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The twisted Alexander polynomial of a knot is applied in three areas of knot theory: invertibility of knots,
mutation, and concordance. Three examples are used to illustrate the utility of this invariant. First, a simple proof
that the knot 8

17
is non-invertible is given. It is then proved that 8

17
is not even concordant to its inverse. Finally,

the twisted polynomial is shown to distinguish the concordance class of the pretzel knot P(!3,5,7,2) from that of
its positive mutant, P(5,!3,7,2). This last example completes the solution to problem 1.53 of Kirby (1984, 1997)
asking for a relation between mutation and concordance. ( 1999 Elsevier Science Ltd. All rights reserved.

The twisted Alexander polynomial of a knot was first studied by Lin [15], and has since
been generalized and studied by a number of authors, including [5, 13, 24]. In our own work
[12], summarized below, we show that the polynomial is related to the twisted homology of
the infinite cyclic cover of the knot. We also prove that the twisted polynomial provides
a slicing obstruction related to Casson—Gordon invariants. In this paper we combine these
previous results with several new observations to provide three applications of the twisted
polynomial.

(1) Inversion: Distinguishing an oriented knot K in S3 from its inverse, that is K with its
orientation reversed, is among the most subtle problems in classical knot theory. It was not
until 1963 that Trotter [23] constructed an example of a non-invertible knot and it awaited
the late 1970s before procedures appeared that could address the general problem effec-
tively. (That the knot 8

17
is non-invertible was first proved by Kawauchi [6] and indepen-

dently by Bonahon—Siebenmann in 1979 using geometric methods. It is the least crossing
non-invertible knot, the only one with 8 crossings.) The problem has received renewed
attention in recent years with the question of whether or not finite-type Vassiliev invariants
or quantum invariants are ever sufficient to distinguish a knot from its inverse. Here, we will
show how the twisted Alexander polynomial distinguishes a knot from its inverse, using the
knot 8

17
as an example.

(2) Concordance to inverses: We next demonstrate that the twisted Alexander poly-
nomial offers an obstruction to a far more delicate problem than invertibility; it can be used
to prove that a knot is not even concordant to its inverse. The only previous results in this
realm were achieved by the second author in [17] and generalized by Naik in [19]. Using
the twisted polynomial we now have a simple tool to prove that a knot is not concordant to
its inverse. In this light the example of 8

17
is particularly interesting and we use it as our

primary example.
(3) Mutation and concordance. The operation of mutation is known to leave most

invariants of a knot unchanged; references include [7, 11, 14, 22]. Hence, the question was
asked [9, Problem 1.53] as to whether a knot and its mutant are always concordant.
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However, since a knot and its inverse are mutants, the answer is no by the concordance
results mentioned above. However, in the update to this question [10] it is asked whether
a knot and its positive mutant, defined below, are always concordant. As a final example, we
use the twisted polynomial to disprove this conjecture.

Together these examples provide deeper evidence for the rigidity that occurs in
classical knot concordance. For instance, in higher dimensions any general construction
on knots (such as reversing orientation) that preserves all abelian invariants does not
change the concordance class, and it follows that there is a corresponding geometric
procedure to build the concordance. In dimension three, however, these constructions do
change the concordance class, and hence these geometric procedures cannot work in
dimension four.

This work also serves to demonstrate the sensitivity of Casson—Gordon invariants in
distinguishing closely related knots. For instance, distinguishing a knot from a positive
mutant is among the more difficult problems in classical knot theory; distinguishing the
knots up to concordance is, obviously, a more difficult problem. One merit of our approach
is that it is algorithmic, easily applied (with the help of computer) to a wide range of
examples.

This paper is organized as follows. In the first section we give a general summary of the
twisted Alexander polynomial. A particular class of twisted polynomials arising from
meta-cyclic representations of the knot group is also presented, as is its use in distinguishing
8
17

from its inverse. Section 2 summarizes the relationship between a class of twisted
Alexander polynomials, Casson—Gordon invariants, and slicing obstructions. These results
are used to prove that 8

17
is not concordant to its inverse. Here the calculations of

Section 1 are essential. In the third section we prove that the pretzel knot P (!3,5,7,2)
and its positive mutant, P (5,!3,7,2), are not concordant.

1. TWISTED ALEXANDER POLYNOMIALS

Suppose that X is a finite complex and that we are given two homomorphisms,
e :n

1
(X)PZ and o :n

1
(X)PGL(»), where » is a finite-dimensional vector space over

a field F. The homomorphism e determines an infinite cyclic cover ½ of X, and we consider
the homology group H"H

1
(½, M»N), where the coefficients are twisted by the representa-

tion o restricted to n
1
(½). The group of deck transformations act on H, and hence H is

a finitely generated module over the PID, ""F[t, t~1]. As a module H""n=
i
"/Sp

i
(t)T,

where the Mp
i
(t)N is a finite set of non-zero polynomials. The product of the p

i
is denoted

*
X,e,o(t), and is called the twisted Alexander polynomial. It is well defined up to multiplica-

tion by atn where a3F and n is an integer. References for the twisted polynomial include [5,
12, 13, 15, 24], the relationship between the various descriptions is given in [12]. An
algorithm for computing it, based on a presentation for the group and using the Fox
Calculus, appears in [24].

1.1. Cyclic representations on cyclic covers of a knot

A particularly interesting class of examples arises in the following way. Let X
n
be the

n-fold cyclic cover of a knot complement, S3!K, where K is an oriented knot, and let XM
n
be

the associated branched cover. Suppose that we have a homomorphism s6 : H
1
(XM

n
)PZ

d
.

Via the inclusion this defines a representation s :H
1
(X

n
)PZ

d
. There is a one-dimensional

representation of Z
d
on Q(m

d
) given by multiplication by m

d
, where m

d
is the primitive d-root
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of unity e2ni@d, and this composed with s defines a one dimensional representation
o : n

1
(X

n
)PGL

1
(Q(m

d
))"Q(m

d
)!M0N. There is also a natural surjective representation

e :H
1
(X

n
)PZ induced by the covering map, H

1
(X

n
)PH

1
(S3!K)"Z. (The projection is

onto nZ, which is isomorphic to Z; note that the orientation of K determines the identifica-
tion of H

1
(S3!K) with Z.) If s6 is multiplied by an invertible element a in Z

d
, the effect on

the twisted polynomial is to apply the Galois automorphism pa to its coefficients, which lie
in Q(m

d
), where pa(md)"ma

d
. The associated twisted polynomial, *

Xn ,e,o(t), will be denoted
simply *

K,e,o(t).
One result that we need in this setting concerns connected sums. If the knot K is

a connected sum then the spaces and characters described above all split in a natural way.
The infinite cyclic cover used to define the twisted polynomial splits along a contractible
space, the infinite cyclic cover of an annulus. Hence, a simple Mayer—Vietoris argument
computes the polynomial in terms of those of the summands. The only slight complication
arises because for non-trivial representations the H

0
terms in the Mayer—Vietoris sequence

may be zero. Noting this, one quickly attains the following result in the case that
K"K

1
dK

2
with o restricting to o

i
on the factors:

*K,e,o(t)"*
K1, e,o1

(t) *K
2
,e,o

2
(t) or *K

1
,e,o

1
(t) *K

2
,e,o

2
(t) (1!t)

with the second case occurring if and only if o
1

and o
2

are non-trivial.

Example: 8
17

is not invertible.

The knot J"8
17

, illustrated in Fig. 1, offers a simple example of the representations
described above. Begin by fixing an orientation on J. Using standard methods (see for
instance [20]) one can compute that H

1
(XM

3
)"Z

13
=Z

13
. The group of deck transforma-

tions is a cyclic group of order 3 and acts on H
1
(XM

3
) via a map ¹. (Note: the orientation of

J determines ¹ ; if the orientation of J is reversed, ¹ is inverted.) As such, Z
13

=Z
13

splits
into eigenspaces of ¹, »

3
=»

9
. (In Z

13
the elements 3 and 9 are the primitive third roots of

unity.) There is a non-trivial character s6
3
:H

1
(XM

3
)PZ

13
vanishing on »

3
, and any such

character is a multiple of s6
3
by a non-zero element in Z

13
. Similarly, let s6

9
:H

1
(XM

3
)PZ

13
be

a fixed non-trivial character on H
1
(XM

3
) vanishing on »

9
. Using the algorithm of Wada [24]

the associated twisted polynomial can be computed; for particular choices of s6
3

and s6
9

the results are listed as *
817,e,o3

(t) and *
817, e,o9

(t) in the table concluding the paper. (The
fundamental group of X

3
must be computed to apply Wada’s algorithm; this can be done

Fig. 1.
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using the Reidemeister—Schreier process [18].) The table also gives *
817,e,o0

(t), where o
0

is
the trivial character.

The calculation of the previous paragraph can be repeated for the knot J*, the knot
8
17

with its orientation reversed. The cover, X*
3
, is the identical space as X

3
but the change

in the orientation of J leads to the following changes in e and o. Most simply, e is replaced
with !e. Also, ¹ is replaced with ¹~1 leading to a switch of eigenspaces. Hence, s6

3
for J*

corresponds as6
9

for J, where a is some non-zero element of Z
13

. It follows that
*
817

*,e,o3
(t)"pa(*817,~e,o9

(t))"pa(*817, e,o9
(t~1)). (Similarly, for the mirror image of the knot

8
17

,m (8
17

), one has *
m (817), e,o3

(t)"pa(*817,e,o9
(t~1)); the following argument then also

shows that 8
17

is not positive amphicheiral.)
In order to understand the effect of applying a Galois automorphism to the coefficients

of the polynomials given in the table, note that M(m
13

)iN
i/1,...,12

forms a basis of Q(m
13

) over
Q and that the action of pa is simply to permute these basis elements. In the table the
coefficients are expressed in terms of this basis and it now becomes clear that *

817,e,o3
(t) and

pa(*817,e,o9
(t~1)) are unequal for all a.

1.2. Comparison with Hartley’s approach

The proof by Hartley [4] that 8
17

is not invertible can be described as follows. From the
representations s

3
and s

9
one can construct representations of n

1
(S3!J ) onto a metacylic

group Z
13

JZ
3

(Z
13

is the normal subgroup in this semidirect product). To each such
representation there is an irregular 13-fold covering space. Hartley uses the homology of the
covers to distinguish J from J*. These spaces that Hartley considers have 3-fold covers that
are 13-fold covers of our spaces X

3
. Our twisted polynomial, evaluated at t"1, yields

homology information about that cover.
In the next section we will expand on relations to Casson—Gordon invariants. We note

here that in [1] the point is made that to obtain obstructions to slicing it is not sufficient to
use just a 3-fold cover; in [2] the behaviour of the 3d-fold covers as d goes to infinity is
explored. Alternatively, one can examine the homology of the infinite cyclic cover; this is the
approach of [2] and most other papers on Casson—Gordon invariants. The change from the
infinite cyclic cover to the 3-fold cover is represented by setting t"1 in the previous
paragraph.

2. CONCORDANCE TO INVERSES

In [12] it is shown that the twisted polynomial provides an obstruction to a knot being
slice. Here is the statement of the theorem. The representations and notation are those of the
previous section; that is, our representation acts on Q(m

d
) and is induced by a surjective

homomorphism s6 : H
1
(X1

n
)PZ

d
.

THEOREM. If K is an oriented slice knot in S3, p, q odd primes, so n"pr and d"qs, are
odd, then there is a subgroup M of H

1
(X1

n
) satisfying order(M)2"order(H

1
(XM

n
)) and so that

for all Z
d
-valued characters sN vanishing on M, the associated twisted polynomial of K factors

as af (t) f (t~1) (1!t)s. Here a3Q(m
d
) and s"1 if sN is non-zero and s"0 if sN is trivial.

In fact, M is the kernel of the map on first homology induced by the inclusion of XM
n
into

the branched cover of the 4-ball over the slice disc, and in particular, is invariant under the
automorphisms induced by the deck transformations.
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Theorem 1 is proved in [12] where its connection to Casson—Gordon invariants is
described, as we now summarize. Given a knot K and a character sN : H

1
(X1

n
)PZ

d
, as in the

previous section, Casson and Gordon defined an invariant q(K, sN ) taking values in the Witt
group ¼(Q(m

d
)(t))?Z

(2)
. Under the hypothesis of Theorem 1 they prove that q(K, s6 )

vanishes for the appropriate characters. Under suitable restrictions (d odd) there is a dis-
criminant invariant defined on W(Q(m

d
) (t))?Z

(2)
taking values in (Q (m

d
)(t)!M0N)/N, where

N is generated by products of the form af (t) f (t~1) . (See [3, 16] for further references on the
discriminant of Casson—Gordon invariants.) The twisted polynomial represents this invari-
ant. The proof of Theorem 1 in [12] is independent of this connection with Casson—Gordon
invariants.

2.1. 817 is not concordant to its inverse

We now prove that 8
17

is not concordant to its inverse 8
17*. We again abbreviate 8

17
by

J. Structurally, the proof is much like that used in [17]. However, the detailed analysis of
the Seifert pairing of a genus one knot in [17] would be difficult to repeat for the genus
3 knot 8

17
. It also appears difficult to compute Casson—Gordon signature invariants in the

present case. This example illustrates the simplicity of the twisted polynomial approach.
In general, if K is concordant to its inverse, the knot Kd!K* is slice. (In this notation

!K represents the inverse to K in the knot concordance group. Alternatively, !K is the
mirror image of K with orientation reversed and so !K*"m(K).) We prove that for
J"8

17
the above theorem applies to show that Jd!J* is not slice.

For now denote the branched covers of S3 over J and !J* by XM
3

and ½M
3
. The work of

the previous section shows that G"H
1
(X1

3
d½M

3
)"(Z

13
)2= (Z

13
)2. With respect to the

deck transformation ¹, G splits into a 3-eigenspace, Sv
3
,w

3
T (that is, the span of Mv

3
, w

3
N)

and a 9-eigenspace, Sv
9
,w

9
T, with the v

i
coming from the first summand, the w

i
from the

second.
A simple exercise shows that any ¹ invariant summand of (Z

13
)2 = (Z

13
)2 will be

spanned by eigenvectors. (In general, if a vector space is spanned by eigenvectors of a linear
transformation ¹, then so is any invariant subspace—the minimal polynomial for ¹

has distinct linear factors.) Hence, for the subgroup G
0

in Corollary 1 there are three
possibilities.

(1) G
0
"Sv

3
, w

3
T,

(2) G
0
"Sv

9
, w

9
T,

(3) G
0
"Sav

3
#bw

3
, cv

9
#dw

9
T.

In case (3) either a or b is nonzero and either c or d is nonzero in Z
13

.
In each case we must determine the set of Z

13
-valued characters on G vanishing on G

0
.

Letting the ordered set of characters Ms6
3
, s6

9
, sN @

3
, sN @

9
N be the Z

13
-dual basis to the ordered

basis Mv
9
, v

3
,w

9
,w

3
N of the Z

13
-vector space G, these are easily seen to be the following:

(1) GI
0
"SsN

3
, sN @

3
T,

(2) GI
0
"SsN

9
, sN @

9
T,

(3) GI
0
"SbsN

9
!asN @

9
, dsN

3
!csN @

3
T.

Cases (1) and (2) are most easily handled. In case (1) we consider the character s6
3
. The

associated twisted polynomial for this character is

*
817,e,o3

(t)*
~817

*, e,o0
(t)"*

817, e,o3
(t)*

817,e,o0
(t).

TWISTED KNOT POLYNOMIALS 667



(Here, we have used our product formula for connected sums.) From the table, which gives
the irreducible factorizations of these polynomials we see that this product is not of the form

af (t) f (t~1) (1!t), and hence case (1) is not possible. For case (2) the argument is the same,
with o

9
replacing o

3
.

Case (3) is the most interesting. If d or c is 0 (in Z
13

) we can proceed as in case (1).
Otherwise, we find that the twisted polynomial associated to ds

3
!csJ @

3
is the product

(1!t)pd (*817,e,o3
(t))p

~c(*~817
*,e,o3

(t)), where, for instance, p
d

is the Galois automorphism
taking m

d
to md

d
. As in the previous section, where mirror images were discussed, this is equal

to (1!t)pd (*817,e,o3
(t))p

~c(*817, e,o9
(t)). Again, using the factorizations given in the table

along with our earlier observation concerning the action of the Galois group on poly-

nomials, it is clear that this polynomial is not of the form af (t) f (t~1) (1!t). This concludes
the proof.

3. MUTATION AND CONCORDANCE

The mutant of a knot is formed by the following procedure. A ball intersecting the knot
in two arcs is removed from S3 and replaced with a 180° rotation that freely permutes the
four boundary points of the arcs. If K is oriented, then the mutant is naturally oriented so
that the orientation of that part of the knot outside the ball is unchanged. It is well known
that many knot invariants, including the classical Alexander polynomial, the Jones poly-
nomial, SU(2)-quantum invariants, and hyperbolic invariants remain unchanged under
mutation. (References include [14, 7, 11, 21, 22].)

In Kirby’s revised problem list of 1984 [9] it was asked whether a knot is concordant to
each of its mutants. However, since a knot and its inverse are easily seen to be mutants, the
examples of [17] show that this is not necessarily the case. (The applicability of [17] was
also observed in [4].) For a fixed ball intersecting a knot in two arcs, there is only one
mutation that preserves the orientation of the arcs in the ball. In the updated problem list
[10] it is asked by Kearton if a knot and this positive mutant are necessarily concordant.
Here, we provide a counterexample.

The pretzel knot J
1
"P (!5, 3, 7, 2) is illustrated in Fig. 2. The numbers in the boxes

represent half twists. A positive mutation converts this to the pretzel knot J
2
"P (3, !5, 7,

2); rotate that portion of the knot within the dotted oval by 180° about the center point

Fig. 2.
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of the oval. To see that these are not concordant, we show that J
1
d!J

2
is not slice.

The argument is much the same as in the previous section; we point out only where the
details differ.

The 3-fold branched cover of S3 branched over either J
1

or J
2

has first homology
Z

7
= Z

7
. Under the action of the group of deck transformations, the homology splits as the

direct sum »
2
=»

4
, where »

2
and »

4
are, respectively, the two and four eigenspaces of

the action. (The primitive cube roots of unity in Z
7

are 2 and 4.) Hence, we can compute the
twisted polynomials associated to the representations that vanish on each of these eigen-
spaces. (Since each knot is invertible, in this case it does not matter which eigenspace is
used, the polynomials are the same.) These polynomials are given in the table.

The argument of the previous section now applies to show that if J
1
d!J

2
were slice,

either a product of the two twisted polynomials, or the product of one of the twisted
polynomials and the untwisted polynomial would be a norm. This is easily seen not to be
the case, since the polynomials in the table are all irreducible in Q (m)[t]. (Again there is the
technical condition that one must in fact consider Galois conjugates of these polynomials,
but they are written so that the action of the Galois group is obvious.)

4. TABLE OF POLYNOMIALS

The twisted (and untwisted) polynomials for the knots 8
17

, P (!3, 5, 7, 2), and
P(5,!3, 7, 2) are given below. The polynomials as written (where we, as indicated divided
out by (1!t) when possible) are irreducible in Q(m)[t], where m"m

13
for 8

17
and m"m

7
for

the pretzel knots, as described in the text. The program Maple was used in calculating the
polynomials and their factorizations.

*
817, e,o0

(t)"1!t!34t2!34t2!101t3!34t4!t5#t6.

*
817,e,o3

(t)/(1!t)

"1

#t(2m#2m2#2m3#4m4#2m5#2m6#m7#m8#2m9#4m10#m11#4m12 )

#t2(!15m!10m2!15m3!15m4!10m5!10m6!10m7!10m8!15m9!15m10

!10m11!15m12)

#t3(4m#m2#4m3#2m4#m5#m6#2m7#2m8#4m9#2m10#2m11#2m12 )

#t4

*
817,e,o9

(t)/(1!t)

"1

#t(6m#5m2#6m3#6m4#5m5#5m6#5m7#5m8#6m9#6m10#5m11#6m12 )

#t2(!13m!12m2!13m3!13m4!12m5!12m6!12m7!12m8!13m9!13m10

!12m11!13m12)

#t3(6m#5m2#6m3#6m4#5m5#5m6#5m7#5m8#6m9#6m10#5m11#6m12 )

#t4
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*
P (~5,3,7,2),e,o0

(t)

"1!3t#6t2!7t3#24t4!18t5#22t6!t7#22t8!18t9#24t10!7t11

#6t12!3t13#t14.

*
P (~5,3,7,2),e,o2

(t)/(1!t)

"1

#t(2m3#2m5#2m6)

#t2(!5m!5m2!m3!5m4!m5 !m6 )

#t3(3m#3m2#4m3#3m4#4m5#4m6)

#t4(4m#4m2#3m3#4m4#3m5#3m6)

#t5(8m#8m2#7m3#8m4#7m5#7m6)

#t6(!7m!7m2!7m3!7m4!7m5!7m6)

#t7(7m#7m2#8m3#7m4#8m5#8m6 )

#t8(3m#3m2#4m3#3m4#4m5#4m6 )

#t9( 4m#4m2#3m3#4m4#3m5#3m6)

#t10(!m!m2!5m3!m4!5m5!5m6 )

#t11(2m#2m2#2m4 )

#t12

*
P(3,~5,7,2),e,o2

(t)/(1!t)

"1

#t(m#m2#m3#m4#m5#m6)

#t2(!3m!3m2!3m3!3m4!3m5!3m6)

#t3(4m#4m2#3m3#4m4#3m5#3m6)

#t4(m#m2!m3#m4!m5!m6 )

#t5(12m#12m2#10m3#12m4#10m5#10m6)

#t6(!7m!7m2!7m3!7m4!7m5!7m6)

#t7(10m#10m2#12m3#10m4#12m5#12m6)

#t8(!m!m2#m3!m4#m5#m6)

#t9(3m#3m2#4m3#3m4#4m5#4m6)

#t10(!3m!3m2!3m3!3m4!3m5!3m6 )

#t11(m#m2#m3#m4#m5#m6)

#t12.
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