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BERNOULLI NUMBERS, HOMOTOPY GROUPS,
AND A THEOREM OF ROHLIN

By JOHN W. MILNOR AND MICHEL A. KERVAIRE

A homomorphism J: m_;(S0,,) = 7y1(S™) from the homotopy
groups of rotation groups to the homotopy groups of spheres has been
defined by H. Hopf and G. W. Whitehead1%l. This homomorphism plays
an important role in the study of differentiable manifolds. We will study
its relation to one particular problem: the question of possible Pontrjagin
numbers of an ‘almost parallelizable’ manifold.

Definition. A connected differentiable manifold M* with base poing
z, is almost parallelizable if M* —z, is parallelizable. If M* is imbedded
in a high-dimensional Euclidean space R™* (m > k+1) then this s
equivalent to the condition that the normal bundle v, restricted to
Mk —g,, be trivial (compare the argument given by Whitehead™”, or
Kervaire (19, §8)).

The following theorem was proved by Rohlin in 1952 (see Rohlin!%.12],
Kervaire!®),

Theorem (Rohlin). Let M* be a compact oriented differentiable 4-mani-
fold with Stiefel-Whitney class w, equal to zero. Then the Pontrjagin
number p,[M*] is divisible by 48.

Rohlin’s proof may be sketched as follows. It may be assumed that
M+4is a connected manifold imbedded in R™+¢, m > 5.

Step 1. It is shown that M* is almost parallelizable.

Let f be a cross-section of the normal SO, -bundle » restricted to
M4 —z,. The obstruction to extending f is an element

D(V’ f) € H4(M4; 7T:S(S()m)) & 7T:S(S()m)'

Step 2. It is shown that Jo(v, f) = 0.

Since J carries the infinite cyclic group 74(S0O,,) onto the cyclic group
Tms5(S™) of order 24, this implies that o(v, f) is divisible by 24. Now
identify the group 74(SO,,) with the integers.

Step 3. It is shown that the Pontrjagin class p,(v) is equal to + 20(v, f).

Since by Whitney duality p,(v) = —p, (tangent bundle), it follows
that p,[ 4] is divisible by 48.

The first step in this argument does not generalize to higher dimen-
sions. However Step 2, the assertion that Jo(v,f) = 0, generalizes
immediately. In fact we have:
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Lemma 1. Let o € m,_y(SO,,); then Joo = 0 if and only if there exists
an almost parallelizable manifold M* — R™+k and a cross-section f of the
induced normal SO, -bundle v over M* —x, such that o = o(v, f).

Step 3 can be replaced by the following. Identify the group m,,_;(SO,,),
m > 4n, with the integers (compare Bott®). Define a, to be equal to 2
for n odd and 1 for » even. 3

Lemma 2. Let £ be a stable SO,,-bundle dveria complexr K (dim K < m),
and let f be a cross-section of & restricted to the skeleton K4n=Y, Then the
obstruction class o(§, f) € H*(K; my, ,(S0,,)) @8 related to the Ponirjagin
class p,(£) by the identity p,(£) = +a,.(2n—=1)1o(, f).

Co;iibining,Lemma,s 1 and 2, we obta,ix}‘the following theorems.

Define’j, as the order of the finite cyelic group J7,, (SO,,) in the
gtable range m > 4n. o,

Theorem 1. The Pontrjagin number p,[M*"] of an almost parallelizable

-~ 4n-manifold vs divisible by j, a,(2n—1)!,

(For n = 1, this gives Rohlin’s assertion, since j, = 24, a, = 2.)

Proof. This follows since o(v, f) must be divisible by j,,.

Conversely:

Theorem 2. There exists an almost parallelizable manifold M§"* with

4n — o 1\t
The proof is clear. PolM5"] =Gt - Gm =11

Proof of Lemma 1. Given an imbedding 7: V*¥-1 - Rm+k-10f 3 compact
differentiable manifold ¥*- into Euclidean space, and given a cross-
section f of the normal SO,,-bundle over V%1, a well-known procedure
due to Thom associates with ¢ and f a sphere mapping ¢: Smtk-1 . §m
(compare Kervaire', p. 223).

The map ¢ is homotopic to zero if and only if there exists a bounded
manifold @* with boundary V*-1 imbedded in R™+* on one side of
Rm+k-1 guch that:

(i) the restriction to V*-1 of the imbedding of @ is the given im-
bedding of V*-1in Rm+k-1;

(ii) @* meets Rm+*-1 orthogonally so that the restriction to V*-1 of
the normal bundle of @ is just the normal bundle of V¥-1in Rm+k-1; and

(iii) the cross-section f can be extended throughout @* as a cross-
section f of the normal SO,,-bundle.

These facts follow from Thom 18], ch. I, § 2 and Lemmas IV, 5, IV.5'.

To obtain Lemma 1 above, take V%1 = §%-1 and take ¢(S8*1) to be
the unit sphere in R¥ = Rm+k-1_ Since the normal m-plane at each point
of i(§%-1) in Rm+k—1 admits a natural basis (consisting of the radius vector
followed by the vectors of a basis for Rm+k-1/Rk), the cross-section f
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provides a mapping a: S¥-1 - SO,,. Let a € m;,_1(SO,,) be its homotopy
clags. It is easily seen (compare Kervaire!”, §1.8) tha,t:, the map
¢: Sm+k-1 —» §m agsociated with ¢ and f represents Ja up to sign.

IfJa=0 then there exists a bounded manifold Q% < Rm+k satisfying
conditions (i), (ii) and (iii). Let M* < R™+k denote the unbounded
manifold obtained from @* by adjoining a k-dimensional hemisphere,
which lies on the other side of Rm+%-1 and has the same boundary 4(S%-1),
Since the normal bundle v restricted to @* has a cross-section f’, it
follows that M* is almost parallelizable. Clearly the obstruction class
o(v, ') is equal to c. -

Conversely, let M* be a manifold imbedded in Rm+k and let f be a
cross-section of the normal bundle v restricted to M* — xy. After modifying
this imbedding by a diffeomorphism of R™+* we may assume that some
neighborhood of z, in M* is a hemisphere lying on one sld:e of the hmer-
plane Rm+%-1, and that the rest of M* lies on the other side. J,.%en.aowxfg
this neighborhood we obtain a bounded manifold @* = R™+* just ag
above, having the unit sphere S*¥-1 < R¥ = R™+%-1 as boundary. The
cross-section [ restricted to S*-1 gives rise to a map a: §¥' - SO,
which represents the homotopy class o(», f). The argument above shows
that Jo(v, f) = 0; which completes the proof of Lemma 1. .

Remark. Lemma 1 could also be proved using the interpretation of J
given in Milnor®, \

Proof of Lemma 2. (Compare Kervaire!®.) The S(.)m:bundle £ mduc.es
a U, -bundle £ and hence a U,,/U,,_;-bundle £". Similarly, the pa,.r1?1a.1
cross-section f induces partial cross-sections f’ and f”. By definition
the obstruction class o(£”, f”) is equal to the Chern class c,,(') and hence
to the Pontrjagin class + p,(£). Therefore p,(£) equals + g, hyo(£,f), where

h: Mg 1(SOp) > Mgy 4(Uy) and ¢ Tgn—1(Unm) = Tan—1(Upn/Uzn1)
are the natural homomorphisms and h,, g, are the homom?rphjsms in
the cohomology of K induced by the coefficient homomorphisms h,q.

Using the following computations of Bott!:

7r4n—1(Um) & Z! 7Ttm—l(Umls(-)m) & Zan’ 7r4n—2(som) = O’
it follows that % carries a generator into a,, times a generator. Similarly,
using the fact that
Tan-2(Ugn-1) % Zign-p: (see ¥) and Tin-2(Un) = 0,

it follows that g carries a generator into (2n—1)! times a generatoré
Therefore p,(£) = +a,(2n—1)!0(§, f). This completes the proof o
Lemma 2.

|
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Hirzebruch’s index theorem!® states that the index I(M in) of any
4n-manifold is equal to

221(22n-1—1) B, p,[ M*"]/(2n)! + (terms involving lower
Pontrjagin classes).

Here B, denotes the nth Bernoulli numbéf( iFor an almost parallelizable
manifold the lower Pontrjagin classes are zerh. Therefore
Corollary. The index I(M§") is equal to 28n—1(22n-1 _ 1)B,j,a,/n; and

the index of any almost parallelizable 4n-manifold is a multiple of this
number. .
.« The fact that [ (M) is an integer can be used to estimate the number
Jn (compare Milnor'®)), However, a sharper estimate, which includes
the prime 2, can be obtained as follows, uling a new generalization of
Rohlin’s theorem.

Borel and Hirzebruch (1Y, §§23.1 and-25.4) define a rational number
Ay =—B, Pa[M*%](2(2n)! + (terms involving p,, ..., p,_,);

and prove that the denominator of A[ M) is a power of 2.

Theorem 3. If the Stiefel-Whitney class w, of M*" is zero then AT M "] 48
actually an integer.t

The proof will be given in a subsequent paper by Borel and Hirze-
bruch. It is based on the methods of M, together with the assertion that
the Todd genus of a generalized almost complex manifold is an integer
(Milnor(o1),

Applying this theorem to the manifold M3* of Theorem 2 it follows
that B, j,a,/4n is an integer. Therefore:

Theorem 4. The order j, of the stable group Iy, 1(SO,,) s a multiple
of the denominator of the rational number B, a,[4n.

As examples, for n = 1,2, 3, the number B, a,/4n is equal to 1/12,
1/240, and 1/252 respectively. Since 7,,,,(S™) is cyclic of order 240, it
follows that j, = 240. Since 7,,,,,(8™) is cyclic of order 504, it follows

that j, is either 252 or 504. It may be conjectured that Jn i8 always equal
to the denominator of B, /4n.

The theorems of von Staudt%14 can be used to compute such
denominators (compare Milnor!®),

Lemma 3. The denominator of B,|2n can be described as follows.
4 prime power p** divides this denominator if and only if

2n =0 modpi(p~-1).

T See note at the end of the paper.
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Combining Lemma 3 with Theorem 4, we see that the stable homotopy
groups of spheres contain elements of arbitrary finite order. In fact:

Corollary. If 2n is a multiple of the Euler @ function ®(r), then the stable
group 7rm+4n'_1(Sm) contains an element of order r.
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[Added in proof.] For the case n odd, Hirzebruch has since sha.rpent?d
Theorem 3, showing that A[JVI"'] is an even integer. Thus the factor g, In
Theorem 4 can be cancelled.
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ON THE FOURTEENTH PROBLEM OF HILBERT

By MASAYOSHI NAGATA

The purpose of the present paper is toshow that the answer to the
14th problem of Hilbert is negative, evfer_}‘ in the following restricted
case, which may be called the original 14thiproblem of Hilbert:

Let & be a subgroup of the full linear group of the polynomial ring
in indeterminates ;, ..., z, over a field k, and Jet o be the set of elements
of k[:f‘l, 300 %] which are invariant under @. Is o finitely generated ?

° " Our construction of a counter- -example Iglndependent of the character-
istic of k, and £ can be the field of comR.l‘ezg‘immbers

, 1. The construction of a counter-example

Let {a;} (:=1,2,3; j=1,2,...,16) be algebraically independent
elements over the prime field 7 of arbitrary characteristic, and let & be
a field containing the a;;. Let V be the vector space of dimension 16
over k and let V* be the set of vectors in ¥ which are orthogonal to the
veetors (@, Gy, ..., ) (¢ =1,2,3). (V* is a subspace of dimen-
sion 13.)

Let @, ..., @4, £y,...,t;4 be algebraically independent elements over
k and let @ be the set of linear transformations ¢ such that (i) o(f,) = ¢;
for any ¢ and (i) o(z;) = ;+b;¢; with (b, ..., b;) € V*. Then:

The set o of elements of k[z, ... t1g] which are invariant
under G i8 not finitely generated.

y&1gy b1y eeey

2. A lemma on plane curves

In order to prove the example, we need the following lemma on plane
curves:

Fundamental lemma. Let P,, ..., P,q be independent generic points of the
projective plane S over the prime field w. For any curve C of degree d, the
sum of the multiplicities of P, on C is less than 4d.

Proof. Assume that there exists a curve O of degree d such that
Im; > 4d, where m,; is the multiplicity of P, on C. Since the P, are
independent generic points, the P, can be specialized to any permutation
of the P, and therefore we see that there exists a curve of degree d’ such
that the multiplicity of the P, is equal to m for every 7 and d’ < 4m
Therefore it is sufficient to prove the following lemma (which is equi-
valent to the fundamental lemma):
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