofs of Nicolaescu’s formulas for the spectral flow of a family
of Dirac operators [26]. (See Theorems 7.5 and 7.6.)

For purposes of computation it is usually convenient to use the positive spec-
tral projection of the tangential operator, Pþ, rather than the Calderón pro-
jector as boundary conditions. According to our theorem this requires computing
SFðDPt

;MþÞt A ½0;1� þ SFðDI�Pt
;M�Þt A ½0;1� where Pt is a path starting at Pþ and end-

ing at the Calderón projector. In favorable circumstances, such a path (actually its
reverse) is obtained by stretching the collar neighborhood of the separating hyper-
surface. More precisely, replacing Mþ by Mþ W ðN � ½�r; 0�Þ gives a continuous
path (as r ! y) of projections starting at the Calderón projector and limiting essen-
tially to Pþ. This gives a method to obtain computationally useful splitting formulas,
and sheds light on the mechanism of adiabatic stretching.

We carry out this analysis in detail in Section 8 for the odd signature operator.
Given a flat connection with holonomy a over an odd-dimensional manifold, we take
D to be the odd signature operator in the corresponding flat bundle. The adiabatic
limit of the Calderón projectors for D as the collar is stretched is identified in Theo-
rem 8.5. We use this identification along with the topological invariance of the kernel
of D to establish the formula (cf. (8.32)):

hðD;MÞ ¼ hðDPþðVþ; aÞ;M
þÞ þ hðDP�ðV�; aÞ;M

�Þ þmðVþ;a;V�;a; a; gÞ:

In this expression VG;a ¼ imH �ðMG;Cn
a Þ ! H �ðN;Cn

a Þ, and mðVþ;a;V�;a; a; gÞ is
a real-valued symplectic invariant which depends only on the subspaces VG;a H
H �ðN;Cn

a Þ and a choice of Riemannian metric on the separating hypersurface N.
The projections PGðVG;aÞ are the sum of the positive/negative spectral projections of
the tangential operator and the finite-dimensional projection to VG;a. In particular if
H �ðN;Cn

a Þ ¼ 0 the formula simplifies to

~hhðD;MÞ ¼ ~hhðDPþ ;MþÞ þ ~hhðDP� ;M�Þ:

These formulae motivate a definition for the r-invariant of a manifold with bound-
ary, rðX ; a; gÞ (Definition 8.17), which is shown to depend only on the smooth struc-
ture of X, the conjugacy class of the representation a, and the choice of Riemannian
metric g on qX . We then prove the following theorem, and discuss its relation to
Wall’s non-additivity theorem [32] for the signature of even-dimensional manifolds.
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Theorem 8.18. Suppose the closed, odd-dimensional manifold M contains a hypersur-

face N separating M into Mþ and M�. Fix a Riemannian metric g on N. Suppose that

a : p1ðMÞ ! UðnÞ is a representation, and let t : p1ðMÞ ! UðnÞ denote the trivial

representation. Then

rðM; aÞ ¼ rðMþ; a; gÞ þ rðM�; a; gÞ

þmðVþ;a;V�;a; a; gÞ �mðVþ; t;V�; t; a; gÞ:

The paper is organized as follows:
In Section 2 we review the basic facts about Dirac operators on manifolds with

boundary and the Grassmannian of their boundary value problems.
In Section 3 we introduce the h-invariant and review its basic features. Using the

Scott-Wojciechowski Theorem [30] we establish in Section 4 a formula describing the
dependence on the choice of boundary condition of the h-invariant of a Dirac oper-
ator on a manifold with boundary (Theorem 4.4).

Section 5 deals with splittings of manifolds. We prove a result on the behavior of
the spectral flow under splittings (Corollary 5.6) and the gluing formula for the
h-invariant (Theorem 5.10).

Section 6 contains careful constructions of various forms of the Maslov index for
families of self-adjoint projections in a Hermitian symplectic Hilbert space. Conven-
tions must be set to deal with degenerate situations when defining symplectic invari-
ants, and we carefully construct the various invariants consistently and in such a way
that they match our choice of convention for the spectral flow.

A byproduct of our considerations are new proofs of (generalizations of ) two the-
orems by Nicolaescu [26] identifying the spectral flow of a family of Dirac operators
with a Maslov index involving the Calderón projectors and boundary conditions.
These results (Theorem 7.5 for manifolds with boundary and Theorem 7.6 for split
manifolds), together with an improvement (Theorem 7.7) of our gluing formula for
the h-invariant which allows more general boundary conditions, are presented in
Section 7.

Finally, in Section 8 we apply our splitting results for the h-invariant to the special
case of the odd signature operator coupled to a flat connection. By making use of the
method of adiabatic stretching of the collar of a separating hypersurface and the fact
that the dimension of the kernels of these operators are topological, i.e. independent
of the Riemannian metric, we obtain a splitting formula for the Atiyah-Patodi-Singer
ra invariant. The main tool introduced in this section is Theorem 8.5, which gives a
precise identification of the adiabatic limit of the Calderón projectors in this setting.
We end the paper with an examination of the role adiabatic stretching plays in addi-
tion formulas for the h-invariants of general Dirac operators.

2 Dirac operators on manifolds with boundary and the self-adjoint
Fredholm Grassmannian

We begin by describing the set-up of Dirac operators on a manifold with boundary.
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Let X denote a compact smooth Riemannian manifold with boundary qX . We fix
an identification of a neighborhood of qX in X with qX � ½0; eÞ. Let E ! X be a
complex Hermitian vector bundle and suppose that D : CyðEÞ ! CyðEÞ is a sym-
metric Dirac operator, i.e. a symmetric first-order operator whose square is a gener-
alized Laplacian (the square of the leading symbol of D is scalar and given by the
metric tensor). The symmetry is measured with respect to the L2 inner product; thus
we assume that if f1; f2 A CyðEÞ are supported in the interior of X then

ð
X

hDf1; f2iEx
dx ¼

ð
X

hf1;Df2iEx
dx:

A Dirac operator satisfies the unique continuation property [5].
In this paper we will deal only with the product case, i.e. we assume that the

restriction of D to the collar takes the form D ¼ g d
dx
þ A

� �
, where g : EjqX ! EjqX is

a bundle endomorphism and A : CyðEjqX Þ ! CyðEjqX Þ is a first-order self-adjoint
elliptic di¤erential operator on the closed manifold qX (called the tangential oper-

ator) satisfying

g2 ¼ �I ; g� ¼ �g; and gA ¼ �Ag:ð2:1Þ

Note that A is assumed to be independent of x for x A ½0; eÞ.
The operator D : CyðEÞ ! CyðEÞ can be extended to an unbounded self-adjoint

operator on L2ðEÞ by imposing appropriate boundary conditions. Since D is a first
order operator, it can be extended to a bounded operator H1ðEÞ ! L2ðEÞ, where
HsðEÞ denotes the Sobolev space of sections of E with s derivatives in L2. Given
an orthogonal projection P : L2ðEjqX Þ ! L2ðEjqX Þ define DP to be D acting on the
domain

DðDPÞ :¼ ff A L2ðEÞ j f A H1ðEÞ and PðfjqX Þ ¼ 0gHL2ðEÞ:

We will consider the operators DP for a certain class of projections P which we now
introduce. Let

P>0 : L
2ðEjqX Þ ! L2ðEjqX Þ

denote the positive spectral projection for the self-adjoint tangential operator A :
CyðEjqX Þ ! CyðEjqX Þ; thus if fclg is a basis of L2ðEjqX Þ with Acl ¼ lcl, then
P>0ð

P
alclÞ ¼

P
l>0 alcl.

Definition 2.1. Define the self-adjoint Fredholm Grassmannian GrðAÞ to be the set of
maps P : L2ðEjqX Þ ! L2ðEjqX Þ so that

(1) P is pseudo-di¤erential of order 0,
(2) P ¼ P�, P2 ¼ P, i.e. P is an orthogonal projection,
(3) gPg� ¼ I � P,
(4) ðP>0;PÞ form a Fredholm pair, that is,
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P>0jimP : imP ! imP>0

is Fredholm.

The Grassmannian GrðAÞ is topologized using the norm topology on bounded oper-
ators.

Remark 2.2. 1. We note that a P A GrðAÞ also acts as a (non-orthogonal) projection
in the Sobolev space HsðEÞ for all s A R. This follows from (1).

2. We obtain the same Grassmannian if we replace P>0 in (4) by any pseudo-
di¤erential orthogonal projection Q such that P>0 �Q is smoothing. This follows
immediately from the following general fact:

Let P;Q;R be orthogonal projections in the Hilbert space H such that Q� R is
compact. Then ðP;QÞ is a Fredholm pair if and only if ðP;RÞ is a Fredholm pair.

This fact can be seen as follows: by [3, Prop. 3.1] ðP;QÞ is Fredholm if and
only if G1 B specessðP�QÞ. Since Q� R is compact this is equivalent to G1 B
specessðP� RÞ. Applying again [3, Prop. 3.1] the latter is the case if and only if ðP;RÞ
is Fredholm.

If P A GrðAÞ, then DP is self-adjoint, Fredholm, and has compact resolvent; in par-
ticular its spectrum is discrete and each eigenvalue has finite multiplicity. These facts
follow since ðD;PÞ is a well-posed boundary value problem in the sense of R. T.
Seeley [31]. A general reference for boundary value problems for Dirac type oper-
ators is the monograph [5]. A di¤erent approach is presented in [8, 6].

It will be necessary to consider a more restricted class of projections, those that
di¤er from P>0 by a smoothing operator. Define GryðAÞHGrðAÞ by

GryðAÞ ¼ fP A GrðAÞ jP� P>0 is a smoothing operatorg:ð2:2Þ

Again, in (2.2) we can replace P>0 by any pseudo-di¤erential orthogonal projection
Q such that P>0 �Q is smoothing.

The projection P>0 does not lie in GrðAÞ unless kerA ¼ 0, since the third condition
does not hold for P ¼ P>0 if kerA0 0. It is convenient to specify a finite rank per-
turbation of P>0 which does lie in GrðAÞ.

Notice that g leaves kerA invariant. It is well-known that since ðqX ;AÞ bounds
ðX ;DÞ, the i and �i eigenspaces of g acting on kerA have the same dimension
[27, Chap. XVII]. This implies that there are subspaces LH kerA satisfying gðLÞ ¼
L? X kerA (such subspaces are called Lagrangian subspaces; see Definition 2.8
below). Given a Lagrangian subspace LH kerA define

PþðLÞ ¼ projL þ P>0:ð2:3Þ

Then PþðLÞ di¤ers from P>0 by the projection onto L, a subspace of kerA, which
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consists only of smooth sections. Since P>0 is a 0th order pseudo-di¤erential projec-
tion, so is PþðLÞ. It is straightforward to check that PþðLÞ A GryðAÞ.

We call PþðLÞ the Atiyah-Patodi-Singer projection corresponding to the Lagran-
gian subspace L. Notice that PþðLÞ depends only on the tangential operator A and
the choice of L; in particular it is unchanged if D is altered in the interior of X.

There is a canonical projection in GrðAÞ determined by the operator D which will
play a special role in what follows, namely the Calderón projector PX . It is defined as
the orthogonal projection onto the Cauchy data space

LX :¼ rðkerD : H1=2ðEÞ ! H�1=2ðEÞÞHL2ðEjqX Þ:ð2:4Þ

Here r denotes the restriction to the boundary. The trace operator r is a priori only
defined on HsðEÞ for s > 1=2 but one can show that r defines a bounded map from
the H1=2-kernel of D into L2ðEjqX Þ (see [5] for a proof ).

The Calderón projector PX ¼ projLX
lies in GryðAÞ [29, Prop. 2.2], [17, Prop. 4.1].

The unique continuation property for D implies that

r : ðkerD : H1=2ðEÞ ! H�1=2ðEÞÞ ! L2ðEjqX Þ

is injective, so that to any vector x in the image of PX we can assign a unique solution
to Df ¼ 0 on X with f A H1=2 and rðfÞ ¼ x. This makes it possible to identify the
kernel of D with boundary condition given by a projection P and the intersection of
the Cauchy data space with the kernel of P, as in the following lemma.

Lemma 2.3. Let P A GrðAÞ. Then

kerPjimPX
¼ imPX X kerP ¼ gðkerPX ÞX kerP

and this space is isomorphic to the kernel of DP. Thus DP is invertible if and only if

imPX X kerP ¼ 0. In particular DPX
is invertible.

Proof. If f A kerD, then by definition the restriction of f to the boundary of X lies in
the image of the Calderón projector PX . In particular, if f A kerDP, then the restric-
tion of f to the boundary lies in the intersection of kerP and the image of PX . The
unique continuation property for D implies that this intersection is exactly the kernel
of DP, i.e. the kernel of DP is isomorphic to kerPjimPX

.
As a discrete self-adjoint operator, DP is invertible if and only if kerDP ¼ f0g.

Moreover, PX is a self-adjoint projection satisfying the equation gPXg ¼ �ðI � PX Þ.
Thus imPX ¼ kerðI � PX Þ ¼ gðkerPX Þ. r

In a rough sense the Atiyah-Patodi-Singer projection PþðLÞ and the Calderón pro-
jector PX are opposites: PþðLÞ is determined entirely by the boundary data, i.e. the
tangential operator A acting on qX (and the choice of L), whereas PX depends on all
of X and D.
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For future reference we note the following special case of a result due to K. Wojcie-
chowski.

Proposition 2.4. The Grassmannians GrðAÞ;GryðAÞ are path connected. For a

fixed P A GryðAÞ (resp. GrðAÞ) the space fQ A GryðAÞ j kerQX imP ¼ 0g (resp.

fQ A GrðAÞ j kerQX imP ¼ 0g) is path connected.

Remark 2.5. This result could also be proved using Proposition 6.5 below (resp. its
analog for pseudo-di¤erential Grassmannians) and properties of the unitary group.

Proof. The first statement is a special case of [15, Appendix B], where the homo-
topy groups of GryðAÞ and GrðAÞ are computed. The path connectedness of
fQ A GryðAÞ j kerQX imP ¼ 0g was proved in Proposition 5.1 of [30]. The path
connectedness of fQ A GrðAÞ j kerQX imP ¼ 0g can be proved along the same
lines: if kerQX imP ¼ 0 then kQ� Pk < 1 and hence Qs :¼ ZsPZ

�1
s , 0a sa 1,

where Zs :¼ I þ sðQ� PÞð2P� IÞ, is a path in GrðAÞ connecting P and Q (cf. e.g.
[6, Sec. 3]). r

Notice that GrðAÞ and GryðAÞ can also be defined by replacing P>0 by PþðLÞ or PX

in the fourth condition defining GrðAÞ, and in (2.2).

We next discuss two alternative perspectives on the Grassmannian GrðAÞ, identifying
this space with the space of certain unitary operators on a Hilbert space, and also
with certain Lagrangian subspaces of a symplectic Hilbert space.

The bundle endomorphism g : EjqX ! EjqX induces a decomposition of EjqX ¼
Ei lE�i into the Gi eigenbundles and consequently we get a decomposition of
L2ðEjqX Þ into theGi eigenspaces,

L2ðEjqX Þ ¼ L2ðEiÞlL2ðE�iÞ ¼: Ei lE�i:ð2:5Þ

Given P A GrðAÞ, write

P ¼ 1

2

A B

C D

� �

with respect to the decomposition (2.5). Then P ¼ P� implies C ¼ B�. The conditions
gPg� ¼ I � P and g� ¼ �g imply that A ¼ D ¼ I , and the condition P2 ¼ P implies
that BB� ¼ I ¼ B�B. This proves the first part of the following lemma.

Lemma 2.6. If P A GrðAÞ, then with respect to the decomposition (2.5), P can be

written in the form

P ¼ 1

2

I T �

T I

� �
;ð2:6Þ
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where T is a 0th order pseudo-di¤erential isometry from Ei onto E�i. Conversely, given
such an isometry T, then

1

2

I T �

T I

� �

is a pseudo-di¤erential projection satisfying (1), (2), (3) of Definition 2.1.

Given

P ¼ 1

2

I T �

T I

� �
; Q ¼ 1

2

I S �

S I

� �
;

satisfying (1), (2), (3) of Definition 2.1, then:

(1) ðP;QÞ form a Fredholm pair if and only if �1 B specess T
�S,

(2) ðP;QÞ is invertible if and only if �1 B specT �S,

(3) kerPX imQ is canonically isomorphic to kerðI þ T �SÞ,

(4) P�Q is smoothing if and only if T �S � I is smoothing.

In particular, if Q ¼ PþðLÞ for some Lagrangian LH kerA, then P A GrðAÞ if and

only if �1 B specess T
�S.

Proof. The first part was proved above. Since S �S ¼ I ¼ SS �, any element in

L2ðEjqX Þ ¼ Ei lE�i can be written in the form
x

Sy

� �
for x; y A Ei. Since

Q
x

Sy

� �
¼ 1

2

xþ y

Sðxþ yÞ

� �
;

it follows that imQ ¼ x

Sx

� �
j x A Ei

� �
. Thus the restriction of P to the image of

Q is

P
x

Sx

� �
¼ 1

2

ðI þ T �SÞx
TðI þ T �SÞx

� �
:

It follows that ðP;QÞ is Fredholm (i.e. P restricts to a Fredholm operator on the
image of Q) if and only if I þ T �S is Fredholm, which occurs precisely when �1 is
not in the essential spectrum of T �S. Similarly ðP;QÞ is invertible (i.e. the restriction
of P to the image of Q defines an isomorphism onto the image of P) if and only if �1
is not in the spectrum of T �S. The same argument also shows (3).

Finally, since

P�Q ¼ 0 T � � S �

T � S 0

� �
;
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P�Q is smoothing if and only if T � S is smoothing. Here we use that the projec-
tions 1

2i ðiG gÞ onto EGi are di¤erential operators of order 0. Since T ;S are pseudo-
di¤erential and unitary the operator T � S is smoothing if and only if T �S � I is
smoothing. r

Let UðEi;E�iÞ denote the set of unitary isomorphisms from Ei to E�i. Then P 7! T

defines a map

F : GrðAÞ ! UðEi;E�iÞ;ð2:7Þ

i.e.,

P ¼ 1

2

I FðPÞ�

FðPÞ I

� �
:

More abstractly, consider the group U of unitary pseudo-di¤erential isomorphisms
Ei ! Ei. Let

UFred ¼ fU A U j �1 B specess Ug;ð2:8Þ

and

Uy ¼ fU A UFred jU � I is a smoothing operatorg:ð2:9Þ

Then given any P A GryðAÞ, the map

U 7! 1

2

I ðFðPÞUÞ�

FðPÞU I

� �
ð2:10Þ

defines homeomorphisms

UFred ! GrðAÞ

and

Uy ! GryðAÞ:

Another useful description of GrðAÞ and GryðAÞ is in terms of Lagrangian sub-
spaces.

Lemma 2.7. Let ðH; h ; iÞ be a separable complex Hilbert space and g : H ! H an

isomorphism satisfying g2 ¼ �I , g� ¼ �g. Then there exists a subspace LHH such

that gðLÞ ¼ L? if and only if dimkerðg� iÞ ¼ dimkerðgþ iÞ.

Proof. Suppose LHH is a subspace with gðLÞ ¼ L?. Then it is easy to check
that the orthogonal projections pG : L ! kerðgG iÞ are isomorphisms and hence
dimkerðgþ iÞ ¼ dimkerðg� iÞ.

P. Kirk, M. Lesch562



Conversely, if dim kerðgþ iÞ ¼ dimkerðg� iÞ then let T : kerðg� iÞ ! kerðgþ iÞ
be a unitary isomorphism. Then L ¼ x

Tx

� �
j x A kerðg� iÞ

� �
is a subspace satisfy-

ing gðLÞ ¼ L?. r

Definition 2.8. A Hermitian symplectic Hilbert space is a separable complex Hilbert
space together with an isomorphism g : H ! H satisfying g2 ¼ �I , g� ¼ �g and
such that the i and �i eigenspaces of g have the same dimension (i.e. if H is infinite-
dimensional we require that both eigenspaces are infinite-dimensional). The sym-
plectic form is the skew-Hermitian form

oðx; yÞ :¼ hx; gyi:ð2:11Þ

A Lagrangian subspace LHH of a Hermitian symplectic Hilbert space is a subspace
so that gðLÞ ¼ L?. A Lagrangian subspace is automatically closed.

The space L2ðEjqX Þ together with the map g is a Hermitian symplectic Hilbert space.
The space kerA is a finite-dimensional Hermitian symplectic Hilbert space since
ðqX ;AÞ bounds ðX ;DÞ.

Given P A GrðAÞ, the kernel of P is a Lagrangian subspace, since kerP is orthog-
onal to gðkerPÞ. Notice that the kernel of P can be expressed as the graph of �FðPÞ,

kerP ¼ x

�FðPÞx

� �
j x A Ei

� �
HL2ðEjqX Þ:

This gives a third characterization of GrðAÞ as follows. We define L to be the
set of Lagrangian subspaces of L2ðEjqX Þ whose associated projections are pseudo-
di¤erential of order 0. The Cauchy data space, LX , (the image of the Calderón pro-
jector) is a Lagrangian subspace of L2ðEjqX Þ.

Define

LFred ¼ fL A L j ðL; gðLX ÞÞ is a Fredholm pair of subspacesg;ð2:12Þ

and

Ly ¼ fL A LFred j projL � projLX
is a smoothing operatorg:ð2:13Þ

Then we have homeomorphisms

LFred ! GrðAÞ

and

Ly ! GryðAÞ:

The identifications of L, GrðAÞ, and U are determined by the conditions that
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L A LFred; P A GrðAÞ; and T A UFredðEi;E�iÞ

correspond if

L ¼ imP ¼ graph of T and T ¼ FðPÞ:

3 The h-invariant and spectral flow

It was mentioned in the last section that DP is the self-adjoint realization of a well-
posed boundary value problem and hence it is a discrete operator in the Hilbert space
L2ðEÞ. For the discussion of z- and h-functions we need the more refined analysis of
the heat trace of DP. The z- and h-functions of DP are defined, for ReðsÞg 0, by

ð3:1Þ

hðDP; sÞ :¼ trðDPjDPj�s�1Þ ¼
P

l A specDPnf0g
signðlÞjlj�s;

zðDP; sÞ :¼ trðD�s
P Þ ¼

P
l A specDPnf0g

l�s

¼ 1

2
ðzðD2

P; s=2Þ þ hðDP; sÞÞ þ e�ips 1

2
ðzðD2

P; s=2Þ � hðDP; sÞÞ:

Theorem 3.1. For P A GrðAÞ the functions zðDP; sÞ, hðDP; sÞ extend meromorphically

to the whole complex plane with poles of order at most 2. If P A GryðAÞ then hðDP; sÞ
and zðDP; sÞ are regular at s ¼ 0. Moreover zðDP; 0Þ is independent of P A GryðAÞ.

That the z- and h-functions extend meromorphically has been proved in increasing
generality in [15], [18], [19], [7], [35], and [17]. The definitive treatment of all well-
posed boundary value problems is given in [17]. The proof of the statement about
regularity at s ¼ 0 can be found in [35]. The methods of [17] show that the assump-
tion P A GryðAÞ can be somewhat relaxed [16]. Finally, that zðDP; 0Þ is independent
of P A GryðAÞ is [35, Prop. 0.5].

Definition 3.2. The h-invariant of DP, hðDPÞ, is defined to be the constant term in the
Laurent expansion of hðDP; sÞ at s ¼ 0, i.e.

hðDP; sÞ ¼ as�2 þ bs�1 þ hðDPÞ þOðsÞ:

We also give a symbol to a convenient normalization of the h-invariant.

Definition 3.3. The reduced h-invariant is defined to be

~hhðDPÞ ¼ ðhðDPÞ þ dimkerDPÞ=2:ð3:2Þ

We continue with a discussion of the spectral flow and its relation to the h-invariant.
Suppose one is given a smooth path of Dirac type operators Dt : C

yðEÞ ! CyðEÞ,
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t A ½0; 1�, over X so that Dt ¼ g d
dx
þ At

� �
on the collar. Choose a smooth path of pro-

jections Pt so that Pt A GrðAtÞ for t A ½0; 1�. Then the family DPðtÞ :¼ ðDtÞPt
is in par-

ticular a graph continuous family of self-adjoint discrete operators. As a consequence,
the eigenvalues of DPt

vary continuously (as a general reference see [21]). The spectral
flow of the family DPðtÞ, which we denote by SFðDPðtÞÞt A ½0;1� or just SFðDPðtÞÞ, is the
integer defined (roughly) to be the di¤erence in the number of eigenvalues that start
negative and end non-negative and the number of eigenvalues that start non-negative
and end negative (see [5, 11] for a precise definition). Notice that we have chosen
a particular convention for dealing with zero eigenvalues. This convention is often
called the ð�e;�eÞ spectral flow in the literature, since it corresponds to intersecting
the graph of the spectrum as a function of t with the line from ð0;�eÞ to ð1;�eÞ.

The 1-parameter family of h-invariants hðDPðtÞÞ A R will in general not vary
smoothly with respect to t A ½0; 1�. However, it follows from the work of G. Grubb
[17] that the reduction modulo integers of the reduced h-invariant ~hhðDPðtÞÞ varies
smoothly with t. In particular, the real valued function

u 7!
ð u

0

d

dt
ðhðDPðtÞÞÞ dt

is smooth.
In general, given a smooth function f : ½0; 1� ! R=Z ¼ S1, the expression u 7! c

þ
Ð u

0
df

dt
dt is just an explicit formula for the unique smooth lift of f to the universal

cover R of S1 starting at c A R. Thus if f and g are (possibly discontinuous) func-
tions from ½0; 1� to R so that the reductions of f and g modulo Z are smooth and
agree, then the smooth real-valued functions u 7!

Ð u

0
df

dt
dt and u 7!

Ð u

0
dg
dt
dt coincide.

Lemma 3.4. Suppose that Dt, t A ½0; 1�, is a smooth path of symmetric Dirac type oper-

ators as above, and Pt A GrðAtÞ is a smooth path, giving a smooth path of self-adjoint

discrete operators DPðtÞ.
Then

~hhðDPð1ÞÞ � ~hhðDPð0ÞÞ ¼ SFðDPðtÞÞt A ½0;1� þ
1

2

ð1

0

d

dt
ðhðDPðtÞÞÞ dt:

Moreover, if the dimension of the kernel of DPðtÞ is independent of t, then the function

t 7! ~hhðDPðtÞÞ is smooth.

Proof. We only sketch the proof, since this fact is well-known, at least when the h-
function is regular at s ¼ 0, and the general case is proven by the same argument,
because the pole of the h-function at s ¼ 0 is determined by the asymptotics of the
spectrum, whereas the spectral flow depends only on the small eigenvalues.

Given r A ½0; 1�, choose an e > 0 so thatGe does not lie in the spectrum of DPðrÞ.
Applying standard results from perturbation theory [21] we infer thatGe does not lie
in the spectrum of DPðtÞ for t close enough to r, say t A ½t0; t1�. Moreover the span of
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those eigenvectors of DPðtÞ whose eigenvalues lie in ð�e; eÞ varies continuously for
t A ½t0; t1�.

Thus we can write hðDPðtÞ; sÞ for t A ½t0; t1� and ReðsÞg 0 as a sum

ð3:3Þ
hðDPðtÞ; sÞ ¼

P
l A specDPðtÞ;0<jlj<e

signðlÞjlj�s þ
P

l A specDPðtÞ; jlj>e

signðlÞjlj�s

¼ h<eðDPðtÞ; sÞ þ h>eðDPðtÞ; sÞ:

The sum h<eðDPðtÞ; sÞ is finite, and so its analytic continuation to s ¼ 0 is integer
valued:

h<eðDPðtÞ; 0Þ ¼
P

l A specDPðtÞ;0<jlj<e

signðlÞ:

Thus

ð3:4Þ
h<eðDPðt1Þ; 0Þ � h<eðDPðt0Þ; 0Þ

¼ 2 SFðDPðtÞÞt A ½t0; t1� þ dimkerDPðt0Þ � dimkerDPðt1Þ:

Notice that this equation depends on our choice of convention for defining the spec-
tral flow. The function h>eðDPðtÞ; sÞ ¼ hðDPðtÞ; sÞ � h<eðDPðtÞ; sÞ varies smoothly
in t A ½t0; t1� since we have subtracted the eigenvalues that cross zero, and since no
eigenvalues equalGe in this interval. If we define h>eðDPðtÞÞ similarly to Definition
3.2 then h>eðDPðtÞÞ is smooth and

h>eðDPðtÞÞ1 hðDPðtÞÞ modZ:

Therefore, using (3.4) we obtain

ð3:5Þ

ð t1

t0

d

dt
ðhðDPðtÞÞÞ dt

¼
ð t1

t0

d

dt
ðh>eðDPðtÞÞÞ dt

¼ h>eðDPðt1ÞÞ � h>eðDPðt0ÞÞ

¼ hðDPðt1ÞÞ � h<eðDPðt1ÞÞ � hðDPðt0ÞÞ þ h<eðDPðt0ÞÞ

¼ hðDPðt1ÞÞ � hðDPðt0ÞÞ � 2 SFðDPðtÞÞt A ½t0; t1�

þ dimkerDPðt1Þ � dimkerDPðt0Þ:
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Dividing by 2 proves the lemma over the interval ½t0; t1�. The general case is obtained
by covering the interval ½0; 1� by small subintervals and adding the results.

For the last assertion, notice that if the dimension of kerDPðtÞ is independent of t,
then SFðDPðtÞÞt A ½0; s� ¼ 0 for all s A ½0; 1�. r

4 The Scott-Wojciechowski theorem

The theorem of Scott and Wojciechowski [30] identifies the regularized z-determinant
of a boundary-value problem for a Dirac operator with a Fredholm determinant of
the associated boundary projection. In this section we summarize and slightly extend
that part of their result which we need, in the language of this article. Briefly, their
theorem shows that the reduction modZ of the h-invariant of DP for P A GryðAÞ
and the Fredholm determinant of the unitary map FðPÞ which corresponds to P via
(2.10) agree up to a constant independent of P. The important consequence for this
article is that the modZ reduction of the h-invariant for a manifold with boundary
depends only on the boundary data and the Calderón projector.

In this section D denotes a fixed Dirac type operator on a manifold X with
boundary qX and A denotes its tangential operator.

Before stating the Scott-Wojciechowski theorem, let us briefly recall the z-
regularized determinant. Let P A GryðAÞ. Then zðDP; sÞ is regular at s ¼ 0 and one
puts

detz DP :¼ expð�z 0ðDP; 0ÞÞ; 0 B specDP;

0; 0 A specDP:

�
ð4:1Þ

In view of (3.1) and Theorem 3.1 a straightforward calculation shows forDP invertible

detz DP ¼ exp i
p

2
ðzðD2

P; 0Þ � hðDPÞÞ �
1

2
z 0ðD2

P; 0Þ
� �

:ð4:2Þ

We emphasize that the regularity of hðDP; sÞ and zðDP; sÞ at s ¼ 0 is essential for (4.2)
to hold. (4.2) implies that in general ðdetz DÞ2 0 detzðD2Þ. Note that Fredholm deter-
minants are multiplicative, i.e. if S;T are operators of determinant class in a Hilbert
space then detFðSTÞ ¼ detFðSÞ detFðTÞ, where detF denotes the Fredholm determi-
nant.

With these preparations, the Scott-Wojciechowski theorem reads as follows.

Theorem 4.1. Let P A GryðAÞ. Then

detzðDPÞ ¼ detzðDPX
Þ detF

I þFðPX ÞFðPÞ�

2

� �
:ð4:3Þ

This result was proved for M odd-dimensional in [30, Thms. 0.1, 1.4]. An alternative
proof which applies to all dimensions and to slightly more general operators will be
presented in [23].
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In view of (4.2) the Scott-Wojciechowski theorem can be applied to express the
dependence of ~hhðDPÞ on P in terms of Fredholm determinants.

Let P;Q A GryðAÞ. Since FðQÞFðPÞ� � I is a smoothing operator, it is of trace
class and hence

I þFðQÞFðPÞ�

2
¼ I þFðQÞFðPÞ� � I

2
ð4:4Þ

is of determinant class. In particular,
IþFðPX ÞFðPÞ�

2 is of determinant class and thus the
right hand side in (4.3) is well-defined.

Also, FðPÞFðQÞ� is of determinant class. Hence the determinant detFðFðPÞFðQÞ�Þ
is defined and lies in Uð1Þ since FðPÞFðQÞ� is unitary.

Theorem 4.2. Let P;Q A GryðAÞ. Then

e2pið~hhðDPÞ�~hhðDQÞÞ ¼ detFðFðPÞFðQÞ�Þ:ð4:5Þ

Proof. Assume first that P is the Calderón projector PX and that the pair ðPX ;QÞ is
invertible. By Lemma 2.3 this means that DPX

and DQ are invertible. Putting Theo-
rem 4.1 and (4.2) together and taking into account that zðD2

P; 0Þ is independent of P
(Theorem 3.1), we obtain

ð4:6Þ
eiðp=2ÞðhðDPX

Þ�hðDQÞÞe
ð1=2Þðz 0ðD2

PX
;0Þ�z 0ðD2

Q
;0ÞÞ

¼ detzðDQÞ
detzðDPX

Þ ¼ detF
I þFðPX ÞFðQÞ�

2

� �
;

and thus

detF
IþFðPX ÞFðQÞ�

2

� �
detF

IþFðPX ÞFðQÞ�
2

� �			 			 ¼ eiðp=2ÞðhðDPX
Þ�hðDQÞÞ:ð4:7Þ

Since FðPX ÞFðQÞ� � I is of trace class we may choose a self-adjoint trace class oper-
ator H such that eiH ¼ FðPX ÞFðQÞ�. Then

ð4:8Þ

detF
I þFðPX ÞFðQÞ�

2

� �2
¼ detF

I þ eiH

2

� �2

¼ detFðeiH cosh2ðH=2ÞÞ

¼ detFðFðPX ÞFðQÞ�Þ detFðcosh2ðH=2ÞÞ;

where we have used the multiplicativity of the Fredholm determinant in the last line.
Consequently
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detF
IþFðPX ÞFðQÞ�

2

� �2

detF
IþFðPX ÞFðQÞ�

2

� �			 			2 ¼ detFðFðPX ÞFðQÞ�Þ:ð4:9Þ

Putting together (4.7) and (4.9) we obtain (4.5) for P ¼ PX and Q A GryðAÞ such
that ðPX ;QÞ is an invertible pair. However, since both sides of (4.5) depend con-
tinuously on Q, (4.5) remains valid for all Q A GryðAÞ. Finally, if P;Q A GryðAÞ are
arbitrary then

ð4:10Þ

e2pið~hhðDPÞ�~hhðDQÞÞ ¼ e2pið~hhðDPÞ�~hhðDPX
ÞÞe2pið~hhðDPX

Þ�~hhðDQÞÞ

¼ detFðFðPÞFðPX Þ�Þ detFðFðPX ÞFðQÞ�Þ

¼ detFðFðPÞFðQÞ�Þ: r

We will use the following convenient form of the Scott-Wojciechowski theorem. We
consider the reals R as the universal cover of Uð1Þ via the map r 7! e2pir.

Corollary 4.3. Let Pt, t A ½0; 1�, be a smooth path in GryðAÞ. Then the map

s 7! 1

2

ð s

0

d

dt
ðhðDPt

ÞÞ dt

is the unique lift to R of the map ½0; 1� ! Uð1Þ

s 7! detFðFðPsÞFðP0Þ�Þ:

In preparation for the next theorem, suppose that P A GryðAÞ. From Lemma 2.3
we know that DP is invertible if and only if kerPX X gðkerPÞ ¼ 0 where PX

denotes the Calderón projector; by Lemma 2.6 this happens if and only if
�1 B specðFðPÞFðPX Þ�Þ. In fact, the kernel of DP is canonically isomorphic to
kerðI þFðPÞFðPX Þ�Þ.

Using the functional calculus we can define the operator logðFðPÞFðPX Þ�Þ. The
choice of the branch of log will be essential in what follows. We define log : Cnf0g
! C as follows

logðreitÞ ¼ ln rþ it; r > 0; �p < ta p:ð4:11Þ

Since �1 B specessðFðPÞFðPX Þ�Þ, �1 is an isolated point in the spectrum of
FðPÞFðPX Þ� and thus we can choose a holomorphic branch of the logarithm
which coincides on specðFðPÞFðPX Þ�Þ with log defined in (4.11). The so defined
logðFðPÞFðPX Þ�Þ is of trace class and

tr logðFðPÞFðPX Þ�Þ1 log detFðFðPÞFðPX Þ�Þ mod 2piZ:

After these preparations we can improve Theorem 4.2 as follows.
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Theorem 4.4. Let X be a compact manifold with boundary and let D be a Dirac

type operator such that in a collar qX � ½0; eÞ of the boundary D takes the form D ¼
g d

dx
þ A

� �
with A; g as in (2.1). Let F be the map defined in (2.7). Then for P A GryðAÞ

we have

~hhðDPÞ � ~hhðDPX
Þ ¼ 1

2pi
tr logðFðPÞFðPX Þ�Þ:

Proof. We assume first that DP is invertible. DPX
is invertible by Lemma 2.3. In

view of Proposition 2.4 and Lemma 2.3 the space of those P A GryðAÞ so that DP is
invertible is path connected. Choose a smooth path Pt in GryðAÞ starting at PX and
ending at P so that DPt

is invertible for all t.
The spectral flow of DPt

equals zero since the kernel is zero along the path and so
Lemma 3.4 shows that t 7! ~hhðDPt

Þ is smooth. Hence

t 7! ~hhðDPt
Þ � ~hhðDPX

Þð4:12Þ

is smooth. Also, the map

t 7! 1

2pi
tr logðFðPtÞFðPX Þ�Þð4:13Þ

is smooth since �1 B specðFðPtÞFðPX Þ�Þ for all t and hence log is holomorphic on
specðFðPtÞFðPX Þ�Þ.

Theorem 4.2 states that the two smooth functions of (4.12) and (4.13) are the lifts
to R of the same function to Uð1Þ ¼ R=Z, and they both start at 0. Hence they
coincide for all t.

Now let P A GryðAÞ be arbitrary. We may choose a path ðPtÞ�eatae in GryðAÞ
such that ðPt;PX Þ is invertible for t0 0, P0 ¼ P, and such that at t ¼ 0 exactly
k ¼ dimkerDP0

eigenvalues of FðPtÞFðPX Þ� cross �1 from the upper half plane to
the lower half plane and no eigenvalues cross from the lower half plane to the upper
half plane. To see this let R be the orthogonal projection onto kerðI þFðPÞFðPX Þ�Þ.
The projection R is a pseudo-di¤erential operator. Now put

FðPtÞ :¼ ðeiðpþtÞRl ðI � RÞFðPÞFðPX Þ�ÞFðPX Þ:ð4:14Þ

By our choice of log we then have

1

2pi
tr logðFðP0ÞFðPX Þ�Þ ¼ lim

t!0�

1

2pi
tr logðFðPtÞFðPX Þ�Þ:ð4:15Þ

Moreover, for t0 0 we have from the first part of this proof

~hhðDPt
Þ � ~hhðDPX

Þ ¼ 1

2pi
tr logðFðPtÞFðPX Þ�Þ:ð4:16Þ
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From Lemma 3.4, (4.14) and (4.16) one infers SFðDPt
Þ�eatae ¼ �k and since

dimkerDP0
¼ k at t ¼ 0 exactly k eigenvalues of DPt

cross 0 from þ to � and no
eigenvalues cross from � to þ. Hence

ð4:17Þ

~hhðDP0
Þ � ~hhðDPX

Þ ¼ lim
t!0�

~hhðDPt
Þ � ~hhðDPX

Þ

¼ lim
t!0�

1

2pi
tr logðFðPtÞFðPX Þ�Þ

¼ 1

2pi
tr logðFðP0ÞFðPX Þ�Þ;

completing the proof. r

5 Splittings of manifolds and the h-invariant I

We consider now the gluing problem for the h-invariant. Suppose we are given a
closed manifold M containing a separating hypersurface NHM. We consider only
Dirac operators D on M so that in a collar neighborhood ½�e; e� �N of N, D has the
form D ¼ g d

dx
þ A

� �
as in (2.1).

Let M cut denote the compact manifold with boundary obtained by cutting M

along N. Thus M cut is the disjoint union of two submanifolds Mþ and M�, with
qMþ and qM� canonically identified with N. To apply the results of the previous
section, we reparameterize the collar of M� as qM� � ½0; e� with x ¼ 0 corresponding
to the boundary. See the following figure.

The manifolds M and Mcut
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The H1-Sections of a bundle E over M correspond to sections f A H1ðEjM cutÞ over
M cut so that fjqMþ ¼ fjqM� with respect to the canonical identifications qMG¼ N.
More precisely, the restriction of the section f to the boundary of M cut lies in
H1=2ðEjqM cutÞHL2ðEjqM cutÞ. The identification of qM cut with two copies of N gives a
canonical decomposition

L2ðEjqM cutÞ ¼ L2ðEjNÞlL2ðEjNÞð5:1Þ

where the first factor corresponds to qMþ and the second to qM�. The restriction of
a section f over M cut to the boundary can thus be written as ð fþ; f�Þ, and the sec-
tions over M correspond exactly to those f so that fþ ¼ f�.

On the collar of M cut, The operator D takes the form

D ¼ g 0

0 �g

� �
d

dx
þ A 0

0 �A

� �� �
¼: ~gg

d

dx
þ ~AA

� �
ð5:2Þ

with respect to the decomposition (5.1) (this is because of the change of parameter-
ization of the collar of M�).

Note that the (closed) diagonal subspace

D ¼ fð f ; f Þ j f A L2ðEjNÞgHL2ðEjNÞlL2ðEjNÞ

is Lagrangian. In fact:

1. D is orthogonal to ~ggðDÞ since

hð f ; f Þ; ~ggðg; gÞi ¼ h f ; ggiþ h f ;�ggi ¼ 0:

2. Dþ ~ggðDÞ ¼ L2ðEjNÞlL2ðEjNÞ since

ð f ; gÞ ¼ 1

2
ðð f þ g; f þ gÞ þ ~ggð�gf þ gg;�gf þ ggÞÞ:

The orthogonal projection to D? will be denoted by PD. It is called the continuous

transmission projection. By construction an H1-section f over M cut defines an H1-
section over M if and only if the restriction ð fþ; f�Þ of f to the boundary satisfies
PDð fþ; f�Þ ¼ 0. Note that PD A Grð ~AAÞ since DPD

is canonically identified with the
(Fredholm) operator D acting on the closed manifold M.

With respect to the decomposition (5.1) the operator PD takes the form

PD ¼ 1

2

1 �1

�1 1

� �
:ð5:3Þ

In a strict sense, the projection PD is not in Grð ~AAÞ since it does not act as a pseudo-
di¤erential operator on EjqM cut . Namely, since (5.3) contains o¤-diagonal terms the
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two copies of NH qM cut interact and hence PD is a Fourier integral operator. How-
ever, PD is pseudo-di¤erential on the bundle EjN lEjN over N. This is only a mild
generalization of the situation of Section 2 and we refrain from formalizing it. From
now on Grð ~AAÞ is to be understood as the set of those pseudo-di¤erential operators on
the bundle EjN lEjN over N which satisfy (2), (3), (4) of Definition 2.1. It is fairly
clear that the results of the previous sections also apply to this situation.

There is a natural map

GrðAÞ �Grð�AÞ ! Grð ~AAÞ; ðP;QÞ 7! P 0

0 Q

� �
ð5:4Þ

with respect to the decomposition (5.1). In particular the Calderón projector for M cut

takes the form

PM cut ¼ PMþ 0

0 PM�

� �
:ð5:5Þ

Warning. 1. There are two di¤erent decompositions of L2ðEjqM cutÞ, one coming from
the Gi eigenspace decomposition of ~gg (2.5), and the second from the decomposi-
tion qM cut ¼ N qN (5.1). This leads to two di¤erent matrix representations of
P A Grð ~AAÞ. These two decompositions are compatible since ~gg ¼ gl ð�gÞ, and so in
fact one can write

L2ðEjqM cutÞ ¼ ðEi lE�iÞl ðE�i lEiÞ:

2. Although PD A Grð ~AAÞ, it is not in Gryð ~AAÞ. This fact causes technical di‰culties.

3. It follows from (5.2) that if one parameterizes the collar of M� as qM� � ½0; eÞ
then g is replaced by �g and A is replaced by �A. This in particular means that the
natural symplectic structure on L2ðEjqM�Þ is induced by �g. Sometimes it will be
crucial to distinguish between the map Fg and the map F�g (cf. (2.7)). The relation
between the two is

F�gðPÞ ¼ �FgðI � PÞ�; P A GrðAÞ:ð5:6Þ

Lemma 5.1. Let D be a Dirac operator on M cut and suppose that Pt, 0a ta 1, is a
continuous path in GrðAÞ and Qt, 0a ta 1, is a continuous path in Grð�AÞ. Let

Bt ¼
Pt 0

0 Qt

� �

be the corresponding path in Grð ~AAÞ. Then

SFðDBt
;M cutÞt A ½0;1� ¼ SFðDPt

;MþÞt A ½0;1� þ SFðDQt
;M�Þt A ½0;1�:
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Proof. This follows from the fact that

L2ðE;M cutÞ ¼ L2ðE;MþÞlL2ðE;M�Þ;ð5:7Þ

and D;Bt preserve this splitting. Hence, DBt
¼ DMþ

Pt
lDM�

Qt
. Note that the splitting

(5.7) induces the splitting (5.1) by restricting to the boundary. r

Notice that P A GrðAÞ if and only if I � P A Grð�AÞ. Therefore, a particularly sym-
metric family of boundary conditions for D acting on M cut is given by the image of
ðP; I � PÞ under the map (5.4).

Corollary 4.3 to the Scott-Wojciechowski theorem implies the following lemma.

Lemma 5.2. Let D be a Dirac operator over M and let P0;P1 A GryðAÞ. Choose a

smooth path Pt A GryðAÞ, 0a ta 1, from P0 to P1 and put

Qt :¼
Pt 0

0 I � Pt

� �
A Gryð ~AAÞ:

Then

~hhðDQ1
;M cutÞ � ~hhðDQ0

;M cutÞ ¼ SFðDPt
;MþÞt A ½0;1� þ SFðDI�Pt

;M�Þt A ½0;1�:

In particular, the quantity SFðDPt
;MþÞt A ½0;1� þ SFðDI�Pt

;M�Þt A ½0;1� is independent of
the choice of the path Pt.

Proof. We know from Proposition 2.4 that GryðAÞ is path connected. This assures
the existence of a path Pt. Furthermore, notice that

~hhðDQt
;M cutÞ ¼ ~hhðDPt

;MþÞ þ ~hhðDI�Pt
;M�Þð5:8Þ

since D and Qt preserve the splitting of L2ðEjM cutÞ ¼ L2ðEjMþÞlL2ðEjM�Þ.
Lemma 3.4 and Corollary 4.3 imply that

ð5:9Þ

~hhðDP1
;MþÞ � ~hhðDP0

;MþÞ � SFðDPt
;MþÞt A ½0;1�

¼ 1

2

ð1

0

d

dt
ðhðDPt

ÞÞ dt ¼ 1

2pi

ð1

0

d

dt
log detFðFðPtÞFðP0Þ�Þ dt;

and
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ð5:10Þ

~hhðDI�P1
;M�Þ � ~hhðDI�P0

;M�Þ � SFðDI�Pt
;M�Þt A ½0;1�

¼ 1

2

ð1

0

d

dt
ðhðDI�Pt

ÞÞ dt

¼ 1

2pi

ð1

0

d

dt
log detFðF�gðI � PtÞF�gðI � P0Þ�Þ dt:

Note that in (5.9) F is taken with respect to g and in (5.10) F is taken with respect to
�g (cf. 3. of the warning above). In view of (5.6) we find

detFðF�gðI �PtÞF�gðI �P0Þ�Þ ¼ detFðFðPtÞ�FðP0ÞÞ ¼ detFðFðPtÞFðP0Þ�Þ;ð5:11Þ

and consequently,

d

dt
log detFðF�gðI � PtÞF�gðI � P0Þ�Þ ¼ � d

dt
log detFðFðPtÞFðP0Þ�Þ:ð5:12Þ

Adding (5.9) and (5.10) and using (5.8) gives the desired formula. r

For any P A GrðAÞ a natural path connecting PD and
P 0

0 I � P

� �
is given by

(cf. [7, Sec. 3])

Pðy;PÞ :¼ cos2ðyÞPþ sin2ðyÞðI � PÞ �cosðyÞ sinðyÞ
�cosðyÞ sinðyÞ cos2ðyÞðI � PÞ þ sin2ðyÞP

� �
:ð5:13Þ

A straightforward calculation shows that x ¼ xþ
x�

� �
A kerPðy;PÞ if and only if

ð5:14Þ
cosðyÞPxþ ¼ sinðyÞPx�;

sinðyÞðI � PÞxþ ¼ cosðyÞðI � PÞx�:

Lemma 5.3. Let P A GrðAÞ. If cosðyÞ0 0 then the map Pðy;PÞ lies in Grð ~AAÞ. Fur-
thermore

Pð0;PÞ ¼ P 0

0 I � P

� �
and P

p

4
;P

� �
¼ PD:

Proof. Fix a Lagrangian subspace LH kerA and let Pþ ¼ PþðLÞ. The only part

which is not straightforward is the claim that ðPðy;PÞ; ~PPþÞ, ~PPþ :¼ Pþ 0

0 I � Pþ

� �
is a Fredholm pair. We use the following criterion (cf. [6, Remark 3.5]).

Two orthogonal projections Q;R in a Hilbert space form a Fredholm pair (invertible
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pair) if and only if the operator QRQþ ðI �QÞðI � RÞðI �QÞ is Fredholm (inver-
tible).

One calculates

ð5:15Þ

~PPþPðyÞ ~PPþ þ ðI � ~PPþÞðI � Pðy;PÞÞðI � ~PPþÞ

¼ ðcos2ðyÞðPþPPþ þ ðI � PþÞðI � PÞðI � PþÞÞ

þ sin2ðyÞðPþðI � PÞPþ þ ðI � PþÞPðI � PþÞÞÞn I 0

0 I

� �

b cos2ðyÞðPþPPþ þ ðI � PþÞðI � PÞðI � PþÞÞn I 0

0 I

� �
:

Hence if cosðyÞ0 0 then the pair ðPðy;PÞ; ~PPþÞ is Fredholm (invertible) if the pair
ðP;PþÞ is Fredholm (invertible). r

We emphasize that even if P A GryðAÞ then Pðy;PÞ B GryðAÞ if sinðyÞ0 0. The
significance of the family Pðy;PÞ stems from the fact that DPD

is naturally unitarily
equivalent to D acting on the closed manifold M.

We first note some consequences of the existence of the family Pðy;PÞ which do
not make use of h-functions.

Proposition 5.4. Let D be a Dirac operator over M and let P0;P1 A GrðAÞ. Choose a

smooth path Pt A GrðAÞ, 0a ta 1, from P0 to P1 and put, as in Lemma 5.2,

Qt :¼
Pt 0

0 I � Pt

� �
A Gryð ~AAÞ:ð5:16Þ

Then

SFðDPðy;P1Þ;M
cutÞy A ½0;p=4� � SFðDPðy;P0Þ;M

cutÞy A ½0;p=4� þ SFðDQt
;M cutÞt A ½0;1� ¼ 0:

Proof. Note again that in view of Proposition 2.4 the space GrðAÞ is path connected.
Using Pt one obtains a map H : 0; p4


 �
� ½0; 1� ! Grð ~AAÞ:

Hðy; tÞ ¼ Pðy;PtÞ:ð5:17Þ

Since H p
4 ; t
� �

is the constant map at PD, one sees that the path

y 7! Hðy; 0Þ ¼ Pðy;P0Þ; 0a ya
p

4
;

is homotopic to the composite of the paths
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t 7! Hð0; tÞ ¼ Qt; 0a ta 1;

and

y 7! Hðy; 1Þ ¼ Pðy;P1Þ:

The claim now follows from the homotopy invariance and additivity of the spectral
flow. r

Proposition 5.5. For the Calderón projectors PMþ of Mþ and PM cut of M cut, the space

kerPðy;PMþÞX ker ~ggðPM cutÞ is canonically isomorphic to imPMþ X imPM� . In partic-

ular, its dimension is independent of y A 0; p4

 �

. Moreover,

SFðDPðy;PMþ Þ;M
cutÞy A ½0;p=4� ¼ 0:ð5:18Þ

Furthermore, if P A GrðAÞ and Pt, 0a ta 1, is a smooth path in GrðAÞ from P to the

Calderón projector PMþ then

SFðDPðy;PÞ;M
cutÞy A ½0;p=4� ¼ SFðDQt

;M cutÞt A ½0;1�;ð5:19Þ

where Qt ¼ Pt l ðI � PtÞ as in (5.16).

Proof. By Lemma 2.3 the space kerPðy;PMþÞX ker ~ggðPM cutÞ is isomorphic to
kerDPðy;PMþ Þ. Hence, if we can show that kerPðy;PMþÞX ker ~ggðPM cutÞ is independent
of y, then SFðDPðy;PMþ Þ;M

cutÞy A ½0;p=4� ¼ 0.

Consider x ¼ xþ
x�

� �
A kerPðy;PMþÞX ker ~ggðPM cutÞ. In view of (5.5) and (5.14) this

means

ð5:20Þ
cosðyÞPMþxþ ¼ sinðyÞPMþx�;

0 ¼ sinðyÞðI � PMþÞxþ ¼ cosðyÞðI � PMþÞx�:

Since cosðyÞ0 0 we infer x� A imPMþ X imPM� .
Conversely, given x� A imPMþ X imPM� put xþ :¼ tanðyÞx�. Then (5.20) implies

that
xþ
x�

� �
A kerPðy;PMþÞX ker ~ggðPM cutÞ.

(5.19) is an immediate consequence of (5.18) and Proposition 5.4. r

Corollary 5.6. Let M be a split manifold and let DðtÞ, aa ta b, be a smooth path of

Dirac type operators such that in a collar of the separating hypersurface we have

DðtÞ ¼ g d
dx
þ AðtÞ

� �
. Let PMþðtÞ be the corresponding family of Calderón projectors.

Then

SFðDðtÞÞt A ½a;b� ¼ SFðDI�PMþ ðtÞðtÞ;M�Þt A ½a;b�:
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Proof. We note that it was proved in [26] that PMþðtÞ is smooth. Consider the two
parameter family of operators on M cut

ðDPðy;PMþ ðtÞÞðtÞ;M cutÞ0ayap=4;aatab:

By Proposition 5.5 for fixed t the dimension of the kernel of DPðy;PMþ ðtÞÞðtÞ is indepen-
dent of y. By the homotopy invariance of the spectral flow this implies

SFðDPð0;PMþ ðtÞÞðtÞ;M cutÞt A ½a;b� ¼ SFðDPðp=4;PMþ ðtÞÞðtÞ;M cutÞt A ½a;b�:

Since P p
4

� �
¼ PD the right hand side equals SFðDðtÞÞt A ½a;b�. The left hand side equals

SFðDPMþ ðtÞðtÞ;MþÞt A ½a;b� þ SFðDI�PMþ ðtÞ;M
�Þt A ½a;b�

and since DPþ
M
ðtÞðtÞ is invertible its spectral flow vanishes and we reach the desired

conclusion. r

Remark 5.7. We emphasize that we did not use h-invariants to prove Proposition 5.4,
Proposition 5.5, and Corollary 5.6. The only ingredients of the proof are the family
Pðy;PÞ and basic properties of the spectral flow.

We now return to the discussion of h-invariants. Since DPD
is naturally unitarily

equivalent to D acting on the closed manifold M, we have for any P A GrðAÞ

hðDPðp=4;PÞ;M
cutÞ ¼ hðDPD

;M cutÞ ¼ hðD;MÞ:ð5:21Þ

On the other hand, DPð0;PÞ is the direct sum of DP acting on Mþ and DI�P acting on
M�. Therefore,

hðDPð0;PÞ;M
cutÞ ¼ hðDP;M

þÞ þ hðDI�P;M
�Þ:ð5:22Þ

Hence, by Lemma 3.4 we have

ð5:23Þ

hðD;MÞ ¼ hðDP;M
þÞ þ hðDI�P;M

�Þ

þ 1

2

ð p=4

0

d

dy
hðDPðy;PÞ;M

cutÞ dtþ SFðDPðy;PÞÞy A ½0;p=4�:

Thus, in order to obtain a splitting theorem for the h-invariant one needs to under-
stand the last two terms on the right hand side of (5.23). If P is the Calderón projec-
tor of Mþ or M� then by Proposition 5.5 the spectral flow term vanishes.

Consider now the Atiyah-Patodi-Singer projection Pþ ¼ PþðLÞ of (2.3). The fol-
lowing theorem is the main result of the article [7] by J. Brüning and M. Lesch
([7, Theorem 3.9], see also (3.68) of loc.cit. with Tþ ¼ �T �

� determined by the choice
of Lagrangian LH kerA).
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Theorem 5.8. Let Pþ ¼ PþðLÞ be the Atiyah-Patodi-Singer projection and let

Pðy;PþÞy A ½0;p=4� the deformation (5.13) to the continuous transmission projection. Then

d

dy
ðhðDPðy;PþÞ;M

cutÞ ¼ 0: r

In view of (5.23) we conclude from Theorem 5.8 that

~hhðD;MÞ � ~hhðDPþ ;MþÞ � ~hhðDI�Pþ ;M�Þ ¼ SFðDPðy;PþÞ;M
cutÞy A ½0;p=4�:ð5:24Þ

Since the right hand side of (5.24) is an integer this formula implies the modZ gluing
formula for the h-invariant (see [7] for a discussion of the history of this result). Note
that (5.24) is slightly weaker than Theorem 5.8.

Our strategy to obtain a useful splitting theorem for the h-invariant can now be
explained. On the one hand (5.24) gives a complete splitting formula for the h-
invariant with respect to Atiyah-Patodi-Singer boundary conditions, but it contains
the (in general) uncomputable term SFðDPðy;PþÞÞy A ½0;p=4�. On the other hand if we
were to replace Pþ by the Calderón projector PMþ , Proposition 5.5 shows that the
corresponding spectral flow term vanishes. Thus Theorem 5.8 (or at least (5.24))
needs to be extended to a more general class of projections, including the Calderón
projector. One possible strategy would be to generalize the arguments of [7] to more
general projections. This might be manageable but technically tedious. Here, we will
use a simpler approach which shows slightly less. Lemma 5.2 and Proposition 5.5
lead to a generalization of (5.24) to projections in GryðAÞ. This is less than a gener-
alization of Theorem 5.8 since the variation of the h-invariant with respect to the
path Pðy;PÞ might be non-zero.

Theorem 5.9. Let D be a Dirac operator on M and let NHM split M into Mþ and

M�. We assume that in a collar neighborhood ½�e; e� �N of N, D has the form D ¼
g d

dx
þ A

� �
as in (2.1). Let P A GryðAÞ and let Pt be a smooth path in GryðAÞ from P

to the Calderón projector PMþ . As in (5.16) put Qt :¼ Pt l ðI � PtÞ. Then

ð5:25Þ
~hhðD;MÞ ¼ ~hhðDP;M

þÞ þ ~hhðDI�P;M
�Þ þ SFðDPðy;PÞ;M

cutÞy A ½0;p=4�

¼ ~hhðDP;M
þÞ þ ~hhðDI�P;M

�Þ þ SFðDQt
;M cutÞt A ½0;1�:

In particular, if PMþ is the Calderón projector for Mþ then

~hhðD;MÞ ¼ ~hhðDPMþ ;M
þÞ þ ~hhðDI�PMþ ;M

�Þ:

Proof. Fix a Lagrangian subspace LH kerA and choose a smooth path Rt A GryðAÞ
from P to the Atiyah-Patodi-Singer projection Pþ ¼ PþðLÞ. Set ~RRt :¼ Rt l ðI � RtÞ.
By Proposition 5.4 we have
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SFðDPðy;PÞ;M
cutÞy A ½0;p=4� ¼ SFðDPðy;PþÞ;M

cutÞy A ½0;p=4� þ SFðD ~RRt
;M cutÞt A ½0;1�:

Using Lemma 5.2 and (5.24) we obtain

ð5:26Þ

~hhðD;MÞ � ~hhðDP;M
þÞ � ~hhðDI�P;M

�Þ

¼ ~hhðD;MÞ � ~hhðDPþ ;MþÞ � ~hhðDI�Pþ ;M�Þ

þ ~hhðD ~RR1
;M cutÞ � ~hhðD ~RR0

;M cutÞ

¼ SFðDPðy;PþÞ;M
cutÞy A ½0;p=4� þ SFðD ~RRt

;M cutÞt A ½0;1�

¼ SFðDPðy;PÞ;M
cutÞy A ½0;p=4�:

This proves the first line of (5.25). The second line of (5.25) and the last assertion
follow from Proposition 5.5. r

Notice that by symmetry the same argument also shows that

~hhðD;MÞ ¼ ~hhðDI�PM� ;M
þÞ þ ~hhðDPM� ;M

�Þ:

Applying Theorem 4.4 allows us to extend Theorem 5.9 as follows.

Theorem 5.10. Let D be a Dirac operator on M and let NHM split M into Mþ and

M�. Then for P A GryðAÞ and Q A Gryð�AÞ we have, with F ¼ Fg,

~hhðD;MÞ � ~hhðDP;M
þÞ � ~hhðDQ;M

�Þ

¼ � 1

2pi
tr logðFðPÞFðPMþÞ�Þ � 1

2pi
tr logðFðPM�ÞFðQÞ�Þ

þ 1

2pi
tr logðFðI � PM�ÞFðPMþÞ�Þ:

In particular,

~hhðD;MÞ ¼ ~hhðDPMþ ;M
þÞ þ ~hhðDPM� ;M

�Þ þ 1

2pi
tr logðFðI � PM�ÞFðPMþÞ�Þ:ð5:27Þ

Proof. It was remarked after (2.4) that PMþ A GryðAÞ and PM� A Gryð�AÞ. Conse-
quently, I � PM� A GryðAÞ and hence I � PM� � PMþ is trace class.

Theorem 5.9 implies that ~hhðD;MÞ � ~hhðDP;M
þÞ � ~hhðDQ;M

�Þ is equal to
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ð5:28Þ
�ð~hhðDP;M

þÞ � ~hhðDPMþ ;M
þÞÞ � ð~hhðDQ;M

�Þ � ~hhðDPM� ;M
�ÞÞ

�ð~hhðDPM� ;M
�Þ � ~hhðDI�PMþ ;M

�ÞÞ:

Applying Theorem 4.4 to the three summands in (5.28) and taking (5.6) into account
gives the assertion. r

The formula (5.27) expresses the ~hh-invariant of D on M in terms of two ~hh-invariants
intrinsic to the two pieces Mþ and M� of the decomposition and an ‘‘interaction’’
term.

6 Maslov index and winding number

In this section we compile the necessary material about the Maslov index and the
winding number. One important comment is that in constructing the various invar-
iants (winding number, Maslov index, triple index, spectral flow, and the branch of
the logarithm) conventions must be chosen to set signs and to handle degenerate
cases. In particular, care must be taken to ensure that the di¤erent possible con-
ventions are chosen compatibly. Thus, although some of the material we present here
is a generalization of ideas which appear in the literature, the subtleties arising in
organizing the conventions compatibly and extending the constructions from the
finite-dimensional to the infinite-dimensional context require the careful exposition
we present.

6.1. Winding number. Let H be a complex Hilbert space and denote by UðHÞ the
group of unitary operators on H. Similarly to (2.8), (2.9) we introduce the following
subspaces:

ð6:1Þ

U�ðHÞ :¼ fU A UðHÞ j �1 B specUg;

UFredðHÞ :¼ fU A UðHÞ j �1 B specess Ug;

UKðHÞ :¼ fU A UðHÞ jU � I is compactg;

UtrðHÞ :¼ fU A UðHÞ jU � I is trace classg:

The spaces U�ðHÞ and UFredðHÞ are not groups. It is well-known that the inclusion
UtrðHÞ ,! UKðHÞ is a homotopy equivalence and that UKðHÞ is homotopy equiv-
alent to the infinite unitary group UðyÞ ¼ lim

n!y
UðnÞ. Therefore, one has by Bott

periodicity

ð6:2Þ
p2kðUKðHÞÞ ¼ p2kðUtrðHÞÞ ¼ 0;

p2kþ1ðUKðHÞÞ ¼ p2kþ1ðUtrðHÞÞFZ;
k ¼ 0; 1; 2; . . .
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Furthermore, the isomorphism p1ðUtrðHÞÞ ! Z is given by the winding number. I.e.
if f : ½0; 1� ! UtrðHÞ is a closed C1-path then

windð f Þ :¼ 1

2pi

ð1

0

trð f ðtÞ�1
f 0ðtÞÞ dt:ð6:3Þ

Lemma 6.1. 1. The inclusion UKðHÞ ! UFredðHÞ is a weak homotopy equivalence,

2. For any U A UFredðHÞ there exists a smooth path f : ½0; 1� ! UFredðHÞ such that

f ð0Þ � I is of finite rank, f ð1Þ ¼ U, and such that dim kerð f ðtÞ þ IÞ is independent

of t.

Proof. 1. Let QðHÞ :¼ BðHÞ=KðHÞ be the Calkin algebra. Then the quotient map
s : BðHÞ ! QðHÞ sends UFredðHÞ onto fu A QðHÞ j �1 B spec ug ¼: U�QðHÞ. More-
over, UKðHÞ acts freely (from the left and right) on the fibers. Thus we obtain a
fibration UKðHÞ ! UFredðHÞ ! U�QðHÞ. The claim now follows since U�QðHÞ is
contractible.

To see the latter we note that for any C �-algebra A the set fu A A j u unitary,
�1 B spec ug is contractible. The contraction is given by HtðuÞ :¼ expðt log uÞ,
0a ta 1. This is well-defined since �1 B spec u.

2. Let H ¼ kerðU þ IÞlH1 ¼: H0 lH1. Then U splits into U ¼ �IH0
l ~UU and

�1 B spec ~UU . Now put f ðtÞ :¼ �IH0
l expðt log ~UUÞ. r

In view of this lemma the winding number (6.3) extends to a group isomorphism

wind : p1ðUFredðHÞÞ ! Z:

Next we define the winding number for not necessarily closed paths in UFredðHÞ.
Namely, as it was noted in the previous proof the space U�ðHÞ is contractible. Hence
the natural map p1ðUFredðHÞÞ ! p1ðUFredðHÞ;U�ðHÞÞ is a bijection and thus we
obtain a winding number defined for curves f : ð½0; 1�; f0; 1gÞ ! ðUFredðHÞ;U�ðHÞÞ.
More concretely, if f is such a curve then one chooses ~ff : ½0; 1� ! U�ðHÞ with
~ff ð0Þ ¼ f ð1Þ and ~ff ð1Þ ¼ f ð0Þ. Then f � ~ff is a closed curve in UFredðHÞ and one puts
windð f Þ :¼ windð ~ff � f Þ. Since U�ðHÞ is contractible it is clear that windð f Þ is well-
defined independently of the choice of ~ff .

Finally, we choose a convention to define the winding number for a curve whose
endpoints do not lie in U�ðHÞ: let f : ½0; 1� ! UFredðHÞ be a continuous curve. �1 is
an isolated point in the spectrum of f ðtÞ since �1 B specessð f ðtÞÞ. We may therefore
choose an e > 0 such that for all j A ½�e; e�, j0 0, we have �1 B specð f ð jÞeijÞ,
j ¼ 0; 1. Now define

windð f Þ :¼ windð fe�ieÞ:ð6:4Þ

The winding number has the following properties:
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1. Path Additivity: Let f1; f2 : ½0; 1� ! UFredðHÞ be continuous paths with f2ð0Þ ¼
f1ð1Þ. Then

windð f1 � f2Þ ¼ windð f1Þ þ windð f2Þ:

2. Homotopy invariance: Let f1; f2 be continuous paths in UFred. Assume that there is
a homotopy H : ½0; 1� � ½0; 1� ! UFred such that Hð0; tÞ ¼ f1ðtÞ, Hð1; tÞ ¼ f2ðtÞ and
such that dim kerðHðs; 0Þ þ IÞ, dim kerðHðs; 1Þ þ IÞ are independent of s. Then
windð f1Þ ¼ windð f2Þ.

3. If f : ½0; 1� ! UtrðHÞ is a C1-curve then

windð f Þ ¼ 1

2pi

�Ð1
0

trð f ðtÞ�1
f 0ðtÞÞ dt� trðlog f ð1ÞÞ þ trðlog f ð0ÞÞ

�
;ð6:5Þ

where the logarithm is normalized as in (4.11).

We note in passing that the winding number may be interpreted as a spectral flow
across �1 [4], [28]. Namely, the winding number of a path f : ½0; 1� ! UFredðHÞ can
be calculated as follows: choose a subdivision 0 ¼ t0 < t1 < � � � < tn ¼ 1 and 0 <
ej < p, j ¼ 0; . . . ; n� 1, such that �eij B specessð f ðtÞÞ for t A ½tj; tjþ1� and jjja ej and
moreover �eGiej B spec f ðtÞ for t A ½tj; tjþ1�. Then put

ð6:6Þ
windð f ðtÞÞtjatatjþ1

:¼ #ðspecð f ðtjþ1ÞÞX f�eij j 0 < j < ejgÞ

� #ðspecð f ðtjÞÞX f�eij j 0 < j < ejg;

where eigenvalues are counted with multiplicity. Finally,

windð f Þ ¼
Pn�1

j¼0

windð f ðtÞÞtjatatjþ1
:ð6:7Þ

Definition 6.2. Let U A UKðHÞ and V A UFredðHÞ. Then the double index twðU ;VÞ
A Z is defined as follows: choose continuous paths f : ½0; 1� ! UKðHÞ, g : ½0; 1� !
UFredðHÞ such that f ð0Þ ¼ gð0Þ ¼ I and f ð1Þ ¼ U , gð1Þ ¼ V . Then put twðU ;VÞ
:¼ windð f Þ þ windðgÞ � windð fgÞ. twðU ;VÞ is defined accordingly if U A UFredðHÞ,
V A UKðHÞ or U ;V A UFredðHÞ, UV A UKðHÞ.

Proposition 6.3. The double index tw is well-defined. It has the following properties:

1. (Homotopy invariance) If f : ½0; 1� ! UKðHÞ, g : ½0; 1� ! UFredðHÞ are continu-

ous paths then

twð f ð1Þ; gð1ÞÞ � twð f ð0Þ; gð0ÞÞ ¼ windð f Þ þ windðgÞ � windð fgÞ:
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In particular, if dimkerð f ðtÞ þ IÞ, dim kerðgðtÞ þ IÞ and dimkerð f ðtÞgðtÞ þ IÞ are
independent of t then twð f ð1Þ; gð1ÞÞ ¼ twð f ð0Þ; gð0ÞÞ.

2. If U ;V A UtrðHÞ then

twðU ;VÞ ¼ 1

2pi
ðtr logUV � tr logU � tr logVÞ:ð6:8Þ

3. For any U A UFredðHÞ we have

twðI ;UÞ ¼ twðU ; IÞ ¼ 0 and twðU ;U�1Þ ¼ �dimkerðU þ IÞ:

Proof. First note that if U A UKðHÞ and V A UFredðHÞ then since U � I is com-
pact one has specessðUVÞ ¼ specessðVÞ, in particular UV A UFredðHÞ. If ~ff : ½0; 1� !
UKðHÞ, ~gg : ½0; 1� ! UFredðHÞ are di¤erent paths with ~ff ð0Þ ¼ ~ggð0Þ ¼ I , ~ff ð1Þ ¼ U ,

~ggð1Þ ¼ V then consider the closed paths f � ~ff� and g � ~gg�, where
~ff� denotes the path

~ff traversed in the opposite direction. Since the pointwise product of closed paths
ð f � ~ff�Þðg � ~gg�Þ is homotopic to ð f � ~ff�Þ � ðg � ~gg�Þ we find

ð6:9Þ
0 ¼ windð f � ~ff�Þ þ windðg � ~gg�Þ � windðð f � ~ff�Þðg � ~gg�ÞÞ

¼ �windð ~ff Þ þ windð f Þ � windð~ggÞ þ windðgÞ þ windð ~ff ~ggÞ � windð fgÞ:

This shows that tw is well-defined. The homotopy invariance is straightforward from
the definition and the homotopy invariance of the winding number.

2. This assertion is a consequence of (6.5).
3. That twðI ;UÞ ¼ twðU ; IÞ ¼ 0 follows immediately from the definition.
For U A UtrðHÞ the third identity follows from Assertion 2. (note the normaliza-

tion (4.11) of log). If U is arbitrary we apply Lemma 6.1 2. and choose a contin-
uous path f : ½0; 1� ! UFredðHÞ such that f ð1Þ ¼ U , f ð0Þ A UtrðHÞ and such that
dim kerð f ðtÞ þ IÞ is independent of t. The claim now follows from the homotopy
invariance 1. r

A priori tw cannot be defined on UFredðHÞ �UFredðHÞ (which might be desirable)
since for U ;V A UFredðHÞ in general UV B UFredðHÞ. Even if one assumes UV A
UFredðHÞ it is in general not possible to choose paths f ; g as above such that
f ðtÞgðtÞ A UFredðHÞ for all t.

Corollary 6.4. Let f : ½0; 1� ! UFredðHÞ be a continuous path. Then

windð f Þ þ windð f �1Þ ¼ dimkerð f ð0Þ þ IÞ � dimkerð f ð1Þ þ IÞ:

Proof. We apply Proposition 6.3 1. with g ¼ f �1 and obtain using Proposition
6.3 3.
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windð f Þ þ windð f �1Þ ¼ twð f ð1Þ; f ð1Þ�1Þ � twð f ð0Þ; f ð0Þ�1Þ

¼ �dimkerð f ð1Þ þ IÞ þ dimkerð f ð0Þ þ IÞ: r

6.2. Maslov Index. Let ðH; h ; i; gÞ be a Hermitian symplectic Hilbert space (cf. Def.
2.8). Thus g : H ! H is a unitary map satisfying g2 ¼ �1 and the eigenspaces EGi :¼
kerðgH iÞ have the same Hilbert space dimension. As in Section 2 we denote by

L :¼ fLHH jL closed subspace; gL ¼ L?g

the set of Lagrangian subspaces. As usual L A L will be identified with the orthogo-
nal projection PL onto L. The image of an orthogonal projection P in H is Lagran-
gian if and only if gPg� ¼ I � P. Similarly as in Section 2 we put

ð6:10Þ

GrðHÞ :¼ fP A BðHÞ jP ¼ P�;P2 ¼ P; gPg� ¼ I � Pg;

Gr
ð2Þ
FredðHÞ :¼ fðP;QÞ jP;Q A GrðHÞ; ðP;QÞ are a Fredholm pairg;

Grð2Þ� ðHÞ :¼ fðP;QÞ jP;Q A GrðHÞ; ðP;QÞ is an invertible pairg;

Gr
ð2Þ
K ðHÞ :¼ fðP;QÞ jP;Q A GrðHÞ;P�Q is compactg:

Notice that, in contrast to the definition of GrðAÞ, there is no Fredholm assumption
about elements of GrðHÞ. The corresponding spaces of Lagrangians are

ð6:11Þ
L

ð2Þ
Fred :¼ fðL1;L2Þ jL1;L2 A L; ðL1;L2Þ is Fredholmg;

Lð2Þ
� :¼ fðL1;L2Þ A Lð2Þ j ðL1;L2Þ is invertibleg:

Recall that a pair of Lagrangian spaces ðL1;L2Þ is Fredholm if L1 XL2 is finite-
dimensional and if L1 þ L2 is closed with finite codimension, and that the pair
ðL1;L2Þ is invertible if L1 XL2 ¼ f0g and L1 þ L2 ¼ H.

We emphasize the confusing fact that ðL1;L2Þ is Fredholm (resp. invertible) if and
only if the pair of projections ðI � PL1

;PL2
Þ is Fredholm (resp. invertible). There-

fore, a Fredholm pair of projections ðP;QÞ will sometimes be identified with the pair
ðkerP; imQÞ of Lagrangian subspaces.

As in Lemma 2.6 one sees that with respect to the decomposition H ¼ Ei lE�i

each P A GrðHÞ takes the form

P ¼ 1

2

I FðPÞ�

FðPÞ I

� �
;ð6:12Þ

where FðPÞ A UðEi;E�iÞ. Moreover, the map
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F : GrðHÞ ! UðEi;E�iÞð6:13Þ

is a di¤eomorphism. Furthermore, the pair ðP;QÞ is Fredholm if and only if
FðPÞFðQÞ� A UFredðE�iÞ and ðP;QÞ is invertible if and only if FðPÞFðQÞ� A U�ðE�iÞ
(cf. Lemma 2.6). Finally, P�Q is compact (resp. trace class) if and only if
FðPÞFðQÞ� A UKðE�iÞ (resp. UtrðE�iÞ).

Proposition 6.5. There are di¤eomorphisms

Gr
ð2Þ
FredðHÞGUFredðE�iÞ �UðEi;E�iÞ;

Gr
ð2Þ
K ðHÞGUKðE�iÞ �UðEi;E�iÞ;

Grð2Þ� ðHÞGU�ðE�iÞ �UðEi;E�iÞ;

Gr
ð2Þ
K ðHÞXGrð2Þ� ðHÞG ðUKðE�iÞXU�ðE�iÞÞ �UðEi;E�iÞ:

In particular the identifications induce homotopy equivalences

ðGr
ð2Þ
FredðHÞ;Grð2Þ� ðHÞÞF ðUFredðE�iÞ;U�ðE�iÞÞ

ðGr
ð2Þ
K ðHÞ;Grð2Þ� ðHÞXGrKðHÞÞF ðUKðE�iÞ;U�ðE�iÞXUKðE�iÞÞ:

Proof. In all four cases the di¤eomorphism is given by

ðP;QÞ 7! ðFðPÞFðQÞ�;FðPÞÞ:

By Kuiper’s Theorem [22] the space UðEi;E�iÞ is contractible and hence we obtain
the claimed homotopy equivalences. r

The Maslov Index [10], [26] is an integer invariant of Fredholm pairs of paths of
Lagrangian subspaces. We discuss it in terms of the projection picture of Lagrangian
subspaces. Let ð f ; gÞ : ½0; 1� ! Gr

ð2Þ
FredðHÞ be a continuous path (i.e. a pair of paths in

GrðHÞ such that ð f ðtÞ; gðtÞÞ is Fredholm for all t). The Maslov index Masð f ; gÞ is the
algebraic count of how many times ker f ðtÞ passes through im gðtÞ along the path.
We use the notation Masð f ; gÞ;Masðker f ; im gÞ;Masðim f ; ker gÞ interchangeably.
Indeed Masðker f ; im gÞ ¼ Masðg ker f ; g im gÞ ¼ Masðim f ; ker gÞ.

The Maslov index has the following properties (cf. [26], [10]):

1. Path Additivity: Let ð fj; gjÞ : ½0; 1� ! Gr
ð2Þ
FredðHÞ, j ¼ 1; 2, be continuous paths with

f2ð0Þ ¼ f1ð1Þ, g2ð0Þ ¼ g1ð1Þ then

Masðð f1; g1Þ � ð f2; g2ÞÞ ¼ Masð f1; g1Þ þMasð f2; g2Þ:
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2. Homotopy Invariance: Let ð fj ; gjÞ : ½0; 1� ! Gr
ð2Þ
FredðHÞ, j ¼ 0; 1, such that ð f0; g0Þ is

homotopic ð f1; g1Þ rel endpoints then

Masð f0; g0Þ ¼ Masð f1; g1Þ:

More generally, suppose that ðF ;GÞ is a homotopy from ð f0; g0Þ ¼ ðFð�; 0Þ;
Gð�; 0ÞÞ to ð f1; g1Þ ¼ ðF ð�; 1Þ;Gð�; 1ÞÞ and suppose that dimðkerF ð0; sÞX
imGð0; sÞÞ and dimðkerFð1; sÞX imGð1; sÞÞ are independent of s A ½0; 1�. Then
Masð f0; g0Þ ¼ Masð f1; g1Þ.

3. Normalization: This is done in two steps. First one requires that on paths with
endpoints in Grð2Þ� ðHÞ the Maslov index induces a group isomorphism p1ðGr

ð2Þ
FredðHÞ;

Grð2Þ� ðHÞÞ ! Z (since Grð2Þ� ðHÞFU�ðE�iÞ �UðEi;E�iÞ is contractible p1ðGr
ð2Þ
FredðHÞ;

Grð2Þ� ðHÞÞ is indeed a group). This determines Mas on paths with endpoints in

Grð2Þ� ðHÞ up to a sign. The sign is chosen as follows: if ðP;QÞ A Grð2ÞðHÞ then
MasðetgPe�tg;QÞ�eatae ¼ dimðkerPX imQÞ for e small enough.

Secondly, if ð f ; gÞ : ½0; 1� ! Gr
ð2Þ
FredðHÞ is an arbitrary continuous path then one

chooses e small enough such that the pairs ðesgf ð jÞe�sg; gð jÞÞ are invertible for
j ¼ 0; 1, 0 < sa e. Then one puts

Masð f ; gÞ :¼ Masðeegfe�eg; gÞ:ð6:14Þ

Actually, the normalization property 3 determines the Maslov index completely and
it may be viewed as its definition. Properties 1 and 2 follow from 3. There exist other
conventions for dealing with paths whose endpoints do not lie in Grð2Þ� ðHÞ and not all
of these conventions satisfy path additivity.

The discussion of the Maslov index works as well when the Hermitian symplectic
Hilbert space H is finite-dimensional. In this case the Fredholm condition is vacuous
and the Maslov index is defined on Grð2ÞðHÞ ¼ GrðHÞ �GrðHÞ. We will use the
Maslov index in both contexts; in the infinite-dimensional setting with H ¼ L2ðEjqX Þ
and in the finite-dimensional context with H ¼ kerA.

Theorem 6.6. For a continuous path ð f ; gÞ in Gr
ð2Þ
FredðHÞ the Maslov index is related to

the winding number by the equation

Masð f ; gÞ ¼ �windðFð f ÞFðgÞ�Þ:ð6:15Þ

Proof. In view of Proposition 6.5 the right hand side of (6.15) induces a group iso-
morphism p1ðGr

ð2Þ
FredðHÞ;Grð2Þ� ðHÞÞ ! Z. It remains therefore to check the sign con-

vention and the convention for paths with endpoints not in Grð2Þ� ðHÞ. Let ðP;QÞ A
Gr

ð2Þ
FredðHÞ. Then, by definition, MasðetgPe�tg;QÞ�eatae ¼ dimðkerPX imQÞ for e

small enough. A straightforward calculation shows

FðesgPe�sgÞ ¼ e�2sgFðPÞð6:16Þ
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and thus for e > 0 small enough we have, in view of Lemma 2.6 (3),

ð6:17Þ
windðFðesgPe�sgÞFðQÞ�Þ�easae ¼ dimðkerPX imQÞwindð�e�2isÞ�easae

¼ �dimðkerPX imQÞ:

To check the convention for paths with endpoints not in Grð2Þ� ðHÞ we consider the
paths ðesgPe�sg;QÞ, �ea sa 0, resp. 0a sa e. By definition we have for d > 0 small
enough

ð6:18Þ
MasðesgPe�sg;QÞ�easa0 ¼ MasðeðdþsÞgPe�ðdþsÞg;QÞ�easa0

¼ MasðetgPe�tg;QÞ�eþdasaþd ¼ dimðkerPX imQÞ;

and, analogously,

MasðesgPe�sg;QÞ0asae ¼ 0:ð6:19Þ

According to our convention for the winding number we have, on the other hand,

ð6:20Þ
windð�e�2isÞ�easa0 ¼ �1;

windð�e2isÞ0asae ¼ 0:

In view of (6.17) the proof is complete. r

Corollary 6.7. Let ð f ; gÞ be a continuous path in Gr
ð2Þ
FredðHÞ.

1. The Maslov index Mas�g with respect to the opposite symplectic structure is related

to Masg as follows: Mas�gð f ; gÞ ¼ Masgðg; f Þ.

2. Masgð f ; gÞ þMasgðg; f Þ ¼ dimðker f ð1ÞX im gð1ÞÞ � dimðker f ð0ÞX im gð0ÞÞ.

Proof. 1. In view of (5.6) and the previous theorem we find Mas�gð f ; gÞ ¼ �wind
ðF�gð f ÞF�gðgÞ�Þ ¼ �windðFgð f Þ�FgðgÞÞ ¼ windðFgðgÞFgð f Þ�Þ ¼ Masgðg; f Þ.

2. Using the previous Theorem and Corollary 6.4 we obtain (we write Mas instead
of Masg)

Masð f ; gÞ þMasðg; f Þ ¼ �windðFð f ÞFðgÞ�Þ � windððFð f ÞFðgÞ�Þ�1Þ

¼ dimðker f ð1ÞX im gð1ÞÞ

� dimðker f ð0ÞX im gð0ÞÞ: r

Finally we construct a version of the Maslov triple index in our context. The Maslov
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triple index as defined in (cf. [10, Sec. 8]) cannot be generalized to the present infinite-
dimensional setting. The reason is simply that interesting triples of Lagrangian sub-
spaces L1;L2;L3 such that ðL1;L2Þ; ðL2;L3Þ; ðL3;L1Þ are all Fredholm pairs are hard
to find.

However, motivated by [10, Prop. 8.4] we can construct a variant tm of the Maslov
triple index which is related to the double index tw: consider continuous paths f ; g;
h : ½0; 1� ! GrðHÞ such that ð f ; gÞ; ðg; hÞ; ð f ; hÞ map into Gr

ð2Þ
FredðHÞ and such that

f � g or g� h or f � h maps into the set of compact operators. If, say, f ðtÞ � gðtÞ
is compact for all t then, of course, it su‰ces to assume that ð f ðtÞ; hðtÞÞ is Fredholm
for all t. The Fredholmness of ð f ðtÞ; gðtÞÞ; ðgðtÞ; hðtÞÞ then follows. Now in view of
Theorem 6.6 and Proposition 6.3 we find

ð6:21Þ

Masð f ; gÞ þMasðg; hÞ �Masð f ; hÞ

¼ �windðFð f ÞFðgÞ�Þ � windðFðgÞFðhÞ�Þ þ windðFð f ÞFðhÞ�Þ

¼ �twðFð f ð1ÞÞFðgð1ÞÞ�;Fðgð1ÞÞFðhð1ÞÞ�Þ

þ twðFð f ð0ÞÞFðgð0ÞÞ�;Fðgð0ÞÞFðhð1ÞÞ�Þ:

This motivates the following definition.

Definition 6.8. Let P;Q;R A GrðHÞ such that ðP;QÞ; ðQ;RÞ; ðP;RÞ are Fredholm and
at least one of the di¤erences P�Q;Q� R;P� R is compact. Then we set

tmðP;Q;RÞ :¼ �twðFðPÞFðQÞ�;FðQÞFðRÞ�Þ:ð6:22Þ

and call tm the triple index of ðP;Q;RÞ.

The triple index tm inherits properties from tw in a straightforward way. For example,
one has the following.

Lemma 6.9. Let P;Q;R A GrðHÞ such that P�Q;Q� R are trace class. Then

(6.23) tmðP;Q;RÞ

¼ 1

2pi
ðtr logðFðPÞFðQÞ�Þ þ tr logðFðQÞFðRÞ�Þ � tr logðFðPÞFðRÞ�ÞÞ: r

We will have occasion below to use the homotopy invariance of the triple index.

Lemma 6.10. Let P;Q;R : ½0; 1� ! GrðHÞ be paths in GrðHÞ so that ðP;QÞ; ðQ;RÞ;
ðP;RÞ map into Gr

ð2Þ
FredðHÞ and at least one of the di¤erences P�Q;Q� R;P� R
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maps into the set of compact operators. Suppose further that dimðkerPðtÞX imQðtÞÞ,
dimðkerQðtÞX imRðtÞÞ, and dimðkerPðtÞX imRðtÞÞ are independent of t. Then

tmðPð0Þ;Qð0Þ;Rð0ÞÞ ¼ tmðPð1Þ;Qð1Þ;Rð1ÞÞ:

Proof. By (6.21) we have

ð6:24Þ
tmðPð0Þ;Qð0Þ;Rð0ÞÞ � tmðPð1Þ;Qð1Þ;Rð1ÞÞ

¼ MasðP;QÞ þMasðQ;RÞ �MasðP;RÞ:

Now the claim follows immediately from the homotopy invariance of the Maslov
index. r

We defined the triple index in such a way that formulas become short. A drawback of
this is that tm is not antisymmetric in the variables, as the following proposition
shows.

Proposition 6.11. Let P;Q;R A GrðHÞ such that ðP;QÞ; ðQ;RÞ; ðP;RÞ are Fredholm

and at least one of the di¤erences is compact. Then

ð6:25Þ

tmðP;R;QÞ ¼ �tmðP;Q;RÞ þ dimðkerQX imRÞ;

tmðQ;P;RÞ ¼ �tmðP;Q;RÞ þ dimðkerPX imQÞ;

tmðR;Q;PÞ ¼ �tmðP;Q;RÞ þ dimðkerPX imQÞ

þ dimðkerQX imRÞ � dimðkerPX imRÞ:

Moreover,

tmðP;P;QÞ ¼ tmðQ;P;PÞ ¼ 0 and tmðP;Q;PÞ ¼ dimðkerPX imQÞ:ð6:26Þ

Proof. We prove (6.26) first. From Proposition 6.3 and the definition of tm we infer

ð6:27Þ

tmðP;P;QÞ ¼ �twðI ;FðPÞFðQÞ�Þ ¼ 0;

tmðQ;P;PÞ ¼ �twðFðQÞFðPÞ�; IÞ ¼ 0;

tmðP;Q;PÞ ¼ �twðFðPÞFðQÞ�; ðFðPÞFðQÞ�Þ�1Þ ¼ dimðkerPX imQÞ:

To prove (6.25) we assume, without loss of generality, that Q� R is compact. Let
f ðtÞ :¼ ð1� tÞQþ tR, 0a ta 1. Then we obtain from Corollary 6.7 and (6.26)
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ð6:28Þ

tmðP;R;QÞ ¼ tmðP;R;QÞ � tmðP;Q;QÞ ¼ MasðP; f Þ þMasð f ;QÞ

¼ MasðP; f Þ �MasðQ; f Þ þ dimðkerQX imRÞ

¼ �tmðP;Q;RÞ þ dimðkerQX imRÞ;

tmðQ;P;RÞ ¼ MasðP; f Þ �MasðQ; f Þ þ tmðQ;P;QÞ

¼ �tmðP;Q;RÞ þ dimðkerPX imQÞ;

tmðR;Q;PÞ ¼ Masð f ;QÞ �Masð f ;PÞ

¼ �MasðQ; f Þ þMasðP; f Þ þ dimðkerPX imQÞ

þ dimðkerQX imRÞ � dimðkerPX imRÞ: r

6.3. Symplectic reduction. We conclude this section with a discussion of symplectic
reduction in our infinite-dimensional context. We will use symplectic reduction in
Section 8.

Let ðH; h: ; :i; gÞ be a Hermitian symplectic Hilbert space with symplectic form
oðx; yÞ ¼ hx; gyi. For a subspace U HH the annihilator of U is defined to be

AnnðUÞ :¼ fx A H j Ey A U oðx; yÞ ¼ 0g ¼ ðgUÞ?:

A subspace U HH is called isotropic if U HAnnðUÞ.
Assume for the moment that H is finite-dimensional and that AnnðUÞHU . Then

o induces a symplectic structure on the quotient U=AnnðUÞ in a natural way.
Moreover, if LHH is Lagrangian then RUðLÞ :¼ LXU=LXAnnðUÞ is Lagrangian
in U=AnnðUÞ. RUðLÞ is called the symplectic reduction of L.

Proposition 6.12. Let ðH; h: ; :i; gÞ be a Hermitian symplectic Hilbert space, U HH a

closed subspace with AnnðUÞHU .
Suppose that LHH is a Lagrangian subspace such that LþAnnðUÞ is a closed

subspace of H. Then ðU X gU ; h: ; :i; gÞ is a Hermitian symplectic Hilbert space and

the orthogonal projection

PL;U :¼ projUXgU : LXU ! U X gU

has closed range isomorphic to LXU=LXAnnðUÞ. Moreover, RUðLÞ ¼ imPL;U is

Lagrangian in U X gU .

RUðLÞ is called the symplectic reduction of L with respect to U.

Remark 6.13. 1. For ðU X gU ; h: ; :i; gÞ to be Hermitian symplectic it is crucial that
there is at least one Lagrangian subspace LHH with LþAnnðUÞ closed. To illus-
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trate the problem start with an infinite-dimensional Hermitian symplectic Hilbert
space ðH; h: ; :i; gÞ. Let ~HH :¼ HlH1, where H1 is another Hilbert space, and put
~gg :¼ gl i. Furthermore, pick a Lagrangian subspace LHH and put U :¼ LlH1

H ~HH. Then AnnðUÞ ¼ Ll 0 and U X gU ¼ 0lH1. Since ~gg acts by multiplication
by i on U X gU we conclude that ðU X gU ; h: ; :i; ~ggÞ is not Hermitian symplectic.
From the proposition we infer that for each Lagrangian subspace KH ~HH the space
K þAnnðUÞ is not closed.

2. Proposition 6.12 in particular applies if ðL;AnnðUÞÞ is a Fredholm pair of sub-
spaces.

3. The assignment L 7! RUðLÞ is not continuous, but is continuous along paths Lt

so that dimðLt XAnnðUÞÞ is constant. These facts are well-known and we omit the
examples.

Proof. Certainly U X gU is a Hilbert space and g leaves U X gU invariant. If we
can prove that imPL;U is Lagrangian in U X gU then from Lemma 2.7 we infer
dimðkerðgþ iÞXU X gUÞ ¼ dimðkerðg� iÞXU X gUÞ.

What remains, therefore, is to prove the second part of Proposition 6.12 without
using the fact that dimðkerðgþ iÞXU X gUÞ ¼ dimðkerðg� iÞXU X gUÞ.

We note first that we have an orthogonal direct sum decomposition

AnnðUÞl ðU X gUÞ ¼ U :ð6:29Þ

Also, imPL;U is an isotropic subspace of U X gU . In fact, if x A LXU then, since
L is Lagrangian, hx; gxi ¼ 0. Writing x ¼ xþ h, x A U X gU , h A AnnðUÞ then 0 ¼
hx; gxi ¼ hx; gxi ¼ hx; xi ¼ hPL;Ux; gPL;Uxi.

Next consider x A U X gU such that gðxÞ ? imPL;U . Thus for all x A LXU

we have hgðxÞ; xi ¼ hgðxÞ;PL;Uxi ¼ 0. Hence gðxÞ A ðLXUÞ? ¼ L? þU? ¼
gðLÞ þU? and consequently, since LþAnnðUÞ is closed, x A LþAnnðUÞ. We may
write x ¼ l þ h, l A L, h A AnnðUÞ. From x A U , h A AnnðUÞHU we infer l A LXU

and hence x ¼ PL;UðlÞ A imPðLÞ.
Summing up we have proved gððimPL;UÞ?ÞH imPL;U . Since imPL;U is isotropic

this implies imPL;U ¼ gððimPL;UÞ?Þ. Thus imPL;U is a Lagrangian (in particular
closed) subspace of U X gU .

From (6.29) it is now clear that imPL;U is isomorphic to LXU=LXAnnðUÞ. r

7 Splittings of manifolds and the h-invariant II

For the proof of Theorem 5.9, Lemma 5.2 was crucial. The proof of Lemma 5.2
depends on the Scott-Wojciechowski theorem 4.1. In this section we want to give
proofs of Lemma 5.2 and Theorem 5.9 which are independent of the Scott-
Wojciechowski theorem and which apply to all P A GrðAÞ. We only use (a mild
generalization of ) Theorem 5.8. Moreover, we derive generalizations of two results
due to L. Nicolaescu [26]. This in turn leads to a nicer version of the splitting formula
for the h-invariant which involves our version of the Maslov triple index.
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We first introduce a setting which slightly generalizes the one described in Section
2. Let X be a compact Riemannian manifold with boundary qX ¼ Y q Z, i.e. the
boundary is a disjoint union of two (not necessarily connected) manifolds. We assume
that in collars U ¼ UY and UZ we have D ¼ gY

d
dx
þ AY

� �
(resp. D ¼ gZ

d
dx
þ AZ

� �
)

and that the Gi-eigenspaces of gY ðgZÞ acting on kerAY ðkerAZÞ have the same
dimension. The latter does not follow as in section 2; rather it is an assumption. We
fix once and for all a PZ A GrðAZÞ. Then we can define the Calderón projector
(relative to PZ) in GrðAY Þ. Write again A instead of AY . It will be convenient to
address Y ;Z as boundary components although Y ;Z are not assumed to be con-
nected.

The results of Sections 2 to 5 generalize verbatim to this more general setting. Also
Theorem 5.8 applies to this setting since all proofs work locally in a collar of the
separating hypersurface. The advantage of this setting is that it allows in particular to
glue cylinders of the form ½0; e� �N with di¤erent boundary conditions on the ends to
a manifold.

Lemma 7.1 (cf. [24, Lemma 2.5]). Let M ¼ ½0; e� �N and D ¼ g d
dx
þ A

� �
as before.

Moreover, let P;Q A GrðAÞ and denote by DP;Q be the operator obtained by imposing

the boundary condition P at f0g �N and I �Q at feg �N. Then l A specDP;Q if and

only if �l A specDQ;P. In particular,

hðDP;QÞ ¼ �hðDQ;PÞ; dim kerDP;Q ¼ dimkerDQ;P:

Proof. The proof is exactly the same as the proof of [24, Lemma 2.5]. Namely, the
isometry

T : L2ð½0; e�;L2ðEjNÞÞ ! L2ð½0; e�;L2ðEjNÞÞ; Tf ðxÞ :¼ gf ðe� xÞ

maps the domain of DP;Q onto the domain of DQ;P and it anticommutes with D.
Hence T �DP;QT ¼ �DQ;P and we are done. r

Now let M be a Riemannian manifold with boundary containing a separating hyper-
surface NH ðMnqMÞ. Let D be a Dirac operator as in Section 5; i.e. in a collar
neighborhood ½�e; e� �N of N, D has the form D ¼ g d

dx
þ A

� �
as in (2.1). Moreover,

we assume that theGi-eigenspaces of g acting on kerA have the same dimension.
Define M cut;MG as in Section 5. We assume that on the boundary components of
ðqMGÞnN self-adjoint boundary projections have been fixed once and for all.

Lemma 7.2. For any P A GrðAÞ we have ~hhðD;MÞ � ~hhðDP;M
þÞ � ~hhðDI�P;M

�Þ A Z.

Proof. Denote by M cut
e the manifold with boundary obtained by removing ½�e; e� �N

from M. As in Lemma 7.1 for P;Q A GrðAÞ we denote by hðDP;Q; ½�e; e� �NÞ the
h-invariant of the operator on ½�e; e� �N obtained from D by imposing the boundary
condition P at f�eg �N and the boundary condition I �Q at feg �N. The modZ
gluing formula for the h-invariant (5.24) then implies
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~hhðD;MÞ1 ~hhðDPþlðI�PþÞ;M
cut
e Þ þ ~hhðDPþ;Pþ ; ½�e; e� �NÞ modZð7:1Þ

for Pþ ¼ PþðLÞ the Atiyah-Patodi-Singer projection with respect to a Lagrangian
subspace LH kerA. One easily checks that kerDPþ;Pþ ¼ f0g, hence Lemma 7.1
implies

~hhðDPþ;Pþ ; ½�e; e� �NÞ ¼ 0:ð7:2Þ

Also by Lemma 7.1

ð7:3Þ

~hhðDPþ;P; ½�e; 0� �NÞ þ ~hhðDP;Pþ ; ½0; e� �NÞ

¼ 1

2
dim kerðDPþ;P; ½�e; 0� �NÞ þ 1

2
dimkerðDP;Pþ ; ½0; e� �NÞ

¼ dimkerðDP;Pþ ; ½0; e� �NÞ A Z:

Plugging this into (7.1) and applying again the modZ splitting formula for the h-
invariant we get

ð7:4Þ

~hhðD;MÞ1 ~hhðDPþlðI�PþÞ;M
cut
e Þ þ ~hhðDPþ;P; ½�e; 0� �NÞ

þ ~hhðDP;Pþ ; ½0; e� �NÞ

1 ~hhðDP;M
þÞ þ ~hhðDI�P;M

�Þ modZ: r

Lemma 7.3. Lemma 5.2 holds for all P0;P1 A GrðAÞ.

Proof. We freely use the notations of Lemma 5.2 and its proof. By Lemma 7.2 we
have for all t

ð7:5Þ
~hhðDQt

;M cutÞ � ~hhðDQ0
;M cutÞ

¼ ð~hhðDQt
;M cutÞ � ~hhðD;MÞÞ � ð~hhðDQ0

;M cutÞ � ~hhðD;MÞÞ A Z:

Hence

d

dt
~hhðDQt

;M cutÞ ¼ 0ð7:6Þ

and the assertion follows from Lemma 3.4 and Lemma 5.1. r

Now we can prove the following considerable generalization of the splitting formula
for the h-invariant. In Theorem 5.9 we assumed that P A GryðAÞ. In the following
theorem we only require P A GrðAÞ.
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Theorem 7.4. The statement of Theorem 5.9 remains valid if P A GrðAÞ and Pt is a

smooth path in GrðAÞ from P to the Calderón projector.

Proof. The proof is exactly the same as the one of Theorem 5.9. One only has to
invoke Lemma 7.3 instead of Lemma 5.2. r

We next present generalizations of two results due to L. Nicolaescu [26].

Theorem 7.5. Let X be a manifold with boundary and DðtÞ, aa ta b, a smooth family

of Dirac operators. We assume that in a collar of the boundary D takes the form

g d
dx
þ AðtÞ

� �
as before. Let PðtÞ A GrðAðtÞÞ be a smooth family. Denote by PX ðtÞ the

Calderón projectors of DðtÞ, and LX ðtÞ ¼ imPX ðtÞ the Cauchy data spaces. Then

SFðDPðtÞðtÞÞt A ½a;b� ¼ MasðPðtÞ;PX ðtÞÞt A ½a;b� ¼ MasðkerPðtÞ;LX ðtÞÞt A ½a;b�:

Note that g is assumed to be constant. This is essential. Note that in [14, Theorem
4.3] the collar of qX was parametrized as ð�e; 0� � qX . Their formula is obtained by
invoking Corollary 6.7.

Proof. We first consider the case PðtÞ A GryðAðtÞÞ. Since DPX ðtÞðtÞ is invertible, its
spectral flow vanishes. We apply Lemma 3.4, Theorem 4.4, (6.5), and Theorem 6.6 to
calculate

SFðDPðtÞðtÞÞt A ½a;b� ¼ SFðDPðtÞðtÞÞt A ½a;b� � SFðDPX ðtÞðtÞÞt A ½a;b�

¼ ~hhðDPðbÞðbÞÞ � ~hhðDPX ðbÞðbÞÞ � ~hhðDPðaÞðaÞÞ þ ~hhðDPX ðaÞðaÞÞ

�
ð b

a

d

dt
ð~hhðDPðtÞðtÞÞ � ~hhðDPX ðtÞðtÞÞÞ dt

¼ 1

2pi
tr logðFðPðbÞÞFðPX ðbÞ�ÞÞ

� 1

2pi
tr logðFðPðaÞÞFðPX ðaÞ�ÞÞ

�
ð b

a

1

2pi

d

dt
tr logðFðPðtÞÞFðPX ðtÞÞ�Þ dt

¼ �windðFðPðtÞÞFðPX ðtÞÞ�Þt A ½a;b�

¼ MasðPðtÞ;PX ðtÞÞt A ½a;b�:

Now suppose that PðtÞ is arbitrary. Choose smooth paths P0ðtÞ in GrðAð0ÞÞ and
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P1ðtÞ A GrðAð1ÞÞ such that P0ð0Þ A GryðAð0ÞÞ, P0ð1Þ ¼ Pð0Þ, P1ð0Þ ¼ Pð1Þ, P1ð1Þ A
GryðAð1ÞÞ and such that

dimðkerP0ðtÞX imPX ð0ÞÞ and dimðkerP1ðtÞX imPX ð1ÞÞð7:7Þ

are independent of t. The existence of P0;P1 follows from Lemma 6.1 by considering
FðPð jÞÞFðPX ð jÞÞ�, j ¼ 0; 1. In view of (7.7) and Lemma 2.3 the dimension of the
kernels of DP0ðtÞð0Þ and DP1ðtÞð1Þ are constant and hence the spectral flow of DP0ðtÞð0Þ
and DP1ðtÞð1Þ vanishes. We may therefore compose the paths DP0ðtÞð0Þ;DPðtÞðtÞ;DP1

ðtÞ
without changing the spectral flow. Also MasðP0ðtÞ;PX ð0ÞÞ ¼ MasðP1ðtÞ;PX ð1ÞÞ
¼ 0 in view of (7.7). In sum, without loss of generality we may assume that the
family PðtÞ satisfies Pð0Þ A GryðAð0ÞÞ, Pð1Þ A GryðAð1ÞÞ. Now consider the path
FðPðtÞÞFðPX ðtÞÞ� in UFred. In view of Lemma 6.1 this path is homotopic rel end-
points to a path f ðtÞ A Uy. Putting ~PPðtÞ :¼ F�1ð f ðtÞFðPX ðtÞÞÞ A GryðAðtÞÞ we see
that ðPðtÞ;PX ðtÞÞ is homotopic rel endpoints to the path ð ~PPðtÞ;PX ðtÞÞ. Since homo-
topies with fixed endpoints neither change the spectral flow nor the Maslov index we
find

SFðDPðtÞðtÞÞt A ½a;b� ¼ SFðD ~PPðtÞðtÞÞt A ½a;b� ¼ Masð ~PPðtÞ;PX ðtÞÞt A ½a;b�

¼ MasðPðtÞ;PX ðtÞÞt A ½a;b�: r

We also give a generalization of Nicolaescu’s theorem for closed manifolds. The
result in the following form was first proven in [13].

Theorem 7.6. Let M be a split manifold as in Section 5 and let DðtÞ, aa ta b, be a

smooth path of Dirac type operators such that in a collar of the separating hypersurface

we have DðtÞ ¼ g d
dx
þ AðtÞ

� �
. Then

SFðDðtÞÞt A ½a;b� ¼ MasgðPM�ðtÞ; I � PMþðtÞÞt A ½a;b�

¼ MasðLM�ðtÞ;LMþðtÞÞt A ½a;b�:

Proof. Corollary 5.6 states that

SFðDðtÞÞt A ½a;b� ¼ SFðDI�PMþ ðtÞðtÞ;M�Þt A ½a;b�:ð7:8Þ

Applying Theorem 7.5 to the right hand side of (7.8) and using Corollary 6.7 yields

SFðDI�PMþ ðtÞðtÞ;M�Þt A ½a;b� ¼ Mas�gðI � PMþðtÞ;PM�ðtÞÞt A ½a;b�

¼ MasgðPM�ðtÞ; I � PMþðtÞÞt A ½a;b�;

finishing the proof. r
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Notice that the proof of Theorem 7.6 does not rely on Theorem 5.9, and in particular
does not use the result of [7].

Finally, we state the following nicer version of the gluing formula for the h-invariant.
We emphasize that the term tmðI � PM� ;P;PMþÞ, which was defined in Subsection
6.2, is an integer invariant which is defined completely in terms of the Hermitian
symplectic structure on L2ðEjNÞ.

Theorem 7.7. In the situation of Theorem 5.9, let P A GrðAÞ. Then

~hhðD;MÞ ¼ ~hhðDP;M
þÞ þ ~hhðDI�P;M

�Þ � tmðI � PM� ;P;PMþÞ:

Proof. We note again that I � PM� � PMþ is trace class (cf. the proof of Theorem
5.10). Thus I � PM� � PMþ is compact and hence the triple index tmðI � PM� ;P;
PMþÞ is well-defined for any P A GrðAÞ.

Let Pt, 0a ta 1, be a smooth path in GrðAÞ from P to the Calderón projec-
tor PMþ . Notice that MasgðI � PM� ;PMþÞ ¼ 0 since I � PM� and PMþ are constant
paths. From Theorem 7.4, Theorem 7.5, (6.21), Corollary 6.7, and Proposition 6.11
we infer

~hhðD;MÞ � ~hhðDP;M
þÞ � ~hhðDI�P;M

�Þ

¼ SFðDPt
;MþÞt A ½0;1� þ SFðDI�Pt

;M�Þt A ½0;1�

¼ MasgðPt;PMþÞt A ½0;1� þMas�gðI � Pt;PM�Þt A ½0;1�

¼ MasgðPt;PMþÞt A ½0;1� þMasgðI � PM� ;PtÞt A ½0;1�

�MasgðI � PM� ;PMþÞt A ½0;1�

¼ tmðI � PM� ;PMþ ;PMþÞ � tmðI � PM� ;P;PMþÞ

¼ �tmðI � PM� ;P;PMþÞ: r

8 Adiabatic stretching and applications to the Atiyah-Patodi-Singer r-invariant

For the purpose of computation, one weakness of the splitting formulas of Theorems
5.9, 5.10, and 7.7 is that it is di‰cult in practice to identify the Calderón projector. In
many applications it is more convenient to work with the Atiyah-Patodi-Singer pro-
jection PþðLÞ, or at least some finite rank perturbation of PþðLÞ, as a boundary
condition. According to Theorem 5.9, this requires knowing the spectral flow of DPt

and DI�Pt
along a path Pt starting at the Calderón projector and ending at PþðLÞ.

A natural choice of such a path is the path obtained by stretching the collar neigh-
borhood of the separating surface. According to a theorem of Nicolaescu [26], the
Calderón projector limits to a projection of the form P>n þ projL, where P>n is the
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projection to the span of the eigenvectors of A with eigenvalues greater than n and L

is a Lagrangian subspace of the (finite-dimensional) span of eigenvectors of A with
eigenvalues in the range ½�n; n�. The number n is the non-resonance level [26] of D
acting on Mþ and in particular is zero if and only if there are no L2 solutions to
Df ¼ 0 on the manifold obtained from Mþ by adding an infinite collar. If n ¼ 0, then
the limit of the Calderón projector is an Atiyah-Patodi-Singer projection PþðVÞ for a
particular Lagrangian V H kerA.

This approach works particularly well to study the odd signature operator and the
Atiyah-Patodi-Singer ra invariant [2], since the e¤ect of the Riemannian metric is
minimized in this important case. We present the details. The approach can be made
to work for arbitrary Dirac operators as well, however additional correction terms
appear corresponding to the 1-parameter family of operators acting on M and MG as
the collar of the separating hypersurface is stretched to infinity. We will make some
comments about the case of general Dirac operators at the end of this section.

8.1. The odd signature operator. Let X be a compact manifold of dimension 2nþ 1,
with (possibly empty) boundary qX 2n. Assume a collar of qX is isometric to
½0; eÞ � qX . Let a : p1ðX Þ ! UðnÞ be a representation. To a one can assign a flat
vector bundle, that is, a Cn bundle E ! X together with a flat connection B on E

so that the holonomy representation of B is equal to a. If qX is non-empty, we may
assume, by gauge transforming B if necessary, that B is in temporal gauge on the
collar, in other words there is a flat UðnÞ connection b on EjqX so that the restriction
of B to the collar ½0; eÞ � qX is of the form

B½0; eÞ�qX ¼ q�ðbÞ;

where q : ½0; eÞ � qX ! qX is the projection to the second factor.
Let dB : WpðX ;EÞ ! Wpþ1ðX ;EÞ and db : W

pðqX ;EjqX Þ ! Wpþ1ðqX ;EjqX Þ denote
the associated coupled DeRham operators. Note that d 2

B and d 2
b are zero since B and

b are flat. The cohomology of the complex ðW�ðX ;EÞ; dBÞ (resp. ðW�ðqX ;EjqX Þ; dbÞ)
is identified via the DeRham theorem with the singular cohomologyH �ðX ;Cn

a Þ (resp.
H �ðqX ;Cn

a Þ), where Cn
a denotes the local coe‰cient system determined by the rep-

resentation a.
The odd signature operator on X coupled to the flat connection B is the operator

DB :
L
p

W2pðX ;EÞ !
L
p

W2pðX ;EÞ

defined by

DBðbÞ ¼ i nþ1ð�1Þp�1ð�dB � dB�ÞðbÞ for b A W2pðX ;EÞ;

where � : WkðX ;EÞ ! W2nþ1�kðX ;EÞ denotes the Hodge � operator (see [2]).
The operator DB is a symmetric Dirac operator. Its square is the twisted Laplacian

acting on even bundle-valued forms:
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D2
B ¼ d �

BdB þ dBd
�
B:

In particular DB is self-adjoint if X has empty boundary and in that case its kernel can
be identified with the twisted cohomology group

L
p H

2pðX ;Cn
a Þ by the Hodge and

DeRham theorems. This implies that the dimension of the kernel of DB is indepen-
dent of the choice of Riemannian metric if X is closed.

Define a restriction map

r :
L
p

W2pðX ;EÞ !
L
k

WkðqX ;EjqX Þ

by the formula

rðbÞ ¼ i�ðbÞ þ i�ð�bÞ

where i : qX ,! X denotes the inclusion of the boundary.
To avoid confusion we denote the Hodge � operator on the boundary by �̂�, thus

�̂� : WkðqX ;EjqX Þ ! W2n�kðqX ;EjqX Þ:

We use �̂� to define

g :
L
k

WkðqX ;EjqX Þ !
L
k

WkðqX ;EjqX Þ

by

gðbÞ ¼ i nþ1ð�1Þp�1�̂�b if b A W2pðqX ;EjqX Þ;
i nþ1ð�1Þn�q�̂�b if b A W2qþ1ðqX ;EjqX Þ:

(

Finally, we define the operator

Ab :
L
k

WkðqX ;EjqX Þ !
L
k

WkðqX ;EjqX Þ

by

AbðbÞ ¼
�ðdb�̂� þ �̂�dbÞb if b A

L
k W2kðqX ;EjqX Þ;

ðdb�̂� þ �̂�dbÞb if b A
L

k W2kþ1ðqX ;EjqX Þ:

(

The following facts are routine to verify.

1. Ab is a self-adjoint Dirac operator on qX .

2. r induces an identification F :
L

p W2pð½0; eÞ � qX ;EÞ ! Cyð½0; eÞ;
L

k WkðqX ;
EÞÞ which is isometric with respect to the L2-structures. Moreover,
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FDBF
� ¼ g

q

qx
þ Ab

� �
;ð8:1Þ

where x denotes the collar coordinate.

3. gAb ¼ �Abg.

4. g2 ¼ �I .

5. Ab reverses the parity of forms.

6. Abdb ¼ �dbAb and Abd
�
b ¼ �d �

b Ab, where d
�
b ¼ ��̂�db�̂� is the L2-adjoint of db.

7. A2
b preserves the subspace WkðqX ;EjqX Þ for each k, and equals the twisted Lap-

lacian on k-forms, A2
b ¼ Db ¼ dbd

�
b þ d �

b db.

8. The kernel of Ab equals kerA2
b ¼ kerDb, which is identified using the Hodge

theorem with the DeRham cohomology of the complex ðWkðqX ;EjqX Þ; dbÞ. The
DeRham isomorphism identifies the DeRham cohomology with twisted coho-
mology H �ðqX ;Cn

a Þ, where a : p1qX ! UðnÞHGLðCnÞ is the holonomy repre-
sentation of the flat connection b.

The first five facts do not depend on B being a flat connection, and hold for any UðnÞ
connection in temporal gauge near the boundary. The last three depend on b being
flat.

For convenience we simplify the notation as follows. Let Weven
X denoteL

p W2pðX ;EÞ and let W�
qX denote

L
k WkðqX ;EjqX Þ. The L2 completion of W�

qX will
be denoted by L2ðW�

qX Þ. We will often drop the subscripts ‘‘B’’ and ‘‘b’’ and, for
example, write D for DB, A for Ab, and d for dB or db.

The self-adjoint operator A induces a spectral decomposition of L2ðW�
qX Þ. We

denote the m-eigenspace of A by Em. Given nb 0 we will also use the notation

Fþ
n ¼ spanL2fcm jAcm ¼ mcm; m > ng ¼

L
m>n

Em;

F�
n ¼ spanL2fcm jAcm ¼ mcm; m < �ng ¼

L
m<�n

Em;

Eþ
n ¼

L
0<man

Em;

and

E�
n ¼

L
�nam<0

Em:

Thus E�
n is the finite-dimensional span of the eigenvectors of A with eigenvalues

m in the range �na m < 0, Eþ
n corresponds to the range 0 < ma n (if n ¼ 0, then

EG
n ¼ 0). Similarly F�

n is the infinite-dimensional space spanned by eigenvectors with
eigenvalues m satisfying m < �n, and Fþ

n corresponds to m > n. In particular Fþ
0
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denotes the positive eigenspan and F�
0 the negative eigenspan of A. This gives an

orthogonal decomposition

L2ðW�
qX Þ ¼ F�

n lE�
n l kerAlEþ

n lFþ
n :ð8:2Þ

Another orthogonal decomposition of L2ðW�
qX Þ is the Hodge decomposition:

L2ðW�
qX Þ ¼ im dl kerAl im d �:ð8:3Þ

We introduce a notational convention: the decomposition 8.2 is compatible with the
operators d; d � in the sense that we have decompositions of domains:

ð8:4Þ
DðdÞ ¼ ðF�

n XDðdÞÞlE�
n l kerAlEþ

n l ðFþ
n XDðdÞÞ;

Dðd �Þ ¼ ðF�
n XDðd �ÞÞlE�

n l kerAlEþ
n l ðFþ

n XDðd �ÞÞ:

Note that E�
n l kerAlEþ

n consists of smooth sections hence ðE�
n l kerAlEþ

n ÞX
DðdÞXDðd �Þ ¼ E�

n l kerAlEþ
n . By slight abuse of notation we will write in the

sequel dð�ÞðFG
n Þ for the image of dð�Þ on FG

n XDðdð�ÞÞ.
The relations between the decompositions (8.2) and (8.3) are summarized in the

following useful lemma.

Lemma 8.1.

1. dðFG
n ÞHFH

n and d �ðFG
n ÞHFH

n .

2. Fþ
n ¼ dðF�

n Þl d �ðF�
n Þ ¼ ðker d : Fþ

n ! F�
n Þl ðker d � : Fþ

n ! F�
n Þ.

3. F�
n ¼ dðFþ

n Þl d �ðFþ
n Þ ¼ ðker d : F�

n ! Fþ
n Þl ðker d � : F�

n ! Fþ
n Þ.

4. dðE�mÞHEm and d �ðE�mÞHEm, and for m0 0, Em ¼ dðE�mÞl d �ðE�mÞ.

5. gðker dÞ ¼ ker d � and gðker d �Þ ¼ ker d.

Proof. If Ab ¼ mb, then Adb ¼ �dAb ¼ �mdb, and similarly Ad �b ¼ �md �b. This
proves the first assertion and the first part of the fourth assertion.

If b A Fþ
n , then b is orthogonal to kerA, since the decomposition (8.2) is orthogo-

nal. Since the decomposition (8.3) is also orthogonal, b has the orthogonal decom-
position b ¼ dtþ d �s. Write t ¼ t� þ tþ A F�

n lFþ
n , and similarly s ¼ s� þ sþ.

Then

b ¼ dt� þ dtþ þ d �s� þ d �sþ:

Since b A Fþ
n , the first assertion implies that dtþ ¼ 0 ¼ d �sþ, so that b ¼ dt� þ

d �s�. The second assertion follows from this and the consequence dðF�
n lFþ

n Þ ¼
ker d : F�

n lFþ
n ! F�

n lFþ
n of the DeRham theorem. The third assertion is proved

similarly, as is the second part of the fourth assertion.
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The last assertion follows from the identity d � ¼ ��̂�d�̂� and the fact that g equals �̂�
up to a non-zero constant. r

Of particular concern will be the symplectic structure on kerA. The isomorphism g

preserves kerA, satisfies g2 ¼ �I , and acts with signature zero, since ðqX ;AÞ bounds
ðX ;DÞ. Therefore kerA is a finite-dimensional Hermitian symplectic subspace of
L2ðW�

qX Þ.
Notice that the restrictions of h ; i, g, and o to kerA induce these structures on the

cohomology H �ðqX ;Cn
a Þ via the Hodge and DeRham isomorphisms. The inner

product h ; i and complex structure g depend on the choice of Riemannian metric on
qX , but the symplectic structure o does not: if b1 A kerA is a p-form and b2 A kerA is
a 2n� p form, then

oðb1; b2Þ ¼ hb1; gðb2Þi ¼ i r
ð
qX

b15b2ð8:5Þ

where the constant i r depends only on p and n (and we have suppressed the notation
for the inner product in the flat Cn bundle EjqX ). Since wedge products and cup
products correspond via the DeRham isomorphism, o coincides with the cup product
up to a power of i, and in particular is a homotopy invariant. To put this di¤erently,
the cup product, together with the standard UðnÞ-invariant Hermitian inner product
on Cn, induces a skew-hermitian form

o : H �ðqX ;CnÞ �H �ðqX ;CnÞ ! C; oðb1; b2Þ ¼ i rðb1 W b2ÞX ½qX �

which is a homotopy invariant of the pair ðqX ; ajqX Þ. Fixing a Riemannian metric
on qX induces a positive definite Hermitian inner product and an isomorphism g

on kerA. The Hodge and DeRham theorems define an isomorphism kerA !
H �ðqX ;Cn

a Þ which takes the form hx; gðyÞi to the form oðx; yÞ.
The following lemma collects some useful information about symplectic subspaces

and symplectic reduction. For more details about symplectic reduction in this setting
the reader should consult Section 6.3 and [26].

Lemma 8.2. 1. Let SHL2ðW�
qX Þ be a closed subspace satisfying gðSÞ ? S. Then

Sl gðSÞ is a Hermitian symplectic subspace of L2ðW�
qX Þ, and S is a Lagrangian sub-

space of Sl gðSÞ.

2. If nb 0, then F�
n lFþ

n , E
�
n lEþ

n , E
�
n l kerAlEþ

n , and dðEG
n Þl d �ðEH

n Þ are

Hermitian symplectic subspaces of L2ðW�
qX Þ.

3. Given a Lagrangian subspace LHL2ðW�
qX Þ so that ðL;F�

0 Þ form a Fredholm pair of

subspaces, then

RnðLÞ :¼
LX ðF�

n lE�
n l kerAlEþ

n Þ
LXF�

n

HE�
n l kerAlEþ

nð8:6Þ

is a Lagrangian subspace, called the symplectic reduction of L with respect to F�
n .
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Proof. 1. Notice that g preserves Sl gðSÞ. Let KGi denote theGi eigenspaces of g
acting on Sl gðSÞ. It is easy to check that since gðSÞ is orthogonal to S, the projec-
tions Sl gðSÞ ! KGi restrict to isomorphisms on S. Thus theGi eigenspaces of g on
Sl gðSÞ have the same dimension (or are both infinite). This shows that Sl gðSÞ is
a symplectic subspace of L2ðW�

qX Þ. Clearly S is a Lagrangian subspace of Sl gðSÞ.
2. For F�

n lFþ
n , take S ¼ F�

n and apply the first assertion. For E�
n lEþ

n ,
take S ¼ E�

n . For dðEG
n Þl d �ðEH

n Þ, take S ¼ dðEG
n Þ; then gðSÞ ¼ �̂�S ¼ �̂�dðEG

n Þ ¼
�̂�dð�̂�EH

n Þ ¼ d �ðEH
n Þ. That kerA is symplectic was discussed above; hence the direct

sum E�
n l kerAlEþ

n is symplectic.
3. We apply Proposition 6.12 with U ¼ F�

n lE�
n l kerAlEþ

n . We have
AnnðUÞ ¼ F�

n and U X gU ¼ E�
n l kerAlEþ

n . Since ðL;F�
0 Þ form a Fredholm

pair and F�
0 =F

�
n is finite-dimensional, also ðL;AnnðUÞÞ ¼ ðL;F�

n Þ is Fredholm. Con-
sequently LþAnnðUÞ is closed and we reach the desired conclusion using Proposi-
tion 6.12. r

In preparation for what follows we define the following enlargements of X. Given
rb 0 define

Xr ¼ ð½�r; 0� � qXÞWX

and

Xy ¼ ðð�y; 0� � qXÞWX :

Thus Xr has a collar of length r attached to X and Xy is obtained from X by at-
taching an infinitely long collar. Equation (8.1) can be used on the collar to define a
natural extension of D to Xr and Xy.

The key to identifying the adiabatic limit of the Calderón projector is the following
result.

Proposition 8.3. Suppose that the boundary of X is non-empty, and suppose that

b A Weven
X satisfies Db ¼ 0 and rðbÞ A F�

0 l kerA ¼ spanfcm j ma 0g. Then db ¼ 0,
dð�bÞ ¼ 0, and dðrðbÞÞ ¼ 0.

Proof. Naturality of the exterior derivative implies that dði�ðzÞÞ ¼ i�ðdzÞ for any
z A Wk

X . It su‰ces, therefore, to show that db ¼ 0 and dð�bÞ ¼ 0, since rðbÞ ¼ i�ðbÞ
þ i�ð�bÞ and hence

dðrðbÞÞ ¼ dði�ðbÞ þ i�ð�bÞÞ ¼ i�ðdb þ d � bÞ ¼ 0:

Following [1], since Db ¼ 0 and rðbÞ A F�
0 l kerA, b has a Fourier expansion on the

collar ½0; eÞ � qX of the form

bj½0; eÞ�qX ¼
P
m<0

cme
�xmcm þ k;ð8:7Þ
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where k A kerA, x A ½0; eÞ, and cm A Em. Equation (8.7) can be used to extend b to a
bounded form on Xy so that the extension still satisfies Db ¼ 0.

Notice that dk ¼ 0 since k A kerA and k is independent of the collar parameter.
Thus db decays exponentially on the infinite collar ð�y; 0� � qX . Write b ¼

P
b2p.

Then

hd � b2p; �db2ðp�1ÞiL2ðW �
Xr
Þ ¼ G

ð
Xr

d � b2p5b2ðp�1Þ

¼ G

ð
Xr

dð�b2p5db2ðp�1ÞÞ

¼ G

ð
qX�f�rg

i�ð�b2pÞ5i�ðdb2ðp�1ÞÞ:

The last step follows from Stokes’s theorem. As r increases to infinity, the last integral
converges to zero since �b2p is bounded on Xy and db2ðp�1Þ exponentially decays. It

follows that d � b2p and �db2ðp�1Þ are orthogonal in L2ðW2ðn�p�1Þ
Xy

Þ. Now

0 ¼ Db ¼ i nþ1 P
p

ð�1Þpðd � b2p þ �db2ðp�1ÞÞ;

with this sum expressed as a sum of homogeneous components. Thus d � b2p and
�db2ðp�1Þ both vanish for each p, and therefore d � b and �db both vanish. r

As an application of Proposition 8.3 we can identify the limiting values of extended

L2 solutions of Db ¼ 0 in the sense of [1]. Recall that this is the subspace of kerA
defined by

Va ¼ k

				 there exists a b A Weven
X with Db ¼ 0

and rðbÞ ¼ f� þ k A F�
0 l kerA

� �
:ð8:8Þ

The terminology is justified by the Fourier expansion (8.7). In light of the unique
continuation property for D (which says that for each l A LX there exists a unique b

with Db ¼ 0 and rðbÞ ¼ l), it is easy to see that Va has the alternative description as a
symplectic reduction:

Va ¼ R0ðLX Þ ¼
LX X ðF�

0 l kerAÞ
LX XF�

0

H kerA:ð8:9Þ

Equation (8.9) says that Va is the symplectic reduction of the Cauchy data space LX

with respect to subspace F�
0 . Using Lemma 8.2 it follows that Va is a Lagrangian

subspace of kerA.
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The kernel of A is identified via the Hodge and DeRham theorems with the coho-
mology H �ðqX ;Cn

a Þ. The next result identifies Va.

Corollary 8.4. The space Va of limiting values of extended L2 solutions to Db ¼ 0 on

Xy is identified via the Hodge and DeRham theorems with the image of the cohomo-

logy of X in the cohomology of qX (with local coe‰cients in the corresponding flat Cn

bundle):

Va ¼ im i� : H �ðX ;Cn
a Þ ! H �ðqX ;Cn

a Þ:

Proof. Proposition 8.3 shows that if b A Weven
X satisfies Db ¼ 0 and rðbÞ A F�

0 l kerA,
then b and �b are closed forms. Thus they represent classes in H �ðX ;Cn

a Þ. Since
rðbÞ ¼ i�ðbÞ þ i�ð�bÞ, it follows that rðbÞ is a closed form on qX representing a
class in im i� : H �ðX ;Cn

a Þ ! H �ðqX ;Cn
a Þ. The identification of cohomology with

harmonic forms takes ½rðbÞ� ¼ ½ f� þ k� to k and so

Va H im i� : H �ðX ;Cn
a Þ ! H �ðqX ;Cn

a Þ:

The space Va is a Lagrangian subspace, as is im i� : H �ðX ;Cn
a Þ ! H �ðqX ;Cn

a Þ by a
standard argument using Poincaré duality. Since any two Lagrangian subspaces of a
finite-dimensional symplectic vector space have the same dimension, Va ¼ im i�. r

It follows from Lemma 8.1 that EG
n ¼ dðEH

n Þl d �ðEH
n Þ, and so the decomposition

8.2 can be refined to

L2ðW�
qX Þ ¼ F�

n l dðEþ
n Þl d �ðEþ

n Þl kerAl dðE�
n Þl d �ðE�

n ÞlFþ
n :ð8:10Þ

The terms in this decomposition are arranged according to increasing eigenvalues.
We will find it convenient to rewrite this in a di¤erent order, as a symplectic direct
sum of symplectic subspaces:

L2ðW�
qX Þ ¼ ðF�

n lFþ
n Þl ðdðEþ

n Þl d �ðE�
n ÞÞl ðd �ðEþ

n Þl dðE�
n ÞÞl kerA:ð8:11Þ

We will refer to the decomposition (8.11) frequently. Notice that F�
n lFþ

n is infinite-
dimensional and the other three symplectic summands in this decomposition have
finite dimension.

There exists a nb 0 so that the Cauchy data space LX of D is transverse to F�
n . This

is because LX XF�
0 is finite-dimensional, and as n increases, LX XF�

n decreases to
zero. Nicolaescu calls the smallest such n the non-resonance level for D.

We can now state and prove a theorem identifying the limit of the Calderón pro-
jectors of D acting on Xr as r goes to infinity. Denote by Lr

X the Cauchy data space
(i.e. the image of the Calderón projector) of D acting on Xr ¼ ð½�r; 0� � qXÞWX .
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Theorem 8.5. Let X be an odd-dimensional manifold with boundary and D the odd

signature operator coupled to a flat connection B acting on X as above. Let nb 0 be

any number greater than or equal to the non-resonance level for D.
Then there exists a subspace

Wa H dðEþ
n ÞHF�

0

isomorphic to the image of

H evenðX ; qX ;Cn
a Þ ! H evenðX ;Cn

a Þ

so that if W?
a denotes the orthogonal complement of Wa in dðEþ

n Þ, then with respect to

the decomposition (8.11) of L2ðW�
qX Þ into symplectic subspaces, the adiabatic limit of

the Cauchy data spaces decomposes as a direct sum of Lagrangian subspaces:

lim
r!y

Lr
X ¼ Fþ

n l ðWa l gðW?
a ÞÞl dðE�

n ÞlVa;ð8:12Þ

where Va H kerA ¼ H �ðqX ;Cn
a Þ denotes the image of H �ðX ;Cn

a Þ ! H �ðqX ;Cn
a Þ.

Proof. Lemma 8.2 shows that the finite-dimensional vector space E�
n l kerAlEþ

n is
a symplectic subspace of L2ðW�

qX Þ.
Let RnðLX ÞHE�

n l kerAlEþ
n be the symplectic reduction of LX with respect to

the isotropic subspace F�
n as in Lemma 8.2:

RnðLX Þ ¼
LX X ðF�

n lE�
n l kerAlEþ

n Þ
LX XF�

n

¼ projE�
n lkerAlEþ

n
ðLX X ðF�

n lE�
n l kerAlEþ

n ÞÞ:

Then RnðLX Þ is a Lagrangian subspace of E�
n l kerAlEþ

n .
Nicolaescu’s theorem [26, Theorem 4.9] says

lim
r!y

Lr
X ¼

�
lim
r!y

erARnðLX Þ
�
lFþ

n :ð8:13Þ

(The sign in the exponent erA di¤ers from [26] because in that paper the collar of Xr is
parameterized as qX � ½0; r�.) Thus we need only to identify the limit of erARnðLX Þ.
To help with the rest of the argument the reader should observe that the dynamics of
erA favor the vectors with a non-zero component in eigenspaces corresponding to
positive eigenvalues.

Let m1 < m2 < � � � < mq denote the complete list of eigenvalues of A in the range
½�n; n�. Thus

E�
n l kerAlEþ

n ¼ Em1 lEm2 l � � �lEmq :
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Given l A RnðLX Þ, we use this decomposition to write

l ¼ ðl1; l2; . . . ; lqÞ:

Let mðlÞ denote the largest mi so that li is non-zero (and hence lmðlÞþ1 ¼ � � � ¼ lq ¼ 0).
Then

lim
r!y

erA
1

ermðlÞ
l

� �
¼ ð0; 0; . . . ; 0; lmðlÞ; 0; . . . ; 0Þ:

This shows that

lim
r!y

erARnðLX Þ ¼ Lm1 lLm2 l � � �lLmq HEm1 lEm2 l � � �lEmq ;

where

ð8:14Þ
Lm i

¼ projEm i
ðRnðLX ÞX ðEm1 l � � �lEm i

ÞÞ

¼ projEm i
ðLX X ðF�

n lEm1 l � � �lEm i
ÞÞ:

Write

L� ¼
L
mj<0

Lmj HE�
n ;

L0 ¼
L
mj¼0

Lmj H kerA;

and

Lþ ¼
L
mj>0

Lmj HE�
n ;

so that

lim
r!y

erARnðLX Þ ¼ L� lL0 lLþ HE�
n l kerAlEþ

n :

Set

Wa :¼ L�:ð8:15Þ

Lemma 8.6.

1. L0 ¼ Va.

2. The spaces

(a) Wa ¼ L�,
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(b) the image of H evenðX ; qX ;Cn
a Þ ! H evenðX ;Cn

a Þ,
(c) LX XF�

0 , and

(d) the L2 solutions of Dx ¼ 0 on Xy

are all isomorphic.

3. L� H dðEþ
n Þ.

Assuming these three facts, the rest of the proof of Theorem 8.5 is completed as
follows.

Note that Wa H dðEþ
n ÞH dðEþ

n Þl d �ðEþ
n Þ ¼ E�

n . We define W?
a to be the orthog-

onal complement of Wa in dðEþ
n Þ. Since

WalLþ ¼ L� lLþHE�
n lEþ

n ¼ ðdðEþ
n Þld �ðEþ

n ÞÞl ðdðE�
n Þld �ðE�

n ÞÞ

is a Lagrangian subspace (obtained by modding out L0 and kerA), it follows from
Lemma 8.1 that

Lþ ¼ dðE�
n Þl gðW?

a ÞH dðE�
n Þl d �ðE�

n Þ;

completing the proof of Theorem 8.5. r

Proof of Lemma 8.6. The first assertion follows immediately by comparing Equations
(8.9) and (8.14).

For the second assertion, Equation (8.14) shows that if m A L�, there exists a
mi < 0 and an

l ¼ ð f ; lm1 ; lm2 . . . ; lm i
Þ A ðF�

n lEm1 lEm2 l � � �lEm i
ÞXLX

with m ¼ lm i
. This sets up an identification of L� with F�

0 XLX . The unique contin-
uation property identifies this (via the restriction map r) with the kernel of D with
Pb0 boundary conditions, which, by Proposition 8.3 and Equation (8.7) (with k ¼ 0),
is the same as the space of L2 harmonic forms in Weven

Xy
. The space of L2 harmonic

p-forms is shown to be isomorphic to the image of HpðX ; qX ;Cn
a Þ ! HpðX ;Cn

a Þ
in [1, Proposition 4.9].

The third assertion also follows, since if l ¼ rðbÞ, then Proposition 8.3 says dl ¼
dðrðbÞÞ ¼ 0. But

0 ¼ dl ¼ df þ dlm1 þ dlm2 þ � � � þ dlm i

and since dðEmÞHE�m,

0 ¼ dlm i
¼ dm:
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Hence (since mi < 0)

m A kerðd : Em i
! E�m i

Þ ¼ dðE�m i
ÞH dðEþ

n Þ;

completing the proof of Lemma 8.6. r

Remark 8.7. Notice that W?
a denotes the orthogonal complement to Wa in the finite-

dimensional space dðEþ
n Þ, not in L2ðW�

qX Þ.

We adopt the following notation in the rest of this section to deal with boundary
conditions. Given a manifold with boundary X, the odd signature operator D ¼ DB

coupled to a flat connection B on X as above, and a Lagrangian subspace L A LFred,
then let hðD;X ;LÞ denote the h-invariant of the Dirac operator D with boundary
conditions given by the orthogonal projection to L. Thus,

hðD;X ;LÞ :¼ hðDprojL ;XÞ

in the previous notation. The same notation applies to the reduced h-invariant ~hh.
In a similar manner, given appropriate Lagrangian subspaces L;M;N of a Her-

mitian symplectic Hilbert space we will use tmðL;M;NÞ to denote the triple index of
the corresponding projections tmðprojL; projM ; projNÞ (cf. Section 6.2).

Suppose that B and B 0 are flat connections on X in temporal gauge near qX such that
the holonomy representations a; a 0 : p1X ! UðnÞ of B;B 0 are conjugate. Then there
exists a gauge transformation g so that on a collar ½0; eÞ � qX , g ¼ p�ðhÞ for a gauge
transformation h on qX satisfying B 0 ¼ g � B. Hence the restrictions b; b 0 of B;B 0 to
the boundary satisfy b 0 ¼ h � b. We have

DB 0 ¼ DgB ¼ gDBg
�1;

and

Ab 0 ¼ Ahb ¼ hAbh
�1:

In particular, h takes the positive (resp. negative) eigenspan of Ab to the positive
(resp. negative) eigenspan of Ab 0 , and gives an isomorphism kerAb ! kerAb 0 which
coincides via the Hodge and DeRham theorems with the isomorphism H �ðqX ;Cn

a Þ
! H �ðqX ;Cn

a 0 Þ induced by conjugating the holonomies a; a 0. Thus if K H kerAb is
a Lagrangian subspace, the l-eigenspace of DB with Fþ

0 ðbÞlK boundary conditions
is sent by g to the l-eigenspace of DB 0 with Fþ

0 ðb 0Þl hðKÞ boundary conditions.
Since any representation a : p1X ! UðnÞ is the holonomy representation of a flat

connection B, we conclude that given a representation a and a Lagrangian subspace
KHH �ðqX ;Cn

a Þ (recall that the symplectic structure o on H �ðqX ;Cn
a Þ is defined by

the cup product), the quantity hðD;X ;Fþ
0 lKÞ is unambiguously defined, i.e. it is
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independent of the choice of flat connection B in temporal gauge with holonomy
conjugate to a, and the Lagrangian in kerAb corresponding to K via the Hodge and
DeRham theorems is well defined. Of course hðD;X ;Fþ

0 lKÞ may depend on the
choice of Riemannian metric on X.

We can now turn to the splitting problem for the h-invariant of the odd signature
operator. As in earlier sections suppose that M ¼ Mþ WM� is a closed manifold
decomposed into 2 submanifolds along a separating hypersurface N. Assume that N
has a neighborhood isometric to N � ½�1; 1�. Suppose that B is a flat connection on
M in temporal gauge on N � ½�1; 1�.

As we have seen, because the outward normal for Mþ is the inward normal for
M�, the operators g and A for M� are related to those for Mþ by a change in signs.
This has the following consequences. First, whereas the conclusion of Theorem 8.5
identifies the limit of the Cauchy data spaces Lr

Mþ of D acting on Mþ
r , limr!y

Lr
Mþ as

Fþ
n l ðWþ;a l gðW?

þ;aÞÞl dðE�
n ÞlVþ;að8:16Þ

(in the decomposition (8.11)) for Wþ;a H dðEþ
n ÞHF�

0 a space isomorphic to the
image

imðH evenðMþ; qMþ;Cn
a Þ ! H evenðMþ;Cn

a ÞÞ

and Vþ;a H kerA a space isomorphic to

imðH evenðMþ;Cn
a Þ ! H evenðN;Cn

a ÞÞ:

For M� the conclusion is that lim
r!y

Lr
M� is

F�
n l dðEþ

n Þl ðgðW?
�;aÞlW�;aÞlV�;a;ð8:17Þ

where W�;a H dðE�
n ÞHFþ

0 is isomorphic to the image

imðH evenðM�; qM�;Cn
a Þ ! H evenðM�;Cn

a ÞÞ

and V�;a H kerA is a space isomorphic to

imðH evenðM�;Cn
a Þ ! H evenðN;Cn

a ÞÞ:

(We assume that n has been chosen greater than or equal to the non-resonance level
for D acting on both Mþ and M�.)

Theorem 7.7 calculates the h-invariant of D acting on M in terms of the h-
invariants of D on Mþ and M�. Take P to be the Atiyah-Patodi-Singer boundary
projection P ¼ PþðVÞ for some Lagrangian subspace V H kerA. Then Theorem 7.7
says
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ð8:18Þ
~hhðD;MÞ ¼ ~hhðD;Mþ;V lFþ

0 Þ þ ~hhðD;M�;F�
0 l gðVÞÞ

� tmðI � PM� ;PþðVÞ;PMþÞ:

(Recall that PMG denotes the Calderón projectors onto the Cauchy data spaces LMG.)

Theorem 8.8. Let D denote the odd signature operator coupled to a flat connection. For

any Lagrangian subspace V H kerA,

~hhðD;MÞ ¼ ~hhðD;Mþ;V lFþ
0 Þ þ ~hhðD;M�;F�

0 l gðVÞÞ

� tmðgðV�;aÞ;V ;Vþ;aÞ;

where tmðgðV�;aÞ;V ;Vþ;aÞ refers to the triple index in the finite-dimensional space

kerAGH �ðN;Cn
a Þ.

The triple index tmðgðV�;aÞ;V ;Vþ;aÞ vanishes if V ¼ Vþ;a or V ¼ gðV�;aÞ and so

~hhðD;MÞ ¼ ~hhðD;Mþ;Vþ;a lFþ
0 Þ þ ~hhðD;M�;F�

0 l gðVþ;aÞÞ

¼ ~hhðD;Mþ; gðV�;aÞlFþ
0 Þ þ ~hhðD;M�;F�

0 lV�;aÞ:

In particular, if H �ðN;Cn
a Þ ¼ 0, then

~hhðD;MÞ ¼ ~hhðD;Mþ;Fþ
0 Þ þ ~hhðD;M�;F�

0 Þ:

The main advantage that Theorem 8.8 has over Theorem 7.7 is that the Calderón
projectors have been replaced by the Atiyah-Patodi-Singer projections.

We postpone the proof of Theorem 8.8 until after two lemmas are in place. The
basic idea is to apply Lemma 6.10 to the paths obtained by stretching the Cauchy
data spaces to their adiabatic limits.

Lemma 8.9. Wþ;a lW�;a l ðVþ;a XV�;aÞ is isomorphic to H evenðM;Cn
a Þ.

Proof. For each integer k let (twisted coe‰cients in Cn
a are to be understood for all

cohomology groups)

Wk
G ¼ imðHkðMG; qMGÞ ! HkðMGÞÞ ¼ kerði�G : HkðMGÞ ! HkðNÞÞ

and let

V k
G ¼ imði�G : HkðMGÞ ! HkðNÞÞ:

Consider the map

Ck : HkðMþÞlHkðM�Þ ! HkðNÞ; Ckðmþ;m�Þ ¼ i�þðmþÞ � i��ðm�Þ
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in the Mayer-Vietoris sequence for M ¼ Mþ WN M�. Then there is a short exact
sequence

0 ! Wk
þ lWk

� ! kerCk !b V k
þ XV k

� ! 0;ð8:19Þ

where bðmþ;m�Þ ¼ i�1 ðmþÞ ¼ i�2 ðm�Þ. Moreover, the Mayer-Vietoris sequence gives
a short exact sequence

0 ! cokerCk�1 ! HkðMÞ ! kerCk ! 0:ð8:20Þ

Thus

dimHkðMÞ ¼ dim cokerCk�1 þ dimðV k
þ XV k

� Þ þ dimWk
þ þ dimWk

� :ð8:21Þ

Also

ð8:22Þ

dim cokerCk�1 ¼ dimHk�1ðNÞ=ðV k�1
þ þ V k�1

� Þ

¼ dimHk�1ðNÞ � dimV k�1
þ

� dimV k�1
� þ dimðV k�1

þ XV k�1
� Þ:

Combining (8.21) and (8.22) and summing up over k even one obtains

ð8:23Þ

P
dimH 2kðMÞ ¼

P
dimðV k

þ XV k
� Þ þ

P
dimW 2k

þ þ
P

dimW 2k
�

þ
P

dimH 2k�1ðNÞ �
P

dimV 2k�1
þ �

P
dimV 2k�1

� :

The symplectic space H �ðNÞ decomposes as a symplectic sum H evenðNÞlH oddðNÞ
(one way to see this is to notice that �̂� and hence g preserves the parity of a har-
monic form since N is 2n-dimensional). The Lagrangian subspace V �

þ ¼
P

V k
þ de-

composes accordingly into a sum of Lagrangian subspaces
L

V 2k
þ lV 2k�1

þ . Hence

dimð
L

V 2k�1
þ Þ ¼ 1

2 dimH oddðNÞ. Similarly dimð
L

V 2k�1
� Þ ¼ 1

2 dimH oddðNÞ. Thus
the last three terms in (8.23) cancel. Since WG;a ¼

L
W 2k

G and VG;a ¼
L

V k
G ,

dimH evenðMÞ ¼ dimðVþ;a XV�;aÞ þ dimWþ;a þ dimW�;a;

completing the proof of Lemma 8.9. r

Lemma 8.10. Let V H kerA be a Lagrangian subspace. Let Lr
MG denote the Cauchy

data space for D acting on MG
r ¼ ð½�r; 0� �NÞWMG when r < y and let Ly

MG be the

adiabatic limit lim
r!y

Lr
MG which was identified in Theorem 8.5.

1. The dimension of the intersection Lr
M� XLr

Mþ is independent of r A ½0;y�.
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2. The dimension of the intersection Lr
M� X ðFþ

0 lVÞ is independent of r A ½0;y�.

3. The dimension of the intersection ðF�
0 l gðVÞÞXLr

Mþ is independent of r A ½0;y�.

4. tmðgðLy
M�Þ;Fþ

0 lV ;Ly
MþÞ ¼ tmðgðV�;aÞ;V ;Vþ;aÞ.

Proof. 1. For r < y, the intersection Lr
M� XLr

Mþ is isomorphic to the kernel of DB

acting on the closed manifold Mr ¼ Mþ
r WM�

r obtained by stretching the collar of N.
But this kernel is a homotopy invariant, isomorphic to H evenðM;Cn

a Þ, and in partic-
ular its dimension is independent of r.

To compute Ly
M� XLy

Mþ , we use Theorem 8.5, or, more conveniently, its conse-
quences (8.16) and (8.17). These show that Ly

M� XLy
Mþ ¼ Wþ;a lW�;a l ðVþ;a X

V�;aÞ, which by Lemma 8.9 is also isomorphic to H evenðM;Cn
a Þ. Notice that the full

conclusion of Theorem 8.5 is used here.
2. and 3. are proven by the same argument. We prove 3. From the definition of

Vþ;a (8.9) there is an exact sequence

0 ! LMþ XF�
0 ! LMþ X ðF�

0 þ kerAÞ ! Vþ;a ! 0:

It follows easily that for any subspace V H kerA there is an exact sequence

0 ! LMþ XF�
0 ! LMþ X ðF�

0 þ gðVÞÞ ! Vþ;a X gðVÞ ! 0:ð8:24Þ

Lemma 8.6 identifies LMþ XF�
0 with the image

H evenðMþ; qMþ;Cn
a Þ ! H evenðMþ;Cn

a Þ;

and with Wþ;a. Thus the dimension of LMþ XF�
0 is independent of the length of

the collar of Mþ. Corollary 8.4 identifies Vþ;a with the image of H �ðMþ;Cn
a Þ !

H �ðqMþ;Cn
a Þ, hence its intersection with gðVÞ is independent of the length of the

collar as well. Thus the middle term in the exact sequence (8.24) is isomorphic to
Wþ;a l ðVþ;a X gðVÞÞ and in particular its dimension is independent of the length of
the collar; this shows that ðF�

0 l gðVÞÞXLr
Mþ is independent of r for r < y.

Now consider the case when r ¼ y. In the decomposition (8.11) of L2ðW�
NÞ,

F�
0 l gðVÞ ¼ F�

n l dðEþ
n Þl d �ðEþ

n Þl gðVÞ

and so using (8.16) shows that ðF�
0 l gðVÞÞXLy

Mþ equals

ðF�
n ldðEþ

n Þld �ðEþ
n Þl gðVÞÞX ðFþ

n lðWþ;al gðW?
þ;aÞÞldðE�

n ÞlVþ;aÞ

¼ Wþ;a l ðgðVÞXVþ;aÞ:

Therefore, ðF�
0 l gðVÞÞXLy

Mþ equals to Wþ;a l ðVþ;a X gðVÞÞ.
4. It follows immediately from the definition that the triple index is additive in

the following sense: let H;H 0 be Hermitian symplectic Hilbert spaces and P;Q;R
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(resp. P 0;Q 0;R 0) be projections in GrðHÞ (resp. GrðH 0Þ) such that the triple indices
tmðP;Q;RÞ; tmðP 0;Q 0;R 0Þ are well-defined. Then the triple index of ðPlP 0;QlQ 0;
RlR 0Þ is well-defined in the Hermitian symplectic Hilbert space HlH 0 and we
have

tmðPlP 0;QlQ 0;RlR 0Þ ¼ tmðP;Q;RÞ þ tmðP 0;Q 0;R 0Þ:

In the decomposition (8.11) we have

gðLy
M�Þ ¼ gðF�

n l dðEþ
n Þl ðgðW?

�;aÞlW�;aÞlV�;aÞ

¼ Fþ
n l d �ðE�

n Þl ðW?
�;a l gðW�;aÞÞl gðV�;aÞ;

Fþ
0 lV ¼ Fþ

n l d �ðE�
n Þl dðE�

n ÞlV ; and

Ly
Mþ ¼ Fþ

n l ðWþ;a l gðW?
þ;aÞÞl dðE�

n ÞlVþ;a:

Using the additivity of tm we see that tmðgðLy
M�Þ;Fþ

0 lV ;Ly
MþÞ equals

tmðFþ
n ;F

þ
n ;F

þ
n ÞF�

n lFþ
n
þ tmðd �ðE�

n Þ; d �ðE�
n Þ;Wþ;a l gðW?

þ;aÞÞdðEþ
n Þld �ðE�

n Þ

þ tmðgðW?
�;aÞlW�;a; dðE�

n Þ; dðE�
n ÞÞd �ðEþ

n ÞldðE�
n Þ þ tmðgðV�;aÞ;V ;Vþ;aÞkerA

which equals tmðgðV�;aÞ;V ;Vþ;aÞkerA by Proposition 6.11. r

Proof of Theorem 8.8. Combining Lemma 8.10 and Lemma 6.10 to the paths of
Cauchy data spaces obtained by stretching the collars of MG to their adiabatic limit,
we see that (switching from projection to Lagrangian notation)

tmðI �PM� ;PþðVÞ;PMþÞ ¼ tmðgðLy
M�Þ;Fþ

0 lV ;Ly
MþÞ ¼ tmðgðV�;aÞ;V ;Vþ;aÞ:

It then follows from Theorem 7.7 (and in particular (8.18)) that

~hhðD;MÞ ¼ ~hhðDB;M
þ;V lFþ

0 Þ þ ~hhðD;M�;F�
0 l gðVÞÞ

� tmðgðV�;aÞ;V ;Vþ;aÞ:

Proposition 6.11 shows that tmðgðV�;aÞ;V ;Vþ;aÞ ¼ 0 if V ¼ gðV�;aÞ or Vþ;a. r

Remark 8.11. The Riemannian metric on the separating hypersurface N enters into
the formula of Theorem 8.8 via the map g : kerA ! kerA, since g equals the Hodge-

* operator up to a power of i. It follows that the correction term tmðgðV�;aÞ;V ;Vþ;aÞ
is not a homotopy invariant. In fact, suppose that varying the Riemannian metric
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moves the space gðV�;aÞ slightly (we use the Hodge and DeRham theorems to identify
this as a subspace of the fixed space H �ðN;Cn

a Þ). Then by choosing V HH �ðN;Cn
a Þ

carefully so that gðV�;aÞ passes through V as the metric is varied one can change
tmðgðV�;aÞ;V ;Vþ;aÞ.

To complete our analysis of the odd signature operator, we derive a formula which
calculates ~hhðD;MÞ in terms of intrinsic invariants of the pieces and a ‘‘correction
term’’ which only depends on finite-dimensional data, namely the subspaces VG;a H
kerA.

First we define the analogue of the map F : GrðAÞ ! UðEi;E�iÞ of Equation (2.7)
in the finite-dimensional space kerA. We use the Lagrangian notation, so that to any
Lagrangian subspace KH kerA we assign the unitary map

fðKÞ : ðEi X kerAÞ ! ðE�i X kerAÞð8:25Þ

by the formula

K ¼ fxþ fðKÞðxÞ j x A ðEi X kerAÞg:

Theorem 8.12. For the odd signature operator D coupled to a flat connection B with

holonomy a : p1M ! UðnÞ acting on a split manifold M ¼ Mþ WN M�,

~hhðD;MÞ ¼ ~hhðD;Mþ;Vþ;a lFþ
0 Þ þ ~hhðD;M�;F�

0 lV�;aÞ

þ dimðVþ;a XV�;aÞ �
1

2pi
tr logð�fðVþ;aÞfðV�;aÞ�Þ:

Remark 8.13. Corollary 8.4 implies that dimðVþ;a XV�;aÞ depends only on the homo-
topy type of the triple ðM;Mþ;M�Þ and the representation a : p1M ! UðnÞ.

Proof. Theorem 4.4 implies that

ð8:26Þ
~hhðD;Mþ;PþðgðV�;aÞÞÞ

¼ ~hhðD;Mþ;PMþÞ þ 1

2pi
tr logðFðPþðgðV�;aÞÞÞFðPMþÞ�Þ

and that

ð8:27Þ
~hhðD;Mþ;PþðVþ;aÞÞ

¼ ~hhðD;Mþ;PMþÞ þ 1

2pi
tr logðFðPþðVþ;aÞÞFðPMþÞ�Þ:

Subtracting (8.27) from (8.26) yields

h-invariant, Maslov index, and spectral flow 615



ð8:28Þ

~hhðD;Mþ;PþðgðV�;aÞÞÞ

¼ ~hhðD;Mþ;PþðVþ;aÞÞ þ
1

2pi
tr logðFðPþðgðV�;aÞÞÞFðPMþÞ�Þ

� 1

2pi
tr logðFðPþðVþ;aÞÞFðPMþÞ�Þ:

The di¤erence

1

2pi
tr logðFðPþðgðV�;aÞÞÞFðPMþÞ�Þ � 1

2pi
tr logðFðPþðVþ;aÞÞFðPMþÞ�Þ

is equal to

tmðPþðVþ;aÞ;PþðgðV�;aÞÞ;PMþÞ � 1

2pi
tr logðFðPþðVþ;aÞÞFðPþðgðV�;aÞÞÞ�Þ

by Lemma 6.9. Moreover, it follows easily from the definitions that

tr logðFðPþðVþ;aÞÞFðPþðgðV�;aÞÞÞ�Þ ¼ tr logðfðVþ;aÞfðgðV�;aÞÞ�Þ;

and since fðgðVÞÞ ¼ �fðVÞ, that

tr logðfðVþ;aÞfðgðV�;aÞÞ�Þ ¼ tr logð�fðVþ;aÞfðV�;aÞ�Þ:

Hence (8.28) reduces to

ð8:29Þ

~hhðD;Mþ;PþðgðV�;aÞÞÞ

¼ ~hhðD;Mþ;PþðVþ;aÞÞ þ tmðPþðVþ;aÞ;PþðgðV�;aÞÞ;PMþÞ

� 1

2pi
tr logð�fðVþ;aÞfðV�;aÞ�Þ:

We will show that

tmðPþðVþ;aÞ;PþðgðV�;aÞÞ;PMþÞ ¼ dimðVþ;a XV�;aÞ:ð8:30Þ

Assuming (8.30), the proof of Theorem 8.12 is completed by combining (8.29) and
Theorem 8.8, taking V ¼ gðV�;aÞ.

It remains, therefore, to prove (8.30). The proof is similar to the proof of Theorem
8.8. Lemma 8.10 implies that as the collar of Mþ is stretched to its adiabatic limit,
the dimension of the intersection of Lr

Mþ with Fþ
0 lVþ;a is independent of r A ½0;y�,

as is the dimension of the intersection of Lr
Mþ with Fþ

0 l gðV�;aÞ.
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Lemma 6.10 then implies that tmðPþðVþ;aÞ;PþðgðV�;aÞÞ;PMþÞ is equal to
tmðPþðVþ;aÞ;PþðgðV�;aÞÞ;Py

MþÞ. Using additivity of the triple index with respect to
the decomposition (8.11), the calculation of Ly

Mþ (8.16), and Proposition 6.11, we
conclude that

tmðPþðVþ;aÞ;PþðgðV�;aÞÞ;Py
MþÞ ¼ tmðVþ;a; gðV�;aÞ;Vþ;aÞ:

Proposition 6.11 then implies that

tmðVþ;a; gðV�;aÞ;Vþ;aÞ ¼ dimðVþ;a XV�;aÞ: r

It is convenient to introduce the following notation.

Definition 8.14. Let ðH; h ; i; gÞ be a finite-dimensional Hermitian symplectic space
(cf. Def. 2.8). Define a function of pairs of Lagrangian subspaces

mH : LðHÞ �LðHÞ ! R

by

mHðV ;WÞ ¼ � 1

pi
tr logð�fðVÞfðWÞ�Þ þ dimðV XWÞ

¼ � 1

pi

P
l A specð�fðVÞfðWÞ�Þ

l0�1

log l:

Here fðVÞ is the unitary map from the þi eigenspace Ei of g to the �i eigenspace E�i

of g whose graph is V. (If H ¼ 0 then set mHðV ;WÞ ¼ 0.) Recall that V XW is iso-
morphic to the �1-eigenspace of fðgVÞfðWÞ� ¼ �fðVÞfðWÞ� (cf. Lemma 2.6).

The function m has been investigated before, the notation is taken from [9].
Given an even-dimensional Riemannian manifold ðN; gÞ and a representation a :

p1N ! UðnÞ, define

mðVþ;V�; a; gÞ ¼ mH �ðN;C n
a ÞðVþ;V�Þ;

where we have used the Hodge Theorem (and hence the metric g on N ) to identify
H �ðN;Cn

a Þ with kerA (so that g and hence f make sense).

Thus Theorem 8.12 says that

ð8:31Þ
~hhðD;MÞ ¼ ~hhðD;Mþ;Vþ;a lFþ

0 Þ þ ~hhðD;M�;F�
0 lV�;aÞ

þ 1

2
dimðVþ;a XV�;aÞ þ

1

2
mðVþ;a;V�;a; a; gÞ:
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Using h-invariants instead of ~hh-invariants, (8.31) can be put in the more compact
form

hðD;MÞ ¼ hðD;Mþ;Vþ;a lFþ
0 Þþ hðD;Mþ;F�

0 lV�;aÞþmðVþ;a;V�;a; a; gÞð8:32Þ

using Equation (8.24) and Lemma 8.9.
The function mHðV ;WÞ has some useful properties which we list in the following

proposition.

Proposition 8.15.

1. mHðW ;VÞ ¼ �mHðV ;WÞ.

2. mH1lH2
ðV1 lV2;W1 lW2Þ ¼ mH1

ðV1;W1Þ þmH2
ðV2;W2Þ.

3. If ht : H ! H, t A ½0; 1� is a continuous family of symplectic automorphisms, then

mHðhtðVÞ; htðWÞÞ is continuous in t. r

Proof. The first assertion follows immediately from the definition of mH . The second
assertion is clear. For the third, notice that dimðhtðVÞX htðWÞÞ is independent of t,
and that the �1 eigenspace of �fðhtðVÞÞfðhtðWÞÞ� is isomorphic to htðVÞX htðWÞ.
In particular the �1 eigenspace of �fðhtðVÞÞfðhtðWÞÞ� is constant dimensional, and
so t 7! logð�fðhtðVÞÞfðhtðWÞÞ�Þ is continuous. These facts imply that mHðhtðVÞ;
htðWÞÞ is continuous in t. r

8.2. The Atiyah-Patodi-Singer ra-invariant for manifolds with boundary. We apply the
previous results to obtain information about the Atiyah-Patodi-Singer ra-invariant
[2]. Consider two flat connections: B with holonomy a, odd signature operator DB

and tangential operator Ab, and the trivial connection Y on the bundle Cn � X ! X

with (trivial) holonomy t, odd signature operator DY, and tangential operator Ay.
In expressions like hðD;X ;V lFþ

0 Þ the notation Fþ
0 is to be understood as the

positive eigenspan of the tangential operator A of D and V as a Lagrangian in kerA.
In particular, in a ‘‘mixed’’ expression like ~hhðDB;X ;Va lFþ

0 Þ � ~hhðDY;X ;Vt lFþ
0 Þ

the reader should understand that the first Fþ
0 refers to the positive eigenspan of Ab

and the second the positive eigenspan of Ay. These are in general unrelated since Ab

acts on the bundle E j qX and Ay acts on the trivial bundle.

Lemma 8.16. Let X be a Riemannian manifold with boundary, whose collar is isometric

to ½0; eÞ � qX . Let B be a flat connection on a compact manifold X in temporal gauge

near the boundary with holonomy a, and let Y denote the trivial connection, with trivial

holonomy t : p1ðXÞ ! UðnÞ.
Then the di¤erence

~hhðDB;X ;Va lFþ
0 Þ � ~hhðDY;X ;Vt lFþ

0 Þð8:33Þ

depends only on the di¤eomorphism type of X, the conjugacy class of the holonomy

representation of B and the restriction of the Riemannian metric to qX .
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Proof. We explained above why the h-invariant depends on the flat connection B only
through the conjugacy class of its holonomy representation.

By taking the double of X we obtain a closed Riemannian manifold M ¼ X W�X

¼ Mþ WM� over which the connections B and Y extend flatly.
Letting DB denote the extension to M, we know from [2] that the di¤erence

~hhðDB;MÞ � ~hhðDY;MÞð8:34Þ

is independent of the metric on M and depends only on the conjugacy class of the
holonomy representation of B (see the paragraph following this proof ).

Theorem 8.8 shows that

ð8:35Þ
~hhðDB;MÞ � ~hhðDY;MÞ ¼ ~hhðDB;M

þ;Va lFþ
0 Þ þ ~hhðDB;M

�;F�
0 l gðVaÞÞ

� ~hhðDY;M
þ;Vt lFþ

0 Þ � ~hhðDY;M
�;F�

0 l gðVtÞÞ:

Notice that by Corollary 8.4 the subspaces Va and Vt are independent of the
Riemannian metric on Mþ. Hence solving for ~hhðDB;M

þ;Va lFþ
0 Þ � ~hhðDY;M

þ;
Vt lFþ

0 Þ in (8.35) yields an expression which is unchanged when the Riemannian
metric is altered on the interior of X ¼ Mþ. r

We can now extend the definition of the Atiyah-Patodi-Singer ra-invariant to mani-
folds with boundary. Recall that the ra-invariant is defined in [2] for a closed mani-
fold M and a representation a : p1ðMÞ ! UðnÞ by

rðM; aÞ ¼ hðDBÞ � hðDYÞ

where B is a flat connection on M with holonomy a and Y denotes a trivial UðnÞ
connection. It is a di¤eomorphism invariant of the pair ðM; ½a�Þ where ½a� denotes the
conjugacy class of a. In terms of reduced h-invariants rðM; aÞ can be written:

rðM; aÞ ¼ 2ð~hhðDBÞ � ~hhðDYÞÞ � dimkerDB þ dimkerDY:

Since kerDB is isomorphic to H evenðM;Cn
a Þ this is the same as

ð8:36Þ
rðM; aÞ ¼ 2ð~hhðDB;MÞ � ~hhðDY;MÞÞ � dimH evenðM;Cn

a Þ

þ dimH evenðM;CnÞ:

Definition 8.17. Given a triple ðX ; a; gÞ, where

1. X is a compact odd-dimensional manifold with boundary,
2. a : p1ðX Þ ! UðnÞ is a representation, and
3. g is a Riemannian metric on qX ,
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choose a Riemannian metric on X isometric to ½0; eÞ � qX on a collar of qX and a flat
connection B with holonomy a in temporal gauge near the boundary. Then define

rðX ; a; gÞ :¼ hðDB;X ;Fþ
0 lVaÞ � hðDY;X ;Fþ

0 lVtÞ:

Reversing the orientation of X changes the sign of rðX ; a; gÞ, since the h-invariant
changes sign when the orientation is reversed.

In terms of reduced h invariants rðX ; a; gÞ can be expressed as:

rðX ; a; gÞ ¼ 2ð~hhðDB;X ;Fþ
0 lVaÞ� ~hhðDY;X ;Fþ

0 lVtÞÞ � dimWa þ dimWt;

where

Wa G imðH evenðX ; qX ;Cn
a Þ ! H evenðX ;Cn

a ÞÞ

and

Wt G imðH evenðX ; qX ;CnÞ ! H evenðX ;CnÞÞ:

This is because the kernel of DB acting on X with boundary conditions given by the
Atiyah-Patodi-Singer projection PþðVaÞ is isomorphic to Wa by Lemma 8.6 and
Equation (8.24) (with V ¼ Vþ;a), and similarly for DY.

Lemma 8.16 shows that rðX ; a; gÞ is independent of the choice of Riemannian
metric on the interior of X (as long as the metric is a product in some collar of the
boundary) and the choice of flat connection B with holonomy a.

We now can state the main result of this section.

Theorem 8.18. Suppose the closed manifold M contains a hypersurface N separating M

into Mþ and M�. Fix a Riemannian metric g on N. Suppose that a : p1ðMÞ ! UðnÞ is
a representation, and let t : p1ðMÞ ! UðnÞ denote the trivial representation.

Then

rðM; aÞ ¼ rðMþ; a; gÞ þ rðM�; a; gÞþmðVþ;a;V�;a; a; gÞ �mðVþ; t;V�; t; t; gÞ:

Proof. This follows by applying Equation (8.32) to B and Y and subtracting. r

It can be shown that the invariants rðMG; a; gÞ and mðVþ;V�; a; gÞ depend in general
on the choice of Riemannian metric g on the hypersurface N. We leave as an in-
triguing open problem to determine exactly how they depend on the metric g, and in
particular, how these invariants change if g is replaced by the pulled-back metric
f �ðgÞ for a di¤eomorphism f : N ! N.

8.3. Relationship to Wall’s non-additivity theorem. Theorems 8.18 and 8.12 should
be viewed as odd-dimensional counterparts of Wall’s non-additivity theorem for
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the signature [32]. Indeed these theorems give formulas which express the non-
additivity of the signature defect. The relationship between splitting theorems for
the h-invariant and Wall non-additivity is explored in Bunke’s article [9] and also
in [20].

To clarify the relationship between Wall’s theorem and Theorem 8.18, consider the
following situation. Suppose we are given two 4k-dimensional manifolds Zþ and Z�

with qZG ¼ MGWN M 0. Suppose that qM 0 ¼ N and that Z ¼ Zþ WM 0 Z�. Finally
suppose that a : p1Z ! UðnÞ is a representation and let t : p1Z ! UðnÞ denote the
trivial representation. The Atiyah-Patodi-Singer signature theorem [2, Theorem 2.4]
says that

SigntðZÞ � SignaðZÞ ¼ rðM; aÞ:

Similarly SigntðZþÞ � SignaðZþÞ ¼ rðMþ WM 0; aÞ and SigntðZ�Þ � SignaðZ�Þ ¼
rð�M 0 WM�; aÞ. On the other hand Wall’s theorem says that

SignaðZÞ ¼ SignaðZþÞ þ SignaðZ�Þ � sðVþ;a;V�;a;V0;a; aÞ;

where s is a correction term which depends on the relative positions of the subspaces
Vþ;a, V�;a and V0;a in H �ðN;Cn

a Þ. Similarly SigntðZÞ ¼ SigntðZþÞ þ SigntðZ�Þ�
sðVþ; t;V�; t;V0; t; tÞ:

Hence

ð8:37Þ

sðVþ;a;V�;a;V0;a; aÞ � sðVþ; t;V�; t;V0; t; tÞ

¼ SigntðZÞ � SigntðZþÞ � SigntðZ�Þ

� ðSignaðZÞ � SignaðZþÞ � SignaðZ�ÞÞ

¼ rðMþ WM�; aÞ � rðMþ WM 0; aÞ � rð�M 0 WM�; aÞ

Applying Theorem 8.18 we see that (8.37) is equal to ~ssa � ~sst, where

~ssa :¼ mðVþ;a;V�;a; a; gÞ �mðVþ;a;V0;a; a; gÞ �mðV0;a;V�;a; a; gÞ

and

~sst :¼ mðVþ; t;V�; t; t; gÞ �mðVþ; t;V0; t; t; gÞ �mðV0; t;V�; t; t; gÞ:

This motivates introducing the following notation. Given a Hermitian symplectic
space H, define the function of triples of Lagrangian subspaces

~ssH : LðHÞ �LðHÞ �LðHÞ ! Z

by
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~ssHðV ;W ;UÞ :¼ mHðV ;WÞ þmHðW ;UÞ þmHðU ;VÞ:ð8:38Þ

By definition ~ssa ¼ ~ssH �ðN;C n
a ÞðVþ;a;V�;a;V0;aÞ and similarly for ~sst. That ~ssH is an in-

teger can be seen by exponentiating and using the multiplicativity of the determinant:

expð2pi~ssHðV ;W ;UÞÞ

¼ ðexpðtr logð�fðVÞfðWÞ�Þ þ tr logð�fðWÞfðUÞ�Þ þ tr logð�fðUÞfðVÞ�ÞÞÞ�2

¼ detððð�1Þ3fðVÞfðWÞ�fðWÞfðUÞ�fðUÞfðVÞ�Þ�2Þ

¼ 1:

Proposition 8.19. The function ~ssH satisfies the following properties.

1. Given a permutation b, ~ssHðVbð1Þ;Vbð2Þ;Vbð3ÞÞ ¼ signðbÞ~ssHðV1;V2;V3Þ.

2. ~ssH1lH2
ðV1 lV2;W1 lW2;U1 lU2Þ ¼ ~ssH1

ðV1;W1;U1Þ þ ~ssH2
ðV2;W2;U2Þ.

3. If h : H ! H is a symplectic automorphism, then ~ssHðhðVÞ; hðWÞ; hðUÞÞ ¼ ~ssHðV ;
W ;UÞ.

4. Take H ¼ C2 with g ¼ 0 �1

1 0

� �
. Then ~ssHðCð1; 0Þ;Cð1; 1Þ;Cð0; 1ÞÞ ¼ 1.

Proof. The first and second assertions follow from the first and second assertions of
Proposition 8.15.

For the third assertion, we first claim that the group SpðHÞ of symplectic auto-
morphisms of H is path connected. To see this, fix a Lagrangian subspace V of H.
The map SpðHÞ ! LðHÞ taking g to gðVÞ is a fibration with fiber the subgroup
SpV ðHÞ consisting of those symplectic automorphisms which leave V invariant.
Next, SpV ðHÞ fibers over GLðVÞ by mapping g A SpV ðHÞ to the restriction gjV . The
fiber F of this map consists of those symplectic transformations g so that g restricts
to the identity on V. Writing H ¼ V l gðVÞ it is easy to see that F consists of all
matrices of the form I A

0 I

� �
with A an arbitrary real matrix. Thus F is contractible, and

since GLðVÞ is path connected, SpV ðHÞ is also path connected. Finally, since SpðHÞ
fibers over the path connected space LðHÞGUðnÞ with path connected fiber
SpV ðHÞ, it is itself path connected.

Choose a path ht from the identity matrix to h. The third assertion of Proposition
8.15 shows that mHðhtðVÞ; htðWÞÞ varies continuously in t. Thus the same is true of
the integer-valued function t 7! ~ssHðhtðVÞ; htðWÞ; htðUÞÞ. Therefore this function is
constant, completing the proof of the third assertion.

To prove the last fact, Notice that C2 ¼ Ei lE�i, where Ei is the span of ð1;�iÞ
and E�i is the span of ð1; iÞ. It is easy to calculate that with respect to these bases,

fðCð1; 0ÞÞ ¼ 1; fðCð1; 1ÞÞ ¼ �i; and fðCð0; 1ÞÞ ¼ �1:

Thus
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~ssHðCð1; 0Þ;Cð1; 1Þ;Cð0; 1ÞÞ

¼ � 1

pi
ðlogð�1 � iÞ þ logð�ð�iÞ � ð�1ÞÞ þ logð�ð�1Þð1ÞÞÞ

¼ 1: r

It follows from Proposition 8.19 and [10, Theorem 8.1] (suitably generalized to the
complex Hermitian case) that ~ssH is equal to the Maslov triple index tH defined in loc.
cit. Therefore, ~ssH depends only on the underlying symplectic form oðx; yÞ ¼ hx; gyi,
and not on the Hermitian metric. In particular ~ssa and ~sst are independent of the
Riemannian metric on N.

~ssH and the Maslov triple index tm defined in Section 6.2 are (of course) intimately
related. tm is, up to normalization, what Bunke [9] called the twisted Maslov triple
index. A direct calculation shows the following:

ð8:39Þ

~ssHðV ;W ;UÞ ¼ �tmðV ;W ;UÞ � tmðgV ;W ;UÞ � tmðV ; gW ;UÞ

� tmðV ;W ; gUÞ þ dimðV XWÞ

þ dimðW XUÞ þ dimðV XUÞ;

ð8:40Þ

tmðV ;W ;UÞ ¼ 1

4
ð~ssHðV ;W ;UÞ � ~ssHðgV ;W ;UÞ � ~ssHðV ; gW ;UÞ

� ~ssHðV ;W ; gUÞ þ 2 dimðgV XWÞ

þ 2 dimðW X gUÞ þ 2 dimðV X gUÞÞ:

Using Proposition 8.2 of loc. cit. we conclude that ~ssa equals Wall’s correction term
sðVþ;a;V�;a;V0;aÞ and similarly ~sst equals sðVþ; t;V�; t;V0; tÞ.

Using the argument outlined in [20] one can analyze Wall’s theorem using Theo-
rem 8.12 as follows.

In the context described above, the Atiyah-Patodi-Singer signature theorem states
that

SignaðZÞ ¼ n

ð
Z

L� hðDB;M
þ WM�Þ;

where L denotes the L-polynomial of the Riemannian curvature tensor on Z. Simi-
larly one obtains formulas for SignaðZGÞ

SignaðZþÞ ¼ n

ð
Zþ

L� hðDB;M
þ WM 0Þ
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and

SignaðZ�Þ ¼ n

ð
Zþ

L� hðDB;�M 0 WM�Þ:

Applying Theorem 8.12 and using Lemma 6.9 as before, one obtains

SignaðZÞ � SignaðZþÞ � SignaðZ�Þ ¼ ~ssa þ n

�Ð
Z

L�
Ð
Zþ

L�
Ð
Z�

L

�
:

At this point one can invoke Wall’s theorem and the identification of ~ssa with Wall’s
correction term given above to conclude that the integrals cancel. (This is not imme-
diate since the Riemannian metrics on Zþ and Z� need to be in cylindrical form near
the boundary to apply the Atiyah-Patodi-Singer theorem, but these do not glue to
give a smooth metric on Z in cylindrical form near the boundary.)

On the other hand, Wall’s theorem can be proven by showing that the integrals
cancel. This is discussed in [20] and so one obtains an analytic proof of Wall’s theo-
rem.

More importantly, Equation (8.38) establishes a direct relationship between the
correction terms ~ssa and ~sst for the non-additivity of the signature to the correction
term mðVþ;a;V�;a; a; gÞ �mðVþ; t;V�; t; t; gÞ for the non-additivity of the r invariant.

8.4. Adiabatic stretching and general Dirac operators. Some of the preceding exposi-
tion for the odd signature operator extends to the more general context of arbitrary
Dirac operators, and we discuss aspects of this now. The new feature of this approach
is that the role of adiabatic stretching in the splitting formula for the h-invariant is
clarified.

Suppose we are given an arbitrary Dirac operator D on a split manifold M ¼
Mþ WN M�. Assume as usual that D ¼ g d

dx
þ A

� �
on a collar of N. Let Mr denote the

manifold obtained by replacing the collar ½�1; 1� �N of N by the stretched collar
½�r; r� �N. Thus M0 ¼ M. Given 0a r < y, let Lr

MG denote the Cauchy data space
of the operator D acting on MG

r ¼ MG W ð½�r; 0� �NÞ, and let Ly
MG denote the

adiabatic limit lim
r!y

Lr
MG. Lemma 3.2 of [14] states that the path ½0;y� ! GrðAÞ

given by r 7! Lr
MG is continuous.

We let FG
n denote the span of l-eigenvectors of A forGl > n, and EG

n the span of
l-eigenvectors of A for 0 <Gla n, so that the L2-sections over N decompose as

F�
n lE�

n l kerAlEþ
n lFþ

n

or, as a symplectic direct sum

ðF�
n lFþ

n Þl ðE�
n lEþ

n Þl kerA:ð8:41Þ

Theorem 8.5 has a counterpart for general Dirac operators, but the conclusion is
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slightly weaker. The following theorem has a similar but simpler proof than Theorem
8.5. It is implied by Theorem 6.5 of [14].

Theorem 8.20. Let Vþ H kerA denote the limiting values of extended L2 solutions

on Mþ, so Vþ ¼ projkerAðLMþ X ðF� l kerAÞÞ. Let nb 0 be a number in the non-

resonance range of D, i.e. LMþ XF�
n ¼ 0. Then there exists a subspace Wþ HE�

n iso-

morphic to the space of L2 solutions to Db ¼ 0 on Mþ
y so that letting W?

þ HE�
n denote

the orthogonal complement of Wþ in E�
n ,

Ly
Mþ ¼ Fþ

n l ðWþ l gðW?
þ ÞÞlVþ

in the decomposition (8.41). Moreover, gðLy
MþÞXLMþ ¼ 0. r

Then we have the following theorem.

Theorem 8.21. With notation as above, for any r0 b 0,

~hhðD;Mr0Þ � ~hhðD;Mþ;Ly
MþÞ � ~hhðD;M�; gðLy

MþÞÞ

¼ MasðLr
M� ;Ly

MþÞr A ½r0;y� �MasðLr
M� ;Lr

MþÞr A ½r0;y�

Remark 8.22. In light of Theorems 7.5 and 7.6 the term MasðLr
M� ;Lr

MþÞr A ½r0;y�
in Theorem 8.21 can be thought of as the spectral flow of the family of oper-
ators on M obtained by stretching the collar from r0 to infinity. Similarly the term
MasðLr

M� ;Ly
MþÞr A ½r0;y� can be thought of as the spectral flow of the family on M�

obtained by using the projection to Ly
Mþ as boundary conditions and stretching the

collar of M� from r0 to infinity.

Proof. We prove this for r0 ¼ 0, the general case is obtained by reparameteriz-
ing. Let Pt denote the path of projections to the Cauchy data space Lr

Mþ ,
where t ¼ 1=ðrþ 1Þ. Applying Theorem 5.9 and Proposition 5.1 to the path Pt

we see that ~hhðD;Mr0Þ � ~hhðD;Mþ;Ly
MþÞ � ~hhðD;M�; gðLy

MþÞÞ equals SFðDPt
;MþÞþ

SFðDI�Pt
;M�Þ½0;1�, which by Theorem 7.5 equals

MasðPt;PMþÞ þMasðPM� ; I � PtÞ:ð8:42Þ

Switching to Lagrangian notation and parameterizing by r instead of t we can rewrite
(8.42) as

�MasðgðLr
MþÞ;LMþÞr A ½0;y� �MasðLM� ;Lr

MþÞr A ½0;y�:ð8:43Þ

We use the homotopy invariance of the Maslov index to simplify these terms. Con-
sider first MasðgðLr

MþÞ;LMþÞr A ½0;y�. We will show this term vanishes.
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The path r 7! gðLr
MþÞ is homotopic to the composite of r 7! gðLr

MþÞ and the con-
stant map at gðLy

MþÞ, and the constant path at LMþ is homotopic to the composite of
r 7! Lr

Mþ and its inverse. Since gðLr
MþÞXLr

Mþ ¼ 0 for all r, MasðgðLr
MþÞ;Lr

MþÞ ¼ 0
and so by path additivity of the Maslov index, MasðgðLr

MþÞ;LMþÞ ¼ �MasðgðLy
MþÞ;

Lr
MþÞ. Theorem 8.20 says that gðLy

MþÞXLr
Mþ ¼ 0 for r ¼ 0, but by reparameteriz-

ing we see that the intersection is zero for all r < y; obviously gðLy
MþÞXLy

Mþ ¼ 0.
Hence MasðgðLy

MþÞ;Lr
MþÞ ¼ 0 and so

MasðgðLr
MþÞ;LMþÞr A ½0;y� ¼ 0:ð8:44Þ

Consider now the term MasðLM� ;Lr
MþÞr A ½0;y�. The constant path at LM� is homo-

topic to the composite of r 7! Lr
M� and its inverse, and the path r 7! Lr

Mþ is homo-
topic to its composite with the constant path at Ly

Mþ . Therefore,

MasðLM� ;Lr
MþÞ ¼ MasðLr

M� ;Lr
MþÞ �MasðLr

M� ;Ly
MþÞ:ð8:45Þ

Substituting (8.44) and (8.45) into (8.43) finishes the proof. r

We finish this article by outlining a few ways to use Theorem 8.21 to obtain other
useful splitting formulas for the h-invariant. We will not give an exhaustive list, but
we note that many other useful formulas can be derived from these using the results
of Sections 5, 6, and 7. One can, of course, obtain other formulas by reversing the
roles of Mþ and M� in Theorem 8.21 and in these examples.

Example 8.23. Suppose that Ly
M� XLy

Mþ ¼ 0. Then there exists an r0 b 0 so that
Lr
M� XLr

Mþ ¼ 0 and Lr
M� XLy

Mþ ¼ 0 for all rb r0. Applying Theorem 8.21 we see
that if rb r0 then

~hhðD;MrÞ ¼ ~hhðD;Mþ;Ly
MþÞ þ ~hhðD;M�; gðLy

MþÞÞ

¼ ~hhðD;Mþ;Fþ
n lWþ l gðW?

þ ÞlVþÞ

þ ~hhðD;M�;F�
n lW?

þ l gðWþÞl gðVþÞÞ:

The hypothesis Ly
M� XLy

Mþ ¼ 0 is a technically simpler replacement of the hypothesis
‘‘no exponentially small eigenvalues’’ which appears in related results in the litera-
ture.

Example 8.24. Suppose that Db ¼ 0 has no L2 solutions on Mþ
y; i.e. that Wþ ¼ 0 in

Theorem 8.20. Then Ly
Mþ ¼ Fþ lVþ and so
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~hhðD;MÞ � ~hhðD;Mþ;Fþ lVþÞ � ~hhðD;M�;F� l gðVþÞÞ

¼ MasðLr
M� ;Fþ lVþÞr A ½0;y� �MasðLr

M� ;Lr
MþÞr A ½0;y�:

In other words, with respect to the Atiyah-Patodi-Singer boundary conditions given
by the projection to Fþ lVþ on Mþ and the projection to F� l gðVþÞ on M�, the
failure of the additivity of the ~hh-invariants is measured by MasðLr

M� ;Fþ lVþÞr A ½0;y�
�MasðLr

M� ;Lr
MþÞr A ½0;y�. As remarked above this is the di¤erence of the spectral flow

of D on M� with Fþ lVþ conditions as the collar of M� is stretched to infinity, and
the spectral flow of D on M as the collar is stretched to infinity.

Example 8.25. We can combine the previous two examples as follows. Suppose that
there are no L2 solutions on Mþ

y and M�
y (i.e. Wþ ¼ 0 ¼ W�) and that the limiting

values of extended L2 solutions are transverse (i.e. Vþ XV� ¼ 0 in kerA; this happens
for example if kerA ¼ 0). Then Ly

MG ¼ FG lVG and so both of the previous exam-
ples apply.

Hence there exists an r0 b 0 so that Lr
M� XLr

Mþ ¼ 0 and Lr
M� XLy

Mþ ¼ 0 for all
rb r0. Therefore,

~hhðD;MÞ � ~hhðD;Mþ;Fþ lVþÞ � ~hhðD;M�;F� l gðVþÞÞ

¼ SFðD;M�
r ;F

þ lVþÞr A ½0; r0� � SFðD;MrÞr A ½0; r0�:

This says that the failure of additivity of the ~hh-invariants with Atiyah-Patodi-Singer
boundary conditions is measured by the di¤erence of the spectral flow of D on M�

with Fþ lVþ conditions as the length of the collar of M� is stretched to r0, and the
spectral flow of D on M as the collar is stretched to r0.

In particular, if rb r0,

~hhðD;MrÞ ¼ ~hhðD;Mþ;Fþ lVþÞ þ ~hhðD;M�;F� l gðVþÞÞ:

This last formula appears in Bunke’s article [9]. The reader should compare this for-
mula with the formula of Theorem 8.8 (with V ¼ Vþ;a) which, by contrast, holds in
complete generality for the odd signature operator.

These examples, together with Theorem 8.20, underscore the point that di‰culties in
establishing simple splitting formulas for the h-invariant using Atiyah-Patodi-Singer
boundary conditions arise from the existence of L2 solutions on the two parts of the
decomposition of M. To put this in a positive perspective, the failure of the addi-
tivity of the h-invariant with Atiyah-Patodi-Singer boundary conditions is measured
by the spectral flow terms discussed in Remark 8.22 and symplectic invariants of the
Lagrangian subspaces WGl gðW?

G Þ in the finite-dimensional symplectic space
E�
n lEþ

n consisting of the span of the m-eigenvectors of A with �na ma n, m0 0. In
our analysis of the odd signature operator the formulas simplify because we can
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control these terms; the spectral flow terms vanish for topological reasons and the
symplectic invariants of the Lagrangian subspaces WGl gðW?

G Þ vanish because of

the additional control on WG that Theorem 8.5 provides over Theorem 8.20.
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Added in proof: The UCP (and hence Lemma 2.3) clearly holds only if each component of the
manifold has non-empty boundary. Hence our splitting theorems hold as stated if MG are
connected or have no closed components, but (obvious) modifications to the statement are
needed if M þ or M � contains a closed component.
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