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Abstract

The history of cell complexes is closely related to the birth and development of topology in general.
Johann Benedict Listing (1802-1882) introduced the term "topology" into mathematics in a paper
published in 1847, and he also defined cell complexes for the first time in a paper published in 1862.
Carl Friedrich Gauss (1777-1855) is often cited as the one who initiated these ideas, but he did not
publish either on topology or on cell complexes. The pioneering work of Leonhard Euler (1707-1783)
on graphs is also often cited as the birth of topology, and work was cited by Listing in 1862 as a
stimulus for his research on cell complexes. There are different branches in topology which have little
in common: point set topology, algebraic topology, differential topology etc. Confusion may arise if
just "topology" is specified, without clarifying used concept. Topological subjects in mathematics are
often related to continuous models, and therefore quite irrelevant to computer solutions in image
analysis. Compared to this, only a minority of topology publications in mathematics addresses discrete
spaces which appropriate for computer-based image analysis. In these cases, often the notion of a cell
complex plays a crucial role. This paper briefly reports on a few of these publications, which might be
helpful or at least of interest for recent studies in topological issues in image analysis. It is not a
balanced review, due to a certain randomness in the selection process of cited work. This paper is also
not intended to cover the very lively progress in cell complex studies within the context of image
analysis during the last two decades. Basically it stops its historic review at the time when this subject
in image analysis research gained speed in 1980-1990. As a general point of view, the paper indicates
that image analysis contributes to a fusion of two topological concepts, the geometric or abstract cell
complex approach and point set topology, which leads to an in-depth study of topologies defined on
geometric or abstract cell complexes.
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ABSTRACT

The history of cell complexes is closely related to the birth and development of topology in general. Johann Benedict
Listing (1802-1882) introduced the term “topology” into mathematics in a paper published in 1847, and he also
defined cell complexes for the first time in a paper published in 1862. Carl Friedrich Gauss (1777-1855) is often cited
as the one who initiated these ideas, but he did not publish either on topology or on cell complexes. The pioneering
work of Leonhard Euler (1707-1783) on graphs is also often cited as the birth of topology, and Euler’s work was cited
by Listing in 1862 as a stimulus for his research on cell complexes.

There are different branches in topology which have little in common: point set topology, algebraic topology,
differential topology etc. Confusion may arise if just “topology” is specified, without clarifying the used concept.
Topological subjects in mathematics are often related to continuous models, and therefore quite irrelevant to computer
based solutions in i1mage analysis. Compared to this, only a minority of topology publications in mathematics
addresses discrete spaces which are appropriate for computer-based image analysis. In these cases, often the notion
of a cell complex plays a crucial role. This paper briefly reports on a few of these publications. This paper is not
intended to cover the very lively progress in cell complex studies within the context of image analysis during the last
two decades. Basically it stops its historic review at the time when this subject in image analysis research gained
speed in 1980-1990. As a general point of view, the paper indicates that image analysis contributes to a fusion of
topological concepts, the geometric and the abstract cell structure approach and point set topology, which may lead
towards new problems for the study of topologies defined on geometric or abstract cell complexes.
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1. INTRODUCTION

Theories of cell complexes emerged with the rise of topology, well before 1900. Traditionally they are a subject
in combinatorial or algebraic topology. In digital image analysis, cell complexes are often used to model sets of
elementary geometric units such as “pixels” or “voxels”. We like to make a distinction between such cell complexes
having cells in Euclidean spaces, and cell complexes where cells are only defined in an abstract (axiomatic) sense.

The definition of cells in Euclidean spaces £" = [R", ds] is based on point set topologies of these spaces. For a
set A CE let 6A, A° = AUGSA, and A” = A\ §A denote the boundary, the closure, and the interior of A,
respectively. The n-ball B, in €™ 1s the set of all points having a Fuclidean distance of less than or equal 1 to the
origin. The origin is the 0-ball By. A subset of £ is an open m-cell, m < n, if it is topologically equivalent to the
open m-ball BY,. A closed m-cell is the closure (in £") of an open m-cell.

[GC definition] A geometric cell structure X, or GC-structure in short, is defined to be a set of countable many
open or closed m-cells in £", with 0 < m < n.* This (very broad) definition of a GC-structure is introduced in

*Such a GC-structure might be interpreted following ideas of ZENO of ELEA (about 450 B.C.) that the real world is made up of
indivisible units,® which also may be called Democritus’ atoms. The objects are not infinitely divisible anymore. For example, a parameter
may define the scale of the atoms (i.e. grid resolution in digital geometry), and there are only finitely many atoms for any bounded set.
A Zeno representation of a given set is related to a specific geometric feature (area, perimeter etc.) and depends upon the grid resolution
only. Historically (see Gauss, Jordan, Peano and others) cell complex based Zeno representations of sets in Euclidean space were directed
on the contents of a set. Further features such as perimeter or surface area are of interest in digital image analysis.



Figure 1. A rectangular grating formed by a finite number of segments across a rectangle, parallel to its sides.

this paper to make the distinction from abstract cell complexes more transparent. For geometric cell structures
see [12,16,27,30,36,37,42,47]. Cells of GC-structures may be used to define grid continua,*' or different types of
cell-sequences” where a metric is important for defining concepts such as minimum-length polygons.

Textbooks by A.T.Lundell and S. Weingram?® and by R. Fritsch and R.A.Piccinini'? discuss GC-structures in
topology as a discipline in mathematics. The fundamental notion in these books i1s that of a CW-complez, as
introduced by J.H.C. Whitehead*” in 1949. The C stands for “closure finite” (a restriction on how many cells of
lower dimension a cell could meet) and the W stands for “weak topology” (the right topology for the union of the
cells). Intuitively, a CW-complex can be considered as a union of disjoint ‘open cells’ of the Euclidean space.

[CW definition] Let S be a subset of a GC-structure X and X(S) be the intersection of all subcomplexes
(defined using the notion of a skeleton) of X containing S. A CW-complex is a cell complex satisfying the following
two axioms:

o CWy: For any x € X it holds that X (x) contains a finite number of cells only (closure finiteness).

o CWy: If F 1s a subset of X such that the intersection F Nz 1s closed in z° for any cell & in X, then F 1s a
closed subset of X (weak topology).

A forthcoming book by R.Geoghegan'® on topological methods in group theory has an emphasis on locally finite
CW-complexes (for example simplicial complexes, and regular CW-complexes).

Newman?3® T considered two-dimensional cell complexes in the form of rectangular gratings, see Fig. 1. His 0-, 1-
and 2-cells may be specified to define a partition of the given rectangle into disjoint sets of vertices, edges without
endpoints, and open rectangles. The grating indicates that the specific geometric size of the cells is unimportant for
his studies of cell complexes in the Euclidean plane. He also discussed “curved complexes” at the end of his book.

[AC definition] Let S be an arbitrary set. Assume a binary relation between constituents of S which is denoted
by # py. A non-negative integer [x], also denoted by dim(z), is assigned for each « € S. The following axioms are
satisfied:

o ACy: Ifxpy and ypz then x pz follows (transitivity).
o ACy: Ifxpy then [x] < [y] (monotonicity).

Then K = (S, p,dim) is an abstract cell complex, or AC-complex in short. The constituents of S are named cells of
the complex. If [x] = n then n is the dimension of x, and x is called an n-cell. 0-cells are named vertices. If z py
then x bounds y, and « is a proper side of y. If [¢] = m then « is an m-side of y. We may also write z € K or A C K
fore € Sor ACS. Let e < yiff zpy or x = y. This defines an ordering relation in K: the reflexivity is obvious
by definition, the transitivity follows from AC;. From ACs it follows: if # < y and y < x then z = y. Two cells are
incident if # < y or y < x. This relation is reflexive and symmetric. We write (z,y) = 1 or inc(z,y) if  and y are
incident. For abstract cell complexes see [36,37,42,45]. Abstract simplicial complexes, cellular imbeddings, cartesian
products of graphs etc. are examples of subjects in a book by J.L.Gross and T.W. Tucker'* on topological graph
theory. See also the book by M.Henle!® containing one chapter on cell complexes.

tHe thanked J.H.C. Whitehead in the preface for many suggestions, which draws a line between his work and the CW-complexes cited
earlier.



A topology on a set X is a system Z of subsets of X such that a union of any family of sets in 7, and an
intersection of any finite family of sets in Z are sets in Z as well. The point set topology of CW-complexes can
be summarized by saying that they are paracompact and Hausdorff (due to the weak topology), they are locally
contractible, and a locally finite CW-complex i1s metrizable, and each of its components is countable. For topologies
on AC-complexes see, for example, the definition and study of open and closed subcomplexes in [2,36,37,45]. These
topologies of AC-complexes are not locally contractible.

AC-complexes are defined as axiomatic theories, and GC-structures may be models of such theories. For relations
between theories and models see, for example, [15]. Axiomatic definitions may also be used for GC-structures, see
the CW-definition above. However, in these cases the cells normally possess a fixed geometric interpretation.

Cell complexes are relevant for modelling discrete sets and their inter-relationships within the context of digital
image analysis: see for example contributions on recent conferences in digital geometry and topology such as [1,4,29],
or in earlier publications such as [21,23]. Publications by A.Rosenfeld®® (see, e.g., the chapter on digital geometry
in [38]), T. Pavlidis,?? or J. Serra*® have been important for the establishment of digital geometry and topology in
image analysis. One-dimensional (or linear) cell complexes are discussed in a book by K. Voss.*® For a more explicit
treatment of (geometric) cell complexes see a recent book by G.Herman.!” Just to cite a few authors of recent
publications on cell complexes in the context of image analysis - L. DeFloriani, P. Magillo, E. Puppo,'® Y. Kenmochi,
A TImiya, A.Ichikawa,'® V.Kovalevsky,?* and F.Sloboda, B. Zatko, R.Klette*! define and use such cell complexes,
but all with (slightly) different definitions and intentions.

Publications on cell complexes often show that notations are still in flux, especially within the image analysis
community, related to different “schools”, and a wider agreement on fundamentals in this field could contribute to
avoid repetitions of (and confusion in) basic definitions in different papers. A profound theoretical foundation of
digital geometry and topology would be of eminent importance for progress in image analysis. Many researchers
have contributed to this field: see, e.g., the extensive bibliography by A.Rosenfeld in [22]. Tt is interesting to state
that a non-uniform approach to cell complexes is quite typical in the reviewed literature. In comparison, words such
as “simplex”, “isomorphism”, or “Jordan surface” have been well-established in mathematics for about one hundred
years, and do not need to be redefined. The term “cell complex” has been used since 1862, but it is one of the more
“dynamic” notions in the mathematical literature, as it will be illustrated below.

The history of topology is documented by J.J. O’Connor and E.F. Robertson on the website [31]. That provides a
very valuable context for the more narrowed discussion in this paper which focusses on cell complexes (combinatorial
topology) and an increasing fusion with concepts in point set topology in the context of digital image analysis.

2. LISTING

J.B. LisTING?" expressed a theory of geometric cell complexes for the first time (with an earlier introduction of ideas
on compleres in [26]). He is well known in physiological optics (Listings’s Law, see [43]). He was also the first to
use the word topologyt since 1837 in his correspondence. Being first a student and then a close friend of C.F.GAuUss
[6] it seems not unlikely that his research followed the advice or example of Gauss himself. The term topology
(replacing Leibniz’s “geometria situs” or “analysis situs”) was introduced to distinguish qualitative geometry from
those geometric studies focussing on quantitative relations.

In his 1862 paper he started with the famous theorem by L. EULER!! about the relationship
v—e+ f=2 (1)

between the numbers of vertices v, edges e and faces f of a simple polyhedron. As far as we know, FEuler was
the first mathematician able to think about polyhedra without limiting his studies to measurements. This step
towards abstraction allowed him to build up fundamentals of a new discipline of topology by combinatorial studies
of geometric objects. The first paper cited in [11] contains only an incomplete verification, but a complete proof is
contained in the second paper.

tHe wrote in [27], page 109, that "topologische Eigenschaften (solche sind), die sich nicht auf die Quantitdt und das Maass der
Ausdehnung, sondern auf den Modus der Anordnung und Lage beziehen.” (Translation: Topological properties are those which are not
related to quantity or contents, but on the mode of spatial order and position.)
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Figure 2. Left: A polyhedral aggregate as studied by Cauchy: a cube partitioned into eight subcubes has v = 27
vertices, e = 54 edges, f = 36 faces and D = 8 subpolyhedrons. Right: A polyhedral aggregate as studied by
Lhuilier: a cube with b = 3 bubbles (all of the shape of a cube), t = 2 tunnels, p = 4 polygons within the original
cube’s faces, and it holds v = 48, e = 72, and f = 32.

A.CauchHY? generalized this theorem (1) by introducing intercellular faces into the given simple polyhedron which
replaces 2 by D + 1,
v—e+f=D+1 (2)

where D is the number of subpolyhedrons forming a polyhedral aggregate, see Fig. 2, left. Euler and Cauchy considered
convex polyhedrons only.

A.-J. LuuiLier?® suggested a generalization for topologically more general polyhedral aggregates, allowing tunnels
and bubbles in them. He claimed that
v—e+f=2b—t+1)+p (3)

where b denotes the number of bubbles within a given simple polyhedron, ¢ denotes the number of tunnels, and p is
the number of polygons (“exits of tunnels”) within faces of the given simple polyhedron. However, his (simplifying)
induction about the number of tunnels does not cover the full range of possible topological complexity. See [3,5,18]
for recent results on Euler characteristics.

[SC definition] Listing took this process of studying polyhedral aggregates of increasing structural complexity
as motivation for introducing spatial cell compleres in £3 defined as arbitrary aggregates of points, lines and faces:
Lines or faces may be plane or curved, open or closed, bounded or unbounded. All elements of a spatial cell complex
(SC-complex for short) have to be connected with respect to the topology of the Euclidean space [E* | and all elements
define a partition of 3 into disjoint sets.

Figure 3. Listing®”: Assume that we cut the shown solid at the labeled six positions. There are 720 different orders
of such cuts. In most cases, the resulting solid is simply-connected after three cuts. In 24 cases (start sequences 136,
145, 235, 246 and their permutations), the third cut separates the solid into two parts where one is not yet simply-
connected. The number of cuts to transform this solid into a simply-connected set is 3, and it is the topological
genus of this set.



LI

Figure 4. The four CL-complexes on the left have v = 24 points, e = 25 lines, f = 5 faces and s = 1 (note: no
part of the threedimensional space has been separated) regions of space in total. The two CL-complexes on the right

have v = 28, e = 48, f = 27 and s = 6.

It follows that any SC-complex is a GC-structure, symbolized by the proper inclusion SC C GC. Listing defined
a constituent of a SC-complex to be one of its defining elements (points, lines, or faces) or one of the regions of space
separated by elements of the spatial cell complex from one another. Thus there are four types of constituents. He
ruled out that a line is considered to be an infinite union of points, a face to be an infinite union of lines, and a
region of space to be an infinite union of faces - otherwise any spatial complex would convert into a set of points.
He denoted the four types of constituents as curies (singular “Curie”, plural “Curien”). Examples of SC-complexes
are: a single point (v = s =1 and e = f = 0), two points and an arc connecting both points but without containing
these two end points (v = 2, e = s = 1 and f = 0), a closed circular line with a point on this line (v = e =s =1
and f = 0), and the surface of a sphere or an infinite halfspace (both with f = 1, s = 2, and v = ¢ = 0). For
discussing such a spatial cell complex we may discriminate effective elements (which are counted in its curie), or
virtual elements (which only have a temporary or auxiliary meaning).

Listing’s topological studies of spatial cell complexes might be of interest for modern object analysis applications
in computer vision. He introduced the linear skeleton of a constituent K by continuous contraction on points or
lines, and called it the cyclomatic diagram (“cyclomatische Diagramm”) of K, see page 116 in [27]. For example, the
linear skeleton of a simply-connected set is a point, i.e. not the medial azis as suggested in pattern analysis [33], and
that of a torus is a closed loop. Listing’s work on skeletons is, for example, briefly discussed in [44].

Repeated cuts of regions in space may be discussed for specifying the topological genus, i.e. the degree of
connectedness of a given set, see Fig. 3. Listing discussed such cuts within his notation of spatial complexes; i.e.
cells of his SC-complexes may be of arbitrary shape. Cuts introduce new faces. Simply-connected sets are also called
acyklodic, and these sets are finally used as constituents for combinatorial studies. An extensive discussion of this
work on topological invariants, as on Listing’s contributions to (algebraic) topology in general, may be found in [35].

[CL definition] Furthermore, Listing also discussed in [27] the neighborhood relation and the bounding relation
for constituents in a very systematic way. His definitions are already a very important step towards the abstract
boundary definition in AC-complexes. The boundary of a vertex is empty. The boundary of an edge may consist
either of two, one or zero vertices, etc. A spatial cell complex is closed with respect to the boundary relation if for any
non-empty boundary of a constituent of this complex there are constituents in this complex whose union is exactly
this boundary, and if the union of a set of constituents is a closed boundary B of a bounded set then there is exactly
one constituent in this complex whose boundary is identical to B. A cellular Listing complex, or CL-complex in
short, is a spatial cell complex closed with respect to the boundary relation. It follows that CL C SC.

It follows that each constituent with a non-empty boundary, which is an element in a CL-complex; does not
contain any subset of its boundary (i.e. it is open with respect to the Euclidean space). In this sense, a CL-complex
is a special CW-complex in three-dimensional Euclidean space.

Listing’s geometric-combinatorial studies are directed on similar problems as discussed in recent publications,
such as [46] with a broad coverage of geometric-combinatorial problems, or [20] with a specific analysis of numbers
of m-cells contained in the boundary of n-cells, for 0 < m < n. Listing stated on page 131 in [27] that any linear



Figure 5. An example of a pair of reciprocal closed polyhedra: a cube, its planar graph, the dual graph, and the
dual, an octahedron.

CL-complex (i.e. having only constituents which are points or lines) in the plane or in the surface of a sphere satisfies
the equation that the number of points plus the number of faces equals the number of lines plus 2, a generalization
of Euler’s polyhedra theorem. A more general example is his theorem on page 151 (see Fig. 4) in [27]:

THEOREM 2.1. (Listing 1862) Assume p CL-complexes of simply-connected constituents where the total number of
points is v, of lines s e, of faces is f, and of regions of space 1s s. Then it holds that v—e+ f —s=p— 1.

See Fig. 4 for two examples of such sets of CL-complexes. Note that these sets of CL-complexes are considered
with respect to the £3. Equation (1) is covered by this theorem for s = 2 and p = 1, and Equ. (2) is contained with
s = D41 and p = 1. The situation of Equ. (3) is not addressed by this theorem because (3) was also intended
to include situations with cyklodic faces. Some examples of CL-complexes: A closed circular line is not yet a CL-
complex as required, but a cut by one point on this line is sufficient (v =1,e =1, f=1,s =1 and p = 1). For an
(infinite) straight line we have e = 1, v = 1 (one vertex on this line is sufficient to cut this line), f = 1 (one half-plane
bounded by this line is sufficient to cut the 3D space), s = 1 and p = 1. For the surface of a sphere we have e = 1
and v = 1 (one circle in this surface and one point on this circle are sufficient to cut the surface of the sphere, and
the circle), f = 2, s = 2 and p = 1. For the surface of a torus we have v = 1, e =2, f =3, s =2and p = 1 as
minimum set of resulting constituents.

3. STEINITZ

The digitization models introduced and discussed by Jordan, Peano, Minkowski and others in the late 19th and the
early 20th century are further important studies on cellular spaces. Partitions into cells play a fundamental role
in the topology of surfaces. H.PoiNcare®* used partitions of n-dimensional manifolds into cells for definitions of
homology invariants (Betti numbers, torsion numbers). We select the work by E.STEINITZ*? published at that time,
for a brief discussion. Steinitz complained in [42] about the missing ariomatic foundation of the analysis situs ®
and he suggested k-dimensional cells as basic elements (of an axiomatic theory). He considered such cells as sets of
unspecified geometric shape. However, he started with discussing simple polyhedra as being examples of such cells
(i.e. as being a model of his axiomatic theory).

THEOREM 3.1. (Steinitz 1908) For any closed n-dimensional simple polyhedron P there exists a reciprocal simple
polyhedron P’ such that any k-dimensional cell of P corresponds one-to-one to an (n — k)-dimensional cell of P’
where pairs of incident cells remain incident.

For example, the tetrahedron is reciprocal to itself, and a dodecahedron is reciprocal to an icosahedron. See Fig 5
for the regular polyhedra, cube and octahedron. Steinitz called this theorem the first law of duality, and he cited
Poincaré®? for a second law of duality:

THEOREM 3.2. (Poincaré 1895) Reciprocal polyhedra are homeomorphic manifolds.

Two subsets of an Euclidean space are called homeomorphic (or topologically equivalent) iff there exists a one-
to-one mapping of one set onto the other which is continuous in both directions. Steinitz pointed out that the
equivalence of polyhedral manifolds, following a combinatorial point of view, requires us to replace the continuity

§Leibniz’s name for topology, used by Poincaré®* for an early systematic treatment of topology.



constraint by “cell divisions”. His study of such cell complexes was motivated by the goal to identify all topological
invariants of n-dimensional manifolds such as genus or characteristic, the number of boundaries, and the behavior of
the windicatriz.

The work of mathematicians in the 20th century on cell complexes is reviewed by W.Rinow.3” He cites [42] as
the historic source of the following definition of boundary-finite AC-complexes, specified by axioms AC;, AC,, and

o LFy: There is only a finite number of elements y with ypx, for each element x.

This axiom corresponds to Listing’s informal exclusions in [27] such as that a line should not be considered to be an
infinite union of points. The main intention of this definition of boundary-finite AC-complexes in [37] is a topological
specification of the notion of dimension. Another option would be to use the axiom

o LFo: There is only a finite number of elements y with x py, for each element x.

Note that axioms LF; and LF4 are not equivalent, i.e. theories defined either by axioms AC;, ACq, LF; (boundary-
finite AC-complexes) or by axioms ACy, ACa, LFy (joint-finite AC-complexes) do not only have different sets of
theorems, but also different models. A locally finite AC-complex satisfies axioms ACy, ACs, LF;, and LF5.

Steinitz*? defined polyhedral manifolds and did not use the term “abstract cell complexes”. Steinitz reformulated
the Listing complex in [42] in a more abstract, i.e. more formalized way, as follows:

Let S, be a finite set, and n > 0. A non-negative integer dim(z) = [z], 0 < [x] < n, is assigned for each z € S
specifying n-cells as defined above. Any two elements #, y are either incident, denoted as (#,y) = 1 or (y,z) = 1, or
non-incident, denoted as (x,y) = 0 or (y,#) = 0. We also use a relational notation inc(z,y) in case of (x,y) = 1.
A path is an ordered sequence 1,29, ..., zp of elements of S, such that (z1,22) = 1, (22,23) = 1,....(2p_1,2p) = 1.
A subset of 5, is connected if for any two elements x, y in this subset there exists a path in this subset having = as
start and y as terminal element.

[CS definition] The structure (Sy, inc, dim) is called a polyhedral manifold or a cellular Steinitz complex, CS-
complez in short, if the following axioms are satisfied:

o CSy: If[x] = [y] then (z,y) = 1 iff = y (irreflexivity).

o CSo: If (x,y) =1, (y,2) = 1, and [x] > [y] > [#], then (x,z) = 1 (transitivity).

o CS3: EBuery I-cell of Sy, is incident with two 0-cells of Sy, and every (n — 1)-cell is incident with one or two
n-cells.

o CSy: If (x,y) = 1 and [#] = [y]+2 then there are exactly two elements z in Sy, satisfying [2] = [y]+1, (z,2) =1
and (y, z) = 1 (boundary elements).

o CS5: S, s connected.

o CS¢: For any element x € Sy, with [#] > 2 ( [x] < n—2) there is at least one element y € Sy, such that [y] < [«]
([y] > [#]) and (z,y) = 1, and all these elements y define a connected subset of S,.

In cases n > 2 Steinitz also postulated that the following axiom needs to be satisfied:

o CS7: If (x,y) = 1 and [#] > [y] + 3 then there is at least one element z € S, such that (x,z) =1, (y,2) =1
and [z] > [z] > [y], and all these elements z define a connected subset of Sy,.

Any CS-complex P = (Sy, inc, dim) satisfies the axioms of a boundary-finite AC-complex, symbolized by the
proper inclusion CS C AC. Note that the bounding relation p may be specified by the incidence relation inc.
An AC-complex is allowed to have an infinite number of cells, a CS-complex is not. CS-complexes are examples
of connected AC-complexes. In general, AC-complexes are not necessarily connected. This simplifies to consider
subsets of AC-complexes as being AC-complexes again.

In the following we also say « € P instead of # € S,,. The characteristic C(P) of a polyhedral manifold P is
defined as
C(py=3 (-1 (1)
reP

Equations (1), (2), and (3) are historic results for such characteristics. Steinitz cited Poincaré as being the first who
showed that any closed manifold of dimension 3 has characteristic zero, and that Dehn-Heegard showed that this is



actually true for closed manifolds of any odd dimension. Note that the characteristic may also be defined for the
more general class of AC-complexes.

Steinitz introduced the indicatriz of a CS-complex as follows: At first consider a cell. We may discriminate
two different indicatrices for each cell of dimension greater than zero. The indicatrix of a line segment is identical
with its directional sense. For a face, the indicatrix is identical with contour orientation. The bounding faces of a
three-dimensional cell obtain a specific indicatrix, which has to satisfy Mobius’ edge law. Similarly, indicatrices may
be defined for cells of higher dimensions, because the Mobius edge law is easy to generalize for any dimension higher

than 3.

Steinitz pointed out that the theory of homeomorphisms of two-dimensional polyhedral manifolds culminates in
the theorem saying that a complete system of invariants of such a manifold is given by its characteristic, its number
of boundaries, and the behavior of its indicatrix. This is not the case anymore for polyhedral manifolds of higher
dimensions. Further invariants have been studied by Riemann and Betti, known as Betti-numbers or coefficients
of torsion. Steinitz discussed in [42] such invariants for the polyhedral manifolds as defined above. For example,
he defined products of polyhedral manifolds of different dimensions for studying relationships between invariants
(characteristic, indicatrix, number of boundaries) of a product and its factors.

4. REIDEMEISTER AND TUCKER

We briefly discuss two fundamental contributions published in the 30’s of the 20th century: a book on the topology
of polyhedra by K.REIDEMEISTER,?® first edition in 1938 and second edition in 1953, and an extensive paper by
A.W.TuckER?® on an abstract approach to manifolds.

Reidemeister introduced in [36] at first polyhedra as sets of points in a linear space. A set M C R™ is polyhedron-
like 1f 1t is a convex region of space, or a sum Cy + ... + C of finitely many convex regions of space. Note that a
polyhedron-like set needs not to be connected. A polyhedron is a closed polyhedron-like set of points. It follows that
every polyhedron is a finite sum of closed convex regions of space. On the other hand, any finite sum of closed convex
regions is a polyhedron. It follows that a finite sum of polyhedra is a polyhedron again, and a finite intersection of
polyhedra 1s also a polyhedron again. Altogether, polyhedra are an algebraic ring with respect to the operations of
sum and intersection.

Reidemeister studied then the following representation problem of polyhedra: how to define a standard repre-
sentation of a polyhedron as a sum of its faces? He used cell complexes to answer this question. He showed that
there are boundary-sound segmentations of polyhedra into convex regions of space. Such a segmentation is modelled
as a cell complex. He showed that polyhedra possess properties which are invariant with respect to the chosen
boundary-sound segmentation. A segmentation Z of a set into convex regions of space Cj is called boundary-sound
if the following constraint is satisfied: if a region of space C; of the segmentation Z contains a boundary point of
another region of space Cj of Z, then it holds that C; is contained in the boundary dCj of Cf. A point r is a
boundary point of a convex open set of points C', if 7 is not in €' and if there exists a point p € C such that the open
straight line segment rp is in C'. The set of all boundary points of C is its boundary 4C'.

Note that the definition of boundary points is an important step towards the definition of a topology on an AC-
complex. Tucker®® was probably the first who defined and studied topologies on AC-complexes, and Reidemeister’s
topology definition follows [45].

THEOREM 4.1. (Reidemeister 1938) Any polyhedron-like set of points possesses a boundary-sound segmentation.

[CR definition] Reidemeister cited Tucker®® for his definition of cell complexes. Let S be a set of cells z having
dimensions [z] = dim(z) € {0,1,2,...}. We consider a binary relation p between cells. Reidemeister considers cell
complexes containing finitely, or enumerable-infinitely many cells of bounded dimensions. A cellular Reidemeister
complex, CR-complex in short, (S, p, dim) satisfies the axioms AC;, ACs,, and

o CR: If xpz and [z] — [#] > 1 then there exists a cell y € S such that x py and yp z.

The general AC-definition does not imply such type of completeness of a cell complex.

THEOREM 4.2. (Reidemeister 1938) Any boundary-sound segmentations of a polyhedron is a CR-complex.



We cite a few more basic definitions and results from [36] which complete an introduction of a topology (of closed
sets) on an AC-complex: a subset of a CR-complex is not necessarily a CR-complex again because axiom CR may
not be satisfied. A subset of S defining a CR-complex again is called CR-subcompler of S. A sum or an intersection
of two CR-complexes is not necessarily a CR-complex. The boundary complex or boundary of a cell x is the set dx
of all cells y with ypx, 1.e. all cells which bound #. Such a boundary is a CR-complex. The hull or closure z¢ of
a cell x consists of x and all cells in dz. Such a hull is a CR-complex. A pencil of a cell & consists of # and all
cells y with @ py, i.e. all cells which are bounded by z. Also such a pencil is a CR-complex. The intersection of
a pencil and a hull of a cell is a CR-complex. A subset of cells is closed if it also contains all cells in dz for any
of its cells . A closed subset of a CR-complex S is a CR-complex, i.e. a CR-subcomplex of S. The sum or the
intersection of two closed CR-subcomplexes i1s a closed CR-subcomplex. The neighborhood of a cell is the smallest
closed CR~subcomplex which contains the cell and its pencil.

The topological characterization of polyhedra is the main intention of Reidemeister in [36]. Tucker motivated his
research in [45] with the following two questions: “under what general conditions can aggregates of cells be regarded
for combinatorial purposes as single cells? To what extent are the criteria defining combinatorial manifolds forced
upon the topologist?” His text is more formalized (and harder to read) than Reidemeister’s book. A definition of
AC-complexes may be found on pages 193-198 in [45]. Tucker already specified open and closed subsets of (abstract)
cell complexes.

Also note that Tucker and Reidemeister were more explicit (compared to Steinitz) that the cells in their AC-
complexes do not necessarily have any geometric meaning anymore. The definition of cell complexes by Tucker and
Reidemeister allows a study at a more abstract level. Here we do not have to ask for “disjoint” cells anymore. Cells
are considered like different types (specified by the dimension) of “points” in a point set topology, and GC-structures
may be models of such theories of AC-complexes.

5. RINOW

The definition of boundary-finite AC-complexes, see above, has been cited from a book by W.Rinow?” on topology
in general. In chapter VIII of his book, Rinow considered the task to show that the dimension of a set is an absolute
topological invariant, and the discussed solution is based on contributions by Brouwer and Lebesgue using partitions
of £ into subspaces as suggested by Poincaré.3* The introduction of cell complexes in [37] is motivated by this
study of the topological invariance of dimensions.

Rinow begins his discussion of cell complexes with Fuclidean cell complexres having convex sets as its elements.
Let C' C " be a convex region of space, and let P be a hyperplane in €. If dim(PNC) = n—1 then PN C is
an (n — 1)-side of C', which is also a convex region of space. The intersection of finitely many (n — 1)-sides of an
n-dimensional convex region of space C' 1s, if not empty, a proper side of C'. If a proper side has dimension r it is
also called an r-side of C'. The 0-sides are the vertices of C'. The set (' itself is an improper side and thus also a side
of C. Every (n — 2)-side of an n-dimensional convex region of space C'is a side of exactly two (n — 1)-sides of C'. A
conver cell is a bounded convex region of space.

[EC definition] An EC-compler K is defined to be a nonempty, at most enumerable set of convex cells of a
Euclidean space &7, satisfying the following axioms:

o EC,: If z € K and 7' is a side of z then 2/ € K.
e EC,: The intersection of two cells of K 1s either empty or a joint side of both cells.
e EC3: Each point in a cell of K has a neighborhood which has points in only a finite number of cells of K.

See Fig. 6 for an illustration of this definition. An EC-complex is a GC-structure where different cells are not assumed
to be disjoint. However, this is just a formal aspect and could be resolved if desired. An EC-complex is simplicial
if all of its cells are simplexes. Rinow introduced EC-complexes for the discussion of polyhedral cell complexes, and
they are called convex cell complexes in [13]. Note that an EC-complex needs not to be connected. Analogous to the
(Reidemeister) CR-complexes, EC-complexes specify another way to define partitions of polyhedra into convex sets.
A subcomplex of an EC-complex is not necessarily an EC-complex again.

Two results from [37]: Each point of the Euclidean space £” is contained in only a finite number of cells of such
an EC-complex K. Each cell of an EC-complex K is a side of finitely many cells of K.
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Figure 6. Rinow3”: Both sketched sets, consisting of infinitely many vertices and edges, are not EC-complexes.
Axioms EC; and EC; are satisfied but ECj3 is not. The set on the right would satisfy ECs if the limit edge (on the
left) and its vertices are omitted.

Rinow’s next step is to introduce boundary-finite AC-complexes. His motivation is to generalize from the geo-
metric shape of cells to support a discussion of combinatorial structures of complexes. EC-complexes are models of
locally finite AC-complexes (i.e. boundary-finite and joint-finite).

More definitions and results from [37]: An AC-complex K = (S, p, dim) is finite if S is a finite set of cells. If K
is not empty and dim(x) bounded, for # € K, then dim(K) is the maximum of all values dim(x). A cell z € K
is a basic cell of K iff it does not bound any other cell in K. If dim(K) = n then it follows that any n-cell is a
basic cell. An AC-complex K is homogeneous n-dimensional if all of its basic cells do have the same dimension n.
An undirected graph may be seen as a homogeneous 1-dimensional AC-complex where every 1-cell of the graph is
bounded by two vertices (case of an edge), or by one vertex (case of a loop).

Of course, any finite AC-complex is also locally finite. Because digital geometry and topology (in the context of
image analysis) is oriented towards the study of finite discrete structures we may restrict related studies on finite
AC-complexes.

Consider a subset A C S of a (finite) AC-complex K = (S, p, dim). Let pa and dimy4 be the limitation of relation
p and of function dim on A. Then (A, pa,dimya) is also an AC-complex, called AC-subcompler of K. The relation
“A is an AC-subcomplex of K” is an ordering relation in the class of all finite AC-complexes.

Reidemeister (following Tucker’s work) defined already a topology on a CR-complex, see above, and his definition
may be extended for AC-complexes. Rinow’s definition of a topology on an AC-complex is as follows: subset A of
an AC-complex K 1s open iff # € A and ¢ < y then y € A, for all z,y € K. Subset A of an AC-complex K is
closed iff z € A and y < x then y € A, for all z,y € K. This is exactly the same definition as given by Tucker and
Reidemeister. Note that < denotes the ordering relation introduced in Section 1 of this paper.

6. CONCLUSIONS

Spaces being a countable collection of geometric cells are studied in algebraic topology, and they are useful models
for computer-based image analysis. Abstract cell complexes allow to discuss properties of cell complexes without
depending on geometric shapes of cells. Concepts in the topology of sets of points (open, closed, topological definitions
of curves or surfaces etc.) may be used to specify analogous topological objects in abstract or geometric cell complexes.
It seems to be more suitable to do such studies first in abstract cell complexes; and apply results to geometric cell
complexes being models of these abstract cell complexes. Topological definitions of curves and surfaces are of basic
importance for two - or higher-dimensional image analysis, and these theories provide the proper tools. Recent
research in image analysis goes towards a fusion of algebraic and point set topology, see, for example, publications in
[1,4,22,29]. The given historic examples illustrate that this development was already initiated before digital geometry
and topology have been established in the context of computer-based image analysis. These mathematical studies
are suggested to be used in recent research in digital geometry and topology. This paper was not intended to review
these studies, but to provide a “rough sketch” of what can be found in these publications.
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