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Abstract. Given a 1-connected Poincaré duality space M of di-
mension 2p, with p > 2, we give criteria for deciding when homo-
topy classes Sp −→ M are represented by framed Poincaré embed-
ded p-spheres.

1. Introduction

In setting up surgery theory in the smooth category in the even
dimensional case, it is desirable to be able to decide when a homotopy
class Sp −→M2p is represented by a framed embedded sphere. Here
M denotes a compact smooth manifold of dimension 2p, possibly with
boundary. By transversality, any homotopy class is representable by an
immersion, and the immersion has a trivial normal bundle if and only
if its Euler characteristic vanishes. In [Wa2, Chap. 5], Wall described
a ‘self-intersection’ invariant µ(x) for immersions x : Sp −→M whose
vanishing is necessary and sufficient for finding an embedding in the
same regular homotopy class as x. If M is simply connected, Wall’s
invariant takes values in the abelian group Qp, where Qp = Z if p is
even, and Z/2 if p is odd.

In this paper we will concentrate on the Poincaré duality space
version of this problem. From now on, M will denote a 1-connected
Poincaré duality space of dimension 2p, possibly with boundary. We
seek criteria for deciding when a map g : Sp −→M underlies a framed
Poincaré embedding. The first obstruction concerns the existence of a
framing: g∗νM should be fiber homotopically trivial, where νM is the
Spivak normal fibration of M . This leads to

Definition. Consider pairs (g, τ), where g : Sp −→M is a map and τ
is a (stable) trivialization of g∗νM . Two such pairs (g0, τ0) and (g1, τ1)
will be declared equivalent if there exists a homotopy G : Sp×I −→
M from g0 to g1 and a trivialization of G∗νM extending the given
trivializations τ0 and τ1. Let F(Sp,M) denote the associated set of
equivalence classes.

In fact F(Sp,M) has the structure of an abelian group if p ≥ 2. To
see this, choose a basepoint in M and let F∗(Sp,M) be given by pairs
(g, τ) but where now g : Sp −→M is a based map, and the equivalence re-
lation is defined similarly except that homotopies are required to fix the
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basepoint. Then we have a forgetful function F∗(Sp,M) −→F(Sp,M)
which is an isomorphism since M is 1-connected. But F∗(Sp,M) ad-
mits the structure of a group; the group structure is induced by the
addition of homotopy classes. This group is abelian because p ≥ 2.
The map F(Sp,M) −→Hp(M) given by (g, τ) 7→ g∗([Sp]) is a homo-
morphism. Moreover, any framed Poincaré embedding of Sp in M
defines an element of F(Sp,M).

Theorem A. (p > 2). There exists a function µ : F(Sp,M) → Qp

satisfying

• µ(x + y) = µ(x) + µ(y) + x · y
• x · x = µ(x) + (−1)pµ(x), and
• µ(ax) = a2µ(x) for all a ∈ Z.

(here x · y is the intersection of the images of x and y in Hp(M);
intersection is defined using cup product and Poincaré duality).

Moreover, a class x ∈ Fp(M) is represented by a framed Poincaré
embedded sphere if and only if µ(x) = 0.

The proof of Theorem A relies on the embedding result “Theorem E”
of [Kl1], the latter which in turn was proved using fiberwise homotopy
theory. After [Kl1] was written, Bill Richter and I discovered a non-
fiberwise proof of “Theorem E.”

For applications to Poincaré surgery one needs the above result for
elements x in the homology kernel of a highly connected Poincaré nor-
mal map. More precisely, suppose that X2p is a 1-connected Poincaré
duality space with Spivak normal fibration νX . One says that a degree
one map f : (M,∂M) −→(X, ∂X) is a normal map if the restriction to
∂M −→ ∂X is a homotopy equivalence, and f comes equipped with a
fiber homotopy equivalence νM

∼= f ∗ξ, where νM is the stable normal
bundle of M . There is then the corresponding notion of normal cobor-
dism, and the fundamental problem of Poincaré surgery is to decide
when f can be made normally cobordant to a homotopy equivalence.
By doing ‘surgery below the middle dimension’, it can be arranged
that f : M −→X is p-connected. The relative Hurewicz theorem gives
an isomorphism πp+1(f) ∼= Hp+1(f), and Poincaré duality implies that
f is a homotopy equivalence if and only if Hp+1(f) is trivial, i.e., if and
only if f is (p+1)-connected. Thus one wants to know when f can be
made normally cobordant to a (p+1)-connected map.

Setting

Kp(M) := πp+1(f) ∼= Hp+1(f) = kernel(Hp(M) → Hp(X)) .

we have a monomorphism Kp(M) −→F(Sp,M) defined by x 7→ (gx, τx)
in which x represents an element of πp+1(f) given as a map gx : Sp −→M
and a null-homotopy Dp+1 −→ X of f ◦ gx, and τx is the trivializa-
tion of g∗xνM = (f ◦ gx)

∗νX defined by its extension to Dp+1. Then
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the function µ : Kp(M) −→Qp gives the obstruction to representing el-
ements of Kp(M) by framed Poincaré embedded spheres. The triple
(Kp(M), λ, µ) in which λ : Kp(M)×Kp(M) → Z is the intersection form
define an element σ(f) of the L-group L2p(e) and the fundamental the-
orem of Poincaré surgery says that the vanishing of σ(f) is necessary
and sufficient for finding a Poincaré normal cobordism to a homotopy
equivalence.

Bill Richter and I plan to show in a future paper how Theorem A
implies the fundamental theorem of Poincaré surgery in the 1-connected
case. We will also show how to generalize Theorem A to the non-simply
connected case.

Acknowledgements. I am indebted to Bill Richter for discussions rel-
evant to this work, and I regret not being able to convince him to
become a coauthor of it. Most of what I know about Hopf invariants I
learned from him.

2. Preliminaries

Spaces. Our ground category is Top, the category of compactly gen-
erated Hausdorff spaces. This comes equipped with the structure of a
Quillen model category:

• The weak equivalences are the weak homotopy equivalences (i.e.,
maps X → Y such that the associated realization of its singular
map |S·X| −→ |S·Y | is a homotopy equivalence). Weak equiva-
lences are denoted ∼−→.

• The fibrations, denoted ³, are the Serre fibrations.
• The cofibrations, denoted ½, are the ‘Serre cofibrations’, i.e., in-

clusion maps given by a sequence of cell attachments (i.e., relative
cellular inclusions) or retracts thereof.

Every object is fibrant. The cofibrant objects are the retracts of
iterated cell attachments built up from the empty space. Every object
Y comes equipped with a functorial cofibrant approximation Y c ∼³ Y .

A non-empty space is always (−1)-connected. A connected space is
0-connected, and is r-connected for some r > 0 if its homotopy groups
vanish up through degree r, for any choice of basepoint. A map of non-
empty spaces X −→Y is called r-connected if its homotopy fiber with
respect to any choice of basepoint in Y is an (r−1)-connected space.
An ∞-connected map is a weak equivalence.

A space is homotopy finite if it is homotopy equivalent to a finite
CW complex.

We will making use of homotopy pushouts in Top, which are to be
formed using double mapping cylinders. If Y ←−X −→Z is a diagram
of cofibrant spaces, its homotopy pushout is Y×0∪X×[0, 1]∪Z×1. If
the spaces in the diagram fail to be cofibrant, to guarantee a homotopy
invariant construction one applies cofibrant replacement to the spaces
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in the diagram before taking the double mapping cylinder. If Y −→X is
a map of cofibrant spaces, then the homotopy pushout of the diagram
X ←−Y −→X is the (unreduced) fiberwise suspension ΣXY of Y −→X;
it comes equipped with an evident map ΣXY −→X.

If Y −→X is a map of cofibrant spaces, we will often write (X̄, Y )
for the cofibration pair (X ∪Y×0 Y×[0, 1], Y×1) associated with the
mapping cylinder.

A commutative diagram of spaces

A −−−→ By
y

C −−−→ D

is cocartesian (née homotopy cocartesian) if the induced map from the
homotopy pushout of C ←−A −→B to D is a weak equivalence.

If X and Y are based spaces, which are cofibrant in the based sense
(i.e., the inclusion of the basepoint is a cofibration of Top), then the
smash product X ∧ Y is given by collapsing the subspace X×∗∪ ∗×Y
of X×Y to a point. In particular, we have interated smash products
X [n] := X ∧X [n−1], where X [1] := X.

Finally, a note about usage. In the majority of instances below,
the term ‘space’ will refer to a cofibrant object of Top. However,
there is one notable exception: in dealing with spherical fibrations
ξ : S(ξ) −→X, we will not require the total space S(ξ) to be cofibrant.
The reason for this is that we will be forming base changes S(ξ)|Y −→Y
along maps Y −→X (here S(ξ)|Y = Y×XS(ξ) is one of the notations
we will be using for the fiber product); cofibrancy of total spaces is not
usually invariant under base changes.

Thom spaces. Given a spherical fibration ξ : S(ξ) −→ X (with X
cofibrant), the Thom space Xξ is the mapping cone of the composite
S(ξ)c ∼³ S(ξ) −→X. It is cofibrant when considered as a based space.

A map of spaces f : Y −→X induces a based map of Thom spaces
Y f∗ξ −→Xξ. where f ∗ξ denotes the base change of ξ along f . More
generally, given another spherical fibration ζ over Y and a fiber ho-

motopy equivalence ζ
'−→ f ∗ξ, we obtain a based map of Thom spaces

Y ζ −→Xξ which we call the thomification of f .

Poincaré spaces. An (oriented) Poincaré space X of dimension n is a
pair (X, ∂X) such that X and ∂X are homotopy finite spaces, ∂X → X
is a cofibration, and X satisfies Poincaré duality:

• X comes equipped with a fundamental class [X] ∈ Hn(X, ∂X;Z)
such that the cap product homomorphisms

∩[X] : H∗(X) −→Hn−∗(X, ∂X)
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and
∩[∂X] : H∗(∂X) −→Hn−∗−1(∂X)

are isomorphisms, where [∂X] ∈ Hn−1(∂X) is the image of [X]
under the connecting homomorphism in the homology exact se-
quence of the pair (X, ∂X); here coefficients are to be taken with
respect to any coefficient bundle on X (respectively on ∂X).

If both X and ∂X are simply connected, it is sufficient to check that
Poincaré duality holds with integral coefficients. For the most part, we
will be working with the simply connected case.

A Poincaré space X is said to have homotopy codimension ≥ q
(written codimX ≥ q) if

• The map ∂X −→X is (q−1)-connected, and
• X is homotopy equivalent to a CW complex of dimension ≤ n−q.

A Spivak fibration ν : S(ν) −→ X is an oriented spherical fibra-
tion over X which comes equipped with a based map α : Sn+j −→
Xν/(∂X)ν|∂X (where, say, the fiber of ν is (j−1)-spherical) satisfying
the condition

U ∩ α∗([Sn+j]) = [X] .

Here U ∈ Hj(Xν) is the Thom class. Since the stable fiber homotopy
type of ν is unique [Wa1, 3.4], we will abuse language and refer to any
choice of the above as the Spivak fibration.

3. Embeddings

Let P n and Mn a Poincare spaces of dimension n, where X is con-
nected. An embedding of P in M is a commutative cocartesian square
of homotopy finite spaces

∂P −−−→ C

incl.

y
yg

P −−−→
e

M

together with a factorization of the inclusion ∂M −→C −→M , such that
the composite

Hn(M,∂M) −→Hn(M̄, C) ∼= Hn(P, ∂P )

is of degree one and the image of [X] under the composite

Hn(M, ∂M) −→Hn(M̄, P q ∂M) ∼= Hn(C̄, ∂P q ∂M)

equips (C̄, ∂Pq∂M) with the structure of a Poincaré space (the second
condition is automatic if codim P ≥ 3).

The space C is called the complement, and e : P −→M is the un-
derlying map of the embedding. In this case, we say that the map
e : P −→M embeds. Sometimes we will have occasion to refer to the
embedding by means of its underlying map.
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Two embeddings from P to M with complements C0 and C1 are
elementary concordant if there exists a commutative diagram of pairs

((∂P )×I, ∂P0 q ∂P1) (W,C0 ∪ (∂M)×I ∪ C1)

(P×I, P0 q P1) (M×I, ∂(M×I))
u

w

u
w

in which each associated diagram of spaces

(∂P )×I W

P×I M×I
u

w

u
w

and

∂P0 q ∂P1 C0 ∪ (∂M)×I ∪ C1

P0 q P1 ∂(M×I)
u

w

u
w

is cocartesian, where the latter of these is obtained from the embedding
diagrams using the inclusion ∂M0 q ∂M1 ⊂ ∂(M×I). Moreover, we
require the maps Ci −→W to be weak equivalences (this is automatic
whenever codimP ≥ 3).

More generally, concordance is the equivalence relation generated by
elementary concordance.

The decompression of an embedding e : P −→M with complement C
is the embedding P×I −→M×I defined by the diagram

∂(P×I) −−−→ Wy
y

P×I −−−→
e×idI

M×I

where W = M0 ∪ C×I ∪M1 := ΣMC is fiberwise suspension, and the
factorization ∂(M×I) −→W −→M×I is evident.

Immersions. A map f : P n −→ Mn is said to immerse if the map
f×idDj : P×Dj −→M×Dj embeds for some integer j ≥ 0 (such a rep-
resentative embedding will be called an immersion of f). Concordance
of immersions of f is the equivalence relation generated by decompres-
sion and concordance of embeddings.

The following, which justifies our usage, is the Poincaré analogue of
Smale-Hirsch theory:

Theorem 3.1 (Klein [Kl2]). A map f : P −→M immerses if and only
if there exists a fiber homotopy equivalence νP ' f ∗νM .
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Remark 3.2. An embedding f : P −→M with complement C defines a
fiber homotopy equivalence νP ' f ∗νM as follows: set ν = νM . The
spherical class Sn+k −→ M ν/(∂M)ν|∂M gives rise to a spherical class
Sn+k −→P f∗ν/(∂P )f∗ν|∂M ) using

M ν/(∂M)ν|∂M −→ M ν/Cν|C ' P f∗ν/(∂P )f∗ν|∂M .

The uniqueness of the Spivak fibration then gives a fiber homotopy
equivalence νP ' f ∗νM . This procedure extends to immersions f : P −→
M in the obvious way.

Application of the preceding to the case P = Sp×Dp gives

Corollary 3.3. Every element of F(Sp,M) is represented by an im-
mersion from P to M .

Definition 3.4. Let I(P, M) be the concordance classes of immersions
from P to M .

When P = Sp×Dp, we have a map

I(P, M) −→F(Sp,M)

given by x 7→ [x], where [x] consists of the homotopy class of the un-
derlying map P −→M together with the stable trivialization of x∗νM

defined by the fiber homotopy equivalence νP ' x∗νM , and the trivial-
ity of νP .

The map I(P, M) −→F(Sp,M) is surjective by 3.1 (see also to the
addendum to Theorem A in [Kl2]).

4. The Thom-Pontryagin construction

Fix an embedding P −→M , with diagram

∂P −−−→ Cy
y

P −−−→ M .

The associated concordance class defines a homotopy class α ∈ [M/∂M, P/∂P ],
by means of the Thom-Pontryagin construction: replacing C with
a suitable mapping cylinder, if necessary, may assume that the map
∂M −→C is a cofibration. Then α is given by

M/∂M
∼←− (P ∪∂P C)/∂M −→(P ∪∂P C)/C = P/∂P .

Similarly, given an immersion P −→M , we obtain a stable homotopy
class

α ∈ {M/∂M, P/∂P}
by applying the Thom-Pontryagin construction to a choice of repre-
sentative embedding of P×Dj in M×Dj This is an invariant of the
concordance class of the immersion.
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The Thom-Pontryagin construction yields a function

I(P, M)
t-p−→ {M/∂M, P/∂P} .

It can be shown that the source admits a group structure in such a way
that this map becomes a homomorphism, but we will not require this.

The umkehr isomorphism. Let A and B are based spaces which
are homotopy finite. Assume A and B come equipped with Spanier-
Whitehead m-duality maps dA : Sm −→A ∧ A∗ and dB : Sm −→B ∧ B∗.
A well-known construction in homotopy theory gives an isomorphism
of abelian groups

{A,B} −→{B∗, A∗}
called the umkehr correspondence, which is defined by the pair of iso-
morphisms

{A,B} (−∧idA∗ )◦dA−−−−−−−→∼=
{Sm, B ∧ A∗} (idB∧−)◦dB←−−−−−−−∼=

{B∗, A∗} .

For Poincaré spaces P and M , apply the forgoing to the spaces
A = P νP and B = M νM . Since A∗ = P/∂P , B∗ = M/∂M , the umkehr
correspondance gives an isomorphism

{P νP ,M νM} ∼=−→ {M/∂M, P/∂P} .

Consider now a pair (g, τ) representing an element of F(Sp,M). Set-
ting P = Sp×Dp, we obtain an identification of Thom spaces (Sp)g∗νM '
P νM . Consequently, the map g : Sp −→M induces a map of Thom spaces
P νP −→M νM , and we have a homomorphism

F(Sp,M) −→{P νP ,M νM} .

Composing the latter with the umkehr correspondance, we obtain a
homomorphism

F(Sp,M)
φ−→{M/∂M,P/∂P} .

We have the following geometric interpretation of φ:

Proposition 4.1. The diagram

I(P, M) {M/∂M,P/∂P}

F(Sp,M)
u

wt-p

AAA
AAAC
φ

is commutative, where t-p denotes the Thom-Pontryagin construction.

The proof of the proposition will use the following
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Construction 4.2. Let K be a space, ξ : S(ξ) −→K a spherical fibration
and E −→K a map of spaces. Set

Σξ
KE := hocolim (S(ξ) ←−S(ξ)|E −→E)

(this is a kind of twisted fiberwise suspension of E −→K). There is an

evident map Σξ
KE −→K. Furthermore, there is a cocartesian square

Σξ
KE −−−→ Eξ|E
y

y
K −−−→ Kξ

which shows that the mapping cone of Σξ
KE −→ K coincides up to

homotopy with the mapping cone of Eξ|E −→Kξ.
If εj : K×Sj−1 −→ K denotes the trivial (j−1)-spherical fibration

over K, then Σ
εj

KE is identified with the iterated fiberwise suspension

Σj
KE.

Proof of 4.1. Given an element x ∈ I(P,M), we suppose first that x
is represented by an embedding e : P → M with complement C. Let
α : M/∂M −→ P/∂P denote the Thom-Pontryagin construction of e,
let eν : P e∗ν −→M ν be the map of Thom spaces induced by e, where
ν := νM .

Let ∂D(ν) := Σν
M∂M , and let D(ν) denote the mapping cylinder of

the map ∂D(ν) −→M . Then D(ν) is an (n+j)-dimensional Poincaré
space with boundary ∂D(ν) (here j denotes the integer such that the
ν is (j−1)-spherical). Moreover, we have a degree one map

u : Sn+j −→D(ν)/∂D(ν) .

The ‘diagonal’ (D(ν), ∂D(ν)) −→ (D(ν)×M,S(ν)×M ∪D(ν)×∂M)
induces a map

∆ν : D(ν)/∂D(ν) −→M ν ∧M/∂M

upon passing to quotients. The composite ∆ν ◦u : Sn+j −→M ν∧M/∂M
is an S-duality map.

Similarly, we have an (n+j)-dimensional Poincaré space D(e∗ν) with
boundary Σe∗ν

P ∂P . Moreover, the evident map D(e∗ν) −→D(ν) is the
underlying map of an embedding, whose complement is Σν

MC. The
Thom-Pontryagin construction of this embedding gives a map

β : D(ν)/∂D(ν) −→D(e∗ν)/∂D(e∗ν) .

Composing β with u, we obtain a degree one map

u′ : Sn+j −→D(e∗ν)/∂D(e∗ν) .

Composing the diagonal map ∆e∗ν : D(e∗ν)/∂D(e∗ν) −→P e∗ν ∧ P/∂P
with u′ yields an S-duality map Sn+j −→P e∗ν ∧ P/∂P .
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By definition of the umkehr isomorphism, what we need to show is
that the S-dual of the map eν coincides with the S-dual of the map α.
More precisely, we need to show that the composite

Sn+j ∆e∗ν◦u′−−−−→ P e∗ν ∧ P/∂P
eν∧idP/∂P−−−−−−→ M ν ∧ P/∂P

coincides up to homotopy with the composite

Sn+j ∆ν◦u−−−→ M ν ∧M/∂M
idMν∧α−−−−→ M ν ∧ P/∂P .

Unraveling the definitions of these maps, it will be sufficient to show
that the diagram

D(ν)/∂D(ν) M ν ∧M/∂M

D(e∗ν)/∂D(e∗ν) P e∗ν ∧ P/∂P M ν ∧ P/∂P

w∆ν

u
β

u
idMν∧α

w
∆e∗ν

w
eν∧idP/∂P

homotopy commutes (since prefixing the diagram with u and then
traversing the result in the two different possible ways gives the maps
in question).

To see this, consider the commutative diagram of pairs

(D(ν), ∂D(ν)) (D(ν)×M, S(ν)×M ∪D(ν)×∂M)

(D(ν), Σν
MC) (D(ν)×M, S(ν)×M ∪D(ν)×C)

(D(e∗ν), ∂D(e∗ν)) (D(ν)×P, S(ν)×P ∪D(ν)×∂P )

w

u u
wu

∼

w

u
∼

where the horizontal arrows are given by diagonals, and the vertical
ones are evident. The arrows labeled with ‘∼’ become weak equiva-
lences of based spaces upon passage to quotients (more precisely, map-
ping cones). Upon passage to quotients, the left vertical line becomes
the map β, and the right one becomes idMν ∧ α. The top arrow be-
comes ∆ν and the bottom one becomes (eν ∧ idP/∂P ) ◦∆e∗ν . Since the
diagram of pairs commutes, the corresponding diagram of quotients
also commutes. But the diagram of quotients amounts to the next to
last diagram above. This completes the argument in the case when
x ∈ F(Sp,M) is represented by an embedding.

For the case of a general x ∈ F(Sp,M), we use a representative
embedding P×D` −→M×D` and argue as above, with P replaced by
P×D` and M replaced by M×D`. As this is straightforward, we omit
the details.
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5. ‘µ = 0 ⇒ embedding’

Let A and B be based spaces. We write D2(B) := S∞+ ∧Z/2 B[2]

for the quadratic construction of B. The (stable) Hopf invariant is a
certain homotopy operation, natural in A and B,

H2 : {A,B} −→{A,D2(B)} .

We recall its most important property:

Theorem 5.1 (Milgram [Mi]). Assume that B is r-connected and that
A has the homotopy type of a CW complex of dimension ≤ 3r+1. Then
α ∈ {A,B} desuspends to an element of [A,B] if and only if H2(α) = 0.

The invariant µ. We consider next the composite

F(Sp,M)
φ−→{M/∂M, P/∂P} H2−→ {M/∂M, D2(P )} .

By an elementary calculation which we omit, H2p(D2(P/∂P )) is canon-
ically isomorphic to the abelian group

Qp := Z/(1− (−1)p)Z
(so Qp = Z when p is even and Z/2 when p is odd).

Define a function
µ : F(Sp,M) −→Qp

by
µ(y) := (H2 ◦ φ(y))∗([M ]) .

The following is the main result concerning the existence of Poincaré
framed embedded spheres representing elements of F(Sp,M):

Theorem 5.2. Let p > 2. An immersion x : P −→M compresses to
an embedding if and only if µ([x]) = 0. In particular, the elements of
F(Sp,M) which are represented by embeddings of P in M are precisely
those elements which map to zero under µ.

The proof is based on

Theorem 5.3 (Klein [Kl1, Th. E], Richter). An immersion x : P −→
M , with M 1-connected compresses to an embedding if and only if its
stable collapse φ([x]) = α ∈ {M/∂M, P/∂P} desuspends to an element
of [M/∂M, P/∂P ].

Proof of 5.2. By 5.1 and 5.3, x : P −→ M compresses to an embed-
ding if and only if H2(α) = 0. For dimensional reasons and obstruc-
tion theory, the vanishing of H2(α) is tantamount to the vanishing of
µ([x]) (since evaluating on the fundamental class defines an isomor-
phism {M/∂M,D2(P/∂P )} ∼= Hn(D2(P/∂P ))). This establishes the
first part.

The second part is a direct consequence of the first part together
with the fact that every element of F(Sp, M) is represented by an
immersion of P in M by 3.1.
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The next theorem summarizes the algebraic properties of µ (com-
pare with the smooth case [Wa2, Th. 5.2]).

Theorem 5.4. The function µ : F(Sp,M) −→Qp satisfies

• µ(x + y) = µ(x) + µ(y) + x · y,
• x · x = µ(x) + (−1)pµ(x), and
• µ(ax) = a2µ(x) for all a ∈ Z.

Remark 5.5. The intersection number x·y (defined via cup product and
duality by considering x and y as homology classes) is to be interpreted
in Qp by means of the reduction homomorphism Z −→Qp.

The third identity says that µ is a quadratic form.

Proof of 5.4. We will use the unstable Hopf invariant

h2 : [ΣA, ΣB] −→ [Σ2A, (ΣB)[2]]

of Boardman and Steer [B-S], a homotopy operation natural in A and
B. We recall only the facts about h2 which are necessary for the proof:

• (Compatibility with H2). The diagram

[ΣA, ΣB]
h2−−−→ [Σ2A, (ΣB)[2]]y

y
{A,B} −−−→

H2

{A, D2(B)}

commutes (see Crabb [Cr, p. 61]), where the left vertical map is
given by stablization and the right vertical map is given by the
natural map (ΣB)[2] −→Σ2D2(B) and stablization.

• (Cartan formula). For α, β ∈ [ΣA, ΣB] we have

h2(α + β) = h2(α) + α · β + h2(β),

where α ·β is the cup product of α and β, defined by the composite

Σ2A
Σ2∆−−→ ΣA ∧ ΣA

α∧β−−→ ΣB ∧ ΣB

where ∆: A −→A[2] denotes the reduced diagonal map (see Board-
man and Steer [B-S, 2.1]).

• (Transfer formula). If α ∈ [ΣA, ΣB] and B is a suspension, then

α · α = h2(α)− τh2(α) ,

where τ ∈ [ΣB ∧ ΣB, ΣB ∧ ΣB] is the map given by permuting
the factors ΣB in ΣB ∧ ΣB (see [B-S, 3.17]).

For dimensional reasons, the homomorphisms

[ΣM/∂M, ΣP/∂P ] −→{M/∂M, P/∂P}
and

[Σ2M/∂M, (ΣP/∂P )[2]] −→{M/∂M, D2(P/∂P )}
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are onto (we are just one dimension out of the stable range). Hence,
in this instance the identities for h2 (using the compatibility identity)
descend correspondingly to analogous identities for H2.

The first identity for µ is then a direct consequence of the Cartan
formula for H2 (which is induced by the Cartan formula for h2).

As for the second identity for µ, Since P/∂P is a suspension, the
transfer identity shows that

α · α = H2(α) + τH2(α)

where τ : D2(B) −→ D2(B) is the interchange map. (Note the sign
change: this is because the interchange map (ΣB)[2] −→ (ΣB)[2] covers
the map Σ2D2(B) −→Σ2D2(B) which not only permutes the factors in
the D2(B) term, but also the suspension coordinates.)

Moreover, we have τH2(α) = (−1)pH2(α) since τ : D2(P/∂P ) −→
D2(P/∂P ) induces multiplication by (−1)p in (2p)-dimensional homol-
ogy.

Consequently,

α · α = H2(α) + (−1)pH2(α) .

This induces second identity for µ.
As for the third identity for µ, in view of the other two identities it is

sufficient to show that µ(−x) = µ(x), since we can use the Cartan and
trace formulas to expand µ(ax) = µ((a−1)x+x) and then apply induc-
tion. Note (−1)pµ(x) = µ(x), since when p is odd the equation lives in
Z/2. But the statement µ(−x) = (−1)pµ(x) is clearly a consequence
of the identity H2(−α) = (−1)pH2(α) which we just derived.

Remark 5.6. The above proof used well-known identities for the un-
stable Hopf invariant, which were shown to induce analogous identities
for the stable Hopf invariant one dimension outside the stable range.
Presumably, the identities for the stable Hopf invariant hold in general,
but we could not find a reference.
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