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Introduction

Let V"*1cS"*2 be a Seifert surface for a knot K:S"CS"*2, and let C denote the
exterior of V. Pushing V into C along the two different unit normal frames defines a
pair of maps p,,p_:V—C. It is an easy consequence of the Mayer-Vietoris
sequence of the triple (§"*2, V,C) thatp,,—p_.: H (V)— H (C)is an isomorphism.
Let 0: VA V—S8"*! be the homotopy Seifert pairing of VC8"* 2, which is defined to
be the composite of id, Ap,: VA V->VAC followed by the canonical Spanier-
Whitehead duality map d: VA C—S8"*!. The map @ is the homotopy theoretic
version of the Seifert form. Farber proves that if V is r-connected, with r = (n+1)/3
and n> 5, then the isotopy class of ¥'C $"* 2 is determined by the “isometry class” of
6 [F].

For example, if S*C $** 2 is a fibred knot (i.e., the exterior fibres smoothly over
the circle), then its fibre is a canonical Seifert surface, and there is consequently a
canonical homotopy Seifert pairing for it. Hence, Farber’s theorem is a complete
classification of fibred n-knots whose fibres are (n + 1)/3-connected with n > 5. This
result was later extended to one dimension better (3r = n) by Richter [R]. We shall
say that V is stable if the condition 3r =n holds.

It is the purpose of this paper to establish a formula expressing the homotopy
class of the inclusion S*CV in terms of the homotopy Seifert pairing of stable
Seifert surfaces (Theorem 3.1). The same result was obtained by Richter using a
different argument involving the addition/composition formulae for generalized
Hopf invariants (in fact, Richter appealed to these formulae in his homotopy
theoretic proof of Farber’s theorem). After deducing the main result, we state a
general conjecture which we hope is valid outside of the stable range. We then
interpret this conjecture in the metastable range: 4r=n+1.

We remark that there is nothing sacred about the assumption that the
boundary of V is a standard sphere; all of our results hold for homotopy spherical
boundaries as well.
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By Poincare duality, if V is stable then the homology dimension of ¥V is less than
or equal to 2r. Consequently, the Freundenthal suspension theorem implies that V
desuspends uniquely up to homotopy. In particular, ¥ has a unique comultiplica-
tion (up to homotopy) which we shall denote by +: V- Vv V., It therefore makes
sense to speak of the map p, —p_:V-C.

Lemma 0.1. If conn(V)=r=1, then p, —p_ is a homotopy equivalence.

Proof. Since C is also simply connected, this is just the Whitehead theorem. []

1 The flat product

We shall work entirely within the category of spaces which are the homotopy type
of a CW complex.

For pointed spaces X and Y, let XbY be the homotopy fibre of the inclusion
XvYCXxY Let Wy y: XbY— X v Y denote the canonical map of the homotopy
fibre into the total space. We will call Wy y the universal Whitehead product. If
f:X—>X"and g: Y-Y' are pointed maps, then the universal Whitehead product
satisfies the naturality property

(1.1) (fvege Wy, y= WX',Y'°f|7ga

where fbg: X bY—X'bY" is the obvious map. If X = ¥, we let wy : X b X — X denote
the composition of the fold map X v X - X with Wy . We shall need the follow-
ing fact, which is a special case of the Blakers-Massey excision theorem.

Lemma 1.2 (cf. [G]). There is a natural map Ny, y: X bY—>Q(X A Y) which is
min(conn(X),conn(Y))+conn(X)+ conn(Y)+1

connected.

2 The dual homotopy Seifert pairing

Let 0:VAV—-S"*! be the homotopy Seifert pairing associated with a Seifert
surface ¥'C S"* 2. Up to sign, the S-dual to 0 is the map 6*: §"* ! - C A C which may
be described as follows (cf. [K-S]):

Let D(V)=V,uV_ be the double of V. Consider the map t: D(V)—V x C given
by the rule

; _{(U,P+(U)), if veV,,and
)= (v,p-(v), if veV_.

Let Do(V) be the space obtained from D(V) by removing the top cell. Since the
inclusion Vv CCVxC is (2r+1)-connected and since Dy(V) has homology
dimension <2r it follows from elementary obstruction theory that we can
homotop t to a map ¢, : D(V)—>Vx C such that t; maps Dy(V) into Vv C. Let
d*:S"*1 5V A C denote the induced map of quotients,

S =D(V)/Do(V)—> VX C/VvC=VAC.

(In fact, d* is a Spanier-Whitehead duality [K-S, K].) Then 0*:S"*'1>CAC is
defined to be the composition (p_ Aidc)o d*.
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Let adj(d*):S"—Q(V A C), adj(6*): S"—>Q(C A C) be the adjoints to d* and 8*. By
Lemma 1.2, there are maps (unique up to homotopy) D:$"—>VbC and
©:5"-CbhC such that Ny yoD~adj(d*) and Ny yo ©~adj(0*). Note by defi-
nition the relation which exists between D and ©:

2.1 O~(p_bido) oD,
where p_bid.: VbC—-CbC.

3 The inclusion of the boundary

Let o: S"CV denote the inclusion of the boundary.

Theorem 3.1. If V is stable (3r = n), then the following relation holds:
ax(py—p-) " toweo(—0),

where (p. —p_)~ ! is a homotopy inverse for p, —p_.

Proof. Identify D(V) with the boundary of a tubular neighborhood of V in §"*2.
The attaching map for the top cell of D(V) is then the composite

N VY LI 7VE 7285, W1 2 %

where (1, — 1) is the map which is degree one on the first factor and degree minus
one on the second factor. Note that

pric(ava)e(l, —=1)=ua,

where pry: Vv V-V is the projection onto the first factor.
By [K, 53], D(V) may be also identified with (Vv C)u,D"*!, where
0:8">V v C is the composite

s 2vhc vy,

We shall for the reader’s convenience prove part of this assertion: Since $"*2 may
be identified with the pushout of

idyvidy ptup-

D(V) ->C,

|4
it follows that the pushout of

idy Vidy

(+) Ve vvv-2r-, e,

is contractible, since V v V may be identified with the punctured double, Dy(V).
Now a pair of maps X« A— Y of 1-connected spaces has contractible pushout iff 4
is homologically the wedge of X and Y by the Mayer-Vietoris sequence. In the
above case, the connectivity hypothesis furthermore implies, in fact, that A4 is
homotopically the wedge of X and Y.

To see this, consider the map 6: Vv V-V x C which on the first factor of the
wedge is

(idy,p): V-VxC

and which on the second factor of the wedge is (id,,, p _). Since ¥ v V has homology
dimension 2r (r=conn(V)), and since the inclusion Vv CCVxC is (2r+1)-
connected, it follows by obstruction theory that ¢ is homotopic to a map which
factors through V v C, moreover this map is unique up to homotopy. Denote the
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factorization by 7: Vv V-Vv . Now t upon taking homology yields the
isomorphism which appears in the Mayer-Vietoris sequence associated to the
diagram (*) above. Hence, 7 is a homotopy equivalence by the Whitehead theorem.

Since D(V) is obtained from D(V) by attaching a top cell, it follows from the
splitting argument that D(V)~(V v C)uD""!. We leave it as an excercise to the
reader to prove that the top cell is actually attached along the map ¢:S"-»V v C
given above. The basicidea is that ¢ followed by the inclusioni: Vv CCVx Chasa
canonical null homotopy, since the i - t must extend to the double D(V). Therefore
o factors as Wy, -7, and the reader must show that 7=D.

We now use the comultiplication on Vv V to invert 7; this will lead to the
formula for a: An easy calculation shows that the two splittings D(V)~V v V and
Dy(V)~V v C are equated by the homotopy equivalence 4: Vv C—V vV (the
homotopy inverse of t) which is given by the 2 x 2 matrix of maps

A=<—(p+—p_)‘1°p— p+—p)" >
(pe—p-) topy —(s—p)7"
Under this identification ¢ and o are easily seen to satisfy the relation
pricAcgo>~a.
But pr, o 4 is just the 1 x 2 matrix of maps
(=(@+=p-) "op-(pr—p-) =(+—p-) ' o(—p- idg),

and hence,

a=(py—p_) te(—p_idgee=(p+—p-) 'o(~p-idg)o Wy coD.

On the other hand, (—p_ idc) e Wy, c=wco ((—p-)bidc) by (1.1). Substituting this
into the above, we get

ax(pr—p_)~toweo((—p-)bidg)eD.
Finally, we have by (2.1), @ ~(p_bidc)< D, and therefore,
—O@~((—p-)hidc)-D,
as the reader may easily check. This yields the desired relation,
ax(py—p-) towco(—6). [

4 A conjecture

Suppose that K is a space and that a map ¢ : $"* ' - K A K is given. We say that f is
a (dual) homotopy Seifert pairing for K if

d:=¢+(—1y*1eTog

is an S-duality, where T: K A K—K A K is the map which interchanges factors (cf.
[F, 1.4]).

By a Ganea-Seifert triad (of dimension n) for K, we mean a triple (g,,9_,0)
where,
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(1) g+ :K—>K are maps;

(2) ©:8">KbK is a map such that Ny g0 0:5"—+Q(K A K) is adjoint to a
homotopy Seifert pairing for K;

3 w1th respect to the S- duahty d:S"*15 K A K associated with (2), the S-dual
ofg_

adj(Ng x° 0):S"" ' 5K AK,
and the S-dual of g, is
(—1"* ' Toadj(Ng g 0),

fie, (g~ Aidg)od=~adj(Ng x° ®), etc.].
There is also the notion of isometry of Ganea-Seifert triads — the definition of
this we leave to the reader.

Lemma 4.1. If V"*1C8"* 2 is a 1-connected Seifert surface having the structure of a
co-H space, then there is a canonical Ganea-Seifert triad (of dimension n) up to
isometry associated with V.

Proof. Weset K=V, q,.=(p,—p_) top,,and q_=(p, —p_) 'op_. We define
®:5">KbK as follows:

As in Theorem 3.1, identify the double D(V) with the boundary of a tubular
neighborhood of V and let Dy (V)~V v V be the punctured double, i.e. the space
obtained from D(V) by removing the top cell. Then D(V)is a co-H space. Let C be
the exterior of V. Then there is a canonical equivalence Dy(V)~V v C defined by
co-adding the fold map Vv V-V with the map p, vp_:V v V—C. The attaching
map S"— Dy(V) for the top cell of D(V) with respect to this equivalence factors as
Wy co D, where D: 8" Vb C satisfies the condition that N, - D is adjoint to an
S-duality [K, 5.3]. We then define @:5"—>V bV to be the composition

P 7 Yo il Ll S N 74 70

We now sketch a proof that the triple (¢, g _, @) has the desired propefties. To
prove (2), note that

NV,V°@=NV,V04—b(P+—P—)_1°D,
~Qq-Apy—p-)"Y)oNy coD, by Lemma 1.2.
Hence, by taking adjoints we infer that
adj(Ny,y°@)~(q- A(p, —p-)" )Ny coD
=((p+—pP-)"" AP+ —p-)"Neo(p- Aldg)o D
=((p+—p-) " "Alps—p) )0 H,

where &: =(p_ Aid¢)o D is the dual homotopy Seifert pairing of ¥'CS"*2 in the
sense of Sect. 2. Since (p, —p_)~ ' is a homotopy equivalence, condition (2) will be
satisfied if

O+(—1)y"1eT-H

is an S-duality map. But this in fact follows from [F, 1.4] (or rather its S-dual
version).



108 J. R. Klein

To prove (3), we may simplify things and identify V again with C using the
equivalence p, — p_. Under this identification, the first part of (3) is equivalent to
showing that

adj(N¢,c°0):=adj(N¢,co(p- bid¢) - D)

is S-dual to p_ (with respect to the duality map d, c:=adj(Ny coD):S"*!
=2V AQ)
By naturality (1.2), this is the same as

adj(2(p- Aid¢)e Ny,coD)=(p- Aldc)edy c,

and hence the first part of (3) is established. The last part of (3) follows by a similar
argument using the fact that p, and p_ satisfy the equation

(=1 o To(p_ nide)ody c>(py Aidg)ody ¢,
(see [F, 1.4]). O

We now propose the following conjecture:

Conjecture 4.2, (1) (Existence). If K is a 1-connected co-H space and S=(q.,q_,O)
is a Ganea-Seifert triad of dimension n>5 for K, then there is a Seifert surface
VrticS"t2 with 0V a homotopy sphere X", such that V=K, and such that the
Ganea-Seifert triad associated with V (cf. 4.1) is isometric to S.

(2) (Uniqueness). Let V**' and W"*' be Seifert surfaces (with homotopy
spherical boundaries ) in the sphere S"*?. Additionally, assume that V and W are
1-connected and have the structure of a co-H space. Then V and W are isotopic in
S"*2 if and only if their associated Ganea-Seifert triads are isometric.

We remark that this conjecture generalizes the statements of the theorems of
Farber [F].

5 Interpretation of Conjecture 4.2 in the metastable range

It is our intention in this section to give the data of Sect. 4 a simpler description
under a metastable type connectivity restriction.

If K is an r-connected co-H space, then we say that a Ganea-Seifert triad
S=(q+,q_,0) of dimension n for K is metastable if 4r =n+ 1. If the conditions of
Conjecture 4.2(1) hold and if S is metastable, then Poincaré duality implies that K
has homology dimension =<3r—1. Consequently, by [G, 3.6], it follows that
there is a space Y and a primitive equivalence of co-H spaces Y ~K, i.e., K de-
suspends.

We now use the Hilton-Milnor decomposition of KbK as an infinite wedge (see
e.g. [G] for this computation):

KbK~Z(E7 1K) v 2Z 1K) 3 v3E KM v L vi(ETIK) N Dy L),

By obstruction theory, the inclusion of terms of smash order <3 is (4r+3)-
connected. As 4r = n+ 1 by hypothesis, we infer that @ : $"— Kb K is determined by
a map

O :S" X 'KAKVI ?2KAKAKVE 2KAKAK.
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By obstruction theory again, the inclusion

STIKAKVI?2KAKAKVIT2KAKAK
CEZT'KAKXI 2KAKAKXxX 2KAKAK

is more than n-connected. Consequently, @:S"—»KbK is determined by three
maps

0,:S"»Z 'KAK, 0,:5"-»X2KAKAK, and
0,:5"Z 2K AK A K.

Note that each of these maps is in the stable range. It can be shown that 20, is
the dual homotopy Seifert pairing. The other maps are possibly a “tri-linear”
analogue of the homotopy Scifert pairing. It would be interesting to know what
these maps mean geometrically. Is there a functional relationship between @, and
03?
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