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Abstract This paper is a sequel to (Klein and Williams in Geom Topol 11:939–977, 2007).
We develop here an intersection theory for manifolds equipped with an action of a finite group.
As in Klein and Williams (2007), our approach will be homotopy theoretic, enabling us to
circumvent the specter of equivariant transversality. We give applications of our theory to
embedding problems, equivariant fixed point problems and the study of periodic points of
self maps.
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1 Introduction

Intersection problems Suppose N is a compact smooth manifold equipped with a closed
submanifold Q ⊂ N . An intersection problem for (N , Q) consists of a map f : P → N ,
where P is a closed manifold. A solution to the problem consists of a homotopy of f to a
map g satisfying g(P) ∩ Q = ∅. We depict the situation by

N − Q

��

P
f

��

��

N ,

in which we seek to find the dotted arrow making the diagram homotopy commute. One also
has a version of the above when P has a boundary whose image under f is disjoint from
Q. We then require the deformation of f to hold the boundary fixed. Let iQ : Q ⊂ N be the
inclusion. We will often denote the data by ( f, iQ).

In [19], we produced an obstruction χ( f ) living in a certain bordism group whose van-
ishing is necessary for the existence of a solution. Furthermore, the obstruction was shown to
be sufficient in the range p ≤ 2n − 2q − 3, where dim N = n, dim Q = q and dim P = p.
We also gave a version of the obstruction for families.

Here, we will consider equivariant intersection problems. Suppose G is a finite group and
the above manifolds are equipped with smooth G-actions.

In the equivariant setting, iQ : Q ⊂ N is a G-submanifold and f : P → N is an equi-
variant map. We now seek a deformation of f through G-maps to an equivariant map whose
image is disjoint from Q.

The partial answers we will give to such questions are phrased in terms of isotropy data.
If X is a G-space, we let

I(G; X)

denote the conjugacy classes of subgroups of G which appear as stabilizer groups of points
of X .

Indexing functions An indexing function φ• on a G-space X assigns to a subgroup H ⊂ G a
locally constant function φH with domain X H , the fixed point set of H acting on X , and codo-
main given by the extended integers Z∪±∞. It is also required to be conjugation invariant:
if K = gHg−1 and h : X H → X K is the homeomorphism x �→ gx , then φH = φK ◦ h.

If ψ• is another indexing function on X , and H ⊂ G is a subgroup, we write

φH ≤ ψH

if φH (x) ≤ ψH (x) for all x ∈ X H . If φH ≤ ψH for all H , then we write φ• ≤ ψ•.
Here are some examples:

Dimension If M is a locally smooth G-manifold, then for any subgroup H ⊂ G the compo-
nents of the fixed point set M H are manifolds [1, Ch. 4]. The dimensions of the components
can vary. If x ∈ M H , then the dimension of the component containing x defines a locally
constant function m H . The collection m• := {m H }H⊂G is called the dimension function of
M . If M H is empty, our convention is to set m H = −∞.
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Codimension Let iQ : Q ⊂ N be as above. Let

cd•(iQ)

be the indexing function on Q in which cdH (iQ)(x) is the dimension of the normal space to
the embedding Q H ⊂ N H at x ∈ Q H (if Q H is empty but N H isn’t, our convention is to
set cdH (iQ) = +∞).

Pullback Suppose f : X → Y is a G-map. Given an indexing function α• on Y , we obtain
an indexing function f ∗α• on X which is given by f ∗αH (x) = αH ( f (x)).

Pushforward Given f : X → Y as above, let β• be an indexing function on X . For y ∈ Y
we let [y] denote the associated path component. Let I f,y be the set of those [x] for which
[ f (x)] = [y]. That is, I f,y is the inverse image of f∗ : π0(X)→ π0(Y ) at [y].

Define an indexing function f!β• on Y by the rule

f!βH (y) =
⎧
⎨

⎩

inf I f,y βH (x) if I f,y is nonempty,

∞ otherwise.

Note f! f ∗α• ≥ α•, with equality holding when f∗ is a surjection, whereas f ∗ f!β• ≤ β•
with equality holding when f∗ is an injection.

Stable intersections Just as in the unequivariant case, equivariant intersections can be
removed when the codimension is sufficiently large. The equivariant intersection problem
( f, iQ) is said to be stable if

pH ≤ f ∗(iQ)! cdH (iQ)− 1

for every (H) ∈ I(G; P). (Roughly, this means the dimension of the transverse intersection
of f (P H ) and Q H is negative).

If the intersection problem is stable, one can use elementary equivariant obstruction theory
to show f equivariantly deforms off of Q, yielding a solution.

A “cohomological” result Our first main result gives a complete obstruction to solving equi-
variant intersection problems in the equivariant metastable range. The obstruction lies in the
cohomology of P with coefficients in a certain parametrized equivariant spectrum over N .
A reader who is not familiar with this technology should consult Sect. 3.

Theorem A To an equivariant intersection problem ( f, iQ), there is a naive parametrized
G-spectrum E(iQ) over N, which is constructed from the inclusion iQ : Q ⊂ N, and an
obstruction

eG( f ) ∈ H0
G(P; E(iQ))

which vanishes when the intersection problem has a solution.
Conversely, if eG( f ) = 0 and

pH ≤ 2 f ∗(iQ)! cdH (iQ)− 3

for all (H) ∈ I(G; P), then the intersection problem has a solution.
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Remark Theorem A is an equivariant version of [19, Cor. 3.5]. The word naive is used here
indicate that the parametrized spectrum is indexed over a trivial universe; the equivariant
cohomology theory of the theorem is therefore of “Bredon type”.

The inequalities of Theorem A define the equivariant metastable range. When G is the
trivial group, one has the sole inequality 2p ≤ 2n − 2q − 3, which is just the unequivariant
metastable range (cf. [19]).

Homotopical equivariant bordism Since naive equivariant cohomology theories are not
indexed over representations, they are not fully “stable.” From our viewpoint, a crucial defi-
ciency of naive theories is their lack of Poincaré duality.

To get around this, we impose additional conditions to get a more tractible invariant resid-
ing in a theory which does possess Poincaré duality. We will map the equivariant cohomology
theory of Theorem A into a similarly defined RO(G)-graded one. The additional constraints
will insure the map is injective. Applying duality to our pushed-forward invariant, we obtain
another invariant living in RO(G)-graded homology. We then identify the homology theory
with the homotopical G-bordism groups of a certain G-space.

To a G-space X equipped with real G-vector bundle ξ , one has an associated equivariant
Thom spectrum

X ξ ,

whose spaces X ξV are indexed by representations V ranging over a complete G-universe U
(compare [23, Chap. XV]). Here, X ξV denotes the Thom space of ξ ⊕ V . Equivalently, X ξ is
the equivariant suspension spectrum of the Thom space of ξ . More generally, X ξ is defined
whenever ξ is an virtual G-bundle over X (see [22, Ch. 9] for details).

For a virtual G-representation α = V −W , the homotopical G-bordism group of (X, ξ)
in degree α is given by

�G
α (X; ξ) := colim

U
[SV+U , X ξW+U ]G ,

where [SV+U , X ξW+U ]G denotes the homotopy classes of based G-maps SV+U → X ξW+U
(in which SV+U is the one point compactification of the direct sum of V and U ), and the
colimit is indexed over the finite dimensional subrepresentations U of U using the partial
ordering defined by inclusion. Actually, we will only need consider the case when α = 0 is
the trivial representation of rank zero.

Remarks (1) There is a related object, N G
α (X; ξ), called the geometric bordism group of

(X, ξ). It is generated by G-manifolds M equipped with G-map u : M → X and a
stable G-bundle isomorphism

u∗ξ ⊕ τM ⊕ εW ∼= εV ,

where εV denotes the G-bundle whose total space is X × V .
The Pontryagin–Thom construction defines a homomorphism

N G
α (X; ξ)→ �G

α (X; ξ).
In contrast with the unequivariant case, this map can fail to be an isomorphism because
of the lack of equivariant transversality (see [4], [23, p. 156], [25]).

(2) When ξ is a G-vector bundle (not virtual), then X ξ is the equivariant suspension spec-
trum of the Thom space of ξ . In particular, when ξ is trivial of rank zero, we get�∞G (X+),
the equivariant suspension spectrum of X�∗. In this case, the map from the equivariant
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geometric bordism group to the homotopical one is an isomorphism [12,20]. The k-th
homotopy group of �∞G (X+) coincides with �G,fr

k (X), the k-dimensional equivariant
framed bordism group of X .

(3) When G = e is the trivial group, and ξ has virtual rank n, �e
0(X; ξ) = �0(X; ξ) is the

bordism group generated by maps α : M → X , with M a compact n-manifold, together
with a (stable) isomorphism α∗ξ with the stable normal bundle of M . Note the indexing
convention used here is different from the one of [19] (the latter implicitly ignored the
rank of ξ but indicated the dimension of the manifolds in the degree of the bordism
group; thus the group �n(X; ξ) of [19] coincides with the current �0(X; ξ)).

We now specialize to the equivariant bordism groups arising from intersection problems.
Given an equivariant intersection problem ( f, iQ), define

E( f, iQ)

to be the homotopy fiber product (a.k.a. homotopy pullback) of f and iQ . A point in E( f, iQ)

is a triple (x, λ, y) in which x ∈ P , y ∈ Q and λ : [0, 1] → N is a path such that λ(0) = f (x)
and λ(1) = y. There is an evident action of G on E( f, iQ).

There are forgetful maps jP : E( f, iQ)→ P and jQ : E( f, iQ)→ Q, both equivariant.
There is also an equivariant map jN : E( f, iQ) → N given by (x, λ, y) �→ λ(1/2). Using
these, we obtain an equivariant virtual bundle over E( f, iQ) by

ξ := j∗N τN − j∗QτQ − j∗PτP .

If Q ⊂ N is held fixed, then ξ is completely determined by f : P → N .

A “homological” result

Theorem B Given an equivariant intersection problem ( f, iQ), there is an invariant

χG( f ) ∈ �G
0 (E( f, iQ); ξ)

which vanishes when f is equivariantly homotopic to a map whose image is disjoint from Q.
Conversely, assume χG( f ) = 0 and

• for each (H) ∈ I(G; P), we have

pH ≤ 2 f ∗(iQ)! cdH (iQ)− 2;
• for each (H) ∈ I(G; P) and each proper subgroup K � H, we have

pH ≤ f ∗(iQ)! cdK (iQ)− 2.

Then f is equivariantly homotopic to a map whose image is disjoint from Q.

Remarks (1) The assignment f �→ χG( f ) is a global section of a locally constant sheaf
over the equivariant mapping space map(P, N )G . The stalk of this sheaf at f is
�G

0 (E( f, iQ); ξ). This explains the sense in which χG( f ) is an invariant: an equi-
variant homotopy from f to another map f ′ : P → N gives rise to an isomorphism of
stalks over f and f ′, and the isomorphism transfers χG( f ) to χG( f ′).

(2) The second set of inequalities of Theorem B can be regarded as a gap condition.
(3) An advantage that Theorem B enjoys over Theorem A is that the obstruction group

appearing in the former is is defined directly in terms of the maps f : P → N and
Q → N . It turns out that obstruction group of Theorem A is defined in terms of f
and the map N − Q → N , which is not as easy to identify in terms of the input

123



J. R. Klein, B. Williams

data. Furthermore, the equivariant bordism group appearing in Theorem B arises from
a Thom spectrum indexed over a complete universe, so more machinery is at hand for
the purpose of making calculations (see [23]).

Boundary conditions There is also a version of Theorem B when N is compact, possibly
with boundary, and P is compact with boundary ∂P �= ∅ satisfying f (∂P)∩ Q = ∅. In this
instance one seeks an equivariant deformation of f , fixed on ∂P , to a new map whose image
is disjoint from Q.

Addendum C Theorem B also holds when P and N are compact manifolds with boundary,
where it is assumed f (∂P) ∩ Q = ∅ and Q is embedded in the interior of N .

Sparse isotropy When the action of G on P has few isotropy types, the inequalities in
Theorem B unravel somewhat.

Free actions Suppose the action of G on P is free. Then the trivial group is the only isotropy
group and the inequalities of Theorem B reduce to a single inequality

p ≤ 2(n − q)− 3 = 2n − 2q − 3.

Furthermore, the equivariant bordism group of Theorem B is isomorphic to the unequivariant
bordism group

�0(EG ×G E( f, iQ); idEG ×Gξ),

where EG ×G E( f, iQ) is the Borel construction. This bordism group is generated by maps
u : M → EG×G E( f, iQ) together with a stable isomorphism νM ∼= u∗(idEG ×Gξ), where
M has dimension p + q − n and νM denotes the stable normal bundle. The identification of
these groups is obtained using a transfer construction (we omit the details).

Trivial actions If P has a trivial G-action, then the only isotropy group is G. In this instance,
P has image in N G and the intersection problem becomes an unequivariant one, involv-
ing the map f : P → N G and the submanifold QG ⊂ N G . Assume for simplicity that
N G and QG are connected. Then by [19], the intersection problem admits a solution when
χ( f ) ∈ �0(E( f, iQG ); ξ) is trivial and p ≤ 2nG − 2qG − 3.

Prime order groups Let G be a cyclic group of prime order. By the above, we can assume
both the trivial group and G appear as stabilizer groups. Then ∅ �= PG

� P .
For simplicity, assume QG and N G are connected. Then the first set of inequalities of

Theorem B becomes

p ≤ 2n − 2q − 3, pG ≤ 2nG − 2qG − 3,

and the second set amounts to the single inequality

pG ≤ n − q − 2.

Local intersection theory Suppose an equivariant intersection problem ( f, iQ) has been
partially solved in the following sense: there is G-subspace U ⊂ P such that f (U ) is dis-
joint from Q. One can then ask whether the solution extends to a larger subspace of P . A
local equivariant intersection problem amounts to these data. A systematic approach to such
questions provided by the isotropy stratification of P .
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The isotropy stratification The relation of subconjugacy describes a partial ordering I(G; P):
we will write

(H) < (K )

if K is properly subconjugate to H . We then choose a total ordering which is compatible
with the partial ordering. Let

(H1) < (H2) < · · · < (H�)

be the maximal chain coming from the total ordering of I(G; P).
Let Pi ⊂ P be the set of points x having stabilizer group Gx in which (Gx ) ≤ (Hi ). Then

we have a filtration of G-spaces

∅ = P0 � P1 � P2 � · · · � P� = P,

where each inclusion Pi ⊂ Pi+1 possesses the equivariant homotopy extension property
(cf. [5,15]).

The local obstruction Suppose ( f, iQ) is an equivariant intersection problem with f (Pi−1)∩
Q = ∅ for some i ≥ 1. We seek a deformation of f relative to Pi−1 to a new map f ′ such
that f ′(Pi ) ∩ Q = ∅. The map f ′ is then a solution to the local problem.

Let H be a representative of (Hi ) and let fH : PH → N denote the restriction of f to PH .
The Weyl group W (H) = N (H)/H acts on P H and freely on PH . Let H ξ be the virtual
W (H)-bundle over E( fH , iQ) defined by

j∗N τN − j∗QτQ − j∗PH
τPH .

Theorem D There is an invariant

χ i
G( f ) ∈ �W (H)

0 (E( fH , iQ); H ξ))

which is trivial when the local problem at Pi relative to Pi−1 can be solved.
Conversely, assume χ i

G( f ) = 0 and

pH ≤ 2 f ∗(iQ)! cdH (iQ)− 3

for (H) = (Hi ). Then the local problem admits a solution.

Descent The global invariant χG( f ) is an assemblage of all the local invariants. Although
the local invariants may contain more information, they can fail to provide a solution to the
global question. To address this point, we will give criteria for deciding when the vanishing
of the global invariants implies the vanishing of the local ones. In combination with Theorem
D the criteria yield a kind of descent theory for equivariant intersection problems.

Let H ∈ I(G; P) be and consider the inclusion

PH ⊂ P H .

Denote the corresponding inclusion E(PH , Q) ⊂ E(P H , Q)by tH . The map f H : P H → N
will denote the restriction of f to P H . Define a virtual W (H)-bundle H ξ over E( f H , iQ)

by j∗N τN − j∗QτQ − j∗
P H τP H . Since the pullback of Hξ along tH is H ξ , we get an induced

homomorphism

(tH )∗ : �W (H)
0 (E( fH , iQ); H ξ)→ �

W (H)
0 (E( f H , iQ); Hξ).
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Theorem E (Global-to-local) Assume

• f (Pi−1) ∩ Q = ∅ for some i ≥ 1 (so χ i
G( f ) is defined).

• (tH )∗ is injective for (H) = (Hi ).

Then χG( f ) = 0 implies χ i
G( f ) = 0.

Corollary F (Descent) Let ( f, iQ) be an equivariant intersection problem. Assume

• χG( f ) = 0,
• (tH )∗ is injective,
• pH ≤ 2 f ∗(iQ)! cdH (iQ)− 3,

for every (H) ∈ I(G; P). Then there is an equivariant deformation of f to a map whose
image is disjoint from Q.

Applications

Embeddings Suppose f : P → N is a smooth immersion. Equipping P with a Riemann-
ian metric, we identify the total space of the unit tangent disk bundle of P with a compact
tubular neighborhood of the diagonal �P ⊂ P × P . With respect to this identification, the
involution of P × P corresponds to the one on the tangent bundle that maps a tangent vector
to its negative. Let S(2) be the total space of the unit spherical tangent bundle of P , and let
P(2) be the effect of deleting the interior of the tubular neighborhood from P × P . Then
(P(2), S(2)) is a free Z2-manifold with boundary.

If we rescale the metric, then f× f determines an equivariant map

( f (2), f (2)|S(2)) : (P(2), S(2))→ (N×2, N×2 −�N ),

which yields relative Z2-equivariant intersection problem with free domain. The fiber prod-
uct E( f (2), i�N ) in this case coincides with the space of triples (x, γ, y) with x, y ∈ P(2)
and γ a path from f (x) to f (y). The involution is given by (x, γ, y) �→ (y, γ̄ , x), where
γ̄ (t) := γ (1− t). We set E ′( f, f ) := E( f (2), i�N ).

Applying Addendum B and observing the action is free, we have an obstruction

µ( f ) ∈ �0(EZ2 ×Z2 E ′( f, f ); id×Z2ξ)

whose vanishing suffices for finding an equivariant deformation of f (2), fixed on S(2), to a
map whose image is disjoint from �N , provided 3p + 3 ≤ 2n.

By a theorem of Haefliger [11], f is regularly homotopic to an embedding in the meta-
stable range 3p + 3 ≤ 2n if and only if the above equivariant intersection problem admits a
solution. Consequently,

Corollary G (compare [14, Th. 2.3]) If f is regularly homotopic to an embedding, then
µ( f ) is trivial.

Conversely, in the metastable range, the vanishing of µ( f ) implies f is regularly homo-
topic to an embedding.

Equivariant fixed point theory Let M be a closed smooth manifold equipped a smooth action
of a finite group G. Let

map�(M,M)G

denote the space of fixed point free G-maps from M to itself. Equivariant fixed point theory
studies the extent to which the inclusion

map�(M,M)G → map(M,M)G

is a surjection on path components.

123



Homotopical intersection theory, II: equivariance

For an equivariant self map f : M → M , let

L f M

be the space of paths λ : [0, 1] → M satisfying the constraint f (λ(0)) = λ(1). Then G acts
on L f M pointwise. Finally, let

�
G,fr
0 (L f M))

be the G-equivariant framed bordism of L f M in dimension zero.

Theorem H There is an invariant

�G( f ) ∈ �G,fr
0 (L f M)

which vanishes when f is equivariantly homotopic to a fixed point free map.
Conversely, assume �G( f ) = 0. If

• m H ≥ 3 for all (H) ∈ I(G;M).
• m H ≤ mK − 2 for proper inclusions K � H with K , H ∈ I(G;M),

then f is equivariantly homotopic to a fixed point free map.

Remarks (1) The above can be regarded as an equivariant analog of a classical theorem of
Wecken [28].

(2) A formula of tom Dieck splits �G,fr
0 (L f M) into a direct sum of unequivariant framed

bordism groups indexed over the conjugacy classes of subgroups of G. The summand
corresponding to a conjugacy class (H) is

�fr
0 (EW (H)×W (H) L f H M),

where EW (H)×W (H) L f H M is the Borel construction of the Weyl group W (H) act-
ing on L f H M (see [23,26]). Consequently, �G( f ) decomposes as a sum of invariants
indexed in the same way. We conjecture the Nielsen number N ( f H ) can be computed
from the projection of �G( f ) onto the displayed summand.

(3) Our result bears close similarity to a theorem of Fadell and Wong [7] (see also [8,27]).
Their result uses the Nielsen numbers N ( f H ) with (H) ∈ I(G;M) in place of our
�G( f ).

Periodic points A fundamental problem in discrete dynamics is to enumerate the periodic
orbits of a self map f : M → M , where M is a closed manifold.

Let n ≥ 2 be an integer. A point x ∈ M is said to be n-periodic if x is a fixed point of the
n-th iterate of f , i.e., f n(x) = x . The set of n-periodic points of f is denoted

Pn( f ).

The cyclic group Zn acts on Pn( f ): if t ∈ Zn is a generator, then the action is defined by
t · x := f (x).

The homotopy n-periodic point set of f is the Zn-space

hoPn( f )

consisting of n-tuples

(λ1, λ2, . . . , λn),
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in which λi : [0, 1] → M is a path and the data are subject to the constraints

f (λi+1(0)) = λi (1)), i = 1, 2, . . .

Here we interpret the subscript i as being taken modulo n. The action of Zn on hoPn( f ) is
given by cyclic permutation of factors.

There is a map Pn( f )→ hoPn( f ) given by sending an n-periodic point x to the n-tuple

(cx , c f (x), c f 2(x), . . . , c f n−1(x))

in which cx denotes the constant path with value x .
For a self map f : M → M , as above, let

�
Zn ,fr
0 (hoPn( f ))

be the Zn-equivariant framed bordism group of hoPn( f ) in dimension 0.

Theorem I There is a homotopy theoretically defined invariant

�n( f ) ∈ �Zn ,fr
0 (hoPn( f ))

which is an obstruction to deforming f to an n-periodic point free self map.

Remarks At the time of writing, we do not know the extent to which �n( f ) is the complete
obstruction to making f n-periodic point free. When dim M ≥ 3, Jezierski [16] has shown
the vanishing of the Nielsen numbers N ( f k) for all divisors k|n implies f is homotopic to
an n-periodic point free map (here f k denotes the k-fold composition of f with itself). We
conjecture that �n( f ) determines N ( f k).

Periodic points and the fundamental group Let π be a group equipped with endomorphism
ρ : π → π . Consider the equivalence relation on π generated by the elementary relations

x ∼ gxρn(g)−1 and x ∼ ρ(x)

for x, g ∈ π . Let

πρ,n

be the set of equivalence classes. Let

Z[πρ,n]
denote the free abelian group with basis πρ,n .

Let f : M → M be a self map of a connected closed manifold M . Fix a basepoint ∗ ∈ M .
Choose a homotopy class of path [α] from ∗ to f (∗). Then [α] defines an isomorphism

π1(M, ∗) ∼= π1(M, f (∗)).
Furthermore, f and [α] together define a homomorphism

ρ : π1(M, ∗) f�→ π1(M, f (∗)) ∼= π1(M, ∗).
Let π = π1(M, ∗).
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Theorem J The data consisting of the self map f : M → M, the choice of basepoint ∗ ∈ M
and the homotopy class of path [α] from ∗ to f (∗) determine an isomorphism of abelian
groups

�
Zn ,fr
0 (hoPn( f )) ∼=

⊕

k|n
Z[πρ,k].

With respect to this isomorphism, there is a decomposition

�n( f ) = ⊕
k|n
�k

n( f ),

in which �k
n( f ) ∈ Z[πρ,k].

2 Preliminaries

G-Universes The G-representations of this paper are assumed to come equipped with a
G-invariant inner product. A G-universe U is a countably infinite dimensional real repre-
sentation of G which contains the trivial representation and which contains infinitely many
copies of each of its finite dimensional subrepresentations.

We will be interested in two kinds of universes. A complete universe is one that con-
tains infinitely many copies of representatives for the irreducible representations of G (in
this instance one can take U to be the countable direct sum of the regular representation).
A trivial universe contains only trivial representations.

Spaces We work in the category of compactly generated topological spaces. The empty space
is (−2)-connected and every non-empty space is (−1)-connected. A map A→ B of spaces
(with B nonempty) is r -connected if for any choice of basepoint in B, the homotopy fiber
with respect to this choice of basepoint is an (r−1)-connected space. In particular, any map
A→ B is (−1)-connected. A weak homotopy equivalence is an∞-connected map.

G-spaces Let G be a finite group. A G-space is a space X equipped with a left action of G.
A map of G-spaces is a G-equivariant map.

Let T be a transitive G-set. The T -cell of dimension j is the G-space

T × D j ,

where G acts diagonally with trivial action on D j .

Remark 2.1 If a choice of basepoint t ∈ T is given, then one has a preferred isomorphism
G/H ∼= T , where H = Gt is the stabilizer of t . Given another choice of basepoint t ′, the
stabilizer group Gt ′ is conjugate to H . We will call the conjugacy class (H) the type of T .
Two transitive G-sets are isomorphic if and only if they have the same type.

Given a G-map f : T × S j−1 → Y , one may form

Y ∪ f (T × D j ).

This is called an T -cell attachment. If j = 0, we interpret the above as a disjoint union.
A relative G-cell complex (X, Y ) is a pair in which X is obtained from Y by iterated

equivariant cell attachments (where we allow T to vary over different transitive G-sets; the
collection of attached cells is allowed to be a class). The order of attachment defines a partial
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ordering on the collection of cells. If this order is dimension preserving (i.e., no cell of dimen-
sion j is attached after a cell of dimension j ′ when j < j ′), then (X, Y ) is a relative G-CW
complex. When the collection of such attachments is finite, one says (X, Y ) is finite. When
Y is the empty space, X is a G-cell complex and when the attachments are self-indexing, X
is a G-CW complex.

The cellular dimension function d• for (X, Y ) is the indexing function whose value at H
is the maximal dimension of the cells of type (H) appearing in the collection of attached
cells. We set dH = −∞ if (X, Y ) has no cells of type (H).

Remark 2.2 Let M be a closed smooth G-manifold with dimension function m•. A result
of Illman [15] shows that M possesses an equivariant triangulation. If d• is the cellular
dimension function of this triangulation, then dH = m H for all H ∈ I(G;M).

Quillen model structure Let T (G) be the category of G-spaces. A morphism f : X → Y
is a weak equivalence if for every subgroup H ⊂ G the induced map of fixed points

f H : X H → Y H

is a weak homotopy equivalence. Similarly, a morphism f is a fibration if f H is a Serre
fibration for every H . A morphism f : X → Y is a cofibration if there is a relative G-cell
complex (Z , X) such that Y is a retract of Z relative to X .

Let R(G) be the category of based G-spaces. A morphism X → Y of R(G) is a weak
equivalence, cofibration or fibration if and only if it is so when considered as a morphism of
T (G).

Proposition 2.3 ([6], [23, Ch. VI, Sect. 5]) With respect to the above structure, both T (G)
and R(G) are Quillen model categories.

Connectivity One says an indexing function r• is a connectivity function for a G-space Y if
Y H is rH -connected for H ⊂ G a subgroup (if Y H is empty, we set rH = −2). If f : Y → Z
is a morphism of T (G), then a connectivity function for f is an indexing function r• such
that f H : Y H → Z H is an rH -connected map of spaces (one can always assume rH ≥ −1
since every map of spaces is at least (−1)-connected).

Lemma 2.4 Let Y → Z be a fibration of T (G)with connectivity function r•. Suppose (X, A)
is a relative G-cell complex with cellular dimension function d•. Assume dH ≤ rH for all
subgroups H ⊂ G. Then given a factorization problem of the form

A ��

��

Y

��

X ��

��

Z

we can find an equivariant lift X → Y such that the diagram commutes.

Remark 2.5 The condition dH ≤ rH is automatically satisfied if no cells of type (H) occur
in (X, A).

Proof of Lemma 2.4 The proof proceeds by induction on the equivariant cells which are
attached to A to form X . The inductive step is reduced to solving an equivariant lifting
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problem of the kind

G/H × S j−1 ��

��

Y

f

��

G/H × D j ��

��

Z ,

where the horizontal maps are allowed to vary in their equivariant homotopy class.
Now, a G-map G/H×U → Z when U has a trivial action is the same thing as specifying

a map U → Z H . This means the lifting problem reduces to an unequivariant one of the form

S j−1 ��

��

Y H

f H

��

D j ��

��

Z H

The latter lift exists because f H is rH -connected and j ≤ rH . ��
Corollary 2.6 Consider the lifting problem

A ��

��

Y

��

X ��

��

Z

of G-spaces in which

• Y → Z is a map with connectivity function r•,
• Y is cofibrant,
• (X, A) is a relative G-cell complex with dimension function d•,
• dH ≤ rH for each subgroup H ⊂ G.

Then there is a G-map X → Y making the top triangle of the diagram commute and the
bottom triangle homotopy commute.

Proof Factorize the map Y → Z as

Y → Y c → Z

in which the map Y → Y c is a cofibration and a weak equivalence and the map Y c → Z is
a fibration. Apply Lemma 2.4 to the diagram with Y c in place of Y . To get a map X → Y c

making the diagram commute.
Since every object is fibrant, the acyclic cofibration Y → Y c is a retract; let r : Y c → Y

be a retraction. Let f : X → Y be the map X → Y c followed by the retraction. Then f
satisfies the conclusion stated in the corollary. ��
Fiberwise G-spaces Fix a G-space B. A G-space over B is a G-space X equipped with
G-map X → B, usually denoted pX . A morphism X → Y of G-spaces over B is a G-map
which commutes with the structure maps pX and pY . Let

T (B;G)
be the category of G-spaces over B.
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We also have a “retractive” version of this category, denoted

R(B;G).
An object of the latter consists of a G-space X and maps pX : X → B, sX : B → X such
that pX sX = idB . A morphism X → Y is an equivariant map compatible with both structure
maps.

In either of these categories, a morphism X → Y is said to be a weak equivalence/cofi-
bration/fibration if it is so when considered as a morphism of T (G) by means of the forgetful
functor. With respect to these definitions, T (B;G) and R(B;G) are Quillen model catego-
ries.

An object X in either of these categories is said to be r•-connected if the structure map
X → B is (r• + 1)-connected. A morphism is said to be r•-connected if the underlying map
of T (G) is.

The category R(B;G) has internal smash products, constructed as follows: let X, Y ∈
R(B;G) be objects. Then

X ∧B Y ∈ R(B;G)
is the object given by the pushout of the diagram

B ←−−−− X ∪B Y
⊂−−−−→ X ×B Y

where X ×B Y is the fiber product of X and Y .
Since R(B;G) is a model category, one can form homotopy classes of morphisms. If

X, Y ∈ R(B;G), we let

[X, Y ]R(B;G)
denote the set of homotopy classes of morphisms. Recall the definition requires us to replace
X by its cofibrant approximation and Y by its fibrant approximation.

3 The Proof of Theorem A

Unreduced fiberwise suspension Let E ∈ T (B;G) be an object. The unreduced fiberwise
suspension of E over B is the object SB E ∈ T (B;G) given by the double mapping cylinder

SB E := B × 0 ∪ E × [0, 1] ∪ B × 1.

The two evident inclusions s−, s+ : B → SB E are morphisms of T (B;G). Using s−, we
will consider SB E as an object of R(B;G).

Obstruction to sectioning Let

B+

denote B� B considered as an object of R(B;G) using the left summand to define a section.
Then

s := s− � s+ : B+ → SB E

is a morphism of R(B;G). We consider the associated homotopy class

[s] ∈ [B+, SB E]R(B;G).
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The following proposition is an equivariant version of results of Larmore ([21, Th. 4.2–
4.3]; see also [19, Prop. 3.1]).

Proposition 3.1 Assume E ∈ T (B;G) is fibrant. If E → B admits an equivariant section,
then [s] is trivial.

Conversely, assume

• [s] is trivial,
• B is a G-cell complex with dimension function b•,
• the object E ∈ T (B;G) is r•-connected, and
• b• ≤ 2r• + 1.

Then E → B admits an equivariant section.

Proof Let σ : B → E be a section. Apply the functor SB and note SB B = B × [0, 1]. We
then get a map

SBσ : B × [0, 1] → SB E

which gives a homotopy from s− to s+ through morphisms of T (B;G). This is the same
thing as establishing the triviality of [s].

Conversely, the diagram

E ��

��

B

s+
��

B s−
�� SB E

is preferred homotopy commutative in the category T (B;G). As a diagram of G-spaces it
is a homotopy pushout. Let H ⊂ G be a subgroup. Taking H -fixed points, we obtain a
homotopy pushout

E H ��

��

B H

s H+
��

B H
s H−

�� SB H E H

in the category R(B H ; e) where e is the trivial group. Since E is an r•-connected object, the
map E H → B H is (rH + 1)-connected.

By the Blakers–Massey theorem (see, e.g., [10, p. 309]), the second diagram is (2rH +1)-
cartesian. Consequently, the first diagram is (2r• + 1)-cartesian. Let P denote the homotopy
inverse limit of the diagram

B
s−−−−−→ SB E

s+←−−−− B.

Then we conclude the map E → P is (2r• + 1)-cartesian. If we assume [s] = 0, then the
map P → B admits a section up to homotopy (using the universal property of the homotopy
pullback). By the assumptions on B and Corollary 2.6, the G-map E → B admits a section
up to homotopy. Since E is fibrant, this homotopy section can be converted into a strict
section. ��
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Naive stabilization The reduced fiberwise suspension �B E of an object E ∈ R(B;G) is
given by considering E as an object of T (B;G), taking its unreduced fiberwise suspension
SB E and taking the pushout of the diagram

B ← SB B → SB E

where SB B → SB E arises by applying SB to the structure map B → E .
A naive parametrized G-spectrum E is a collection of objects

En ∈ R(B;G)
equipped with maps �BEn → En+1.

Example 3.2 Let Y ∈ R(B;G) be an object. Its naive parametrized suspension spectrum
�∞B Y has n-th object �n

BY , the n-th iterated fiberwise suspension of Y .

Definition 3.3 Let X ∈ T (B;G) be an object. The zeroth cohomology of X with coefficients
in E is the abelian group given by

H0
G(X; E) := colim

n→∞[�
n
B X+, En]R(B;G)

where X+ = X � B and the maps in the colimit arise from the structure maps of E .

Remark 3.4 Assuming the maps En → B are fibrations, one can take the pullbacks f ∗En →
X . These form a naive G-spectrum over X , and an unraveling of the definitions gives

H0
G(X; f ∗E) = H0

G(X; E).
Definition 3.5 Let X, E ∈ T (B;G) be objects with E fibrant and X cofibrant. Let f : X →
B be the structure map. Let

e( f, E) ∈ H0
G(X;�∞B SB E)

be the class defined by the map

X+ f +−−−−→ B+ s−−−−→ SB E .

Proposition 3.6 Let X, E and f be as above. If E → B admits an equivariant section along
f , then e( f, E) is trivial.

Conversely, assume

• e( f, E) is trivial,
• X is a G-cell complex with dimension function k•,
• E ∈ T (B;G) is r•-connected, and
• k• ≤ 2r• + 1.

Then E → B admits an equivariant section along f .

Proof By Proposition 3.1, it will be enough to prove the maps

�B : [�n
B X+, �n

B SB E]R(B;G) → [�n+1
B X+, �n+1

B SB E]R(B;G)
are isomorphisms in the stated range. We will do this when n = 0. The case n > 0 is similar.

We have a map

E → �B�B E
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which is adjoint to the identity. By Corollary 2.6, it will be enough to show this morphism is
2r• + 1-connected. Let H ⊂ G be a subgroup and consider the map

E H → �B H�B H E H

of R(B H ; e). If b ∈ B H is any point, we have an induced map of fibers

E H
b → ��E H

b .

Since E H
b is rH -connected, the Freudenthal suspension implies the last map is (2rH + 1)-

connected. We infer that the map E H → �B�B E H is (2rH + 1)-connected, which is what
we needed to show. ��
Proof of Theorem A

Lemma 3.7 The map (N − Q)→ N is (iQ)! cdH (iQ)− 1)-connected.

Proof Let H ⊂ G be a subgroup. Then (N − Q)H = N H − Q H , and we need to compute
the connectivity of the inclusion

N H − Q H → N H .

This will be done using transversality.
Consider a map of pairs

γ : (K , A)→ (N H , N H − Q H )

(K , A) = (D j , S j−1) or (S j ,∅). We can assume γ is transverse to Q H . If y ∈ γ (K )∩ Q H ,
then it must be the case j ≥ cdH (iQ)H (y). Therefore, γ (K ) is disjoint from Q H whenever
j < cdH (iQ)H (y) for all y ∈ Q H . This is equivalent to requiring j < (iQ)! cdH (iQ), so the
conclusion follows. ��

Let

(N − Q)→ E → N

be the effect of factorizing N − Q → N as an acyclic cofibration followed by a fibration.
By Lemma 3.7, E ∈ T (N ;G) is an (iQ)! cdH (iQ)− 2)-connected object.

Since N − Q is cofibrant, it will suffice to show E → N admits a section along f .
We set E(iQ) equal to the naive fiberwise suspension spectrum

�∞N SN E

and

eG( f ) := e( f, E) ∈ H0
G(P; E(iQ)).

By the first part of Proposition 3.1, if E admits a section along f , then eG( f ) is trivial.
Conversely, assume eG( f ) is trivial. Then

e(idP , f ∗E) ∈ H0
G(P; f ∗E(iQ))

is also trivial. One easily checks f ∗E is an ( f ∗(iQ)! cd•(iQ)− 2)-connected object. By the
second part of Proposition 3.1, the fibration f ∗E → P admits a section when

p• ≤ 2 f ∗(iQ)! cd•(iQ)− 3.

This completes the proof of Theorem A.
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4 Naive versus equivariant stabilization

The unfibered case If Y ∈ R(G) = R(∗;G) is a cofibrant object, we define

QGY = colim
V

�V�V Y,

where V ranges over the finite dimensional subrepresentations of a complete G-universe U
partially ordered with respect to inclusion, and �V�V Y is the space of unequivariant based
maps SV → SV ∧ Y , where SV is the one point compactification of V . This is a G-space by
conjugating maps by group elements.

Consider the natural G-map

QY → QGY.

Proposition 4.1 Assume Y has connectivity function r•. Then the map QY → QGY is
s•-connected, where

sH = inf
K �H

rK .

Proof Let H ⊂ G be a subgroup. We must show the map of fixed points

Q(Y H ) = (QY )H → (QGY )H .

is sH -connected. By the tom Dieck splitting ([23, p. 203, Th. 1.3], [26, Th. 7.7]),

(QGY )H �
∏

(K )

QEW (K )+ ∧W (K ) Y K ,

where (K ) varies over the conjugacy classes of subgroups of H and W (K ) denotes the Weyl
group. The factor corresponding to (K ) = (H) gives the inclusion Q(Y H )→ (QGY )H . As
QEW (K )+ ∧W (K ) Y H is rK -connected, it follows the inclusion is (inf K �H rK )-connected.

��
Equivariant stabilization Let V be a finite dimensional G-representation equipped with
invariant inner product. We let D(V ) be its unit disk and S(V ) its unit sphere.

Let X ∈ T (B;G) be an object. The unreduced V -suspension of X over B is the object
SV

B X given by

S(V )× B ∪S(V )×E D(V )× Y.

Note the case of the trivial representation V = R recovers SB X .
If Y ∈ R(B;G) is an object, then a reduced version of the construction is given by

�V
B Y = B ∪D(V )×B SV

B Y.

The fiberwise V -loops of Y ∈ R(B;G) is the object

�V
B E

given by the space of pairs (b, λ) in which b ∈ B and λ : SV → p−1(b) is a based map. The
action of g ∈ G on (b, λ) is given by (gb, gλ).

Then (�V
B ,�

V
B ) is an adjoint functor pair.
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Definition 4.2 For an object Y ∈ R(B;G), define

QG
B Y := colim

V
�V

B�
V
B Y,

where the colimit is indexed over the finite dimensional subrepresentations of a complete
G-universe U .

Proposition 4.3 Assume Y ∈ R(B;G) is fibrant and cofibrant, with connectivity function
r•. Then

Q BY → QG
B Y

is s•-connected, where

sH := inf
K �H

rK .

Proof Let H ⊂ G be a subgroup. Then the H -fixed points of Q BY is Q B H Y H . Consider
the evident map

Q B H Y H → (QG
B Y )H .

Let b ∈ B H be a point. Then the associated map of homotopy fibers at b is identified with

QY H
b → (QGYb)

H ,

where Yb is the fiber of Y H → B H at b. By Proposition 4.1, the map of homotopy fibers is
sH -connected. We conclude Q BY H → (QG

B Y )H is also sH -connected. ��

5 Parametrized G-spectra over a complete universe

Let U be a complete G-universe. A (parametrized) G-spectrum E over B indexed on U is a
collection of objects

EV ∈ R(B;G)
indexed over the finite dimensional subrepresentations V of U together with maps

�V⊥
B EV → EW

for V ⊂ W , where V⊥ is the orthogonal complement of V in W .

Example 5.1 Let X ∈ R(B;G) be an object. The fiberwise equivariant suspension spectrum
of X , denoted �∞,GB X has V -th space

QG
B (�

V
B X).

These give rise to unreduced RO(G)-graded cohomology theories on T (B;G). In order
to get the details of the construction right, it is helpful to know a Quillen model structure
is lurking in the background. For this exposition, it will suffice to explain what the weak
equivalences, fibrant and cofibrant objects are in this model structure. The reference for this
material is the book [24].

One says E is fibrant if each of the adjoint maps EW → �W
B EV⊕W is a weak equiva-

lence of R(B;G) and moreover, each of the maps EW → B is a fibration of R(B;G). Any
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object E can be converted into a fibrant object E f by a natural construction, called fibrant
approximation.

A map E → E ′ is given by compatible maps EV → E ′V . A map is a weak equivalence
if after applying fibrant approximation, it becomes an equivalence at each V . An object E is
cofibrant if it is the retract of an object which is obtained from the zero object by attaching
cells. Any E can be functorially replaced by a cofibrant object within its weak homotopy
type; this is called cofibrant approximation.

Cohomology and homology Let E be as above, and assume it is both fibrant and cofibrant.
Let X ∈ T (B;G) be a cofibrant object. The equivariant cohomology of X with coefficients
in E is the RO(G)-graded theory on T (B;G), denoted

h•G(X; E),
and defined as follows: if α = V −W is a virtual representation, we set

hαG(X; E) := [SW ∧ X+, EV ]R(B;G)
Similarly, the homology of X with coefficients in E , denoted

hG• (X; E),
is defined by

hG
α (X; E) := colim

U
[SV+U , (EW+U ∧B X+)/B]R(∗;G),

where (EW+U ∧B X+)/B is the effect of taking the mapping cone of the section B →
EW+U ∧B X+.

Using fibrant and cofibrant approximation, the above extends in a straightforward way to
the case of all objects X and all E a G-spectrum over B (we omit the details).

Remark 5.2 Here is an alternative approach to the above, based on [13]. A map of G-spaces
f : X → Y induces a pullback functor

f ∗ : R(Y ;G)→ R(X;G)
given by Z �→ Z ×Y X , with evident structure map.

The functor f ∗ has a right adjoint f∗ given by

T �→ secY (X → T ),

where secY (X → T ) has total space

{(y, s)| y ∈ Y, s : X y → Ty}.
Here, X y denotes the fiber of X → Y at y, Ty is the fiber of the composite T → X → Y at
y and s : X y → Ty is a based (unequivariant) map.

The functor f ∗ also admits a left adjoint, denoted f�, which is defined by

T �→ T ∪X Y.

Let Sp(Y ;G) be the category of G-spectra over Y . If we make these constructions level-
wise, we obtain functors

f∗, f� : Sp(X;G)→ Sp(Y ;G).
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Now take f : X → ∗ to be the constant map to a point, and replace these functors by their
derived versions (using the Quillen model structure). Let E be a fibred G-spectrum over B. If
X ∈ T (B;G) is an object with structure morphism pX : X → B, we can take the (derived)
pullback p∗X E , which is a G-spectrum over X . Then the RO(G)-graded homotopy groups of
the G-spectra

f∗ p∗X E and f� p∗X E
yield the above cohomology and homology theories.

6 Poincaré duality

The orientation bundle Let M be a G-manifold and T M its tangent bundle. Let Sτ ∈
R(M;G) defined by taking the fiberwise one point compactification of T M → M (the
section M → Sτ is given by the zero section of T M).

Define S−τ to be the fiberwise functional dual of Sτ . Alternatively, one can define an
unstable version of S−τ as follows: equivariantly embed M in a G-representation V and let
ν denote its normal bundle. Its fiberwise one point compactification Sν then represents S−τ
up to a degree shift by V , i.e.,

S−τ � Sν−V .

We call S−τ the orientation bundle of M .
If E is a fibrant and cofibrant G-spectrum over M , we set

−τE := S−τ ∧M E .
Using the diagonal action, this is a fibred G-spectrum over M , called the twist of E by the
orientation bundle.

Remark 6.1 The reader may object to this construction since we haven’t defined internal
smash products of parametrized G-spectra. An ad hoc way to define −τE is to use the normal
bundle ν. Let νE be the parametrized G-spectrum given by νEW = Sν ∧M EW , where we are
using the fiberwise smash product in R(M;G). Then −τE can be defined as the parametrized
G-spectrum whose W -th space is �V

M
νEW .

Alternatively, the reader is referred to [24, Ch. 13] for the construction of the internal
smash product.

Poincaré duality The following is a special case of [13, Th. 4.9] and also a special case of
[24, Th. 19.6.1].

Theorem 6.2 (Fiberwise Poincaré duality) Let E be a G-spectrum over a closed smooth
G-manifold M. Then there is an isomorphism

hG• (M; −τE) ∼= h•G(M; E).
Remarks 6.3 (1) Here it is essential that E be indexed over a complete G-universe.
(2) Here is how to recover Theorem 6.2 from [13, Th. 4.9]. Take f : M → ∗ to be the con-

stant map to a point. Then, using the notation of Remark 5.2, we have an equivalence
of G-spectra

f�(E ∧M C−1
f ) � f∗E ,
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where C−1
f is the orientation bundle S−τ . Hence,

f�
−τE � f∗E .

Now take the equivariant homotopy groups of both sides and use Remark 5.2 to obtain
Theorem 6.2.

(3) Here is how to recover Theorem 6.2 from [24, Th. 19.6.1]. Using their notation, take
M = E = B and J = −τE . Then one has an equivalence of equivariant fibred G-spectra
over M

J � Sp � (J ∧M PM Sτ ).

After applying homology hG• (M;−) to both sides, the left side becomes, in our notation,
hG• (M; −τE), whereas the right side, after some unraveling of definitions and rewriting,
becomes h•G(M; E).

7 The equivariant complement formula

As in the introduction, let N be a G-manifold and let i : Q ⊂ N be a closed G-submanifold.
Then N − Q → N is an object of T (N ;G). Let

SN (N − Q) ∈ T (N ;G)
denote its fiberwise suspension. This has the equivariant homotopy type of the complement
of Q in N × [0, 1].

Let ν denote the normal bundle of Q in N . We let D(ν) be its unit disk bundle and S(ν)
its unit sphere bundle.

Lemma 7.1 There is an equivariant weak equivalence

D(ν) ∪S(ν) N � SN (N − Q).

Proof Identify D(ν) with a closed equivariant tubular neighborhood of Q. Then we have an
equivariant pushout

S(ν) ��

��

N − int D(ν)

��

D(ν) �� N ,

where int D(ν) is identified with the interior of the tubular neighborhood and the inclusion
N − Q ⊂ N − int D(ν) is an equivariant equivalence.

So we have an equivariant homeomorphism

D(ν) ∪S(ν) N ∼= N ∪N−int D(ν) N

and the right side has the equivariant homotopy type of SN (N − Q), considered as an object
of R(N ;G). ��

The object D(ν)∪S(ν) N is called the fiberwise equivariant Thom space of ν over N . We
denote it by

TN (ν).
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More generally, for ξ a virtual G-bundle over Q, one has a fiberwise equivariant Thom
spectrum TN (ξ) over N .

The virtual G-vector bundle over Q defined by i∗τN − τQ is represented unstably by ν.
Substituting this and taking fiberwise suspension spectra of the right side of Lemma 7.1, we
obtain

Corollary 7.2 (Complement formula) There is an weak equivalence of G-spectra over N

TN (i
∗τN − τQ) � �

∞,G
N SN (N − Q).

Note the left side of Corollary 7.2 depends only on the underlying homotopy class of the
map i : Q → N .

8 The proof of Theorem B and Addendum C

Proof of Theorem B Consider the equivariant intersection problem

N − Q

��

P
f

��

��

N ,

from Sect. 1. Recall E → N is the effect of converting N − Q → N into a fibration.
Consider

e(idP , f ∗E) ∈ H0
G(P; f ∗E(iQ)).

An unraveling of definitions shows f ∗E(iQ) is weak equivalent to the naive fiberwise sus-
pension spectrum of SP f ∗E .

Since the object SP f ∗E is ( f ∗(iQ)! cd•(iQ)− 1)-connected (cf. Lemma 3.7), by Propo-
sition 4.3 the map

Q P SP f ∗E → QG
P SP f ∗E

is s•-connected, where

sH = inf
K �H

f ∗(iQ)! cdK (iQ)− 1.

Using Corollary 2.6, we infer that the evident homomorphism

H0
G(P; E(iQ)) ∼= H0

G(P;�∞P SP f ∗E)→ h0
G(P;�∞,G P SP f ∗E)

from the naive theory to the complete one is injective when

p• < s•.

In this range, it follows the image of e(idP , f ∗E) in h0
G(P;�∞,GP f ∗E) is trivial if and only

if e(idP , f ∗E) was trivial to begin with.
The next step is to identify h•G(P;�∞,GP SP f ∗E). Using Lemma 7.1, there is a weak

equivalence of objects

SN (N − Q) � TN (ν) ∈ R(N ;G)
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where ν is the normal bundle of Q in N . Consequently, there is an isomorphism

h•G(P;�∞,GP SP f ∗E) ∼= h•G(P;�∞,GP f ∗TN (ν)).

By Theorem 6.2 the group on the right is naturally isomorphic to

hG• (P; −τP�
∞,G
P f ∗TN (ν)).

An unraveling of the construction shows the latter coincides with the equivariant homotopy
groups of the equivariant Thom spectrum of the virtual bundle ξ over E( f, iQ) appearing in
the introduction. In particular,

�G
0 (E( f, iQ); ξ) ∼= hG

0 (P; −τP�
∞,G
P f ∗TN (ν)).

With respect to these identifications, we define the equivariant stable homotopy Euler char-
acteristic

χG( f ) ∈ �G
0 (E( f, iQ); ξ)

to be the unique element that corresponds to e(idP , f ∗E). By the above and Theorem A,
χG( f ) fulfills the statement of Theorem B. ��
Proof of Addendum C When N has a boundary and P is closed, the above proof extends
without modification. When P has a boundary, one only needs to replace Poincaré duality
(6.2) in the closed case with a version of Poincaré duality for manifolds with boundary.

To formulate this, let (M, ∂M) is a compact smooth manifold with boundary. Then duality
in this case gives an isomorphism

hG• (M; −τM E) ∼= h•G(M, ∂M; E).
The right side is defined as follows: for α = V −W and E fibrant and cofibrant, define

h•G(M, ∂M; E) := [�W
M (M//∂M), EV ]R(M;G)

where M//∂M is the double

M ∪∂M M ∈ R(M;G)
(the section M → M//∂M is defined using the left summand). ��

9 The proof of Theorems D and E

Proof of Theorem D Recall the factorization (N − Q)→ E → N in which (N − Q)→ E
is an acyclic cofibration and E → N is a fibration of T (N ;G).

By construction we have an isomorphism

H0
G(X;�∞N SN E) ∼= [X+, QN SN E]R(B;G)

and an isomorphism

h0
G(X;�∞,GN SN E) ∼= [X+, QG

N SN E]R(B;G)
for any object X ∈ T (B;G).

With respect to these identifications, the homomorphism H0
G(X;�∞N SN E) → h0

G(X;
�
∞,G
N SN E) arises from the map
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QN SN E → QG
N SN E

by applying homotopy classes [X+,−]R(B;G).
Consider the commutative diagram of abelian groups

[Pi//Pi−1, QN SN E]R(N ;G) j1 ��

�1

��

[P+i , QN SN E]R(N ;G) k1 ��

�2

��

[P+i−1, QN SN E]R(N ;G)
�3

��

[Pi//Pi−1, QG
N SN E]R(N ;G) j2

�� [P+i , QG
N SN E]R(N ;G) k2

�� [P+i−1, QG
N SN E]R(N ;G)

(1)

with exact rows, where the object Pi//Pi−1 is given by Pi ∪Pi−1 N .

Definition 9.1 Let fi : Pi → N be the restriction of f to Pi . Let

ei
G( f ) ∈ [Pi//Pi−1, QN SN E]R(N ;G)

be the class determined by the composite

Pi
fi−−−−→ N

s+−−−−→ �N E

together with the observation that its restriction to Pi−1 has a preferred homotopy over N to
the composite

Pi−1
fi−1−−−−→ N

s−−−−−→ �N E .

By essentially the same argument which proves Theorem A, the map fi is equivariantly
homotopic to a map whose image is disjoint from Q, relative to Pi−1, provided

• ei
G( f ) = 0 and

• pH ≤ 2 f ∗(iQ)! cdH (iQ)− 3 for all (H) ∈ I(G; P).

If this is indeed the case, the equivariant homotopy extension property can be used to obtain
a new G-map f ′, coinciding with f on Pi−1, and satisfying f ′(Pi ) ∩ Q = ∅.

In order to complete the proof of Theorem D we will apply a version of Poincaré duality.
Set H = Hi and P H

s = P H − PH . Then the inclusion of pairs

(G · P H ,G · P H
s )→ (Pi , Pi−1)

is a relative G-homeomorphism. Recall the Weyl group W (H) acts on P H and restricts to
a free action on PH . The following result follows from the existence of equivariant tubular
neighborhoods.

Lemma 9.2 ([5, §IV]) The open W (H)-manifold PH is the interior of a compact free W (H)-
manifold P̄H with corners. Furthermore, the inclusion PH ⊂ P̄H is an equivariant weak
equivalence.

Consider the left square of diagram 1. By Lemma 9.2, and “change of groups” it maps to
the square

[P̄H//∂ P̄H , QN SN E]R(N ;W (H))
j ′1 ��

�′1
��

[(P H )+, QN SN E]R(N ;W (H))

�′2
��

[P̄H//∂ P̄H , QG
N SN E]R(N ;W (H))

j ′2
�� [(P H )+, QG

N SN E]R(N ;W (H)).

(2)
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The proof of Theorem D is completed in two steps.

Step 1 The homomorphism �′1 is an isomorphism, since W (H) acts freely on P̄H//∂ P̄H in
the “based” sense. This can be proved by an induction argument using an equivariant cell
decomposition, together with the observation that the map QN SN E → QG

N SN E is a weak
homotopy equivalence of underlying topological spaces.

Step 2 There is a relative W (H)-homeomorphism

(P̄H , ∂ P̄H ) ∼= (P H , P H
s )

which, together with change of groups, gives an isomorphism

[P̄H//∂ P̄H , QN SN E]R(N ;W (H)) ∼= [Pi//Pi−1, QN SN E]R(N ;G).
We will consider ei

G( f ) to be an element of the left hand side. Then �′1(ei
G( f )) can be

regarded as an element of relative cohomology group

h0
W (H)(P̄H , ∂ P̄H ;�∞,GN SN E).

Define χ i
G( f ) to be its Poincaré dual. Using the equivariant equivalence PH � P̄H , we can

regard χ i
G( f ) as living in the homology group

hW (H)
0 (PH ; −τPH(�

∞,G
PH

SPH f ∗H E)).

As in the proof of Theorem B this homology group is isomorphic to the equivariant bordism
group

�
W (H)
0 (E( fH , iQ); H ξ).

��
Proof of Theorem E The proof uses diagrams (1) and (2). The homomorphism (tH )∗ is iden-
tified with the Poincaré dual of the homomorphism j ′2 of diagram (2). Therefore (tH )∗ is
injective if and only if j ′2 is. Let

� : H0
G(P;�∞N SN E)→ h0

G(P;�∞,GN SN E)

be the canonical homomorphism. Recall χG( f ) is the Poincaré dual of �(eG( f )).
The class j ′1(ei

G( f )) is the one associated with the composition

(P H )+ ⊂ P+ f−−−−→ N
s−−−−→ SN E,

i.e., the restriction of eG( f ) to P H . By hypothesis, χG( f ) is trivial, so �′2 j ′1(ei
G( f )) must

also be trivial since the latter is the restriction to P H of the trivial class �(eG( f )).
Hence

j ′2�′1(ei
G( f )) = �′2 j ′1(ei

G( f )) = 0.

Furthermore, since j ′2 is identified with (tH )∗, and the latter is by hypothesis injective, the
vanishing of j ′2�′1(ei

G( f )) implies �′1(ei
G( f )) = 0. Hence, χ i

G( f ) vanishes too, as it is the
Poincaré dual of �′1(ei

G( f )). The result is now concluded by induction on i and Theorem D.
��
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10 The Proof of Theorem H

Given a closed smooth G-manifold M , we have a commutative square of equivariant mapping
spaces

end�(M)G
⊂

��

��

end(M)G

��

map(M,M × M −�)G �� map(M,M × M)G

(3)

where

• � := �M ⊂ M × M is the diagonal,
• M × M is given the diagonal G-action,
• end(M)G is the space of equivariant self maps of M ,
• end�(M)G is the subspace of fixed point free equivariant self maps, and
• the vertical maps of the square are given by taking graphs and the horizontal ones are

inclusions.

Lemma 10.1 The square (3) is∞-cartesian, i.e., it is a homotopy pullback.

Proof The following idea is used in the proof. Suppose X → Y is a map of fibrations over
B. Let Xb be the fiber of X → B at b ∈ B and similarly let Yb be the fiber of Y → B. Then
the diagram

Xb ��

��

Yb

��

X �� Y

is∞-cartesian.
We claim the first factor projection map

M × M −�→ M (4)

is a fibration of T (G). For, let H ⊂ G be a subgroup. Taking the induced map of fixed point
spaces yields the projection map

M H × M H −�M H → M H . (5)

Since M H is a manifold, the map (5) is a Serre fibration of spaces. It follows that the map
(4) is a fibration of T (G).

Applying the functor map(M,−)G to the projection map, we infer

map(M,M × M −�)G → map(M,M)G

is a fibration whose fiber at the identity map of M is map�(M)G .
Similarly, the first factor projection M × M → M is an equivariant fibration, so the

induced map

map(M,M × M)G → map(M,M)G

is a fibration whose fiber at the identity is map(M,M)G .
It now follows easily from the first paragraph of the proof that the square (3) is∞-cartesian.

��
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From Lemma 10.1, the obstruction to deforming an equivariant self map

f : M → M

to a fixed point free map coincides with equivariantly deforming its graph� f : M → M×M
off of the diagonal.

Consequently, we are reduced to the equivariant intersection problem

M × M −�

��

M
� f

��

��

M × M.

We will prove Theorem H using Corollary F. We will need to compute the codimension
function the diagonal.

Lemma 10.2 Let i� : � ⊂ M × M be the inclusion. For (H) ∈ I(M;G), we have

cdH (i�) = m H .

Proof If x ∈ � = M is a point then the codimension of the diagonal inclusion M H
(x) ⊂

M H
(x) × M H

(x) is clearly m H (x). ��
By Lemma 10.2, the inequality of Corollary F amounts to the condition

m H ≤ 2(� f )
∗(i�)!m H − 3.

By a straightforward argument which we omit, (� f )
∗(i�)!m H coincides with m H , so the

inequality becomes

m H ≥ 3

for (H) ∈ I(M;G).
We now turn to the problem of deciding when the homomorphisms (tH )∗ are injective.

What is special about the fixed point case is that the virtual W (H)-bundle H ξ , which sits
over the space

M H ×M L f M,

is represented by an actual vector bundle. This vector bundle is just the pullback of the nor-
mal bundle of the embedding M H ⊂ M along the (projection) map M H ×M L f M → M H .
Henceforth, we identify Hξ with this vector bundle.

Therefore (tH )∗ is identified with the homomorphism of equivariant framed bordism
groups

�
W (H)
0 (MH ×M L f M; H ξ)→ �

W (H)
0 (M H ×M L f M; Hξ) (6)

induced by the inclusion

tH : MH ×M L f M → M H ×M L f M,

where both ξH and ξ H are W (H)-vector bundles and the pullback t∗H ξ H is isomorphic
to ξH .
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Hence, (tH )∗ arises by taking the W (H)-fixed spectra of the map of equivariant suspension
spectra

�∞W (H)(MH ×M L f M)H ξ → �∞W (H)(M
H ×M L f M)

Hξ (7)

and then applying π0.
The inclusion MH ⊂ M H is 1-connected, since by hypothesis M H

s := M H −MH has co-
dimension at least two in M H . Consequently, the inclusion MH ×M L f M → M H ×M L f M
is also 1-connected. Furthermore, MH ×M L f M is W (H)-free.

If we apply the tom Dieck splitting to the W (H)-fixed points of the map (7), we obtain
maps of summands of the form

�∞((MH ×M L f M)H ξ )K
hW ′(K ) → �∞((M H ×M L f M)

Hξ )K
hW ′(K ), (8)

where (K ) ranges through the conjugacy classes of subgroups of W (H), W ′(K ) denotes
the Weyl group of K in W (H) and the subscript “hW ′(K )” is an abbreviation for the Borel
construction (in the notation above, we are first Thomifying, then taking fixed points and
thereafter taking the Borel construction).

If K is not the trivial group, then the freeness of the action implies the domain of (8) is
contractible, and therefore this map induces an injection on π0. If K is trivial, then the map
takes the form

�∞(MH ×M L f M)H ξ

hW (H) → �∞(M H ×M L f M)
Hξ

hW (H)

which is evidentally 1-connected. Assembling these injections, one sees the homomorphism
(6) is also injective. Therefore, the homomorphism (tH )∗ appearing in the statement of Cor-
ollary F is injective for every (H) ∈ I(M;G).

The Proof of Theorem H is now completed by applying Corollary F.

11 The Proof of Theorems I and J

Let f : M → M be a self map of a closed smooth manifold M . The Fuller map of f is the
Zn-equivariant self map of M×n given by

(x1, . . . , xn) �→ ( f (xn), f (x1), f (x2), . . . , f (xn−1))

(compare Fuller [9]). Here n ≥ 2 and Zn acts by cyclic permutation of factors. The assignment
x �→ (x, f (x), . . . , f n−1(x)) defines a Zn-equivariant bijective correspondence between the
n-periodic point set of f and the fixed point set of�n( f ). In particular, f is n-periodic point
free if and only if �n( f ) is fixed point free. We wish to know whether this statement is true
up to homotopy.

Let end(M) be the space of self maps of M , and end(M×n)Zn the space of Zn-equivariant
self maps of M×n . The Fuller transform

�n : end(M)→ end(M×n)Zn

is defined by f �→ �n( f ).
Let

end�n(M) ⊂ end(M)

be the subspace of self maps having no n-periodic points. Let
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end�(M×n)Z
n ⊂ end(M×n)Zn

be the subspace of equivariant self maps of M×n which are fixed point free.
Then there is a commutative diagram of spaces

end�n (M) ��

��

end(M)

��

end�(M×n)Zn �� end(M×n)Zn

(9)

where the vertical maps are given by the Fuller transform and the horizontal ones are inclu-
sions. The square is cartesian, i.e., it is a pullback. We wish to understand the extent to which
it is a homotopy pullback.

Question Is the above square 0-cartesian?

That is, is the map from end�n (M) to the corresponding homotopy pullback a surjection
on components? If yes, it would reduce the problem of studying the n-periodic points of f
to the Zn-equivariant fixed point theory of �n( f ). At the time of writing we do not know
this to be the case. Nevertheless, we can still use the diagram to get an invariant of self maps
which is trivial when the self map is homotopic to an n-periodic point free one.

Definition 11.1 Set

�n( f ) := �Zn (�n( f )).

By a straightforward calculation we omit, �n( f ) lives in the group

�
Zn ,fr
0 (hoPn( f ))

appearing in the statement of Theorem I. It is clear that �n( f ) vanishes when f is homotopic
to an n-periodic point free map. If we apply Theorem H to �n( f ) we obtain

Corollary 11.2 Assume dim M ≥ 3 and �n( f ) = 0. Then�n( f ) is equivariantly homotopic
to a fixed point free map.

As mentioned in Sect. 1, a result of Jezierski [16] asserts f is homotopic to an n-periodic
point free map if dim M ≥ 3 and the Nielsen numbers N ( f k) vanish for each k a divisor of
n. Conjecturally, the invariant �n( f ) contains at least as much information as these Nielsen
numbers (additional evidence for this is provided below in Theorem J). If one assumes this
to be the case, then Jezierski’s theorem tends to suggest that the square (9) is 0-cartesian.
However, we do not see any homotopy theoretic reason why that should be true.

Proof of Theorem J The tom Dieck splitting yields a decomposition of�Zn ,fr
0 (hoPn( f )) into

summands of the form

�fr
0 (EZk ×Zk hoPk( f ))

for k a divisor of n, where we are using the fact hoPn( f )Zk = hoPk( f ).
Since the zeroth framed bordism of a space is the free abelian group on its path compo-

nents, it will suffice to show π0(EZk ×Zk hoPk( f )) is isomorphic to πρ,k . We first compute
the set of components of hoPk( f ).
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Recall from Sect. 1 that a point of hoPk( f ) is given by a k-tuple of paths

(λ1, . . . , λk)

subject to the constraint f (λi+1(0)) = λi (1) where i is taken modulo k. Two points
(λ1, . . . , λk) and (γ1, . . . , γk) are in the same component if and only if there are paths
αi having initial point λi (0) and terminal point γi (0) such that the concatenated paths

f (αi ) ∗ λi+1 and γi+1 ∗ αi+1

are homotopic relative to their endpoints, for i = 1, 2, . . . , k.
Since M is connected, each component of hoPk( f ) has a point of the form (λ1, λ2, . . . , λk)

satisfying λi (0) = ∗ and λi (1) = f (∗). Let π f denote the set of homotopy classes of paths
in M joining the basepoint ∗ to the point f (∗). A choice of element [α] of π f determines
an isomorphism with π . Using this isomorphism the set of path components of hoPk( f ) is
a quotient of the k-fold cartesian product

π × · · · × π
with respect to the equivalence relation

(x1, x2, . . . , xk) ∼ (g1x1ρ(g2)
−1, g2x2ρ(g3)

−1, . . . , gk xkρ(g1)
−1)

for xi , gi ∈ π . Using this relation, the k-tuple (x1, . . . xk) is equivalent to the k-tuple

(y, 1, . . . 1)

where y = x1ρ(x2)ρ
2(x3) · · · ρk−1(xk). Furthermore, any two elements of the form

(y, 1, . . . , 1) and (z, 1, . . . , 1) are related precisely when z = gyρk(g)−1 for some ele-
ment g ∈ π . Summarizing thus far, we have shown π0(hoPk( f )) is the quotient of π with
respect to the equivalence relation

y ∼ gyρk(g)−1

for g, y ∈ π .
To complete the proof of Theorem J, one notes the set of path components of the Borel

construction coincides with the coinvariants of Zk acting on π0(hoPk( f )). With respect to
the k-tuple description of π0(hoPk( f )), the action is induced by cyclic permutation of fac-
tors: (x1, x2, . . . , xk) �→ (xk, x1, . . . , xk−1). If we identify this element with (y, 1, . . . , 1)
with y as above, then the result of acting by a generator of the cyclic group results in an
element equivalent to (ρ(y), 1, . . . , 1). Consequently, π0(EZk ×Zk hoPk( f )) is obtained
from π0(hoPk( f )) by imposing the additional relation y ∼ ρ(y). Hence, the set of path
components of the Borel construction is isomorphic to πρ,k . ��
Conjecture 11.3 Let Nk( f ) be the number of non-zero terms in �k

n( f ) expressed as a linear
combination of the basis elements of Z[πρ,k]. Then Nk( f ) equals the Nielsen number of f k .
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