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ABSTRACT. By the Chern-Hirzebruch-Serre Theorem, the signature of oriented
Poincaré duality complexes is multiplicative in fibrations if the fundamental
group of the basis acts trivially on the rational cohomology of the fibre. Our
main theorem is the following new variant: If the fundamental group of the
basis acts trivially on the middle-dimensional cohomology of the fibre with
Z/2-coefficients, then the signature mod 8 is multiplicative. The proof uses a
cochain construction of the Pontrjagin square in the Serre spectral sequence,
and the analysis of the associated mod 8 Arf invariant.
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1. INTRODUCTION AND MAIN THEOREM

Let F — M — B be an oriented fibration of connected closed oriented Poincaré
duality complexes. For short, we call this an oriented PD fibration. It is a long
studied problem how the signature of the total space M is related to that of B
and F. If the fundamental group #;(B) acts trivially on the rational cohomology
of F then sign(M) = sign(F)sign(B) by the celebrated Chern-Hirzebruch-Serre
Theorem [4]. Several decades later it was realized that besides the signature, there
are other genera which are multiplicative under certain additional assumptions on
the fibration. For example, if all spaces are manifolds and the fibres are spin,
then all elliptic genera are multiplicative [18]. In this note we concentrate on the
signature and on weakening the assumptions on the fibration. Our main result is
as follows:

Theorem 1.1. Let F' = M — B be a oriented PD fibration. If w1 (B) acts trivially
on the middle-dimensional cohomology HY (F?/;Z/2), then

sign(M) = sign(F)sign(B) mod 8.

The signature of a fibration can only be nontrivial if the dimension of the total
space M is a multiple of 4. The proof of the classical Chern-Hirzebruch-Serre Theo-
rem which we recall in the next section actually shows that the signature vanishes if
the fibres are odd dimensional (for any action of 7;(B)). So we henceforth assume

dimF =2f, dimB =2b, dimM =2m, m even.

There exist examples of fibrations with nontrivial action of 7, (B) on HY (F;Q)
where multiplicativity of the signature fails. For example, there are surface bundles
over surfaces with sign(M) = 4 {14], but clearly sign(B) = sign(F) = 0. An explicit

Date: September 2003 .



2 STEPHAN KLAUS AND PETER TEICHNER

example with this minimal signature defect was given only recently [5]. This shows
that even working modulo 8 one needs some kind of an assumption on the fibration.

The paper is organized as follows: In the next section, we recall the Serre spectral
sequence and the proof of the classical Chern-Hirzebruch-Serre Theorem, as this
will be the basis for our generalization. In the third section, we recall the Pontrjagin
square which will give us a quadratic refinement of the multiplicative structure in
cohomology. By a theorem of Morita, on a closed manifold the Arf invariant of the
Pontrjagin square is given by the signature mod 8. Thus, the proof of our main
theorem consists essentially in a careful construction and analysis of the Pontrjagin
squaring operation in the Serre spectral sequence by cochain methods. This is done
in the forth section and leads to the proof of our main result using some algebraic
properties of the Z/8-valued Arf invariant which we collected in an appendix. In
the last section we consider some examples of surface bundles over surfaces.

We would like to thank Matthias Kreck, Wolfgang Liick and Andrew Ranicki for
helpful remarks on this subject.

2. THE SERRE SPECTRAL SEQUENCE AND THE CLASSICAL
CHERN-HIRZEBRUCH-SERRE THEOREM

In this section, we recall the construction of the Serre spectral sequence in-
cluding its multiplicative properties, and give a short proof of the classical Chern-
Hirzebruch-Serre Theorem in the slightly stronger form of [12], as this will be the
basis for the proof of our main theorem.

Let R denote some commutative ring. A cochain complex (C*,d) of R-modules
with a decreasing filtration by subcomplexes

FC*o>FC*o...
induces a spectral sequence [20] (chapter 5) (E}*,d,) with

g e R p—rt+l,q4+r—2 p+1,9—1
Erlf != Zvl‘) q/(er—l + Zr——l )’

7P = {@ € FPCPH | do € FPHmCrtodly,

In order to construct the cohomology Serre spectral sequence with coefficients in
R for any fibration ¥ - M — B, we follow the simplicial approach in [11], chapter
VI. We take the normalized singular cochain complex C* := C*(M; R) of the total
space M. The decreasing filtration F is induced from the increasing filtration of
the total singular complex S.(M) by taking the inverse images of the p-skeleta of
S.(B) as subcomplexes. Hence FPC™ consists of those normalized n-cochains on M
which vanish on all singular n-simplices in M that project to singular n-simplices
in B which degenrate to (p — 1)-simplices in B (n < p). In particular, 7°C™ = C™
and F*H1C™ = 0. This decreasing filtration on C* induces a decreasing filtration
on H(C*) = H*(M; R) which we also call . Explicitely, 7P H*(M; R) consists of
the kernel of the restriction map to the inverse image of the p-skeleton and there is
an isomorphism

EPA = FPHPY(M; R)/FPH HPYI(M; R).
Furthermore, the Es-term is isomorphic to

EY? = HP(B;HI(F; R)),
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where H#*(F'; R) denotes cohomology with local coefficients over B. Then the spec-
tral sequence above is the cohomology Serre spectral sequence
EP' = HP(B;HY(F; R)) = HP*Y(M;R).

Clearly, this construction is natural in the category of fibrations: A commutative
square
F - M - B
1 \ {
F'» M - B
with the horizontal maps being fibrations induces a map of the associated Serre
spectral sequences.
The multiplicative structure in the Serre spectral sequence can be constructed
from the Alexander-Whitney cup product of cochains on M, which behaves multi-
plicative with respect to the filtration:

U: FPO™ @ FIC" —y Frragmin,
Hence, there is an induced product structure
e EPUQ® Ef"‘l' — Ef+p’,q+q'

in the spectral sequence such that the differentials are graded derivations. Moreover,
the product poo is induced from the product on H*(M;R), and the product p
corresponds to the composition

HP(B; HY(F; R)) ® HY (B; HY (F; R)) — HP*? (B;}(F;R) ® H(F; R))

—y gPHP (B;’Hq‘“" (F;R))
induced by the cup product on H*(F;R) and by the cup product H*(B;S) ®
H*(B;S") — H*(B;S ® §') for 1 (B)-modules S and S'.
For an oriented PD fibration and coefficients in a field R, the product
wo @ (EeE!)— B =R
p+p'=2b,q+q¢'=2f
is non-degenerate [4], with Poincaré duality interchanging the summands ET? ®
EP'4 and E'f.’/"ll ® EP+4. In particular, the product
g E2f @ B0 — R

is non-degenerate, too.
Now, the proof of the classical Chern-Hirzebruch-Serre Theorem uses the rational
multiplicative structure and proceeds in the following three steps:

sign(M) = sign(Egy/, hoo) (1)
= sign(By7, o) (2)
= sign(F) sign(B) (3).

Step (1) holds by the sublagrangian lemma for the signature, because in the multi-
plicative descending filtration H*(M;Q) = F° > F' D ..., the subspace L :=
FHHYHEM(M;Q) is a sublagrangian in H™(M;Q) with orthogonal complement
Lt = FPH™(M;Q). Step (2) follows by the sublagrangian lemma again, this
time applied to L, := im(d,) C E%f with L} = ker(d,). For step (3) recall that
by the assumption

ED? = H?(B; H(F;Q)) = H*(B;Q) ® H/ (F;Q)
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with pairing given by p2 = pp ® prp. Hence sign(Eg’f ,p2) = sign(B)sign(F)
by the multiplicativity of the signature in tensor products of symmetric pairings.
Indeed, this proves the following slightly stronger form of the Chern-Hirzebruch-
Serre Theorem [12]:

Theorem 2.1. Let F = M - B be an oriented PD fibration. If the dimension
of the fibre is odd, then sign(M) = 0. Otherwise, sign(M) = sign(Eg’f,uQ), and if
71(B) acts trivially on HY(F;Q), then

sign(M) = sign(Eg’f,,ug) = sign(B) sign(F).

It is not easy to find examples of oriented PD fibrations where multiplicativity
of the signature fails. A famous class of examples is given by surface bundles
over surfaces, which we will consider in the last section. Indeed, by the following
theorem of W. D. Neumann, 71 {B) has to be complicated in order to allow examples
with failing multiplicativity. For any discrete group G, denote by WU (G) the Witt
group of finite dimensional hermitian representations of G over C. Neumann defines
a natural ring homomorphism ¢ : WU(G) = H**(G;Q) and shows:

Theorem 2.2. [17} If ¥r,(B) = 0, then the signature is multiplicative in any ori-
ented PD fibration F — M — B.

For example, Neumann proves that this is the case if 7 (B) is finite, or free.

3. THE PONTRJAGIN SQUARE AND A THEOREM OF MORITA
The Pontrjagin square is an unstable cohomology operation
p: HY(X;Z/2) — H*™(X;Z/4),
which is uniquely characterized by the following three properties [3}:

rp(z) =2%,  p(ry)=y*, @) =i(zSq' 7).
Here, r and ¢ denote the coefficient homomorphisms associated to the short ex-
act sequence Z/2 - Z/4 3 Z/2, x € H™(X;Z/2), y € H*(X;Z/4), and p' :=
o~ po : H*(X;Z/2) — H?**1(X;Z/4) denotes the cohomology suspension of p
with ¢ : H*(X; A) — H**1(SX; A) the cohomology suspension isomorphism. The
operation p' is called the Postnikov Square. It is also unstable, but linear, and its
cohomology suspension vanishes, p' = 0.
For sums and products, the following formulas hold:

Lemma 3.1. [3] [21]
/ ) i(zUz') for x| even
e+ = pla) +ote) +{ 10U BT
plzy) = p(2)p) + ' (2)-Sa¥ 1y + 541 2’ (1)-
On cochain level, the Pontrjagin square is constructed as follows [16]:
p(z) := [y Uo y + y Ui dy mod 4].

Here, y denotes a singular integral cochain whose mod 2 reduction is a cocycle
representing the cohomology class z, d denotes the singular coboundary operator
and

Ui : C™(X; R) ® C™(X; R) — C™" (X, R)
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denotes the cup-i product which can be defined for any commutative coefficient
ring R. As this later will play a role we recall the construction.
Let S := Z[n] be the integral group ring of 7 := {1,T} = Z/2 and

VZZ{...——?—}SGQ-—Q—)Sel—a—)SEO—E—)Z},

d(ei) := (T + (-1)")ei-1, eeg) 1= 1,

be the standard free resolution of the trivial S-module Z over S with basis {e;}.
This is the chain complex of the universal covering of RP*® with it’s standard
cell decomposition (one i-cell in each dimension ¢). Let C* := C*(—;Z) be the
normalized integral cochain functor on spaces or simplicial sets, and let 7 act on
the tensor complex C’é) = C*®C* via permutation. Considering V as a negatively
graded cochain complex, we can form the cochain complex V @, C’(*z) over Z by
dividing out the diagonal m-action. By the method of acyclic models, there exists
a natural chain homomorphism

$:V & Clhy — C°

which gives the diagonal H%(¢) = A* : H(V @, Cl) = HY(X x X;Z) —
HY(X;Z) on the Oth cohomology. This property fixes ¢ up to a natural chain
homotopy. Now, the integral cup-i-products are defined by

TUiy:=dle; ®2®Y).

By definition, Ug is the usual cup product. The following coboundary formula
simply means that ¢ is a chain homomorphism:

d(zUiy) = (-1)'dz Uy + (=) "z Uy dy + (-1 2 Ui y + (1) y U o,

where m := |z], n := |y|. As a famous application, the Steenrod squares are defined
on cochain level by

5q' : C™(—2/2) — C™Y(—;Z/2), s¢'(z) =2 Up_;i T + T Up_i11 da.

Now goying back to the definition of the Pontrjagin square, by the coboundary
formula for the cup-1-product it follows straightforward that y Ugy + v U dy mod 4
is a cocycle modulo 4 whose cohomology class depends only of that of z [16].

By the formula p(z +y) = p(z) + py) + i(z U y) for |z| even, we get for any
connected closed oriented PD complex M of dimension 2m with m even a Z/4-
valued quadratic refinement

pm  HM(M;Z[2) = Z]4,  pu(z) = (p(z), [M]),
of the Z/2-valued pairing on H™(M;Z/2). For the convenience of the reader,

we included some facts on Z/4-valued quadratic forms and their Z/8-valued Arf
invariant in an appendix. The following theorem of Morita is crucial:

Theorem 3.2. [15] For a connected closed oriented PD complez, it holds
sign(M) = Arf(pp) mod 8.

We also remark that sign(M) = par(vm) mod4, where vy € H™(M;Z/2) de-
notes the middle dimensional Wu class of M.

In the above definition of the Pontrjagin square, some choice of an integral lifting
cochain y is involved. Indeed, it is possible to make this choice universally, which
will simplify the proof of our main theorem. To this end, we recall some facts
on cochain operations from [8]. By definition, a cochain operation is a natural
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transformation of normalized cochain functors on the category of simplicial sets
(and thus also on topological spaces via the singular functor S.(-)):

f:C™(—;R) — C™ (= R").
For example, the differential d in the cochain complex d : C™(—; R) — C™*+1(—; R)

can be viewed as a cochain operation. There are also 2-variable cochain operations,
for example the integral cup-i-products

Ui : C™(=3Z) x C™(= Z) — C™"7Y (= ).

Suppose that § maps cocycles to cocycles and that the cohomology class of (z)
depends only on that of the cocycle 2. In [8] the first author proves that this holds
if and only if 8 satisfies the condition

déd = 0,
which then gives a cohomology operation
[6]: H™(=; R) — H™ (= R)), [2] = [(2)].
Every (primary) cohomology operation can be represented in this way. Moreover,
the condition dfd = 0 is equivalent to the existence of a cochain operation 6’ with
6d = df' [8]. The cochain operations ' represents the cohomology suspension of
the cohomology operation associated to 6.

In order to define a cochain operation 8 : C"(—; Z/2) — C?*(—;Z/4) inducing
the Pontragin square, [§] = p, we have to be a little careful as

2 ¢(z) i =zUgz+2U; dz

can be regarded as a cochain operation from R- to R-coefficients (with R =
Z,Z/2,Z/4,..) but not from Z/2- to Z/4-coefficients. Thus we need a univer-
sal lift from Z/2-cochains to Z/4-cochains. Denote by K.(R,n) and L,(R,n + 1)
the standard models of simplicial minimal Eilenberg-MacLane spaces, respectively
their path spaces [13]. These spaces represent the normalized cocycle and cochain
functors for simplicial sets X,:

Z™(X o; R) = mapa(Xs, Ko(R,n)), C™(Xs;R) =mapa(Xe., Le(R,n + 1)),

where mapa denotes the set of simplicial maps and the natural isomorphisms are
given by pulling back the universal cocycle and cochain, repectively. By the Yoneda
lemma, natural transformations between these functors (i.e., cochain operations)
are given by simplicial maps between the representing spaces. Hence, for two abelian
groups R and R’ we have

Trans(C™(—; R),C™"(—; R')) = mapa(Le(R,n + 1), Lo(R',n + 1)) =
= C"(Le(R,n+1);R") = {s: R — R'| s(0) = 0}
because L,{R,n + 1) = R with 0 € R being the only degenerate n-simplex. In
particular, the nonlinear splitting function s : Z/2 — Z/4 with s(0) := 0 and
s(1) := 1 of the short exact coefficient sequence Z/2 — Z/4 — Z/2 corresponds
to a cochain operation which we also denote by s:
s:C™(—Z[2) — C™(—;Z/4).

This operation satisfies rs = id and s(z+y) = s(z) + s(y) +i(zy) where zy denotes
the point-wise product of the cochains z and y (regarding them as functions which
assign a number to any simplex). By the quadratic property of s, it does not
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commute with d. Indeed, from r(ds — sd) = 0 we obtain ds — sd = if with a
uniquely defined cochain operation /3 : C™(—Z/2) = C™H (= Z[2). (In fact, it is
not difficult to see that 3 is given by the simplicial formulae Bz) =22; d¥+lg +
i<k diz-d*z.) Furthermore, idf = ifd = dsd, hence dB = fd and dBd = 0. By
the construction above it is straightforward to see that the induced cohomology
operation of B is just given by the Bockstein Sq'. By the first author’s results in
(8], [9], there are exactly two cochain operations representing the Bockstein, namely
sq* and sq' + d. In particular, B(z) coincides with one of them.

As s gives a universal lift from Z/2-cochains to Z/4-cochains, we get a cochain
operation

g := ¢s : C™(—;Z)2) — C*™(—;Z/4)
8(z) = s(zx) Ug s(z) + s(z) U1 ds(z)

which induces the Pontrjagin square by definition. The condition df#d = 0 yields
existence of @ with 8d = df', where 8’ represents the Postnikov square g'. Indeed, a
straightforward computation shows g'(z) = s(z) Up ds(z) +i(dz U1 B (z)). Here and
in the following, we use the fact that iy Ux iz =0 and iy Uy z = i(y Uk 72) relating
Ug-products for Z/2- and Z/4-coefficients, which follows from the corresponding
facts for the coefficients.

We will need the following result refining the sum formulae of the Pontrjagin
square in the next section.

Lemma 3.3. For z,y € C™(M;Z/2) with m even,
(z +y) = 0(z) + 0(y) +i(z Vo y)
—d(s(z) Uy s(y)) + s(y) U1 s(dx) — s(dz) Ur s(v)
+i(d(y Uz B(z)) + dy Uz B(z) +y Uz B(dz)
+d((z +y) U1 @-y) + -y Up (dz +dy) + (dz + dy) U z-y).

Proof: First we remark that uUpv —vUou = d(uU; v) + duUy v +u Uy v, hence

d(u +v) = $(u) + ¢(v) + 2(uUo v) — d{uVUy v) +v Uy du—duUy v
for u,v € C™(M;Z/4). Because of ¢(iz) =0 for z € C™(M;Z[2), we get

o(u + iz) = ¢p(u) + i (d(ru Uy v) + v Uy dru -+ dru Uy v).

The claim follows from 8(z + y) = ¢(sz + sy + iz-y), ds(z) = s(dz) + iB(2)

and 2z U; B(2') + B(#") U1 z = d(z Uz B(z") + dz Uy B(2') + 2z U2 B(dz") for any
z,2' € C™(M;Z/[2). O

The reason for transforming the deviation 6(z + y) — 0(z) - 6(y) —i(z Vo y) to
this form will become clear in the next section. The point is that the terms are
either a coboundary or contain some factor dz or dy (a factor ds(z) would not be
enough).

4. PROOF OF THE MAIN THEOREM

The crucial part of the proof consists in constructing Pontrjagin squaring oper-
ations in the E,-terms of the Serre spectral sequence of an oriented PD fibration,
and finding its relations to the filtration on H*(M), to the differentials d. and to
the E,-term. Using our cochain operation § we will obtain Z/4-valued quadratic
refinements

o) - E,lf’f — Z/4
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of the pairings p, with coefficients Z/2. Then, the proof of our main result 1.1 will
be finished in three steps (4.5, 4.6 and 4.7), again:

Arf(py) = Arf(poo) (1)
= Arf(p,) 2)
= Arf(pr) Arf(pp) (3) for trivial operation.

Any cochain operation preserves the Serre filtration by naturality. The filtration
properties of the U;-products are stronger:

Lemma 4.1. [10] (p.84) For a fibration F =+ E — B and x € FPC™, y € FIC",
zU; y € C™™ has filtration

pt+g
2 )))

max(p +q — 1, (
where (a) := least integer > a.

The following obvious construction of spectral operations for the Serre spectral
sequence is implicit in [10], chapter 1-7.

Lemma 4.2. Let § : C*(—; R) = C" (—; R') be some cochain operation, and as-
sume that there are numbers p,q,7 and p',¢',v' withp+q=mn andp'+q' = n', such
that the following holds: For any fibration F — M — B with associated Serre spec-
tral sequences EX*(R) and E*(R') (with R- and R'-coefficients), and any cochain

z € ZPY(R) C C™(M;R), the cochain (z) € C™ (M; R') is an element in Zf,lq’ (R,
and the class [6(z)] € EL? (R') depends only on the class [z] € EFI(R). Then 6
induces a spectral operation

6] : E2*(R) — EL7 (R)
which behaves natural on the category of fibrations.

As an application, it follows by straightforward computation that the cochain
operation sg* which gives the Steenrod square S¢' = [sq*] in Z/2-cohomology,
induces spectral operations in the Serre spectral sequence with Z/2-coefficients [10]

Sqt: EPI —y EPat for0<i<gq,
;| +i=g,2 ;
Sq¢*: EP —» Ef+1lni(712(iq—q,r—2) forg<i<p+gq.

This was proved independently by Araki [1] and Vazques [19].

As the Pontrjagin square is a refinement of the highest Steenrod square, a natural
guess would be that 6 induces a spectral operation EP4(Z/2) — EZP24(Z/4).
Unfortunately, this is not true:

Lemma 4.3. If z € FPC", then 0(z) € F?P~1C%,

Proof: For z € FPC"(M;Z/2), we also have s(z) € FPC™(M;Z/4) by the
injectivity of s, and ds(z) € FPC™*1(M;Z/4) by naturality. Hence s(z) Up s(z)
has filtration 2p, but s(z) Uy ds(z) has filtration 2p — 1, only. a

The problem is that for z € FPC™ and dz € FPH"C™H1, the filtration of ds(z)
can be smaller than p + r (in fact, by naturality it has only to be > p). This is in
contrast to s(dz) which has filtration p+r. Nevertheless, in our case of an oriented
PD fibration, this causes no harm if we evaluate on the fundamental class of the
total space:
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Theorem 4.4. Let F — E — B be an oriented PD fibration and E** the associ-
ated Serre spectral sequences for cohomology with Z/2-coefficients. Then there are
Pontrjagin squaring operations

priEPT — Z/4, p((z]) == (B(z), [M])
with x € Z55 € C™(M;Z/2), which are quadratic refinements of the products L.

Proof: For z € Zl'f, ie, z € FPC™ and dz € F¥*"C™1, we have 6(z) €
F=1C?™(M;Z[4) which can be evaluated on the Z/4-fundamental class [M] of
M. We have to prove that g, is well-defined on EYS. If z = dy € dZ= [+ /+7-2,
then by 8(dy) = db'(y) and by Stokes’ formulae go,( ) = (df'(y), [M]) = 0. If
€ Z!1/=1) then by lemma 4.3 6(z) € F2+1C2?" which vanishes as evaluation
on M factors over 2+ H2"(M;Z/4) = 0. By lemma 3.3, we get for 2,y € 2%/
that 6(z +y) = 6(z) +6(y) +i(zUo y)+ boundary terms + terms of filtration larger
than 2b (here, for r = 2 one has to use the fact that B raises the filtration by 1
as it represents the Bockstein). These additional terms vanish after evaluation on
M, showing that = — (6(z),[M]) is a quadratic refinement of the cup product on
cochain level. Moreover, it follows that g, is well-defined because for z € Z%f and
y € dZ" L2 oy e Zb+1 7=1 we have (x U y, [M]) = 0 by Stokes’ formulae
and ﬁltratxon, respectively. ]

For the next two lemmas, we use the quadratic sublagrangian lemma which we
prove in the appendix: If ¢ : V' — Z/4 is a nondegenerate quadratic form on a finite
vector space V over Z/2 and L C V is a quadratic sublagrangian, i.e. ¢(L) = 0,
then ¢ induces a nondegenerate quadratic form ¢’ : V/ =+ Z/4 on V' := L/L* and
Arf(q) = Arf(q').

Lemma 4.5. Let ' — E — B be an oriented PD fibration, then Arf(py) =
Arf(poo).

Proof: We already know that L := F*+1H™(M;Z/2) is a multiplicative sub-
lagrangian with Lt = F°H™. If z € F*H1C™(M;Z/2), then 6(z) € F2+1o2m,
Hence, pp([z]) = 0, i.e. L is also a quadratic sublagrangian and we are done by
the quadratic sublagranian lemma. 0

Lemma 4.6. Let ' — E — B be an oriented PD fibration, then Arf(p,) =
Arf(pr41).

Proof:  We already know that L := im(d,) C E%/ is a multiplicative sub-
lagrangian with L+ = ker(d,). We note that d, is given by d on C*(M;Z/2),
thus for [z] = [dy] € im(d;), we obtain [f(z)] = [d¢'(y)] € im(d,), too. Hence,
prm([z]) = 0 by Stokes’ formulae, i.e. L is also a quadratic sublagrangian and we
are done by the quadratic sublagranian lemma, again. O

The last step consists of the identification of g3 and finishs the proof of our main
theorem 1.1:

Theorem 4.7. Let F —+ E — B be an oriented PD fibration such that m1(B) acts
trivially on HY (F?f;7,/2), then Arf(gps) = Arf(pr) Arf(pp).

Proof: We recall that E3* is a subquotient of C*(M;Z/2). We have E;"O =
H%(B;7Z/2) and, by assumption, Eg J = Hf (F';Z/2), with isomorphisms induced by
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projection to the basis and inclusion of the fibre, respectively. By assumption, the
product i (cup product) gives the isomorphism H*(B;Z/2) ® HY (F;Z/2) = EX.
Thus a basis of E>7 is given by the products ps(p* [x:],[2]) = [p*z:i U 2;] with
a basis [z;] of H*(B;Z/2) and cochains z; restricting to a basis [y;] = [i*2;] of
H/(F;Z/2). Now it is essential, that the product formula 3.1 of Wu also holds on
the level of cochains ([21] p.157). By naturality and the product formula for the
Pontrjagin square, we obtain

p2([p*z; U zj]) = (p*6(z:) U 0(2.7')7 (M},
because the summands containing the Postnikov square g’ vanish by dimensional

reasons. As p*8(z;) € E;b’o can pair non-trivially with elements in Eg 21 only, the
right hand side is equal to

{6(z:), [B(O(ys), [F])-

Thus p2 = pp®pF on pure tensors, which for f even (thus also b even) is a product
of quadratic forms. Then the claim follows from the product formulae of the Arf
invariant (see the appendix). For f (and b) odd, we have to be careful as pr and pg
are linear in this case (see 3.1). Moreover, the intersection pairing of a connected
closed oriented (4n + 2)-dimensional PD complex is even, because 22 = S¢?n+lg =
S¢'S¢*z = v,S¢°"z = 0 by the vanishing of the first Wu class v;. Hence pjg,
gr and p, take values in Z/2 C Z/4 and their generalized Arf invariants coincide
with the usual Z/2-valued Arf invariants. Now, it is enough to consider the tensor
product of two hyperbolic summands with basis z,y € H®(B;Z/2) and z',y' €
HY(F;Z/2), respectively. In the tensor product, a hyperbolic basis is given by z; :=
@z y1:=y®y',and z2 ;= Y, yp :=y®z'. Thus Arf(p;) = pa(z1)p2(v1) +
p2(22)p2(y2) = pp(2)pr (2 )epW)Pr ') + pa(T)pr (Y )psY)pr(e’) =0. O

5. SURFACE BUNDLES OVER SURFACES C Mot Cocup(ej-co() -

For a nice class of examples, we briefly recall some known facts about fibre
bundles with F' and B being closed oriented surfaces. Let g be the genus of the
fibre. Then such bundles are given by a classifying map

Wl(B) _c) FQ,

where T’y is the mapping class group of the fibre. It was shown in [14] that for g > 3
the signature of the total space M* is given by

sign(M) = 4-deg(c),

where the degree deg(c) is defined by picking a generator in H%(T,) = Z and
evaluating its pullback under ¢ on the fundamental class in Hy(m;(B)) = Hq(B).
This implies in particular, that all multiples of 4 occur as sign(M) because elements
in the second homology of any space can be realized by maps of surfaces.

Now recall that we are interested in fibre bundles where 71 (B) acts trivially on
HY(F;Z/p) for some prime p. This just means that the classifying map lies in the
kernel K of the epimorphism

Iy — Sp(29,Z/p) =: G

given by its action on the mod p intersection form of the surface. Hence the possible
signatures are given by a factor of 4 times the index of the image k of Hy(K) in
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H>(T'y). Since the Schur multiplier H3(G) of our finite group G vanishes, the integer
k is the order of the cyclic group

H,(G; Hy(K))/d2(H3(G))
as follows from the Serre spectral sequence for our group extension
11— K —T, —-G—1

If our result is best possible, we would expect that k =2 for p=2 and k = 1 for
p>2 .

The following hopefully useful information is taken from [6]. First note that by
Minkowski’s theorem the group K acts freely on Teichmueller space 7, for p > 2.
In particular, K is torsionfree in this case and has a (6g — 6)-dimensional classifying
space T,/K. Note that G still acts on 7,/K, the moduli space of level p curves,
by permuting the level p structures (i.e. a basis of H*(F;Z/p)). This action has
non-free orbits, corresponding to complex structures on F with larger symmetry
group, namely the isotropy group of the orbit.

Moreover, H%(T',) is generated by the first Chern class of the determinant bun-
dle (of the Dolbeaux operator), an orbifold bundle over moduli space (or a Ty-
equivariant bundie over 7;). By the above remark, this determinant bundle becomes
an honest complex line bundle L over 7,/K. It is by construction G-equivariant
and indivisible (under tensor product) as G-equivariant line bundle. The signatures
in question are calculated by checking the precise divisibility of this line bundle,
after forgetting the G-equivariance.

APPENDIX A. THE SUBLAGRANGIAN LEMMA FOR THE GENERALIZED ARF
INVARIANT

We recall here some facts about the usual and generalized Arf invariant. The
latter was introduced in topology by Brown [2] in his work on generalizations of the
Kervaire invariant. A survey on its algebraic properties can be found in [2]. See
also the appendix of the author’s thesis [7], from where we have taken the proof of
the sublagrangian lemma.

Let V be a finite dimensional vector space over Z/2 and ¢ : V — Z/2 be a
nondegenerate quadratic form, i.e. pu(z,y) := g(z +y) — ¢(z) — g(y) is bilinear in z,
y and nondegenerate. Up to isomorphism, the form ¢ is classified by the dimension
of V and its Arf invariant Arf(¢) € Z/2, which can be defined as the ’democratic
invariant’ as follows:

| 1 iff the majority of vectors z € V has q(z) = 1,
Arf(g) = { 0 otherwise

Because we have u(zr,z) = ¢(22) — 2¢(z) = 0, the associated symmetric bilinear
form p of ¢ is always even. In order to deal also with quadratic forms on V with
associated odd bilinear form p, one has to allow that ¢ takes values in Z/4. Thus
a generalized nondegenerate quadratic form is a map ¢ : V — Z/4 such that
p:V xV = Z/4 is again bilinear (and thus takes values in Z/2 C Z/4) and
nondegenerate. Up to isomorphism, the form ¢ is classified by dimension, type,
and the generalized Arf invariant

Arf(q) € Z/8

defined as in the first section (see [7]).
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We have the following properties: For two forms ¢ : V — Z/4 and ¢’ : V' — Z/4,
we have

Arf(g @ ¢') = Arf(q) + Arf(¢'),
Arf(g® q') = Arf(q)-Arf(q'),
where (9 ® ¢')(z,2) := ¢(z) + ¢'(2') and (¢ ® ¢')(z ® 2') := ¢(z)-¢'(z"). If ¢
takes values in Z/2 C Z/4, then Arf coincides with the usual Arf invariant via the
embedding Z/2 C Z,/8.

Furthermore, the following result holds for forms which are reductions of integral
quadratic forms [2]: Let o : F'x F — Z be a symmetric unimodular bilinear form on
a finitely generated free abelian group F. Let V := F®Z/2 and define ¢ : V — Z /4
by g(z + 2F) := p(zx,z) mod 4. Then g is well-defined and (V,q) is a generalized
nondegenerate quadratic form with

Arf(g) = sign(u) mod 8.
The following sublagrangian lemma is taken from the first author’s thesis [7]:

Lemma A.1. Let ¢ : V — Z/4 be a generalized nondegenerate quadratic form
which vanishes on a sub-Lagrangian V. C V. Define Vo := V2 /V_ and qo : Vy —
Z[4 by go(v + V_) := q(v). Then qq is a generalized nondegenerate quadratic form
on Vy and

Arf(q) = Arf(go).

Proof: For v_ € V_ and v € VL we get g(v + v_) = ¢(v), thus go is well-
defined. Clearly, p is nondegenerate on Vp, thus also go. Let Vi := V/VZ, then
V=V_®We V. and p decomposes as

Ve W V4
Voilo 0 py
Vo |0 po #
Vilpe * o+

where the restriction ps : Vo x Vi — Z/2 C Z/4 is also nondegenerate. With
q(v-) = 0, this gives g(v_ +vo +v1) = g(vo) + q(vy) + p(v-,v4) + plvo,v4),

showing that
Z l“I(m) — Z ,L'q('u-+vo+u+)

TeV v- €V, up€Vp, v €V
= 3 o) [ 3 oo [ 5 g | |
vo€Vp vy €EVY v_€V_

But 3, oy i#(=2%+) is O for fixed vy # 0, because half of the elements v_ of V.

are mapped to i*(“->+) = +1, and the other half is mapped to —1. This follows
from the nondegeneracy of py. For vy = 0, one has Yov_ev. plv-vy) = V-
(number of elements). So

3 it) = § jalwo) (iq(o>+o.|V_,) = ( s iq(vo)) AV,

veEV VoEVD vo€Vo
which gives Arf(q) = Arf(gy). =]
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