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0. INTRODUCTION

For (8m + 2)-dimensional closed Spin-manifolds, one can define on the one side the
finite set of Brown—Kervaire invariants, and on the other side Ochanine’s invariant k. Both
are Z/2-valued invariants of Spin-bordism, where the first are defined cohomologically as
the Arf-invariant of certain quadratic refinements of the intersection form on H*"*!(M;
Z/2), and the second can be defined as a KO-characteristic number which by the real family
index theorem has an analytic interpretation as the mod 2 index of a twisted Dirac-
operator. Ochanine showed that these invariants agree on the class of Spin-manifolds, for
which all Stiefel-Whitney numbers containing an odd-dimensional Stiefel-Whitney class
vanish. On the other hand, it is not difficult to construct two different Brown-Kervaire
invariants in dimension 34.

We show here (Theorem 7.1) that Ochanine’s invariant is in fact a Brown—Kervaire
invariant; in particular, it vanishes if H*"*!(M; Z/2) =0, and is an invariant of the
Spin-homotopy type (Corollary 7.3). This result is in analogy to the Hirzebruch signature
theorem and can be considered as a Z/2-valued cohomological index theorem for the above
operator. The proof uses the integral elliptic homology of Kreck and Stolz (which in
particular characterizes invariants with a multiplicativity property in H P>-bundles) and the
theory of Kristensen about secondary cohomology operations (which gives a Cartan
formula necessary for the computation of certain secondary operations in HP*-bundles).

1. BROWN-KERVAIRE INVARIANTS

In [3], Brown generalized the Kervaire invariant of framed manifolds to the bordism
theory Qf associated to a fibration ¢: B — BO:

K:05,xQ5, - Z/8.
Here Q3, denotes the set of parameters
Q5%n:= {he Hom(n,,(M¢ A K,), Z/4)|h(2s) = 2}

where K, := K(Z/2, n), and where the stable map 2,:S*" — S® A K,— M¢& A K, is induced
by the non-trivial map in n%,(K,) = Z/2. The set @5, has a transitive and effective action of
H"B (cohomology always with Z/2-coefficients) and is non-empty iff the Wu class v, 1(¢)
vanishes. Brown defined K,(M 2"), which we call the Brown—Kervaire invariant of M*" with
parameter h, as the Z/8-valued Arf-invariant of the Z/4-valued quadratic form

~ Vo h
g H'M? 5 (M, K,} 5 [S2", Mv A K,] ——5 [S*", MEAK,] 5 2/4
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where the first map is stabilization, the second is S-duality, and the third is given by the
&-structure v: M?" > B on M*". The map g, is a quadratic refinement of the Z/2-intersection
pairing H*M?" x H*"M*" - Z/2. If the Wu class v,(£) vanishes, the pairing is even and g,
takes values in Z/2 < Z/4; in this case K,(M?") is the ordinary Z/2-valued Arf-invariant of
the quadratic form g,,.

By definition, the map K, is linear in the second variable, but not in the first variable
where one has

Ky x(M?") — Ky(M?") = i3(gu(v*x)[M*"])

for xe H"B and i8:7/4 5 Z/8 the natural inclusion. This shows that for M, x, y with
v¥(xy)[M] # 0, at least one of the three Brown-Kervaire invariants K, ,, K3+, and
K+ x+y is different from K, because of

gn(*(x + Y))[M] — gu(v*x)[M] — gu(v*»)[M] = i5(*(xy)[M] # 0.

2. SPIN MANIFOLDS

For Spin-bordism, ¢: BSpin — BO, the total Wu class has the form
v(§)=1+v4+vg+012+

because of y(Sq?**!) = ¥(Sq**)Sq* and x(Sq***?) = ¥(Sq**)Sq* + Sq' x(Sq**)Sq', showing
that the condition v, ,(£) = 0 is satisfied for n = 2m and n =4m + 1.

In the first case, the Pontragin square g gives a canonical h, € Q35" and then K, is
equal to the signature mod 8 by a theorem of Morita [13].

The second case is more complicated, here one also has v,{(¢() =0 and gets thus
Z/2-valued invariants. The parameter set Q35" , grows according to |Q35"% ,| = |H4™*+!
BSpin| and H*BSpin = Z/2[wi|k # 1,2° + 1]. This gives for the first values |Q3P"| =
|Q35" = |08 = 1, |Q38"| = 4 and |Q35"| = 16. On the other side, Ochanine proved in
[14] that in dimensions 2, 10, 18 and 26, the Brown—Kervaire invariants agree with his
invariant k (defined in the next section). Actually, he proved this for the larger class of
invariants K: Q32" , — Z/2 with the properties

(1) K(M8™x 81 x §1) = sign(M8™) mod 2

(2) H4m+1M8m+2=0 = K(M8m+2)=0
where §' denotes the circle with the non-trivial Spin-structure. Ochanine called these
invariants generalized Kervaire invariants because for Brown-Kervaire invariants, (2) is
obviously satisfied and (1) follows from the results in [4].

In [14], there is also an example of two different generalized Kervaire invariants in
dimension 34: Let M'° and M?* be closed Spin-manifolds with the only (tangential)
non-zero Stiefel-Whitney numbers

WeWy [Mlol WgWi[M24], W%W6W4 [M24], Wg[M24]7 W%Wi[MZ“], Wg[M24]

(M'° and M?* exist by [1, 12]). Define M3*:= M'°x M?* and let K:Q3&" > Z/2 be
a generalized Kervaire invariant; then K + w;,wgw3[ ] is also a generalized Kervaire
invariant, with w,,wgw2[M34] # 0.

A modification of this example shows also the existence of two different
Brown-Kervaire invariants in dimension 34: Let x:= w,3w, and y:= wow; then we also
have that v*(xy)[M**] # 0, which implies that at least one of K4, Ky+, and K.+, is
different from K, for every h e Q35"
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We come now to the construction of certain Brown—Kervaire invariants by unstable
secondary cohomology operations [3]

¢ : ker(o) — coker(f)
with range of definition and indeterminacy given by
a:= (Sq*™, Sq*mSq'): H4m+1X — HOm+1X @ Hem*2Y,
B:=Sq*> + Sq':H®"X ® H®"*1X —» H8"*2X.
These operations are associated to the decomposition
Sq*™*? = $q%Sq*™ + Sq'Sq*"Sq!

and are quadratic refinements of the cup pairing modulo the indeterminacy [5]. We call
them Brown—Peterson secondary cohomology operations. Two of them differ by a primary
operation y: H*"*1X — H®"*2X which lies in the stable range and is thus given by an
element y € A*™*! in the Steenrod algebra. If X is a 1-connected Spin-manifold M 2", we
have ker(x) = H*M?", coker(f) = H*"M?" = 7Z/2, and get therefore a Brown-Kervaire
invariant K, by g¢,:=¢, which we call a Brown—Peterson-Kervaire invariant. If
v, € H¥™*1M8™*2 denotes the generalized Wu class of y = ¢ — ¢’, we have

K¢(M8m+2) . K¢:(M8m+2) = ¢(U).)[M8m+2].

3. OCHANINE’S INVARIANT
In [14], Ochanine defined an invariant
k:Q3n , 2772
by k(M®™*2):= sign(W 8™*4)/8 mod 2, where 0W ™ +* = M®™*+2 x §1 Such a Spin-mani-
fold W ®m** exists by [1] and has signature divisible by 8, and k is well-defined because of
Novikov additivity and Ochanine’s signature theorem.

Ochanine gave in [15] another construction of k in terms of KO-characteristic numbers.
We recall the coefficients of the KO-theory

Z[n, o, u, 1~ ']

KO, =
Yo=n’ = =00 =4

where n e KO;, w € KO, and p € KOy are given by the Hopf bundles (viewed as real vector
bundles) over the real, quaternion, and Cayley projective lines RP! = !, HP! = §4, and
OP! = §8 Now define for a real vector bundle E —» X

O (E):= ® (A _-+(E)® Spm(E)) €KO°(X)[[4]]
nz1
where A (E) =Y., o u*A*(E) and S,(E) = ¥ ,5 , u*S*(E) are the total exterior, respectively,
symmetrical powers of E. For the trivial line bundle we have, in particular,

1 _q2n—1
0(q):=0,(1) = ] T
nz1 - q

which we also view as an element in Z[[x]]. Because of @,(E @ F) = ©,(E)®,(F) we can
extend O, to

0,:K0°(X) » KO°(X)[[q]]-
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For a n-dimensional closed Spin-manifold M", Ochanine defined
BM"™):= (O TM" — n), [M"]xo» = 0(q) "{®(TM"), [M"]1x0> €KO,[[q]]

where [M"]xo € KO,(M") denotes the Atiyah-Bott-Shapiro orientation of M" and
{(,>:KO™X)® KO,(X) - KO,_,, the Kronecker pairing. This gives a multiplicative Spin-
bordism invariant, the Ochanine elliptic genus

B:Q*" — K0,[[4q]].

The coefficient of g° is obviously given by {1, [M™]xo) € KO,, which is the definition of the
Atiyah a-invariant o: Q37" — KO,.

Ochanine proves in [15] that the Pontrjagin character of f§ gives the g-expansion at the
cusp oo of the universal elliptic genus ¢ : Q3% — Z[3]1[9, €] where § = $(CP?), & = $(HP?).
Thus, § extends ¢ for Spin-manifolds to the dimensions 8m + 1 and 8n + 2. Furthermore,
P takes values in the ring of modular forms over KO,, more precisely:

THEOREM 3.1 (Ochanine [15]). The image of B is the subring generated by n, wdy, ud, and
pe of the ring MT™®(KO0,) = KO, [0, €]/n(60 — 1) = KO,[[q]] of modular forms over
KOy, where o€ Z[[q]] and ¢ € Z[[4]] are given by

So=—85=1+24Y ( y d>q", e=Y (dm%mds)qn.

nz1 \d|ndodd nz1

In particular, one has for a (8m + 2)-dimensional closed Spin-manifold M8%™*2
B(M8m+2) =(a0(M8m+2) +a1(M8m+2)8_+ e 4 a,,,(Ma"'”)g'")nzu"'

with homomorphisms a;: Q32" , — Z/2, where

E=Y ¢V =q+4¢°+¢*+ - €Z/2[[q]]

k20

is the reduction of ¢ modulo two. Obviously the lowest coefficient a, is again given by the
Atiyah a-invariant.

THeOREM 3.2 (Ochanine [15]). The highest coefficient a,, is equal to the Ochanine
invariant k.

This gives an expression of k in terms of KO-characteristic numbers: Let g(¢) € Z[[¢]] be
any formal power series whose Z/2-reduction is the inverse power series of € Z/2[[¢]],
then a,, is the coefficient of £™ in the polynomial f,(, € KOs+ 2[£] which is obtained from
the formal power series f € KOg,,+2[[¢]] by inserting q(¢) for g. We get (suppressing n2u™)

1 de 1 dg [e\™™
In =7 s'"_“ﬂ“‘“ﬁz_mfﬁW(E) B, mod 2

because gde/dg = e mod 2. Thus, k = a,, is the coefficient of g™ in f(g) %™ € KOgm+2[[q]]
where

f@=3% q¥=1+q+¢+4°+ -~

nz1
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since ¢/q = f(q®)mod2 = f(q)® mod 2. Together with the real family index theorem in
dimension 8m + 2, this shows that k has an analytical interpretation as the mod 2 index of
a twisted Dirac operator:

THeOREM 3.3 (Atiyah and Singer [2]). Let M be an (8m + 2)-dimensional closed Spin-
manifold and E € KO°(X). Define e Z/2 by {E, [Mxo) = en*u™€ KOgp+ 2, then

e = dimg ker(Dg)mod 2,

where Dg is the Dirac operator of M twisted by the virtual bundle E.

CoOROLLARY 3.4. The Ochanine invariant of an (8m + 2)-dimensional closed Spin-manifold
M is equal to the mod 2 index of the Dirac operator twisted by the virtual bundle E,,, which is
the coefficient of ¢™ in f(q)~®"6(q) " 2©,(TM)e KO°(M)[[4]],

k(M) = dimg ker(Dg,)mod 2.

4. INTEGRAL ELLIPTIC HOMOLOGY

This theory of Kreck and Stolz [7] is a refinement at the prime two of the elliptic
homology theory of Landweber, Ravenel and Stong and has a very geometric definition in
terms of H P2-bundles. Here we need only the coefficients of this theory. We consider
HP2-bundles p: N**8 - M* where the structure group is PSp(3) acting in the canonical
way on HP? = PSp(3)/P(Sp(2) x Sp(1)) and N**8 M* are closed Spin-manifolds. Such
bundles are the pullback of the universal H P2-bundle E := BP(Sp(2) x Sp(1)) = BPSp(3) by
a classifying map f: M* - BPSp(3). On the level of bordism one has homomorphisms

¥ QFF"(BPSp(3)) » %%, [M, f1+— [N =f*E]
n:QP"(BPSp(3) » Q"", [M, f1— [M]
and we set

T,:=im¥ = {total spaces of H P>-bundles} = Q37"
T, = W(kern) = {total spaces of H P2-bundles with zero-bordant base} = Q37"

There are the following resuits, where « and g are the invariants of Atiyah and Ochanine.
THEOREM 4.1 (Stolz [16]). T, = kera.
THeOREM 4.2 (Kreck and Stolz [7]). T* = ker B.

If we set ell, ;= Q5P"/T_ | then we have:
THEOREM 4.3 (Kreck and Stolz [7]). Let s:= [S'], k:= [K*], b:= [B®] and h:= [HP?*]

be the Spin-bordism classes of the non-trivial circle, the Kummer-surface, the Bott-manifold
and the quaternion plane. Then

Z[s,k, b, h]
2s =s3 =sk =0, k? =4b + 256h°

ell, =

Remarks. Theorem 4.1 was the key step in Stolz’ proof [16] of the Gromov—Lawson
conjecture. By ell, =~ im f, we get from Theorem 4.3, just Ochanine’s Theorem 3.1 about
im B.
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COROLLARY 4.4. Let K:Q3%" . 7/2 and K': Q3" , - Z/2 be homomorphisms with
(i) K(N®™*1%) = K'(M®"*2) for any HP?-bundle p: N3™*10 — p8m*2,
(i) K(N8™*8x 8! x §1) = sign(N*™*®)mod 2.

Then K is equal to the Ochanine invariant, K = k.

Proof. The condition (i) is equivalent to K+%¥ = K’ >z, thus K factors over ellgy+ 10
which is a Z/2-vector space with basis (s*h'b’);4;=pm+1. By (ii), we have K(s*h'b)) =
sign(hib)mod 2 = k(s2h'b’). n

5. SECONDARY OPERATIONS AND HP-BUNDLES

In order to apply the results of the previous section, we want to compute
Brown-Peterson—Kervaire invariants of H P2-bundles. Let p: N3m+10 , pM8m+2 be g H P2-
bundle of Spin-manifolds classified by f: M®™*2 — BPSp(3). Since BPSp(3) is 1-connected,
we can by surgery assume that M8™*? is 1-connected without changing the bordism class
[M8™*2 f1eQfFn ,(BPSp(3)). Then N3"*10 is also 1-connected. By the Leray—Hirsch
theorem we have

H4m+5N8m+ 10 — p*H4m+5M8m+2 @ xp*H4m+1M8m+2 @ x2p*H4m—3M8m+2

where xe H*N8™*10 is the pullback of the universal Leray-Hirsch generator in
H*BP(Sp(2) x Sp(1)) belonging to the universal H P?-bundle BP(Sp(2) x Sp(1)) - BPSp(3).

Now assume that ¢ :(ker )*™*> — (coker B)8™* 1% is a Brown-Peterson operation giv-
ing a Brown—Peterson—Kervaire invariant in dimension 8m + 10. For N3"*10 we have
kera = H*"*SN®m*10 and coker p = H8™*1ON8m*10 — 7/2 and for a = p*a’ € p*H*™"*>
MB8™*2 we get

d)(a) — p*(i)(d’) ep*H8m+10M8m+2 =0.

On the two other summands xp*H*"*IM8™*2 and x*p*H*™ 3M?®"*? the operation
¢ does not vanish in general, but the following algebraic lemma tells us that we can apply
Corollary 4.4 if we would have ¢(xp*a’) = x’p*¢'(a’) on the middle summand, with
¢': (ker a)*™* ! — (coker B)®™*2, another appropriate Brown—Peterson operation.

LEmMMA 5.1. Let V be a finite-dimensional Z/2-vector space and q:V — Z/2 be a non-
degenerate quadratic form which vanishes on a sub-Lagrangian V _ . Define Vo= V1 /V_ and
qo:Vo—=Z/2 by qo(v + V_):= q(v). Then q, is a non-degenerate quadratic form on Vy and

Arf(q) = Arf(go).

Proof. We use the definition of the Arf-invariant as the “democratic invariant™:

Arf(g) = sgn ), (— 1)@,

veV

It is easy to see that g, is well-defined and non-degenerate. We set V, .= V/V 1, then the
pairing V_x V¥V, — Z/2 is also well-defined and non-degenerate. If we choose Z/2-linear
splittings Vs Vi and V., s Vwehave V=V_@V,®V, and

Arf(q) = sgn Z (- l)q(v_ +vo+v4)

v_eV_,vpe ¥y,v,. €V,

= sgn Z (— 1)ato < Z (— 1)at)+vovs ( Z (— l)v_v+>>

voeV, v.eVy v_eV_
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because of q(v_ + vy + v.) =q(ve) + q(v+) +v_vy +vov. Buty _, (—1)"-" is 0 for
vy #0and |V_| for v, = 0, which gives

Arf(g) = sgn Y, (=D (DO |V_])

voe Vo

=sgn Y, (—1)%) = Arf(q). [ |

voeVy

Remark. This lemma can also be proved by constructing a “good” symplectic basis, but
the proof here generalizes also to the Z/8-valued Arf-invariant.

6. A PRODUCT FORMULA OF KRISTENSEN

The previous section shows that we need a product formula for the unstable secondary
cohomology operation ¢ applied to x-y with xeH*N®*1® and y:=
p*a,ac H*"**M®* 2 Sum and product formulas for secondary cohomology operations of
this type were obtained by Kristensen in a series of papers [8—107; see in particular [11] for
a short survey on his product formula.

Kristensen worked in the category of simplicial sets which is no restriction because its
homotopy theory is equivalent to the homotopy theory of topological spaces, and used
cochain operations to represent secondary cohomology operations. A cochain operation
a = (ax)ien Of degree neN is a series of natural transformations a,: C*( ) —» C**"( ) of the
normalized cochain functor for simplicial sets (coefficients are always Z/2). The g, need
neither to be linear nor to commute with the coboundary &: C*( ) — C**1( ). Kristensen
defined a differential A in the graded Z/2-vector space 0* of these operations by (Aa), =
da, + ai+ 10 (here, a(0) = 0 follows by naturality from the vanishing of the normalized
cochains of the simplicial point) and showed that:

THEOREM 6.1 (Kristensen [8]). Let ae 0" with Aa = 0 and define a cohomology operation
[a] of degree n in each dimension k by [a]([x]) = [ax(x)] for all x € C*X with 6x = 0, then
[a] is well-defined and stable. This gives an isomorphism

H(O*, A) = A*.
This isomorphism is also compatible with composition, but in contrast to the Steenrod
algebra A*, the cochain operations @0* do not built an algebra because in general its

elements consist of non-linear mappings and the composition is thus not right distributive.
For example, by using a system of cup-i products one defines cochain operations sq‘ € 0" as

(Sqi)k(x) = XUg—iX + XUg—;+10Xx, xeC*X

which give the Steenrod squares Sq* = [sq']. While the Sq* are linear they are induced from
quadratic maps sq'.
Kristensen proved also a r-variable version of the above theorem

H((Q*('), A(r)) = @ A*

where a cochain operation a of degree n in r variables is a series of natural transformations
a: C*( )x - x C¥( ) —» C**"( ) and the differential A is defined by (A”a)(xy, ..., x,):=
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éa(xy, ...,x,) + a(dxy, ... ,0x,). As an application, for each a € 0" with Aa = 0 there exists
a r-variable cochain operation d, € 0"~ '® with

(ADd)(xy, ..., %,) = a( Z xi) - Z a(x;)
i=1 i=1
because the left-hand side measures the deviation of a from linearity which vanishes in
@, A" since [a] € A" is linear.

We come now to the representation of secondary cohomology operations by cochain
operations, see [8]. We start with a relation Y;_, a;f; =y of degree n in the Steenrod
algebra, where a; € A™, B; € A™ withn; + m; =nfori=1, ...,s,and y € A" If we write a;, §;
and y as sums of admissible monomials in the Sq*, then the corresponding expressions with
Sq* replaced by sq* are representing cochain operations a;, b; and c. The cochain operation
ri=Y:_, a;b; + c € O" has the property Ar =0 and [r] = 0, thus there exists a cochain
operation Re 0"~ ! with AR =r. Now, let [x] € H*X be in the kernel of all the g;, and
k < excess(y). Since [b;(x)] = O there are w; e C¥*™ ! X with dw; = b;(x), and furthermore
c(x) = 0 by the definition of the excess and of the sq'. Consider

Bi= R+ T an)

then ¢(x)e C**"~'X and a short computation gives d¢(x) = 0. Kristensen shows that
choosing other w; with ow; = b;(x) or another x' € [x]} changes the cohomology class
[¢(x)] € H*"~1X by elements in ¥'5_, im(o;: H**™ 1 X - H**"~1X). Thus, for k < ex-
cess(y) we have defined a secondary cohomology operation

By .uB) s s (@ + - + )

¢ ker (H"X—» @® H"*"’"X) - coker (G—) Hetmizly H’”"‘IX),
i=1 i=1

which is stable if y vanishes. Furthermore, a different choice of R’ with AR’ =r is given by

e:= R’ — R e 0" with Ae = 0, and then one has ¢’ — ¢ = [e] € A" ! for the corresponding

secondary cohomology operations. In the following we say that ¢ is associated with the

“relation”

s

pi=) ,®pieA* @ A*
i=1

and is defined in dimensions k < excess(u(p)), where u: A* ® A* —» A* denotes the product
in the Steenrod algebra. These operations are equivalent to those constructed in the
topological category from Y_, a;8; = y. We remark that in the case of |x| < excess(f;) for
alli=1, ...,s we have b;(x} = 0 and can thus make the canonical choice w; = 0. But also
r vanishes then in this dimension and R can be chosen with R(x) = 0 (one can easily see this
in the topological category by choosing the zero map between the appropriate Eilen-
berg—MacLane spaces as a representative of f;). In particular, one has then ¢([x]) = 0.

Now we want to compute a product formula for the operation ¢. The product formula
for a stable primary cohomology operation is given by the coproduct ¥ : A* - 4* ® A* in
the Steenrod algebra, and for relations we have the coproduct

Y= (1@t ® (Y ® Y): A* ® A* > A* ® A* @ A* @ A*
with the Hopf algebra property (u ® Wy = yu. Suppose now that we have

YyPp =3 pn®er+ Y en®pm

neN meM
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"

with o, P &ms €5 € A* ® A*, where we regard the p,, p., as relations. This decomposition
is designed for the case that 0 = B;([x][y]) = ¥ e, Bi;([x]) Bi;([¥]) holds true because in
each summand at least one factor is zero, which Kristensen calls the complementary case; his
method works only under this condition (see [9, 10]).

A first conjecture would be that (on the common domain of definition and modulo the
total indeterminacy) one has then @([X][y])=Y,.n @n([x]) Oa([¥]) + X mem
Om([x])@dm([ ¥]) with secondary cohomology operations ¢, ¢, associated with p,, p., and
Op = p(en), Om:= uley)- But the situation is a little more complicated because a relation
gives in general more than one secondary operation (which differ by stable primary
operations), so this equation can be only true if one adds at the left-hand side &([x] ® [y])
with a certain primary cohomology operation ¢ € A* ® A*, whose computation was the
main problem in Kristensen’s product formula for ¢.

For the computation of ¢([x][y]) = [R(xy) + ¥ ;- bi(w;)] we need two parts: Firstly,
an expansion of R(xy) (with xy meaning the cup product of cochains), and secondly,
cochains w; with éw; = b;(xy) which are given in terms of the complementarity condition.
The second problem leads to cochain operations 2* of the second kind; these are series
G =(G;,j);jn of natural transformations G; ;: C'( )x C/( ) — C'*/**( ), and one has a dif-
ferential V:2* —» 2**! by (VG)(x, y):= 6G(x, y) + G(dx, y) + G(x, dy). Kristensen proves
in [9] that

H(2*, V) = A* ® A*.

As an application of this theorem, let « € A™ and the terms in the coproduct Yo =Y o) @ ay
be represented by cochain operations g, a; and a;,. Then there exists a cochain transforma-
tion T, € 2" ! of the second kind measuring the deviation of the Cartan formula on the
cochain level,

VT,(x, y) = a(xy) + Y ax(x)ax(y) + da(8xy, x8y) + |x|da(x3y, xdy).

For the proof, one computes that V of the right-hand side is zero (in order to get this, one
has to include the linearity defects d,) and that it represents a([x][y]) +
Y ai([x])ax ([¥]) = 0. Now we can construct our w; with ow; = b;(xy) as

wii= Z wiibii(y) + Z bi()wi; + Tp(x, y)
jeB; je B!

where éw;; = bi;(x) for j € B}, dwi; = bij(y) for j e B, and B; = B; U B;. Attacking the first
problem, Kristensen defines the following cochain operation 4 € 2"~ ! of the second kind:

Alx, )= R(xy) + Y Ru()d;(y) + Y du(x)Rn(y) + T.(x, y) + Dr(x, y).
neN meM

Here AR =r, AR, =r, and AR,, = r,, are representing cochain operations in ¢* for the
relations p, p,, pm€ A* ® A* and d}, d,, represent §,, 3, € A* The cochain operation
T, e 2" ! is constructed as T, above by the property

VT.(x, y) =r(xy) + Y 12()dn(y) + Y du(x)rn(y) + d,(3xy, x3y) + |x|d,(xdy, x6y)

neN meM

and similar Dg € 2" ! is constructed by

VDg(x, y) = R(dxy + xdy) + R(dxy) + R(xdy) + d,(dxy, xdy) + |x|d.(xdy, xdy).
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While the operation T, measures the Cartan defect of the relation r on the cochain level, the
operation Dy is included to give VA = 0 (Dg can be chosen to vanish on cocycles and is
therefore neglected in [117]). Thus, we get a primary operation

e:=[A]e A* ® A*

and Kristensen proved:

THEOREM 6.2 (Kristensen [9]). Under the complementarity assumptions on the cohomol-
ogy classes [x], [y] and yPp =3, v Pn®en + Y ners Em ® pm, we have (on the common
domain of definition and modulo the total indeterminacy)

H(Ix1IyD = Y, ¢u([xDo (YD + Y dm([xD)dm([y]) + e([x]® [¥])
neN meM
with secondary cohomology operations ¢, ¢, ¢ associated with the relations p, p,, p; with
Ou = p(ey), Om:= u(€n), and with ¢ e A* ® A* constructed as above.

In the application of this formula, one has the problem that the term & is not effectively
computed by the other data. This problem was later solved by Kristensen, see [10, 11]. In
particular, he gave an explicit formula for the following triple series of relations, which are
linear combinations of the Adem relations:

pai= 3, ((1357d-2)) + G5=0))Sq* ' ® Sq’, k,abel
ez
Here we use the conventions Sg* =0 for k <0 and () =n(n—1) --- (n — k + 1)/k! for
k=0, (}) =0 for k <0. One has a decomposition

Y@k = Y pEThl @ (Se’@Sq) + Y, (S¢° ® Sg)® phlinti.

ijeZ ijeZ

TueoreM 6.3 (Kristensen [10]). There exists an essentially unique choice of cochain
operations R, for the relations p%, such that the primary term ¢ in the product formula for the
associated secondary cohomology operations is given by

ek = (S¢* ® (Sq*Sq* + Sq?))

Y < O ((FZd-2) + Gro=d)(Sq 7773872 + Sq""j_zsqj‘s)>.

jeZ
We only mention that the proof uses:

e The Eilenberg~-MacLane complex K(Z/2, 1), which is a simplicial Z/2-vector space with
zero differential in its normalized cochain complex, and has thus the only non-zero
cochain u" € C"K(Z/2, 1) in each dimension where u is the fundamental cocycle. Then one
can relate the action of 4% € 2*~! on (u", u™) to the action of R¥, and T%,.

e The cobar resolution A®" of the Steenrod algebra, which has homology A(Q,, Q1. ...)
where in particular Qo = Sq! and Q; = Sq2Sq* + Sq>. Then A¥, gives an element in 4®2
whose boundary in A®3 can again be expressed in terms of 4%,.

e Special systems of cochain operations for the T, with good combinatorial properties,
whose existence was proved in [10]. See also the appendix of [11].
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7. THE MAIN THEOREM

We prove now the main result.

TueoreM 7.1. In each dimension 8m + 2, there exists a Brown—Peterson—Kervaire invari-
ant K, which is equal to Ochanine’s invariant k.

Proof. By the corollary in Section 4, we have to show that for each m € N, there exists
a Brown—Peterson—Kervaire invariant K;_, in dimension 8m + 10 and an invariant K’ in
dimension 8m + 2 which satisfy property (ii) (actually we will show that K’ is also
a Brown-Peterson—Kervaire invariant K, ). By the lemma in Section 5, we have for each
HP?-bundle p: N3*10 - M8™*2 that K, | (N®"*1%) = Arf(q,) where go: H*" "1 M3"*2
Z/2 denotes go(y'):= Pm+1(x-p*y)[N®*1°]. We compute now the product formula for
Om+1(xp), y:= p*y’, by Kristensen’s theory (Section 6), where ¢,, ., is associated with

Pmi1i= qu ® Sq4m+4 + Sql ® Sq’*'””Sql.
We first have to check the complementarity conditions for xy. The summands in

Sq4m+4(xy) — Z Sqix_sq4m+4—iy

i=0..4m+4

and

Sq4m+4sq1(xy)= Z SqiSqlx_Sq4m+4—iy+ Z Sqix,sq4m+4—isq1y

i=0..4m +4 i=0..4m+4

are all zero, in detail:

o Fori=0,1, 2 in the first and the second sums, and i = 0, 1 in the third sum, because
then the dimension | y] = 4m + 1 is smaller than the excess of the operation acting on y.

e Fori=S5, ...,4m + 4 in the first and the third sums, and i =6, ... ,4m + 4 in the
second sum, because then the dimension |x| = 4 is smaller than the excess of the
operation acting on x.

e For i = 3,4 in the first sum because then Sqg*™*'y = p*Sq'(Sq*™y’) = 0 since M 5™ *?2
is Spin, respectively Sq*™y = p*Sq*™y’ = 0 since M ®"*2 is 1-connected.

e For i =3,4,5 in the second sum because then S¢'Sq'x = 0; here we use that x is the
pullback of the universal Leray—Hirsch generator x"™ which satisfies Sq*x"""" = 0 (see
[16]).

e Fori=2,3,4in the third sum because then Sq*"*2Sq'y e p*H8™**M?3™*2 = ( and
Sq*m*18q'y e p*HB™*3MB™*2 = (, respectively, Sq*™Sq'y = p*Sq*™Sq'y’ = 0 since
M?8m*2 {5 Spin.

According to these facts we choose our splitting of

v @p = ' Y oyt Y oyt Y o

with
oli=(Sq’ ® S¢°) ® (Sq*> 7 ® Sq*™*++7)
a)?i:= (S¢’ ® Sq'SqY) ® (Sq' 7/ ® Sg*m 4%
03:=(S¢’ ® S¢') ® (Sq' ~/ ® Sq*"**~i5q")
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~

in the foliowing way:

iJ
1#34 i#3,4,5 t#234

wne{z e 3 e 3 A3 2 A 3

i=34 1—345 1-234

where we denote the first bracket by X£; and the second by X,. Now the summands of £,
which we consider as p' ® ¢’ or ¢ ® p” according to that x or y gives the “reason” for being
zero, contribute all with ¢'(x)d”(y) = 0 or §'(x)¢"(¥) = 0 to the sum formula for ¢(xy). This
holds because the kernel condition for ¢’, ¢” is satisfied by the fact that the excess is larger
than the dimension (giving w;, = 0 and R’ = 0 as natural choices for ¢’; and analogously for
¢"). We say that X, consists of trivial terms. In contrast to this, the 18 summands in £, do

not vanish by this reason; we cail them critical terms. We show now mat in our situation 6
of these terms vanish, with the remaining two terms giving exactly x2- p*¢,.(y).

We remark that in the case where the secondary operation of the one side of a term is

defined and the primary operation of the other side of the term vanishes, the whole term
(including its undeterminacy) vanishes. This applies to the terms 013, 033, 614, 034, 033,
034, which we view as ¢ ® p”, and to 033, 613, 04, 024, Gos, Which we view as p' ® ¢”.
Furthermore, if a term & ® p” has the property that the degree of the relation satisfies
|p”| > 4m + 2, one gets ¢”(y) < p*@”(y') = 0 because ¢”(y') = H*"*1e”"Ipf8m+2 — 0, This
applies to a3, 035, 012 and 5. Then remain the terms o 25, 44 and ¢34. We consider first

o61s=(5¢"' ®5¢°Sq") ®(S¢° ® Sq*" ") =:p' ® ¢

The associated secondary operation ¢’ has the property Sq'¢’ = 0, thus we get for z € ¢'(x)
that z- Sq“"' ly =2-5q'Sq*" 2y = Sq*(z- Sq*™ 2y) = 0 showing that term ¢ (x)é”( )

{3 1y A
\AﬂCu.u.uus its und Tin

Gos + 604 = (5¢° ® Sq*) ® (Sq2 ® Sq*™ + Sq* ® Sq*"Sq*) = (1 ® $¢*) ® pm

c—b

With the product formula 6.3 of Kristensen, we have proved

Pm+1(xY) = Sq*(X)Pm(y) + e(x ® y) = x> p*Puml(y’) + e(x ® y).

Now, we have to compute the primary term ¢, which comes from the cochain operation 4 of
Section 6, where r and R are given by 7, 1:=s¢*""® + sq%sq*™** + sq'sq*™* *sq' and
ARp+1 = 4+ 1. We note that the Kristensen relations p%; 2 of Section 6 are nothing but the
Adem relations written as

Pe=S0"®8q"+ Y (5237)Sq°"* i ® Sq’

jeZ

atb

and the corresponding primary terms &%; 5 are (Qo:= Sq', Q; := S¢2Sq* + Sq°)

£555 = (Qo ® Q1)
[
‘//ksqa—:isqb Z+S a— 2qu 3+ Z (a 3 1) at+b—j— 3Sq1 2+Sqa+b i ZSq] 3))
jeZ
We need in particular

Pni= P55 =5¢" ® Sg*" + Sg*"* ' @ 1

- — n2nt1
84n 2n 0
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p'm:= pg:";'Zn — Sq2®sq4m + Sq4m+2® 1 + Sq4m+l ®Sq1

Em'= Egmam = Yino.em—3005q' ® Q;Sq*m =37

and decompose 7, +1 a8 Friy + Fam+ 25, which shows that we can choose R,,+; as the
linear combination R, + R,n425¢" with the special system of Kristensen’s cochain
operations. Furthermore, the cochain operations measuring the Cartan defect of r,, , sat-
isfy Ty, +is0 =T + Ty, s and for cocycles x, y, [T, 500 (%, V)] = [Fam+ 2 Tsq1(x, ¥)
+ T, ..(sqa'x,y) + T:__.(x, sq'y)] (see [11]). Looking now at the definition of 4 one gets

Fam+2

for cocycles x, y that e([x]® [¥]) = [Am+1(%, ¥) + A2m+2(5¢"%, y) + Azm+ 2(%, 5g'y)]
which shows that for the cohomology classes x and y

Fam+1

8(x®J’)=5m+1(x®Y)= Z Qosin'QISq4m+l_iy,

i=0..4m+1

Applied to our case, the only term which can give a contribution has to contain the factor
Sq*x since we are in the top dimension, but this term does not show up in the sum because
of QoSq’ = 0 for i odd. Summarizing our computation we have shown that

Pm+1(xy) = x> p*P(y')

where the secondary operations ¢, and ¢@,, are constructed by using Kristensen’s special
system of cochain operations. Now the proof is finished since

K t(N3™19) = Arf(pns 1) = ALf() > P 1 (xp*y)[NE"+10])

= Arf(y' — ¢m(y’)[M8"'+2]) = K, (M®™+2), -

COROLLARY 7.12. Ochanine’s invariant k vanishes for H*™*1M8m*2 =,

Ochanine showed in [15] that an orientation-preserving homotopy equivalence be-
tween two closed oriented manifolds with w, =0 gives a natural bijection between
the both sets of Spin-structures on the two manifolds. In particular, one defines a Spin-
homotopy equivalence between two Spin-manifolds as an orientation-preserving homotopy
equivalence which maps the Spin-structure of the one to that of the other. Furthermore,
Ochanine showed that generalized Kervaire invariants are invariants of the Spin-homotopy

type.
COROLLARY 7.3. Ochanine’s invariant k is an invariant of the Spin-homotopy type.

In [15], Ochanine defined x: Q37" - KO, ® Z/2 by

[ sign(M")u™ ®1 for n=8m
kM"xSYHnu™ ®1 for n=8m+1
K(M™):= ﬁ k(M™)n2u™ ®1 for n=8m+2
i sign(M™)op™ ®1 for n=8m+4

\ 0 otherwise

and showed that « is a ring homomorphism; this summarizes the multiplicative properties
of k. Now, the signature is an invariant of the oriented homotopy type, and the definition of
Spin-homotopy equivalence is compatible with products.
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COROLLARY 7.4. K is an invariant of the Spin-homotopy type.

In contrast to this, the Atiyah a-invariant (and thus also the Ochanine f-invariant) is not an
invariant of the Spin-homotopy type, because it detects some exotic spheres in dimension
9 which have clearly the Spin-homotopy type of the standard sphere. With the result of
Kahn [6] for oriented manifolds in mind, saying that the rational multiples of the signature
are the only rational characteristic numbers which are invariants of the oriented homotopy
type, we end with an open problem.

ProBLEM. Besides the multiples of the signature and the Ochanine k-invariant,
c-sign(M*™),  k(M®™*1x8Y,  and  k(MBm*?),

are there other KO-characteristic numbers of Spin-manifolds which are invariants of the Spin-
homotopy type?
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