
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 133, Number 9, Pages 2783–2793
S 0002-9939(05)07823-8
Article electronically published on April 19, 2005

ON EMBEDDINGS IN THE SPHERE

JOHN R. KLEIN

(Communicated by Paul Goerss)

Abstract. We consider embeddings of a finite complex in a sphere. We give
a homotopy-theoretic classification of such embeddings in a wide range.

1. Introduction

Let K be a connected finite complex. An embedding up to homotopy of K in Sn

consists of a pair

(M, h) ,

where

• Mn is a compact codimension zero PL submanifold of Sn;
• π1(∂M) → π1(M) is an isomorphism;
• h : K → M is a simple homotopy equivalence.

Two embeddings up to homotopy (M0, h0) and (M1, h1) are said to be concordant
if there is a locally flat embedding

e : (M0 × I, M0 × 0, M0 × 1) → (Sn×I, M0, M1)

and a homotopy

Ht : K → M0

such that

• e restricted to M0×0 is the inclusion and e maps M0×1 homeomorphically
onto M1;

• H0 = h0 and H1 followed by e(·, 1) coincides with h1.

Let

E(K, Sn)

denote the set of concordance classes of embeddings up to homotopy of K in Sn.
Unless confusion arises, we refer to embeddings up to homotopy as embeddings.
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Constraints. We fix throughout integers

k, n, r

satisfying
0 ≤ k ≤ n−3, r ≥ 1, and n ≥ 6 .

If n ≤ 7, we also assume k − r ≥ 2.
In addition to these constraints, we consider the inequalities

r ≥ max(
1
2
(2k−n), 3k−2n+2) ,(1)

r ≥ max(
1
2
(2k−n+1), 3k−2n+3) .(2)

The inequalities can be interpreted as follows: the integer r will be the connec-
tivity of the space to be embedded. Consider maps from manifolds of dimension k
to Sn. Then, roughly, the inequalities represent the demand that the connectivity
r exceeds both the generic dimension of the triple point set and also, one half the
generic dimension of the double point set.

Main results. Let
α : Z2 → GL1(R)

denote the sign representation. If s, t ≥ 0 are integers, let Stα+s denote the one
point compactification of the direct sum of t copies of α with s-copies of the trivial
representation. This is a sphere of dimension t + s having a based action of Z2.

If X and Y are based spaces, we let F st(X, Y ) denote the spectrum of stable
maps from X to Y (the j-th space of this spectrum is the function space of maps
from X to Q(ΣjY ), where Q denotes the stable homotopy functor).

If X and Y are based Z2-spaces, then F st(X, Y ) comes equipped with the struc-
ture of a naive Z2-spectrum by conjugating functions. Let F st(X, Y )hZ2 denote the
associated homotopy orbit spectrum.

Choose a basepoint for K. We consider the case when X = K ∧ K with per-
mutation action and Y = S(n−1)α+1 ∧ K with the diagonal action (where Z2 acts
trivially on K).

Theorem A (Existence). Assume K is r-connected and dim K ≤ k. There is an
obstruction

θK ∈ π0(F st(K ∧ K, S(n−1)α+1 ∧ K)hZ2) ,

depending only on the homotopy type of K, whose vanishing is a necessary condition
for E(K, Sn) to be non-empty. If the inequality (1) holds, then the vanishing of θK

implies that E(K, Sn) is non-empty.

Remarks. When K is (2k−n)-connected, the obstruction group is trivial, so there is
an embedding of K in Sn. Thus we recover the Stallings-Wall embedding theorem
(see [Wa1], [St]).

When K is (2k−n−1)-connected, the obstruction group is isomorphic to

H2k(K×K; π2k−n(K))/(1 − T ) ,

where T is the involution on H2k(K×K; π2k−n(K)) given by t◦E, where E switches
the factors of K × K, and t is the involution of π2k−n(K) given by multiplication
by (−1)n−1.

This abelian group appears in the work of Habegger [Ha], who gave necessary
and sufficient conditions for finding embeddings in the fringe dimension beyond
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the Stallings-Wall range. Habegger defined his obstruction using PL intersection
theory. By contrast, our result will be derived homotopy theoretically using a
theorem of Connolly and Williams [C-W].

A recent paper of Lambrechts, Stanley and Vandembroucq [L-S-V] gives suffi-
cient criteria for embedding 2-cones (the mapping cone of a map between suspen-
sions) in the sphere. A related paper of Cornea [Cor] defines necessary obstructions
to embedding finite complexes in the sphere. The connection between these papers
and the current work is a mystery to be resolved.

Theorem B (Enumeration). Let K be as above. Fix a basepoint in E(K, Sn).
Then there is a function

φK : E(K, Sn) → π0(F st(K ∧ K, S(n−1)α ∧ K)hZ2)

which is onto if inequality (1) holds. If inequality (2) holds, then φK is also one-
to-one.

Corollary C (Group Structure). Assume E(K, Sn) is non-empty. If inequality
(2) holds, then E(K, Sn) has the structure of an abelian group.

Remark. There is currently no explicit geometric description of this group structure.
It would be both interesting and useful to have one.

The above results have corollaries which are too numerous to list in this introduc-
tion (see §§5-7). For example, here is a consequence of Theorem B which appears
to be new (cf. Corollary 6.7 below).

Corollary D (Isotopy Finiteness). In the range of inequality (2), an r-connected
closed PL manifold Mk with trivial Betti number b2k−n+1(M) admits only finitely
many locally flat embeddings in Sn up to isotopy.

Outline. In §2 we recall the statement of the Connolly-Williams classification the-
orem. In §3 we prove Theorem B. In §4 we prove Theorem A by modifying the
proof of Theorem B. §5 contains applications to embeddings of two cell complexes
(these are already in the literature in some form). In §6 we give applications to em-
beddings of Poincaré spaces and manifolds (many of the results in this section are
new). In §7 we show that the obstructions to embedding in the range of inequality
(1) are 2-local.

Conventions. We work within the category of compactly generated spaces. Prod-
ucts are to be re-topologized using the compactly generated topology. A space is
homotopy finite if it is the retract of a finite cell complex.

A non-empty space X is r-connected if its homotopy vanishes in degrees ≤ r
for every choice of basepoint. By convention, the empty space is (−2)-connected.
A map X → Y is r-connected if its homotopy fiber at every basepoint is (r−1)-
connected. A weak equivalence is a map which is r-connected for every r.

We write dim X ≤ n if X is weak equivalent to a cell complex having cells of
dimension at most n.

2. The Connolly-Williams classification theorem

We unearth a result of Connolly and Williams which relates E(K, Sn) to a desus-
pension question.
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For a 1-connected homotopy finite space K, consider the set of pairs (C, α) where
C is a 1-connected homotopy finite space and

α : Sn → K ∗ C

is a map (∗ = join) which induces, via the slant product, an isomorphism in reduced
singular (co-)homology H̃∗(K) ∼= H̃n−∗−1(C). Introduce an equivalence relation
on such pairs by declaring (C, α) ∼ (C ′, α′) if (and only if) there is a homotopy
equivalence of spaces g : C → C ′ satisfying (idK ∗ g) ◦α 	 α′. Call the resulting set
of equivalence classes SWn(K).

There is an evident map of sets

E(K, Sn) → SWn(K)

which assigns to an embedding (M, h) of K the complement of a choice of regular
neighborhood of M together with its Spanier-Whitehead duality pairing.

Theorem 2.1 (Connolly-Williams [C-W]). Assume that K is r-connected (r ≥ 1)
and dimK ≤ k. Furthermore, assume k ≤ n−3, n ≥ 6 and 2(k − r) ≤ n; if n ≤ 7
assume k − r ≤ 2. Then

E(K, Sn) → SWn(K)
is onto. If, in addition, 2(k − r) ≤ n − 1, then the map is one-to-one.

Remarks. This result is not really a “classification” of embeddings, since SWn(K)
has not been determined. We will be concerned with the problem of computing
SWn(K) when additional constraints are present.

The result requires n ≥ 6 because surgery theory is used in the proof. A Poincaré
embedding version of the result also holds without the requirement ≥ 6 or additional
conditions in dimensions ≤ 7. The Poincaré version can be proved with the fiberwise
homotopy-theoretic techniques appearing in [Kl2]. I intend to give a proof of the
Poincaré version in a future paper.

A variant. We describe a variant of SWn(K) which is more convenient to work
with. Assume that K is equipped with a basepoint.

Let Dn−1(K) be defined as follows: consider the set of pairs (W, α) such that
W is a based space and α : Sn−1 → K ∧ W is a stable S-duality map. Define an
equivalence relation by (W, α) ∼ (W ′, α′) if and only if there is an (unstable, based)
map g : W → W ′ such that (idK ∧ g) ◦ α 	 α′.

Lemma 2.2. Assume that K is r-connected (r ≥ 1), dimK ≤ k and k ≤ n−3.
Then there is a function

φ : SWn(K) → Dn−1(K)

which is onto if 2(k−r) ≤ n + 1. If 2(k−r) ≤ n, then φ is also one-to-one.

Proof. Let (C, α) be a representative of SWn(K). Choose a basepoint for C. There
is a well-known natural weak equivalence

K ∗ C
∼→ ΣK ∧ C .

Precomposing this weak equivalence with the map α, we obtain a map Sn → ΣK∧C
which we can arrange to be a based map by precomposing with a suitable rotation.
The associated stable map Sn−1 → K∧C is an S-duality. We leave it to the reader
to check that φ is well defined.
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We now check that φ is onto. Let (W, α) respresent an element of Dn−1(K).
Then α : Sn−1 → K ∧ W is a stable S-duality map. It follows that H̃∗(W ) ∼=
H̃n−∗−1(K) = 0 if n−∗−1 > k. Thus W has vanishing homology when ∗ ≤ n−k−2.
In particular, as k ≤ n−3, it follows that H1(W ) = 0.

Let i : W → W+ be the natural map to the (Quillen) plus construction. Then
W+ is 1-connected and we have

(W, α) ∼ (W+, (idK ∧ i) ◦ α) .

Using S-duality, it is also straightforward to check that W+ is homotopy finite.
Consequently, we are entitled to assume without loss in generality that W is 1-
connected and homotopy finite.

In fact, the above argument shows that W is (n−k−2)-connected. We infer that
the smash product ΣK ∧W is (n−k+r)-connected. By the Freudenthal suspension
theorem, the stable map Sn−1 → K∧W is represented by an unstable map β : Sn →
ΣK ∧W when 2(k−r) ≤ n+1 (unique up to homotopy if 2(k−r) ≤ n). This shows
that the function φ is onto if 2(k−r) ≤ n + 1. This argument also shows that φ is
one-to-one if 2(k−r) ≤ n. �

Corollary 2.3. The statement of Theorem 2.1 holds when SWn(K) is replaced by
Dn−1(K).

3. Proof of Theorem B

Theorem B will follow from an enumeration result for suspension spectra ap-
pearing in [Kl1]. We first review the statement of this result.

Fix a 1-connected spectrum E. For technical reasons, we shall assume that E is
an Ω-spectrum and that the spaces of the spectrum Ej are cofibrant (i.e., retracts
of cell complexes). Consider the set of pairs

(X, h)

such that X is a based space and h : Σ∞X → E is a weak (homotopy) equivalence.
Define

(X, h) ∼ (Y, g)

if there is a map f : X → Y such that g ◦Σ∞f is homotopic to h (in particular, f is
a homology isomorphism). This generates an equivalence relation. Let ΘE denote
the associated set of equivalence classes.

We write dim E ≤ k if E can be obtained from the trivial spectrum by attach-
ing cells of dimension ≤ k. Recall that the second extended power D2(E) is the
homotopy orbit spectrum of Z2 acting on E∧2.

Theorem 3.1 (Klein [Kl1]). Assume ΘE is nonempty and is equipped with a choice
of basepoint. Then there is a basepoint preserving function

φ : ΘE → [E, D2(E)] .

If E is r-connected, r ≥ 1 and dimE ≤ 3r+2, then φ is a surjection. If in addition
dim E ≤ 3r + 1, φ is a bijection.
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3.1. Recall that
F st(K, Sn−1)

is the spectrum of stable maps from K to Sn−1.

Lemma 3.2. There is a bijection

ΘF st(K,Sn−1)
∼= Dn−1(K) .

Proof. An element of ΘF st(K,Sn−1) is represented by a pair (C, α), where C is a based
space and α : Σ∞C → F st(K, Sn−1) is a weak equivalence. Taking the adjunction,
this is the same as specifying a (stable) S-duality map α : C ∧ K → Sn−1. A
standard application of S-duality (the “umkehr” or transpose map) then allows
us to associate to α an S-duality map α∗ : Sn−1 → K ∧ C. The pair (C, α∗) then
represents an element of Dn−1(K). It is straightforward to check that this procedure
defines a bijection. �
Lemma 3.3. Let E = F st(K, Sn−1). Then there is an isomorphism of abelian
groups

[E, D2(E)] ∼= π0(F st(K ∧ K, S(n−1)α ∧ K)hZ2) .

Proof. Note that E 	 K∗ ∧ Sn−1, where K∗ = F st(K, S0) is the S-dual of K.
For spectra A and B, let F (A, B) denote the associated function spectrum. Then
π0(F (A, B)) = [A, B].

The first step is to rewrite

F (E, D2(E)) 	 F (E, E ∧ E)hZ2

(the Z2-action on F (E, E ∧ E) is induced by a permutation action on the smash
product E∧E). There will be such an equivalence for any homotopy finite spectrum
E. To see this, note there is a natural map from right to left: explicitly, there is
a map q# : F (E, E ∧ E) → F (E, D2(E)) induced by the evident map q : E ∧ E →
D2(E). When we give F (E, D2(E)) the trivial Z2-action, the map q# becomes
equivariant. So q# factorizes through the map F (E, E ∧ E) → F (E, E ∧ E)hZ2 .
Hence, we have a map F (E, E ∧ E)hZ2 → F (E, D2(E)). It is evident that this
map is an equivalence when E is a sphere. One can show that the map is a weak
equivalence for all homotopy finite E by induction on a cell structure (we omit
the details). Another more direct way to see the equivalence is to use S-duality to
identify the domain with E∗ ∧ D2(E) and the codomain with (E∗ ∧ (E ∧ E))hZ2 ,
where E∗ := F (E, S0) is the S-dual of E. As Z2 acts trivially on E∗, we obtain
the desired equivalence.

Substituting the value of E = F st(K, Sn−1) into the above, we get

F (E, D2(E)) 	 F (K∗ ∧ Sn−1, (K∗ ∧ Sn−1)∧2)hZ2 .

Now, using the fact that Sn−1 ∧ Sn−1 with permutation action is homeomorphic
to S(n−1)α ∧ Sn−1 with diagonal action, the right side of the last display can be
rewritten as

F (K∗, S(n−1)α ∧ K∗ ∧ K∗)hZ2 .

For homotopy finite spectra A and B, it is well known that the transpose map
F (A, B) → F (B∗, A∗) is a weak equivalence. Consequently, there is a Z2-equi-
variant weak equivalence of spectra

F st(K ∧ K, S(n−1)α ∧ K) 	 F (K∗, S(n−1)α ∧ K∗ ∧ K∗) ,

given by the transpose map.
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Taking homotopy orbits of this last equivalence, and assembling the prior infor-
mation, we conclude that there is a weak equivalence of spectra

F (E, D2(E)) 	 F st(K ∧ K, S(n−1)α ∧ K)hZ2 .

Applying π0 to this last equivalence completes the proof. �

To complete the proof of Theorem B, one just needs to apply Corollary 2.3,
Lemma 3.2, Lemma 3.3 and Theorem 3.1 in the stated order (to apply 3.1, use
the fact that E = F st(K, Sn−1) is (n−k−2)-connected and dimE ≤ n − r − 2).
We leave it to the reader to check that the inequalities listed in the statement of
Theorem B suffice to apply these results.

4. Proof of Theorem A

The proof of Theorem A is almost identical to the proof of Theorem B. There are
two essential differences: the first is that instead of using Theorem 3.1, we need to
use the following existence result for realizing a spectrum as a suspension spectrum
in the metastable range:

Theorem 4.1 (Klein [Kl1]). There is an obstruction

δE ∈ [E, ΣD2(E)]

(depending only on the homotopy type of E) which is trivial whenever E has the
homotopy type of a suspension spectrum.

Conversely, if E is r-connected, r ≥ 1 and dim E ≤ 3r+2, then E has the
homotopy type of a suspension spectrum if δE = 0.

The second essential difference is that when E = F st(K, Sn−1), we have an
isomorphism of abelian groups

[E, ΣD2(E)] ∼= F st(K ∧ K, S(n−1)α+1 ∧ K)hZ2 .

The obstruction θK is defined so as to correspond to the obstruction δE with respect
to this isomorphism of abelian groups. We omit the details.

5. Applications to two cell complexes

Existence. It seems that the case of embedding complexes with two cells was first
considered by Cooke [Co1] (see also [Co2]) and later by Connolly and Williams
[C-W, §5].

Let K = Sp ∪f eq+1 be a two cell complex, where f : Sq → Sp is some map.
Let E := F st(K, Sn−1) denote the stable Spanier-Whitehead (n−1)-dual of K. Set
p′ = n−p−2 and q′ = n−q−2.

Then E is the homotopy cofiber of a stable umkehr map

f∗ : Sp′
→ Sq′

.

As stable classes in πst
q−p(S0), we have

[f∗] = [±f ] .

Tracing through the definition of the umkehr map, with slightly extra care, the sign
can be determined as (−1)qp′

.
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In any case, E has the homotopy type of a suspension spectrum if and only if f∗

is represented by an unstable map. In our range, this is equivalent to demanding
that the James-Hopf invariant

H2(f∗) = πst
p′(D2(Sq′

))

is trivial.

Enumeration. Suppose K = Sp ∪f eq+1 admits an embedding in Sn. An analysis
similar to the previous case shows that there is an isomorphism of based sets

E(K, Sn) ∼= πst
p′+1(D2(Sq′

)).

At the prime 2, the stable homotopy groups appearing on the right have been
calculated by Mahowald in degrees p′ ≤ min(3q′−3, 2q′+29) (see Mahowald [Ma,
table 4.1]).

For example, suppose that q′ ≡ 1 mod 16. Then the first few groups are

j 0 1 2 3 4 5 6
π2q′+j(D2(Sq′

)) Z2 Z2 Z8 Z2 0 Z2 Z16 ⊕ Z2 .

6. Embeddings of Poincaré spaces

In this section we assume that K is an r-connected Poincaré duality space of
formal dimension k.

Remarks. The Browder-Casson-Sullivan-Wall theorem ([Wa2, Th. 12.1]) says that
concordance classes of Poincaré embeddings of K in Sn are in one-to-one corre-
spondence with embeddings up to homotopy of K in Sn.

If K is a closed PL manifold, then [Wa2, Th. 11.3.1] implies that E(K, Sn) is in
bijection with the isotopy classes of locally flat PL embeddings of K in Sn.

By [Wa2, Lem. 2.8], we can find a homotopy equivalence K 	 L∪ ek, where L is
a finite complex and dimL ≤ k−r−1. In particular, we have a cofibration sequence
of Z2-spaces

L ∧ K ∪L∧L K ∧ L → K ∧ K → Sk ∧ Sk .

The first term of this sequence has dimension ≤ 2k−r−1, so we may infer that the
evident map

F st(Sk ∧ Sk, S(n−1)α+1 ∧ K)hZ2 → F st(K ∧ K, S(n−1)α+1 ∧ K)hZ2

is (n−2(k−r)+1)-connected. In particular, if n ≥ 2(k−r), we see that this map
induces an isomorphism on path components.

By elementary manipulations, which we omit, there is an identification

F st(Sk ∧ Sk, S(n−1)α+1 ∧ K)hZ2 	 F st(Sn−2, K ∧ D2(Sn−k−1)) .

We conclude:

Theorem 6.1. Assume in addition n ≥ 2(k−r). Then the obstruction θK is de-
tected in the abelian group

πst
n−2(K ∧ D2(Sn−k−1)) .



ON EMBEDDINGS IN THE SPHERE 2791

Remark. Let ν be the Spivak normal fibration of K; we consider ν as having fiber
a stable (−k)-sphere. Let Kν denote the Thom spectrum of ν. When K embeds
in Sn, the fibration ν compresses down to an unstable (n−k−1)-spherical fibration.
Conversely, when ν compresses, a construction due to Browder gives an embedding
of K in Sn+1 (see [B]).

It is therefore tempting to try and relate θK to the obstruction-theoretic problem
of finding a compression of ν. We do not as yet have a solution to this.

By essentially the same argument that proves 6.1, we have

Theorem 6.2. Assume n > 2(k−r). Then the function φK can be rewritten as

φK : E(K, Sn) → πst
n−1(K ∧ D2(Sn−k−1)) .

The remainder of this section is devoted to obtaining corollaries of 6.1 and 6.2.
Our first result shows that φK is homological in the fringe dimension beyond the
stable range.

Corollary 6.3 (Compare [H-H, Th. 2.3], [Ha]). The obstruction φK to embedding
K in S2k−r−1 lives in the abelian group

Hr+1(K; Zs) ,

where s = 1 + (−1)k−r+1.

Proof. The Hurewicz map

πst
2k−r−3(K ∧ D2(Sk−r−2)) → H2k−r−3(K ∧ D2(Sk−r−2))

∼= Hr+1(K) ⊗ H2(k−r−2)(D2(Sk−r−2))
∼= Hr+1(K; Zs)

is an isomorphism in this degree. Now apply Theorem 6.1. �

By a similar argument, which we omit (use 6.2), we obtain

Corollary 6.4 (Compare [H-H, Th. 2.4], [Ha]). The set of concordance classes of
embeddings of K in S2k−r+2 is isomorphic to

Hr+1(K; Zs) ,

where s = 1 + (−1)k−r.

Our next pair of corollaries concerns the outcome of tensoring with the rationals.

Corollary 6.5. If n ≡ k mod 2, then θK ⊗ Q is trivial. Otherwise, θK ⊗ Q is
detected in the vector space H2k−n(K; Q).

Proof. If n ≡ k mod 2, then πst
∗ (D2(Sn−k−1)) ⊗ Q is trivial. Using the skeletal

filtration of K and the five lemma, we infer that πst
∗ (K ∧ D2(Sn−k−1)) ⊗ Q is also

trivial. The first part now follows using Theorem 6.1.
For the second part, note that the transfer

D2(Sn−k−1) → (Sn−k−1)∧2

is, rationally, the inclusion of a wedge summand. Smashing with K and applying
rational homotopy, we infer that πst

n−2(K ∧ D2(Sn−k−1)) ⊗ Q is a summand of
πst

n−2(K ∧ (Sn−k−1)∧2) ⊗ Q. Over the rationals, stable homotopy coincides with
homology. It follows that θK ⊗ Q is detected in H2k−n(K; Q). �
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Corollary 6.6. Assume K embeds in Sn. Assume inequality (2) holds. Then
E(K, Sn) is finitely generated.

If n ≡ k mod 2, then E(K, Sn) is finite. Otherwise, E(K, Sn) ⊗ Q is a direct
summand of H2k−n+1(K; Q).

Proof of Corollary 6.6. The first part follows from Theorem 6.2 because
πst

n−1(K∧D2(Sn−k−1)) is finitely generated. The second part is proved in a manner
similar to Corollary 6.5. We omit the details. �

A direct consequence of Corollary 6.6 is:

Corollary 6.7. Assume the inequality (2) holds. If the Betti number b2k−n+1(K)
is trivial, then there are finitely many concordance classes of embeddings of K in
Sn.

This last result gives Corollary D of the introduction using the remarks about
manifolds given at the beginning of this section.

7. Localization at 2

Let K and K ′ be r-connected finite complexes with dimK, dimK ′ ≤ k.

Theorem 7.1. Suppose that f : K → K ′ is a 2-local homotopy equivalence. Assume
that inequality (1) holds. Then K embeds in Sn if and only if K ′ does.

Remark. Rigdon [Ri] and Williams [Wi] prove a similar result for manifolds in the
metastable range n ≥ 3

2 (k+1). The main difference between their result and ours
is that ours holds outside of the metastable range at the expense of an additional
connectivity hypothesis.

Proof of Theorem 7.1. The induced map of stable (n−1)-duals

E′ := F st(K ′, Sn−1)
f∗

→ F st(K, Sn−1) =: E

is clearly a 2-local equivalence. By [Kl1, Th. D], E′ is a suspension spectrum if
and only if E is. The result now follows by applying Lemmas 3.2, 2.2 and Theorem
2.1. �
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