CHAPTER 11

A HISTORY OF TOPOLOGICAL KNOT THEORY

Pieter van de Griend

The subject is a very much more

difficult and intricate one than al

first sight one is inclined to think.
Peter Guthrie Tait, 1876.

1. Introduction

In this Chapter, knot theory will be used as a generic term to signify what
mathematicians often distinguish into two separate theories, the one concerned
with n-links and the other dealing with braids. To a mathematician a knot is
a single closed curve that meanders smoothly through Euclidean three-space
without intersecting itself. An n-link is composed of n of such components,
which may link and intertangle but not intersect each other. This affords a
simple and intuitive picture, capturing the most essential aspects of a real-life
knotted structure. The mathematical concept of a braid will be treated in a
later section. .

Any account of the history of mathematical knof theory inevitably will be
fragmented over many aspects of the fields across which the subject stretches.
Combinatorics, topology and group theory are but a few of these fields. In
this exposition | have chosen to give a broad outline which touches upon the
main conceptnal developments as seen in an historic perspective, in which the
more formal theoretical developments feature in the background. Knot theory
has now become a subject in its own right, which has grown by leaps and
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bounds {sometimes in quite unexpected directions) along a mgltidi_scipl?nary
front. This causes it to have a sparkling history, involving a wide diversity of
ideas, methods and applications, and linked with the names of many famous

mathematicians and scientists.
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Fig. 1. A Chronology of Topological Knot Theory

“From primitive man to present-day scientist, rudimentary %mot theory can
be traced from the construction of knots and braids for decorative purposes to,
what once was held to be, a rather esoteric and deceptively tra_nqgl] bragch of
pure mathematics. However that is a misleading image. From its inception as
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a proper mathematical discipline, in the second half of the 19th century, knot
theory has been associated with many projects on the frontiers of fundamental
sclentific research. Although much of knot theory is mathematically abstruse,
it has found important application in fields as diverse as atomic modelling,
quantum physics, theoretical psychology [82] and molecular biology [95].

The table of (Fig. 1) gives an approximate chronology of the chief dis-
coverers and developers of Knot Theory. The column to the far left indicates
the time scale, in years. The second column gives some of the great names in
topology. The split column to the right is used to indicate the historic placings
of the greatest names in Knot Theory, and also to symbolise its dual nature:
the left branch covers mathematical knot theory, whilst the right branch caters
for the mathematical theory of braids.

2. The Very Early Days

Throughout history many different interpretations of the phenomenom knot
have been proposed. In this section we shall consider knots to be those struc-
tures which can be realized in a knottable medium, such as a length of rope.
In order to show how modelling of the simple act of tying a knot progressively
translates into amazingly complex mathematical machinery, we shall first be
concerned with guestions about the ewareness of mathematical problems as-
sociated with knots. In this context prehistory is defined to be the interval of
time before the recording of data or information in formalized mathematical
ways began to take place.

" Although knot theory exists nowadays as 2 highly specialized and concrete
set of mathematical ideas, its origins are not easily traced. Yet somewhere in
a far and distant past, inklings of those ideas must have been born. Usnfor-
tunately, in a mathematical perspective, the theory’s tremendously dispersed
history prevents them from being localized with certainty. One may be in-
clined to believe that there was no theorizing about knots in the very early
days of Mankind. Surely there was none in any of the stringent ways we now
use to model the phenomenon knot. Nevertheless, by making certain assump-
tions, plausibility for which is provided by results from anthropological and
psychological studies concerning knots [26], [82], one is able to make state-
ments about the roots of the theory. Hence some tracking of the subject’s
gradual evolution is feasible.

The discovery and use of knots would seem to predate those of fire and
the wheel by countless aeons. Knots were used long before the practice of
mathematization began to influence the thoughts and actions of Mankind. To
primitive Man even the simplest of knots would pose vexing and crucial prob-
lems. Yet, it is doubtful whether he would analyze them in any degree other
than what was required to employ them as practical tools in his struggle for
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survival. In order to comprehend their workings, his mind would model knot-
ted structures by translating their relevant spatial, topological and mechanical
properties into some kind of logical framework of the mind. We could suitably
describe the result, achieved through the cognitive processes of transferring the
most obvious properties of knots into a mental model, as intuitive knot theory.
The most important aspects of intuitive knot theory, being structure and its
transformation properties, also constitute the main ingredients of contempo-
rary knot theory. How knots and their workings manifest themselves in the
real world was of absolute importance to primitive Man. In many instances
his life would literally depend on that kind of vital knowledge. Often certain
symmetries determine a knot's ability to operate either in a desired manner or
utterly to fail. A point in case is provided by the pair consisting of the Reef
Knot and Thief Knot {Fig. 2) which are shown below and whose respective
behaviour depends on subtle symmetry properties.

Reef Knot Thief Knot

Fig. 2. A Reef Knot and a Thief Knot

To primitive Man, the often incomprehensible and erratic workings of
knots were attributable to Divine intervention. The mysterlous workings of
these topological machines led him to endow them with supernatural powers,
placing them into regions of superstition and metaphysics. Such attitudes can
still be observed today, with magic knots being found on amulets worn to
protect, or bring Iuck to, the bearer. For similar reasons, knots occasionally
were put to decorative uses, in ceremonies for the worshipping of divinities.
They were also used for more mundane pastimes, sich as in the finger games
of cat’s cradles, examples of which are to be found in many cultures. The
mathematical prehistory terminates at different times in different places. As
a rule, this may be said to cccur as soon as artefacts, or remnants thereof, for
the various cultures come forth.

Knots have been used to represent numbers in different ways. One such
numerical application of knots is found in the quipus employed by the Peruvian
TIncas, a people who used sets of knotted strings for administrafive purposes
during the better part of a thousand years [11}, [53]. The knots themselves
functioned only as symbolic and mnemonic devices; but their arrangements
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on various lengths of string, connected in ordered, meaningful ways, would
encourage deeper mathematical thought. The Incas were aware th;.t their
quipu knots (Fig. 3) could not transform themselves (without Divine interven-
tion!); and they were so tied and arranged that cheats could not tamper with
them, without considerable difficulty. Thus their bookkeeping was assured of
consistency and safety.

In F)rder to employ knots In such a fashion, further demands by their
accounting systems would relate to problems of structure recognition. The
knot-properties they exploited thus concerned structural stability and mutual
structural distinctness. Luckily the favoured Overhand Knots possess quite
reliable character in both respects.
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Fig. 3. Quipu Knots

To use knots for decorative purposes, it would be natural to draw pic-
tureg of them. This would be an initial step away from intuitive knot theory
as pictures are a first stage of abstraction. Furthermore, drawings entail :;.
process of geometrization, which brings things down to two dimensions. It
must be emphasized that this process is not a deliberate attempt to resolve
con_ceptua.l problems about kunots, but arises as a side effect of their appli-
cation to art. There have been many so-called primitive people that drew
fascinatingly complex curves which can be readily recognized as projections of
knots. For example, the Bushoong and Tshokwe people in the Zaire-Anzola-
Zambi_a region in southwest Africa traced, and their descendants still do trace,
complicated and regular figures in the sand. Their unoriented curves, lacking
crqssings with any distinct parity, are not in any sense knotted and are more
akin to graphs. Although their activities have an underlying mathematical
base, they seem to be unaware of it [11, p. 34-37].

Bvidence of mathematical ideas which tend towards a more Occidental
u_nderstanding of scientific study concerning knots' planar geometric proper-
ties, is discernible in the work of Celtic scribes, work carried out a thousand
years ago.

. The Celts produced diagrams of knots in which, when following a fixed
direction along the curve, the line makes a succession of over-passes and under-
passes which alternate regularly throughout the whole curve. We now call the
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special type of knots which project into such a picture sliernating knots.

The Celts made extensive use of such pictures (Fig. 4), for decorative and
presumably religious purposes. We surmize that their features had to sym-
bolize a number of things. The line would represent time, or possibly life. In
the case of a closed curve, the knot’s periedicity might relate to the regularity
of seasonal changes, with the alternating aspect symbolizing night and day.
They seem to have been aware of the non-trivial fact that an alternating knot
could be made to correspond with any simple closed planar curve. Their de-
sire to draw such knots posed geometrical problems. This contributed to the
process of mathematization of their worldviews, because they had to discover
how to geometrically create the truly knotted curves and zodmorphics which
they employed to adorn surfaces {12], [24].

Fig. 4. Celtic Knotwork

In a sense the foregoing examples of diagrammatic representations of knots
and their uses are like an overture. They witness of relatively primitive math-
ematical thought, and were described in order to illustrate the transition from
intuitive koot theory, lacking any apparant formalism, to a vestigial form of
the subject. The introduction of a kind of planar geometry was doubtless
not directly an attempt to understand knots. The geometry of the Celts is
of an essentially different kind from Euclidean, but nevertheless it involves
elusive properties like transformation and symmetry. The awareness of such
problems posed refined demands, requiring the development of new ideas in
mathematics.

3. The Birth of Knot Theory

The subject’s next steps were related to spirals and closed intertwined curves,
and were mainly a German affair. As far back as 1679 Leibniz, in his Char-
acteristica Geometrica, tried to formulate basic (geometric) properties of ge-
ometrical figures by using special symbols to represent them, and to combine
these properties under operations so as to produce other properties. He called
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his study Analysis Situs or Geometria Situs, and it comes closest to what we
now would call Combinatorial Topology [57], the discipline in which geometri-
cal figures are considered as aggregates of smaller building blocks. Leibniz did
not go so far as to study knots; but his endeavours at finding a geometry of
this kind, different from the only one known at the time, predated other work
in this direction by more than half a century.

Although thinkers like Leibnitz recognized the need for different geome-
tries, it was not until 1771 that the birth of knot theory cccurred. In that vear
Alexandre Theophile Vandermonde (1735-1796) wrote a paper [90] (see also
[30]), in which he specifically places knots into the arena of the geometry of
position. In the opening paragraphs, Vandermonde includes the lines:

Whaiever the twists and turns of a system of threads in space, one
can always obtain an expression for the calculation of its dimen-
stons, but this expression will be of little use in practice. The crafts-
man who foshions a braid, a net, or some knots will be concerned,
not with questions of measurement, but with those of position: what
he sees there is the manner in which the threads are interlaced,

The possibility for a mathematical study of knots was probably first rec-
ognized by the truly great mathematician and physicist, Carl Friedrich Gauss
(1777-1855), of Gottingen, Germany. One of the oldest notes found amongst
his papers after his death was on a sheet of paper dated 1794, which bore
the caption A Collection of Knots. It contains thirteen sketches of knots with
English names written beside them. It is probably an excerpt he copied from
an English book. With it are two additional pieces of paper with a few more
sketches of knots. One is dated 1819, the other some eight years later |31].
Notes of (Gauss referring to the knotting together of closed curves appear in
his collected works [38]. During the period of 1823-1827 he was working on
Geomelria Situs about which he later wrote, on 22 January 1833:

Fine Houptoufgabe aus dem Grenzgebiet der Geometria Situs und
der Geometria Magnitudinis wird die sein, die Umschlingungen
zweter geschlossener oder unendlicher Linien zu zdhlen.

His work on electromagnetism had led him to compute inductance in a system
of two linked circular wires; and he introdnced the concept of winding numbers
{or linking numbers), which are now a basic tool in knot theory and other

*[01‘1e of the main tasks in the borderland between Geometria Situs and Geometria Magni-
tudinus will be to count the ‘windings around’ of two closed or infinite lines.)
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branches of topology. One result, which he gave without proof (after the
quotation just given) is the following integral:

(z' — z){dydz’ — dzdy') + (v — y){dzdx’ — dzda') + (2’ — z){dzdy’ — dydz’) — dmar
J (@ o+~ 9P+ (7 )

where m is the number of ‘windings around’ ( Umschlingungen), and the inte-
gral extends over both curves.

Another note of special interest, recorded in December 1844, gave nurmer-
ous forms which closed curves with four knets can exhibit.

These mere snippets represent Gauss’ known researches relating to knaots;
further mention of his knot work may be found in Stickel {81]. One can only
surmize what further thoughts this genius may have had, and what results
gained, on the nature and properties of knots.

Fig. 5. A Knot by Otto Boeddicker

By contrast with all his other fields of interest, Gauss was nof a very active
researcher in topology. It has been alleged that Schniirlein, a pgpll of Gaus§,
carried on intensive research with his help, on the application of higher analysis
to topology: but no one has been able to verify this. On the other I_Mmd,’ Otto
Boeddicker's work from 1876 is with certainty an independent contmu‘amou of
Gauss’ work. In his inaugural dissertation Boeddicker discusses at considerable

A History of Topological Knot Theory 213

length the value of the above-mentioned integral [18]. He later expanded this
work to illustrate the connection between knots and Riemann surfaces (19, p.
316]. A diagram from one of Boedicker's papers is shown in Fig. 5.

In any case, Gauss’ knotting attempts made him (Gauss) conscious of the
semantic difficulties continually to be found in topological studies. This placed
him among the first to display, and encourage, deep scientific and mathemat-
ical inferest in knotted structures. Gauss certainly led some of his students
to study the intricacies of topology. Fortunately one of them, Johann Listing,
was inspired to pursue vigorously the quest for knot knowledge. He thereby
secured for himself a name amongst the founders of the subject. Through his
work, which we describe next, the roots of the family tree of modern knot
theory are firmly anchored in nineteenth century mathematics.

4. Johann Listing’s Complexions-Symbol

Johann Benedict Listing {1806-82) was a student of Gauss in 1834 who later
became professor of physics at Gottingen. His topological researches eventually
led him to publish some of his work on knots in an essay entitled Vorstudien
zir Topologie, in 1847 [62]. In this work he discussed what he preferred to call
the geometry of position, but since this term had been reserved for projective
geometry by von Staudt, he used the term fopelogy instead. This became the
collective name for the mathematical disciplines which study the more general
concepts of geometric structures. Listing, even though he carried out quite

considerable work on the subject, seems to have published a mere fraction of
these researches. *

DEXIOTROP LAEQTROP
CROSSING CROSSING

'r

Fig. 6. Handedness of Oriented Crossings
In his 1847 publication he considered the handedness of spirals and dis-
cerned between their ability to be either left- or right-handed, which he termed
respectively dexviotropy and leeotropy. Planar projections of these spirals led

*Letter by Listing to the Proc. Roy. Soc. Edinburgh (1877). p. 318.
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him to introduce the concept of handedness for an oriented crossing (Fig. 6).
To each type he assigned a certain symbol distribution comsisting of bs and
As. This is illustrated below. The orientation becomes insignificant after the
regions have been assigned a type.

From some simple experiments with two- and three-stranded braids and
their closures, he came to consider the possibility of listing and classifying all
knot projections having fewer than seven crossing points.

Listing was the first to persist in representing knots as knotted circles, and
obtaining diagrams by projecting these onto a plane. By attaching symbols to
the crossings in a diagram, to indicate their types, and considering the resulting
symbol distribution in each of the diagram’s regions, he was able to propose an
‘invariant’ for a knot. In general an fnvariant is a mathematical expression (it
may be just a number) which carries information about a system, and whose
values do not change when the system is transformed in some defined way.
An invariant in knot theory is generally an expression derived from a knot
diagram which depends solely on the knot or link under consideration, in any
of its forms, and not on amy particular picture of them. The easiest invariant
to visualize, but one which is not very useful for distinguishing between knots,
is the number of components in an n-link L. By definition it equals », and
remains so whatever continuous deformations L is subjected to.

Invariants are useful aids in the classification of knots for the following
reason. Suppose we compute the value of a particular invariant from two knot
diagrams, and obtain two different values. Then we can conclude that the
two knot forms from which the diagrams were obtained are different knots.
However, the converse is not true; diagrams having the same invariant value
may or may not come from the same knot. A perfect knot invariant, which
always takes the same value for any particular knot, and a different value for
any other knot, has yet to be discovered.

Listing concocted his invariant as follows, He called a region of a knot
diagram monotypical if all the angles on the region’s boundary had been as-
signed the same type-symbol (that is, were all é or all A); in which case, the
region was itself given the same type-symbol. If a mixture of 3 and As had
oceurred, he called the region amphiiypical. In this way, Listing typified each
region, including the unbounded one {which he called the emplezum).

He defined a diagram to be in reduced form if it had a minimal number of
crossings, over all possible diagrams obtainable from the knot. He knew that if
one or more regions were amphitypical in a diagram, then the diagram would
not necessarily be in reduced form; but he gave no methods for reducing the
numbers of crossings in such diagrams.

He proposed an invariant for knots which have & monotypical diagram in
reduced form; and he gave it the name Complezions-Symbol. Later, we shall
give an example which shows that it is not a true invariant.
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Briefly, a pair of polynomials are computed from i i
‘variable’ 4, and the other in the ‘VariabIePA. The ex;ggiﬁﬁg?&gii:;;i‘;
!:hcse polAyﬂomials correspond to the numbers of sides surrounding the regions
in t.he diagram: thus, for example, suppose that there are 5 regions, each
having 3 sides and bearing the symbol §; then the term 58% will appear ,in the
é-polynomial of the Complexions-Symbol.

A full example will clarify the matter. The extraction of the Complexions-

Symbol from a diagram of a specific 7-crossing knot is shown below (Fig. 7).
Note that all the regions in the diagram are monotypical.

» &
§ A Sy
s\—-
A 8 P

Tig. 7. A 7-crossing knot, with labelled regions

In this case there are four #-regions, of which three are 3-sided and the
unbounded region adjoins five sides. There are five A-regions, of which two
pairs are respectively 2- and 3-sided, while the remaining one is 4-sided. The
pair of polynomials for the knot would be shown by Listing thus:

8% 4+ 363
A4 2)% 422

In general, a Complexions-Symbol has the form

agf” + @8+ L+ q, 61
beA™ + bl)‘n—l + b AT

where the coefficients a; and &;, with 0 < ¢ < n — 1, indicate the numbers of
the va.lrious kinds of region occurring in the diagram.

Listing noted that if a term with exponent unity existed in either of the
t?vo polynomials, that term would derive from one or more simple twists in the
diagram. These could be removed by ‘untwisting’; and so such term(s) could be
dropped from the Complexions-Symbol. Note that Euler’s polyhedral formula
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can also be used to check the calculations; the sum of the coefficients in both
polynomials is equal to the number of regions in the diagram, which equals
(n + 2) by Euler’s formula.

Listing’s Complexions-Symbol has several serious defects. First, it is not
defined for the Unknof, when projected into a diagram having no crossings.
Nor is it defined for non-alternating knots, all of whose diagrams must have
at least one amphitypical region; examples of these occur first among knots
of cight crossings. The Prussian Heinrich Weith aus Homburg von der Hoke,
following up Listing's work, noted this in 1876 [93, pp. 15-16], and gave a
diagram of a non-alternating knot to prove the point.

Johann Listing himself noted that occasionally the so-called invariant
proved not to be invariant at alll To illustrate how this can happen, we
give below an alternative diagram for the 7-crossing knot used above; the
Complexions-Symbol derived from this diagram is clearly not the same as the

one obtained above.
5
A
5 (»] ¢
A

L/

26% + 26° + & + 363
M4 203 4222 A2 2)2

Thus a single knot can give rise to two different Complexions-Symbols.

Any hopes that Listing might have had that his ‘invariant’ would be
a complete invariant were destroyed by P. G. Tait’s finding of two distinct
S-crossing alternating knots which both had the same Complexions-Symbol
[84, p. 326]. These two knots, (numbers 81y and 8, from the listings by
Reidemeister and Rolfen [74] and [77]), and their Complexions-Symbol, are
shown in Fig. 8.

Summarizing the contribution of Listing to Knot Theory, from this brief
description of his work, we can see that he established a basis for the math-
ematical study of knots, working with the natural tool of the diagram of a
knot projection. He saw the need for invariants which would help distinguish
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between different knots; and he proposed one, to be computed from a knot
diagram in terms of his crossing-type symbols.

8% + 8%+ 6% + 26°
A% 2% 4 A3 202
Fig. 8. Tait’s two different knots with the same complexions-symbol

Although his Complexions-Symbol had too many serious defects for it
to be of much use as a knot invariant, it posed a challenge to other workers
coming into the field: namely, to find good invariants. As such, it was perhaps
Listing’s greatest contribution to Knot Theory. The major quest in twentieth
century knot research has been for ever stronger invariants,

Before describing this further work on invariants, however, we must men-
tion other work that was done in the final thirty years of the nineteenth cen-
tury. In particular, we shall describe the monumental achievements of P. (3.
Tait and his collaborators; and they demand a section of their own. Passing
mention will first be made of several other items related to knot research.

H. Weith, in his inaugural dissertation which elaborated on Listing’s work,
elegantly showed that there is an infinite number of different knot forms [93].

About that time, there was a curious connection made between koot
theory and psychic research. The mathematician Felix Klein appears to have
observed that no ordinary knot can exist knotted in a space of four dimensions;
one can always use the extra dimension in order to untie it, without, of course,
cutting the string [56], [83].

This proposition would be experimentally testable if only we had access
to a fourth dimension. Several very reputable and distinguished scientists,
including J. C. F. Zdliner from Leipzig, began conducting knot experiments
which involved psychic mediums [98]. If the mediums were able to untie closed
knots, without cutting the string, it would be a reasonable conclusion that they
had some kind of access to a fourth dimension. In the account of Zéllner's
investigations, a record is made that this kind of experiment was successfully
catried out in December 1877, by Mr. Slade, an American medium,
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Some time later, Henry Slade’s psychic abilities were proved to be frand-
ulens. It was shown that the phenomena he produced in the experiments were
achieved by trickery. Below [Fig. 9] we reproduce an illustration, by Zéllner,
which shows the Overhand Knots produced by Slade’s conjuring.

Fig. 9. Overhand knots on Zdllner's sealed cord

There were some publications in which a mathematical explanation was
given for ‘conjuring’ knots from apparently thin air. The first, by Oscar Si-
mony, was based on a prior discovery by Augustin Ferdinand Moebius {1790-
1868), that if one makes three or more likewise-handed twists in a flat strip,
and pastes the ends together, then on cutting along the centreline of this one-
sided surface a knot or knots may occur {80]. In 1890 Friedrich Dingeldey, then
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a professor at the Darmstadt techmical university, published a more rigorous
?,cclount, which also gives a detailed overview of the early history of topology
30].

In 1897 Hermann Brunn observed that any knot has a projection with
a single multiple-point [20]. This proposition became attributed to James
Alexander, some 23 years later. :

In this period André Hurwitz did some work on Riemann manifolds, which
were first steps leading towards theories of braids.

This completes our summary of German work in the field around that
time. We must cross the Channel to England to continue our story of the
history of knot theory.

5. The Work of Peter Tait

Further substantial progress in knot theory was not made until Sir William
Thompson {1824-1967; Baron Kelvin of Largs) announced his model of the
atom, his ‘vortex theory’. Thompson began writing about this concept in
the mid-1860s. He believed that all material matter was caused by motion
in the hypothetical ether medium, which he termed vortez motion [99]. How
did knots relate to these ideas? Scotsman Peter Tait {Dalkeith, 1831-1901)
was & close associate of Thompson. In 1867, having been greatly taken by
Helmholtz’s papers on vortex motion, Tait devised an apparatus for studying
vortex smoke rings in which the rings underwent elastic collisions exhibiting
interesting modes of vibration. The experiment gave Thompson the idea of
a vortex atom. The imaginative picture painted by the theory he developed
subsequently was one of particles as tiny topological twists, or knots, in the
fabric of space-time. The stability of matter might be explained by the stabil-
ity of knots; their topological nature prevents them from untwisting. His aim
was to achieve a description of chemistry in terms of knots. More specificaily,
Thompson wanted to produce a kinetic theory of gases, a theory which could
explain multiple lines in the emission spectrum of various elementis. A swirling
vortex tube would absorb and emit energy at certain fundamental frequencies:
linked vortex tubes would explain multiple spectral lines. In short, ke believed
that the variety of chemical elements could be accounted for by the variety
of different knots. The main advantage of Thompson’s model was that its
indivisible bits would be held together by the ‘forces’ of topology. This con-
struction would avoid the problems inherent in devising forces to hold together
an atom made up of little billiard balls.

The theory was taken seriously for quite some time, and even eminent
scientists like James Clark Maxwell stated that it satisfied more of the con-
ditions than any other hitherto considered. In fact, in retrospect one could
add transmutaetion to its merit-list. The ability of atoms to change into other
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atoms at high energies could be interpreted as the cutting and recombining of
knots.

Even though Thompson's vortex theory of atoms stood for only about
two decades, Tait's fascination for knots had been aroused. Thus the study of
vortices stands as the starting point of a highly important pioneering study of
the topology of knots [87].

The vortex theory led Tait immediately to the problems at the heart
of the subject: with insufficiently developed mathematics to help out, knots
and links could not be characterized. As already indicated, the accessible
work on knot models was very scattered and fragmentary; and results on
knots had usually been arrived at almost simultaneously, and independently,
by mathematicians ignorant of each other’s work. At that time, it was not
even clear (to Tait) whether or not there were finitely many knots. Therefore
his first self-appointed task, which gradually became his main occupation, was
one of enumeration, in which he tried to find and classify knotted structures.
Tait called this the census problem. The main thrust of his work was how
to find all possible (distinct) knotted structures which can be represented by
plane diagrams of continuous curves having n crossing-points. He studied
ways by which such diagrams could be ‘reduced’, a reduction corresponding to
a topological change in a knot which led to fewer crossing-points in the plane
diagram. He called the minimal number of crossing-points achievable for a
diagram of a given knotted structure, the degree of knottiness of that structure.
Tait gave several methods for making the reductions. During his attempts to
develop these ideas, he followed (roughly) two lines of combinatorial attack.
The first involved the development of a method which he called the Scheme-
method, one which seems to have been known to Gauss [86, p. 13]. The second
attempt he came to develop was partially inspired by information gleaned from
Johann Listing’s work. He termed it the Partition-method.

5.1. The Scheme-Method

The central problem, in Tait's case, was to find the combinations of symbol
sequences which wonld encode a connection relation for n points in the plane.
He introduced a tool, for which he coined the name scheme, which was basi-
cally a symbolic shorthand for a connected graph. For ease of demonstration,
we shall describe this methed in reverse.

Given a diagram D of a 1-link L, with at least one crossing. Choose any
crossing from which to start. Callit A, Move from A in either of the two possi-
ble directions. Traverse the knot diagram and name the crossings encountered
in the odd places respectively B,C',D and so forth until all crossings have been
assigned a letter. Traverse the structure over again from any starting-point
and jot down the sequence of crossing-points visited. This symbol-string, along
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with the respective crossing-parities {i.e. ‘over’ and ‘under’ crossing symbols),
encades the structure. These symbol-strings, however, were of no sigaificance
to Tait. Very much like Listing before him, at first he only considered knots
which were represented by alternating diagrams (i.e. diagrams where ‘over’
and ‘under’ crossings alternate throughout, in a traverse around the string).
He did so because he erroneously believed that all knots, without changing
their minimal number of crossing points, could be made to fit such a diagram
[13].

An example will llustrate the procedure. For the knot with 5 crossing-
points, as displayed below, we find the following scheme.

ACBECADBED|A

The |A indicates the starting point of the sequence. Note that the letters
A, B,C, D, E occur at the crossing positions 1,3,5,7,9, respectively as met dur-
ing the knot traverse,

As said, Tait's procedure was based on a reversal of this process. Thus
he tried to find, empirically, all sequences which could yield such schemes. It
is easy to see that this task would quickly lead, with increasing values of n, to
a massive undertaking. An upper bound for the number of schemes, when n
crossings are involved, can be obtained by solving the following combinatorial
problem:

How many arrangements are there of n letters, when A cannot be
in the first or last place, B not in the second or third, and so on,
and the sequence must have length 2n?

With the help of Cayley and Muir it was soon found that the number
of combinations rises sharply, into thousands, even with a modest number of
crossing points [32]. To complicate matters: many combinations do not even
represent knots. The hopelessness of manually finding knotted structures by
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means of the scheme method was realized. It was abandoned in favour of a
more effective one, to be described next.

5.8. The Partition-Method

This was also based on graph properties of knot diagrams. An n crossing-
point diagram will have (n + 2) regions, which can be denoted by R;, 0 <
i < (n+1). Crucial to the method is the observation that for any region
R; the number of corresponding sides (edges of the graph) s; has to fulfill
the inequality: 2 < s; < n. It is known that the total number of sides in
the graph equals 2n. These facts enable one to partition the number n and,
via use of polyhedrons, to arrive at graphs which can be assigned a crossing-
coding, thereby yielding representations of knotted structures. This method
eventually was made to work well. It was also the method which Tait developed
further still, after sharing ideas with the Reverend T. P. Kirkman and C. N.
Little, an American professor. They had independently pursued the same lines.
Their communications led to a happy collaboration, which resulted in the trio
collectively listing virtually all alternating knots up to 11-fold knottiness.

5.3. The Final Results

What did Tait and his collaborators eventually achieve? They found 82 types
of knots of 9 or less crossings. An especially remarkable achievement was their
work in the class of 10-fold knottiness. A mammoth undertaking which, with
their tools, took them 6 years to complete; it resulted in some beautiful tables
of 10-crossing knot diagrams. Little continued the struggle, and published the
results of his attempts on 10-fold knottiness in 1885 [63]. They were finally able
to resolve, too, a large number of the alternating 11-crossing knots. Kirkman
provided Little with a manuscript of 1581 polyhedral drawings, from which he
distinguished 357 different knot-types.

Tt is impossible to summarise adequately, in a few paragraphs, the extent
of Tait’s contributions to the birth of Knot Theory. His researches affected
all aspeets of the subject. He empirically discovered a great number of useful
results, while experimenting with many ideas which future researchers would
take up. He worked on the so-called Gordian number, which is the minimal
number of crossing-point changes required in a knot to produce an unknot.
He made some pertinent conjectures which were not resolved for well over a
century. He had already considered knots such as Moebius braids, and he both
toyed and toiled with problems relating to symmetries such as mirroring. He
found a nice little theorem on amphicheirality {a knot is said to be amphicheiral
if it can be topologically transformed into its mirror image). He was very
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much aware of the difficulties which symmetries in mirroring brought along.
He introduced a Scottish verb, to flype, to denote an operation which can be
carried out on certain portions of knots or their diagrams. In fact, one of his
foremost. contributions was to introduce nomenclature of this kind into knot
studies [58]. _

In order to develop the subject rigorously, however, he needed to discover
gome form of knot invariant, which would help him to distinguish and identify
knot types. He gave no formal proofs that any of his methods actually came
to define or to implement one.

The main underlying problem which confronted Tait and his co-workers
was deciding when two knotted structures were isotopic, l.e. telling whether
either of them could be deformed, by a continucus transformation, into the
other. Two knots or links are said to be the same, or isotopy equivalent, if they
can be made to look exactly alike by pushing and pulling, but not cutting,
the string(s) in which they are realized. This problem of isotopy became
established as the central problem in knot theory, and it became known as the
Knot Problem. Tt was not to be dealt with satisfactorily until the advent of
algebraic topology.

Fig. 10. Kunots from Mary Haseman’s dissertation

Some thirty years after Tait’s endeavours, Mary Gertrude Haseman tack-
led amphicheiral knots of 12-fold knottiness (Fig. 10}. The results of her brave
expedition into the then uncharted regions of 12-crossing knot-projections
are presented in the charming dissertation [43], which gives a census of am-
phicheirals in that class of knottiness.

6. The Beginning of the 20th Century

By 1960 there were almost-complete tables available listing knots of up
to 11-fold crossings. They represented the fruits of the arduous labor by Tait
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and his collaborators, and of physicists who had been working in an atmo-
sphere of ‘applied mathematics’. Their work had provided sufficient concepts,
terminology and knot-diagrams to enable the development of a formalized the-
ory to begin. Tabulating knots had twe goals. Completeness of the list was
the first. Distinctness of all tabled structures the other. Generally speaking
the first goal could be achieved via {cumbersome) combinatorics. The second
required methods for dealing with problems invelving isotopy; and for that,
new mathematical methods were required. Powerful knot invariants had to be
discovered.

As the emphasis in the theory of knots turned away from enumeration,
under the awareness of the problems due to isotopy, the hunt for good knot
invariants began. The ensuing peried of transition showed great quantitative
and qualitative differences in knot research, as compared with the early and
rather empiric work in enumeration. In fact the changes effectively caused the
census problem to cease to be the theory’s major research topic for the next
six decades; although itz importance continued to be recognized. Its goals and
achievements served as testing grounds for new invariants and other important
tools which began to be discovered, in algebraic topology, group theory and
other mathematical fields. Much mutual interplay took place between the old
and the new approaches.

Knot theory as attempted from the purely topological side became possi-
ble only after the development of the required mathematical machinery. This
was pioneered by Henri Poincaré (1854-1912) around the turn of the century.
Poincaré was a professor at the university of Paris, and a leading mathemaiti-
cian of his day. Tt has been claimed that he was the last man to possess a
utniversal knowledge of mathematics and its applications. His prime motiva-
tion for mathematical research invariably sprang from scientific problems. He
wag the first person to make a systematic and general attack on the combi-
natorial theory of a special type of geometric figures called compleres. Due
to this work he is usually regarded as the founder of combinatorial topol-
ogy. He decided that a systematic study of the analysis situs of general or
n-dimensional figures was not only desirable but also necessary. After some
notes which appeared in the Compies Rendu of 1892 and 1893, he published
a basic paper in 1895; this was followed by 5 lengthy supplements running in
various journals, appearing in the years up to 1904. He did not regard his work
on combinatorial topology as a study of topological invariants, but rather a
systematic way of studying n-dimensional geometry. However, the influence of
his work on subsequent knot theory was to reverse these priorities—the study
of topological invariants came to the fore.

Poincaré introduced a number of topological tools, such as the so-called
fundamental group of a complex, also known as the Poincaré group in his
honour; it was the first in the string of homotopy groups [72]. It came to play
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a role of utmost importance in topology.

In his efforts to distinguish complexes, Poincaré came to introduce torsion
coefficients, and a method for computing Betti numbers of an n-dimensional
complex. These concepts are defined as follows. Given a finitely generated
Abelian group A, it can be written as the direct product of a free Abelian
group F and a family of cyclic groups A/H;, where each A/H; is a finite
cyclic group of order h; and such that hq|he|...|#A4. The rank of the free
Abelian part F and the uniquely defined numbers %; are invariants of the
group A, and completely determine its structure. If A is the homotopy group
in dimension, say d, then the rank of F' is the d-th Betti number, and the
h; are the torsion coefficients. They are numerical invariants of isomorphism
classes of finitely generated Abelian groups. The rack of F' is used to calculate
the Euler characteristic.

It is interesting to note that Poincaré used only methods of continuous
mathematics at the beginning of his series of papers; but by the end he relied
heavily on combinatorial techniques. This was not without impact on the
newly founded schools that formed to take up and develop his ideas. For the
next 30 years researchers concentrated almost exclusively on combinatorial
and algebraic methods.

The belief in the power and aptness of combinatorics ran deep. The
knot problem’s solution demanded a formal definition of a knot, which in true
combinatorial spirit became a set of straight arcs making up a closed non self-
intersecting polygon in space. Max Dehn and Poul Heegaard in their article
[29] in Encyklopedic der Mathematischen Wissenschaft in 1907 noted that the
knot problem could be formulated entirely in terms of arithmetic, i.e. combi~
natorics. However this kind of reduction seemed to be of no practical value,
nor did it seem to have any theoretical consequences {e.g. for decidability
of knot equivalences). There are many natural numerical invariants of knots
which may be defined quite easily, such as the already-met number of crossing-
points, the Gordian number, the maximal Euler characteristic and so on; but
difficultes in computing them by solely combinatorial techniques seem to be
inversely proportional to the ease in defining them. There is something general
about this matter. There is for instance, to date, still no known algorithm for
finding the minimal number of crossing points for an arbitrarily given n-link.
In fact there seems to be no hope for finding this number with any tool at all!
On the other hand, a recent attack on the Gordian number has yielded good
bounds for it (1994). A good account of this work, by William Menasco and
Lee Rudolph, can be found in [67].

The first successful algebraic topological invariant attached to a link L
was the fundamental group of the 3-manifold, which is constituted by the link’s
complement in 3-space, namely (R® — L); this invariant is sometimes called
the group of the knot-complement or, simply, the knot group. For an arbitrary
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link L, and with reference to a basepoint p in L’s complement, the knot group
is denoted by m{R3 — L,p). This group is one in which the elements are
homotopy classes of (unknotted) loops which traverse the complement space
of a knotted structure, starting from and terminating at the basepoint p. The
binary operation for the group is the composition of two loops, carried out
bv concatenating them at p. Since this composition is non-commutative, the
fundamental group (knot group) is non-Abelian.

The fundamental group expresses in algebraic langnage some of the topol-
ogy of the knot-complement, which makes it possible to compare different
knots by comparing their algebraic descriptions. A knot's complement, which
is three-dimensional, carries a richer topological structure than the knot it-
self, which is one-dimensional. The topological structure of the complement
necessarily contains certain information about the knot. In 1908 Tietze con-
jectured that it contained al such information; an idea that did not become an
established fact for 1-links until 1988 [40]. The uncertainties surrounding this
conjecture did not prevent this avenue being pursued vigorously; presentations
of certain knot groups appeared fairly soon in the literature. General methods
for writing down a presentation of the knot group from a knot projection were
introduced by Wirtinger, who did not publish them; but he got credit for the
idea anyway [65]. Max Dehn, in 1910, also published methods for presenting
knot groups.

7. Max Dehn’s Work in Knot Theory

It was thought that by considering the knot groups one might be able to classify
knotted structures. The initial notions on groups had arisen from 19th-century
algebra, analysis and geometry. By the time that Max Dehn began his work
on knots, early in the 20th century, group theory had proceeded so far that
it was no longer necessary to describe groups by means of their cumbersome
Cayley {composition} tables. At the beginning of the 1880’s von Dyck had
shown how every group is the homomorphic image of a free group, and how
one could present such a group by giving so-called generators and defining
relations. Armed with these tools Dehn attacked the knot group.

In his 1910 paper Uber die Topologie des dreidimensionalen Raumes [27),
Dehn discussed a method for extracting a description of the knot group, the
so-called Dehn presentation. He did so by the following algorithm:

1. List and denote all bounded regions of a knot-diagram by Cy, ..., C,.
These are to be considered the group generators.

2. Every over-crossing yields a relation R;, 1 < i < n by noting down a
relation containing a sequence which is the product of generators as
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encountered when traversing clockwise the crossing:
-1 ~1
Ri=C05 Gyl =1.

In case the crossing includes the unbounded region, the specific gen-
erator’s place is taken to be unity. Thus a three-generator relation is

obtained.
Cai $ Cy
Cs \—'j Coj

3. The collection of n generators, and n relations, as written below, is a
presentation of the knot group.
_ GG
G‘“‘{RFRF...:Rﬂ:l

In order to provide an example, we shall apply the algorithm to the right-
handed version of the Trefoil Knot, illustrated below.

J 2
3
The diagram gives rise to the following three relations. Note that we have
omitted the identity 1 in each, as we may.

0103_104 = 1
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These yield the following presentatioﬁ for the fundamental group of the
Trefoil Knot:

(Cl, Oy, O3, Cy OleCgl = 0105104 = C::C‘;C.‘i-l = 1)

In fact, this is not the most economical presentation possible: using Tietze
operations we can reduce the number of generators to 2, and the number of
relations to 1, thus:

(CI,CQ N 010201 = CECICZ)

Wirtinger's presentation is derived in similar fashion, but with generators
being agsociated with overpass arcs, rather than with regions (see [25] for
details). The end-result is, of course, the same.

Further contributions by Dehn are described in the next section on Alexan-
der’s work.

8. James Alexander’s Influence

Applications of the fundamental gronp quickly yielded several breakthroughs.
Proofs of the existence of non-trivial knots, via knot groups, had already been
given by Tietze as early as 1906. However, the first successes from use of the
knot group lay in the verification of the correctnesz of the knot tables. To
achieve this, the group was used with other tools which Henri Poincaré and
Enrico Betti had introduced. The proof that Betti numbers and torsion coef-
ficients define combinatorial knot-invariants was first given by James Waddel
Alexander (1888-1971), a professor of mathematics at Princeton University
and later at the Institute for Advanced Studies. Collaborating with G. B.
Briggs and using the torsion numbers, he distinguished all tabled knots up to
8 crossings and all, except three pairs, up to 9 crossings [7]. Alexander also
showed that two 3-dimensional manifolds may have the same Betti numbers,
torsion coeflicients and fundamental group and yet not be homeomorphic. His
example, of course, involved knot complements. Thus he had shown that a
knot contains {at least a priord) more information than just its group.

With the tools just introduced, Dehn proved that an arbitrary knot K, its
mirrer image K™, and its version with reversed orientation K, produce three
knot-complement groups which are mutually isomorphic. (Later Reidemeister
also proved this, more rigorously.) Using m to denote a knot-complement
group, this theorem is stated as follows:

(R — K, p) 2 m(R* - K*,p) =2 (R* - K, p)

It was thus realized that the complement alone could not provide complete
invariants. The situation was repaired by equipping the complement with an
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orientation. Let K C S* be our given smooth knot. By thickening the knot’s
actual curve to a knotted tube and removing this tube’s interior from 3-space
we are left with X, the knot’s ezferior. By laying a ‘coordinate system’ over
the tube around the knot, the exterior thus acquires more structure than the
complement. The exterior with the coordinate system is called the peripheral
system. Using additional information from the peripheral system Max Dehn
could show by 1914 that neither of the oriented Trefoils (see Figs. 11, 12} is
isotopic to its mirror image [28].

5 Y

Fig. 11. Left-handed Trefoil Knot Fig. 12. Right-handed Trefoil Knot

He did so by taking one Trefoil, removing it from 832, reinserting it with op-
posite orientation, and showing that the result was not homeomorphic to the
original knot. This procedure is known as Dehn surgery.

The natural question arises as to what extent the peripheral structure
is determined by the group alone. It was known at an early date that the
Reef Knot and the Granny Knot (see Figs. 13, 14) possess isomorphic groups.
Seifert had shown in 1933 that their complements were non-homeomorphic
(79]. In 1952, using the peripheral system, R. H. Fox showed that irrespective
of the orientations they may have been given, they are two distinct knots [35].

@ @”\9
Fig. 13. Reef Knot Fig. 14, Granny Knot
The knot group did not immediately fall from grace; but now it was known to
be an incomplete knot-invariant. In algebraic topology terminology: the group
of a knot determines the knot’s complement merely up to homotopy type.
This disturbing example put paid to the generally-held idea that the knot

group contained all information about the knot; worse still, it continued to
cause trouble over the next few decades. However, despite such examples
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revealing its shortcomings, the group of a knot was still a powerful invariant.
And in the late 1960s the role of the peripheral system was finally clarified;
it was shown to be a complete invariant. This demonstration resulted from
Waldhausen's work on irreducible, sufficiently large, 3-manifolds, which in turn
was based on earlier ideas by Haken [42], [44].

The knot group, even though it was an unwieldy mathematical object,
formed the basis for much further research on knots. The new approach via
knot groups effectively brought the unknot U into the picture (it was a knot
that had been ignored or not taken seriously by early researchers). This knot,
a kind of ‘Hmit’ in the class of knots, now became an important one in the
knot tables, because its group turned out to be a special one, namely the
infinite ¢yelic group with one generator, which is isomorphic to the group of
integers under addition. The proof of this was settled in 1956 by the great
mathematician Papakyriakopoulos, who also proved that the group of a knot
determines the homotopy type of its complement.

Equivalent knots which are projected into distinct diagrams can vield dif-
ferent presentations of their knot group. These presentations must, as theory
tells us, relate to isomorphic groups. However, there is no general algorithm
which will enable us to decide whether two given representations relate to two
isomorphic groups. It is known that no such general algorithm is possible,
Nevertheless, in working to resolve particular cases, the main efforts in knot
research came to concentrate on the problem of finding reduced presentations
of knot-groups; in the process, the problem of knot-equivalence was cast into
an (algebraic) word-problem mould. The main question became: When are
two presentations of knot groups equivalent? The complexity of this problem
(which is, as already noted, generally unsolvable) led to a quest for simpler
invariants, ones more tractable than the knot-group.

This research direction began with a discovery by J. W. Alexander; in
1928 he ‘launched’ the knot polynomial which was later named after him. It
was a totally new idea. He described a method for associating with each knot
a polynomial, such that if one form of a knot can be topologically transformed
into another form, both will have the same associated polynomial; it quickly
proved to be an especially powerful tool in knot theory. For example, the
polynomial was able to distinguish 76 knots out of the first 84 in the knot-
tables: they were found to have unique Alexander polynomials.

Alexander first obtained his polynomial of a knot K by labelling the
regions in the plane bounded by an oriented knot-diagram of K having n
crossings. By noting the types of crossing around the knot, in relation to
the arc labels, he extracted a certain n x n matrix (now called the Alezander
matrix). All of the elements in an Alexander matrix are either 0, or —1, or
¢, or 1 — ¢, where ¢ is a dummy variable or parameter. By removing the
last row, and the last column, of the matrix, and taking the determinant of
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the remaining matrix, a polynomial in t is obtained. This is known as the
Alexander polynomial of the knot. We may denote it by Ax{t), or simply Ag.
Alexander was able to show that Ax(t) is an invariant for the knot K (see
[6] for full details). In fact, Alexander presented a sequence of polynomials
{An(t}}, with » = 1,2,3,. .., all invariants of the knot K. The first one (casé
n = 1} is the one known as the Alexander polynomial.

_Why associate a pofynomial with a knot diagram? The schemes and

p{ir@tions which Tait, Kirkman and Little had worked with were unwieldy.
Llstlng"s complexions-symbols were not quite what was needed to vield an
upa.mblguous invariant. But why Alexander’s polynomial worked the way it
d.ld was 1ot clear at the outset. Alexander himself suspected that it was some
kind of shorthand for homology groups. A rather reasonable hunch, as later
work placed it on a sound homological base. ’
. Alexander’s polynomial proved to be a fairly powerful invariant of isotopy
in knots. Differently deformed versions of the same knot yield the same poly-
nomial Ag. The following comments illustrate a few attractive aspects of the
polynomial’s behaviour.

Given two prime knots with respective Alexander polynomials, the Alexan-
der polynomial for their knot-composition is given by the multiplication of the
two original polynomials. Another aspect almost amounts to a pun: for an
alternating knot, Ax has coefficients of alternating sign [70]. These, and other
more refined pleasant properties, made it knot theory’s main teol for almost
half a century. The Alexander polynomial's weak points are that it always
takes the same value for a knot and its mirror image; and that its power to
distinguish between knots terminates for certain example pairs and classes of
knots with more than 9 crossings. In 1934, classes of non-trivial knots with

trivial Alexander polynomial were discovered [78].
K K K

- (]
Fig. 15. Set of Alexander crossings

. Alexander also discovered a relationship between the polynomials of three
oriented knots whose diagrams are identical except within a neighborkood of
one fixed crossing where they are as shown in Fig. 15, [6, p. 301]. For further
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reference the diagrams will be called ‘a set of Alexander crossings’.
The relationship is:

Ax, () = Ap_(6) + (£ —tH)Ag (1) =0, with Ay =1

Many years later this relation, and others like it (now called skein relations),
came to have great significance in the development of recursive methods to
produce knot invariants. In spite of its early discovery, the literature has
shown a remarkable tendency to remain loyal to the calculation of Ax by
means of determinants. This is rather strange, as this relation bears within
it the possibility of calculating Ag(t) recursively by ‘untying—or splitting
repeatedly—a knot-diagram’.

The idea of unknotting was not born here, though, as Tait had already
considered the Gordian number. The relation given above is in a sense decep-
tively simple. There is no reason a priori why it should define any invariant.
It may after all depend on things like projections or properties of the plane.
Alexander did not find sufficient conditions to give any recursive process by
which to obtain his polynomial. He did however prove the well-definedness of
his proposed invariant.

The period of Alexander’s work can suitably be called one of change and
crossroads. The idea that knots could perhaps be understood by studying
braids was one of the most promising ones to be pursued at that time. It
caused Emil Artin to introduce the braid group, and Alexander to make some
fundamental discoveries which bridged the gap between the two theories of
knots and braids. We shall discuss these developments later, when we come

to focus on braid theory’s contribution to the study of knots.
L4

9. Kurt Reidemeister and His Moves

In 1923 Kurt Werner Friedrich Reidemeister {1893-1971) accepted an associate
professorship in Vienna where he did research on the foundations of mathemat-
ics. In 1925 he obtained a full professorship in Konigsherg where his interests
went to the foundations of geometry. It is not surprising that he was the
person who disposed of many of the basic problems and early difficulties in
the field of knot theory. His thorough work covered fundamental treatments
of knot enumeration, projections and isotopy. Tait and his collaborators had
found many knots, but they had not catalogued them in any workable man-
ner. Reidemeister ordered and numbered them, using a notation which gave
their positions in the list and their minimal numbers of crossing points. His
notation, and tables of knot diagrams, stood for many years.

In the field of planar knot-projections, Reidemeister studied small, local
changes made to a knot and how they corresponded to changes in the diagram
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obtained by projection of the knot into a plane, He discovered that there were
three fundamental changes (and their inverses); they are shown in diagram
form bglow (Fig. 16). The left-hand sketch shows how a loop can be untwisted
(remov?ng one crossing); the centre one shows the pulling apart of two flaps
{removing two crossings); and the right-hand one shows a portion of string
passing over a crossing point {leaving the number of crossings unchanged).
These three types of change, together with their inverse changes, are known
as the Reidemeister moves. It should be evident that none of these changes
relates to a change in the topological nature of the underlying knot.

Fig. 16. The Reidemeister moves

_ The importance of the Reidemeister moves in combinatorial knot theory
is embodied in the following key theorem:

If two knots (or links) are topologically equivalent, their diagrams
can be transformed one to the other by some (finite) sequence of
Reidemeister moves.

It should be noted that in any given case, there are many (indeed an
infinite number of) different sequences of the three Reidemeister moves and
their inverses which effect a transformation from one diagram to the other.

Reidemeister published the first book*on knot theory, in German, in 1932:
an English edition of this book was published in 1983 [74].

Midway during the 20th century the history of knot theory, like much
else, was temporarily disrupted by a seemingly global desire to practice politics

*J. B. Listing wrate the first book [62] on topology in 1847; it was dedicated primarily to

knot theory. Bernhard Riemann was a student of Listing, and he learned about knots from
Listing’s book.
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with violent means. The influence of combinatorial topology on knot theory
declined markedly during this period.

10. The Fifties and Sixties

Ralph Hartzler Fox {1913-1973) was a mathematician who fostered an impres-
cive mathematical environment around his person. Since Alexander’s time,
Princeton University had been the great name in knot theory’s geography;
and Fox’s extensive publications on the subject made it even greater.

After the interruption in efforts caused by World War II, research came
to focus mainly on the knot group, its subgroups and the principal ideals of
its group ring. The way to represent a knot group by means of generators
and defining relations led Fox to discover a free differential calculus. The
ideas behind this calculus caused the Alexander polynomial to emerge as a
determinant value of a matrix in which the entries are ‘partial derivatives’
(in Fox's calculus) of the knot group's relators with respect to its generators.
The calculus came to be christened Fox's, and it led to the discovery of links
between hitherto unrelated other fields in mathematics. In knot theory itself,
it showed that the knot polynomial is determined by the group of the knot,
and provided a link between the combinatorial and geometric definitions of the
Alexander polynomial. On the practical side, the calculus supplied one more
method for calculating Alexander polynomials. Specifically, it became cone of
the most important tools for studying knot groups defined by generators and
relations.

As a person Ralph Fox has left quite an impression. After his death
former students dedicated a 350-page book of their research papers to his
memory [100]. From his school came people like Joan Birman, whom we shall
meet later, and Lee Neuwirth working in knot groups; and Elvira Strasser
Rappaport who studied ‘knot-like’ groups, addressing the question of which
groups are koot groups.

Many of the developments in topology during the 1950-1980 period came
to affect ideas about knots. Typifying the general development of knot theory
and its techniques is that the concept of ‘knot’, so far treated as a polygonal
non-intersecting curve in 3-space (i.e. R ) upon which certain moves were per-
mitted became modernized to ‘knot’ being an equivalence class of embeddings
of the unit circle 8' in 8% Topological studies had made 1t clear that B3
should be replaced by 8%, in view of compactification properties of the lat-
ter. At the end of the fifties this led mathematicians such as André Haefliger
and Christopher Zeeman to elaborate upon a theme, traceable back to Emil
Artin’s work, which considered mappings 8* — 8™, for which m—n =2 [41] ,
[97]. These mappings ‘tied the n-dimensional unit sphere into a knot’ in the
m-dimensional unit sphere. The objectives of this higher-dimensional, gener-
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a%ized knot theory included classification of knots with respect to isotopy. A
d'lfﬁculty‘was that the construction of these knots could not be visuahzgﬁ- b
Eﬂmpl.e-nsmded drawings of knot projections. Classification, and hence ﬁndjng
:;Ik]l‘;a;;iir?é]izd Jiiriizlﬁz;% 11(): coupled to construction methods, showing how

. The more formal demands on smoothness of mappings brought in the
notions of tame and wild knots. A knot is fame if it is equivalent to some
polygo‘nal‘ knot; otherwise it is wild. The distinction was of vital importance:
the principal invariants of knot type, namely the elementary ideals and thé
knot polynomials, were not necessarily defined for a wild knot. Knot theor
was largely confined to the study of polygonal knots, and it was natural tﬁ
ask }vhat kinds of knot other than these were tame. An early theorem, and
partl_a.l answer to this question was: If a knot parametrized by arc len_;th 1%
continuously differentiable, then if is tame.

' Thert.a are infinite classes of wild knots, and their study forms a field of
its own within the topological theory of knots.

11. John Conway’s Tangling

As we have seen above, the problem of distinguishing knot-types for given
numberg n of crossings, and tabulating them, was first tackled by the three
men Tait, Kirkman and Little, in the final fifteen years of the 19th century.
They succeeded in resolving the problem, by largely empirical methods f0£
n=3,...,10 and for most of the alternating knots on 11 crossings. }

. There the matter rested for some seventy years, until John Horton Conway
devised entirely new methods for studying knots, based on a construct called
a tangle. Essentially, a fangle is a portion of a knot-diagram from which a
number, usually four, free-end strands emanate; an example (Fig. 17) is given

AR

Fig. 17. An example of a Conway tangle
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Conway gave a notation for describing knots in terms of their construction
from tangles: using this notation, he was able to give rules for determining
equivalences between knots. His methods were much simpler than previous
ones, and lent themselves to programming for computer analysis. In a 1970
paper [23], Conway presented these ideas, and also listed knot-types in his
notation for the following: all the prime alternating and nonalternating knots
with crossing numbers n = 3,...,11; the 2-links up to n = 8; the 2-, 3-, and
4-links for n = 9; and all links for n = 10. In addition, for most of the knots in
his tables, Conway gave values for several classical, and also new, invariants,
obtained by his methods.

Thus, in a very short time®, using his newly devised methods of tangles,
Conway had checked and extended the tables of Tait, Kirkman and Little,
produced so laboriously about eighty years previously.

Certain manipulations on the Conway tangles gave rise to polynomials.
Sample calculations with these were made, and they revealed certain algebraic
relations between the polynomials (which in fact obviated the use of a com-
puter for calculating his tables). It was natural to think of tangles as elements
in a vector space, in which certain identities became linear relations. There
were many natural questions to be asked about these spaces, and study of
these led Conway to his discovery of a polynomial knot-invariant. Initially,
Conway only wanted to further the enumeration and tabulation of knot-types,
which task had been at a standstill for the past six decades when he began
his attack upon it. But his contribution turned out to be a major one, in the
hunt for knot invariants. Even though his find, in a sense, was Alexander’s
polynomial disguised in a normalized form, it was obtained by totally new
methods. It became known as the Conway polynomsal, often denoted by V.
It was also a polynomial which could be calculated directly from a diagram by
means of a recursive method, not requiring the evaluation of any determinant.

John Conway wanted to call the relationship between three links whose
diagrams differ only in a set of Alexander crossings a potential function; but
instead, this relationship went on to lead its own life in knot research, acquiring
the name of skein relation. In Conway’s original work this potential function
had the form:

VK+(f) - VK’_(f) = tv_;{o(t) N with VU =1
It relates to the Alexander polynomial Ag via the equation:
Ax(t) = Vit —17%)

The important idea, which set new trends in knot research, was that the skein

*In [23] Conway claims that he could check in a mere afternoon much of the work that Tait
and Co. took six years to complete!
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relation became the invariant’s definition. Its well-definedness could be proved
by showing its invariance under the Reidemeister moves.

More so than with Alexander polynomials, which require definition and
computations of certain determinants, the preferred way for defining polyno-
mial invariants obtained via skein relations is to proceed from knot-diagrams.
A palynomial is computed recursively, by a kind of ‘unknotting process’ when
one systematically obtains diagrams on reducing numbers of crossings, making
use of a given skein relation. When diagrams with already known polynomials
are artived at, the process can be retraced, and the polynomial for the original
knot is arrived at.

Success with, and increased use of, this procedure caused knot-diagrams to
become notational devices at the same level as other symbols in mathematical
writings.

Incidentally, as we noted above, Conway did expand the knot-tables; and
his work was later continued by Thistlethwaite and Perko [86], [71]. The latter
completed the census problem for 10-fold knottingss in 1974, and detected some
errors in Little's 1885 table of 11-fold crossing knots. Now we have complete
listings of knots with up to 13 crossing-points {86]. And researchers are working
to enumerate knots on 14 and 15 crossings [8]. There is an estimate that there
exist over 150 Q00 different prime alternating knots on 15 crossings.

The following table shows the totals of prime alternating kuots which have
from 3 to 13 crossing-points. The top row gives the numbers of crossing-points,
and the bottom row the corresponding frequencies of knots.

ni3 (436|789 ¢1101] 11 12 13
Flil]1|2[3|7]21}49]| 165|552 | 2176 | 9988

In the early 80s, John Turner [89] studied knot-graphs, and experimented
with operations similar to Conway's. He obtained varions knot invariants,
working from both non-oriented and oriented diagrams. One idea he pursued
was to take an alternating knot-diagram, and reduce it systematically by a
process he called twinning. Crossings were ‘deleted’, one at a time, and two
new knots (the ‘twing’; each with one fewer crossing than the original knot)
were formed at each ‘deletion’ (see the example in Fig. 18). He continued this
twinning, producing a binary tree of knots, and stopping the deletion process
whenever a twist knot was arrived at.

The ultimate result, from any given starting knot, was a collection of twist
knots (situated at the tree leaf-nodes), each of which had well-defined twist-
senses, labelled plus or minus. He saw these as being fundamental building
units of the original knot, and was able to prove, subject to one of Tait’s many
conjectures being true, that the end-collection of twists was independent of the
order of reduction by ‘deletions’ of crossings, and that it was a knot invariant.
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He assigned the symbol 4™ to each n-twist, where n (positive, zero or negative}
was the ‘sum’ of the senses of crossings in the twist {e.g. see Fig. 18).

Collecting all the symbols together, he arrived at a pelynomial which he
called the twist spectrum of the starting knot* This, then, was a polynomial
knot-invariant. In [89], Turner gave tables of knot twist-spectra for all al-
ternating prime knots with n = 3,...,9 crossings, and all alternating 2-links
with n = 2,...,8 crossings. The twist spectrum distinguished all these knots.
He conjectured that it would distinguish all alternating knots with fewer than
15 crossings. In that sense it clearly outperformed the Alexander polynomial.
Moreover, it could be used to provide a simple test for nonamphicheirality in
a knot; for if a knot is amphicheiral its twist spectrum is symmetric about the
constant term {the converse of this was conjectured, but unproven).

Z —_— oyt

Spectrum: T{u)=u"?+ vl +2° + ! + 4
Vector of coefficients:  (1,1,1,1,1)

Fig. 18. Computing the Twist Spectrum of Listing’s Knot (amphicheiral)

*This was a precursor of Kauffman's bracket polynomial, to be described later. Kauffman
used the same deletion process, but continued beyond the twists, until no crossings at all
remained. If his process were stopped at n-twists, his polynomial would be the same as the
twist spectrum.
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Figure 18 demonstrates the above process, producing the twist spectrum
for the 4; knot (Listing’s). The final twists, with their orientations and their
corresponding polynomial terms, are shown on the right of the diagram.

An interesting connection between the Alexander polynomial A(t) of a
knot, and the twist spectrum 7(u), is that the so-called determinant of the
knot, given by |A(—1}|, is equal to the torsion coefficient value T(1). Also like
the Alexander polynomial, the twist spectrum of a composition of two knots is
equal to the product of the twist spectra of the two knots. Further, this time
like the Jones’ polynomial, Ty () = Tx(u™*) if K* and K are mirror images.
So, for example, the trefoil and its mirror image are distinguished, since their
twist spectra coefficients-vectors are (1,0,1,1) and (1,1,0,1).

Very scon after the twist spectrum was discovered, Vaughan Jones’ great
knot polynomial discovery was announced [43]. As we shall see below, this
triggered an explosion of discoveries of polynomial invariants, and markedly
changed the face of topological knot theory, both pure and applied. Before
going on to describe these developments, it is necessary for us to review the
history and achievements of braid theory.

12. Researches in Braid Theory

The beginning of the 19205 witnessed an impasse in the theory of kaots.
With the omnipotence of the knot group fatally punctured, and presentations
of knot groups stuck in generally unsolvable word problems, it was rot strange
that knot theorists should seek new ways for achieving progress. The problems
of those days attracted some of the most prominent algebraists and topologists.
Minds like Seifert’s pursued further research via Riemannian manifolds, while
the actions of others appeared more desperate. Reasoning that knots consist
of bits of knotted patterns, they broke them into smaller pieces which fulfilled
certain conditions and called these objects braids. Braids were not a new idea
when they entered the scene in the 1920s. Listing and Tait had already studied
procedures which generated simple knots after plaiting samples with two and
three strands. On the other hand the breeking up was something entirely new.
Emil Artin (1898-1962), with the help of Otto Schreier, formalized the ideas
and provided tools to carry on the halted quest. His landmark paper on them
[9], Theorie der Zépfe, appeared in 1925.

Basically, he provided an entirely new algebraic environment for knot
studies by introducing the so-called (algebraic) braid group, denoted by B,.
This is the set of all braids on = strings satisfying certain conditions, together
with a binary operation which consists of the simple process of concatenation
of two braids, joining the lower ends of one to the upper ends of the other.
Examples of 3- and 4-string braids appear in Fig. 19.

The geometric picture of a braid in R is easy to envisage. Consider n
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parallel strings in a plane, all hanging vertically from a line drawn on, for
example, the ceiling, and dropping down to a line on the floor. There are thus
2n string endpoints, = on the ceiling and n on the floor. In a given braid,
the endpoints are all to be regarded as fixed. This first configuration, with all
strings parallel, is the null bratd; it acts as the unit element of the geometric
braid group B(n}. If now the lower endpoints are removed from the floor, the
strings interwoven in some manner, and finally the endpoints are refixed to the
floor in some order, then a new n-string braid will be achieved; such are the
members of B(n). With this geometric picture in mind, it is easy to imagine
the concatenation operation, which joins two braids ‘one on top of the other’.

%2

Fig. 19. On the left, a oy ! twist in & 4-ztring braid is shown above a ¢3 twist in

another 4-string braid. Concatenated they become a g5 10'2 4-string braid; note

that the resuliing 4-string brald is equivalent to the null braid {one with no twists).

The other diagrams show concatenations of 3-string braids; note from these that,

isotopically, 010907 = T30102

The n-string braid group is generated by the (n-1} fursts (denoted by o;):
the twist o; indicates a half-twist between the ith and (¢ 4+ 1)th strings. Its
inverse is a half-twist in the opposite sense. The diagrams above iliustrate
this, with the 4-string braids.

Artin showed that B{n) =~ B,, and that they permit a presentation in
terms of generators and relators given by

(G4, 0n1 171,72}, in which
{Tligé%':(’jos: lf-4l>2,1<4,j<n-1
T @ 1T = Ty Fifi, 1 S 1 S n—2

Note how the two relators catch the principal features of a braid with three or
more strands.
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The braid group elements are open patches of weaving. They can be
closed by linking up the respective ends. The most obvious way this can be
done for an arbitrary # € B, is by pairing the ends at the ceiling one to one
with the corresponding ends at the floor. This yields the closed braid denoted
by 4.

The main evidence that braids would be useful in studying knots and links
was the existence of an {n— 1)-dimensional representation of B,, discovered by
Werner Burau in 1936 {21]. This representation is expressed with a parameter
t; and from it one can extract the so-called Burau Matriz. The following re-
lationship connects Burau’s braid group representation with Alexander’s knot
polynomial:

det(Id - Burau Matrix(8)) = ££"A4(¢) for some n

Burau showed this by connecting the Burau Matrix of § with a known
way of calculating A from a presentation of the knot group.

The first firm connection between knot theory on the one hand and braid
theory on the other was made by Alexander in 1923 with a theorem which
showed that any n-link is equivalent to some closed braid. He also gave a simple
algorithm [5] for converting an n-link into a closed braid. The existence of such
an algorithm was already noted by Herman Brunn in 1897 [20]. However,
troubles with this algorithm are twofold. It may cause one and the same n-
link to become a closed braid which, upon cutting can belong to two distinct
braid groups B, and B,, n # n'. If the algorithm consistently canses the
n-link to yield a closure of a braid belonging to just one braid group, then
there may be many words representing it.

How does this tesult affect classification and knot isotopy? Closed braids
have two very interesting properties, which are caught by the so-called Markov
moves.

1. There is a particularly diabelical way of making a knot from an open
braid. If one takes two braids «, 8 € B, and constructs the closure:
(aEE“) then it will equal 5. The closing operation causes « to be
cannibalized by its inverse. This is worded by saying that conjugate
elements in B, yield equivalent links.

2. Imagine a closed braid on a spar. Adding any number of strands by
means of simple twists cast in any of its outer bights over the spar
does not change the type of link.

The essence of these two properties was captured by A.A. Markov in his
theorem of 1936 which states that closed braids £ and ¢ are equivalent as
links if and only if they can be connected by a finite sequence of elementary
moves, which are precisely those described by the two properties of closed
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braids above. The braids are then said to be Markov equivalent. This is an
equivalence relation on B, the disjoint union of all braid groups.

Markov's theorem is of particular interest because it allows one to restate
the knot problem as a purely algebraic problem known as the Algebraic Link
Problem, which is the classification of Markov classes in B,,. This comes
down to finding a well-behaving class function on the Markov classes. Tt is
worthy of remark that Markov never proved the theorem which got named
after him. It had to wait until 1974 when the doyen of Braid Theory, Joan
Birman, published a complete proof, achieved by cleverly combining the results
of many other workers. It was no mean feat.

Another classical result is due to Artin. His original paper already con-

tained the fundamental isomorphism between braids and automorphisms on’

B, It establishes that these mappings may be used to obtain a presentation
for the knot group of any tame n-link [9]. The proof, though, was too intuitive
for his liking. In 1947 he published a new paper on braids. This time he gave
rigorous definitions and proofs including normal forms of a braid, which may
be used to give a complete characterization of knot groups [10]. When Artin
first suggested braid theory as an approach to the study of knots and links,
he conjectured that the chief obstacle in the approach would be the conjugacy
problem in B,,. This is the problem of deciding whether there exists a vy € B,
such that for two braids @, # € B, the equation & = {(y5v~!) holds. In that
case o and 3 are said to be conjugated. There have been many attempts to re-
solve this conjecture since Artin’s 1925 paper. Partial solutions were attained,
such as Frolich’s in 1936, but it was not until Makanin and Garside around
1968-69 completely solved the problem. Garside [37] invented an ingenious,
though rather complicated and hard to prove algorithm, by which he could
decide whether or not two braids are conjugate.

Since we have available an algorithmic solution to the conjugacy problem
it is natural to ask whether this might lead to a general solution of the knot
problem? The answer is no, since there is trouble with the Markov moves. An
arbitrary sequence of them applied to the closure of & € B, may either increase
or decreage the number of strands, but if the final closed braid ultimately
returns to B, then there is no guarantee that one has not replaced & with a
conjugate of itself. This is not so bad as it may sound. Birman succeeded
in finding some relaxed conditions for the knot problem which resulted in
simplifying Garside’s solution a little. Her work can easily be explained by
introducing some nomenclature. A positive word denotes an open braid in
which all o3(1 < ¢ < (n — 1}) have non-negative exponents. If such a braid is
closed then it yields a positive link. Birman found that the knot problem on
positive links reduces to the conjugacy problem. This implied that such links
can be classified.
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13. Problems in Paradise

Until this time, the beginning of the 1980s, the overall picture of the knot
theoretical arena was cne of relative tranquility. Purists insisted that knots
and braids were different things. The former lived in the world of topologists,
whilst braids belonged to the algebraists. This view catered for a state of
peaceful coexistence, the result of an evolution in which both camps more or
less went on minding their own business. This changed in a radical manner
when a new knot polynomial erupted onto the scene. In the 1980s the New
Zealander Vaughan Jones, through work in von Neumann Algebras associated
with certain physics problems in statistical mechanics, had found a new way
into knot polynomials. In order to study those aspects of theoretical physics
he had constructed an algebra J, given by:

T el =g
(@1,.. ., @n-1 : T1,T2,73) Where { T2 4i8ix16: = T4
Ty i@ = a6, |8 — g > 2

What happened is perhaps best expressed in his own words [48, p. 53]

In my work I had been astonished to discover expressions that bore
strong resemblance to the algebraic expression of certain fopological
relations among broids.

He was so struck by the resemblance between the definition of his algebra
and that of the braid group B,, that in May 1984 he journeyed to Columbia
University to meet Joan Birman, to discuss his ideas with her. Their initial
deliberations were discouraging. But Jones found, very soon after, that a rep-
resentation of B, could be transformed info one of J;; which in turn possesses
a trace map. Since trace maps are natural class functions, and Jones’ trace also
supported the second of the Markov moves, he thus had effectively constructed
a link invariant!

General acknowledgement of the importance of this discovery was not
immediate; but eventually his ideas came to have immense impact on much
mathematical research in topology. In fact, he was later awarded the presti-
gious Fields’ Medal for his contribution to the advancement of mathematics.
Not only did Jones’ work link knots to statistical mechanics, but also it sparked
an interaction between knot-theory and braid-theory, the like of which had not
been seen since the times when Artin’s and Alexander’s ideas became enjoined,

The new Jones knot invariant became known as the Jones polynomial;
it is denoted by V. Jones himself had published its skein relation in his first
article [47] which documents his ideas. The relation has the form:

Wy, (£) — Vi (£) + (171 = 1)V, (t) = 0, with Viy = 1
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At first it seemed to be yet another polynomial invariant in the long
line of such objects which had been proposed previously. Some of them were
truly exotic in their definitions, while others were plain monsters in their time
complexities; but V' did something different. Knot theorists had begun to
understand that symmetries, such as handedness and orientation, which are
not caught by the Alexander/Conway polynomial, belong to entirely different
regions of the mathematical universe. The reason that Alexander’s polynomial
does not cater for invariance under mirroring is due to the fact that Ag-{t) =
Ag(£t™). A key property of V' is that (like the twist spectrum):

Vi () = Vi (t7')

Simple examples show that Vi () need not be invariant under ¢ — #71, so

that it can sometimes distinguish kaots from their mirror image. For example, -

in the case of the two Trefoils Ty and T, we have:

V() =t + £ = Ve (7Y
Vo) =t 4+t =t =V ()

V is pretty good at detecting this sort of symmetry, though not infallible. Its
merits for this are first dashed with knot 942 from the tables by Reidemeister

and Rolfsen [74], [77]. But even so, this property shows that V is not a knot-
group invariant like A or V.

It is a remarkable fact that V’s appearance on the knot scene, some 40
years after A’s, did not trigger any generalizing activity in the mathematical
community. Whereas the appearance of Jones' polvnomial seemed to present
an explicit invitation to do so. It immediately led to an outburst of discoveries
of knot polynomials with more than one variable. Moreover, time since then
has shown that V' was to be generalized in two quite distinct ways.

The first general polynomial to appear was to be known as Homfly; it is
also called Homfly-PT, and also Thomflyp. The names are acronyms which
are derived from the initials (of 6) of the 8 people who discovered it {36],
independently and almost simultaneously. Four of them happened to submit
an article on their work to one and the same major mathematical journal
on virtually the same day! Although they reached their results via different
routes, the main idea was inspired by generalizing the coefficients in the skein
relation. They were invited to pool their ideas, and present a single paper,
jointly under all their names; this they did. Their two-variable polynomial,
denoted by P, has the following skein relation:

£Pg (8, m) + £ Py_(€,m) + mPr,(f,m) =0, with Py =1
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For the sake of comparison all four skein relations are listed below:

Ap,(t) —Ar_(8) +(t77F —t3)Ag,(t) =0, with Ag =1
\7;{+(t) — VK_(t) — tho(t) = 0, with VU =1

Wi, — Vi + (177 = 13)Vi, (£) = 0, with Viy = 1

£Pg (£,m) + £71Px_(£,m) + mPg,({,m) = 0, with Py =1

However, very soon after the public announcement of P's discovery, exam-
ples of indistinguishable pairs of mirror image knots emerged. Of course, one
counter-example is sufficient to torpedo a conjecture, but in 1986 Taizo Ka-
nenobu produced infinitely many classes of, in turn, infinitely many distinet
knots with the same P-polynomial. Using the second elementary ideal of the
Alexander module, he showed [52] that for the knots K, (see Fig. 20):

P(K,,)=P(Kyy,) Handonlyif p+g¢=p +4.

P contains the information of A, ¥,V and more; but there the similar-
ity ends. And to-date all attempts to interpret V' in the same topological
framework as A have failed. '

)

Fig. 20. The knot K 4 used by Taizo Kanenobu

Louis Kauffman’s F-polynomial was the second distinct generalization
of V' to appear. He obtained his polynomial by cutting up a knot in a special
way [54]. The skein relations we have seen so far are recursive definitions
on knot diagrams which differ in the set of crossings which was shown in
Fig. 18. Kauffman's polynomial is based on the very imaginative idea of a
state model, which sees an uncriented knot diagram as a stafe &, and which
provides information carried by the diagram. Given a diagram (of a knot &,

© say), he proposed splitting a crossing in two ways, thereby obtaining two new

states (the same operation as used to obtain Turner’s twist spectrum). These
were assigned a ‘weight’ A or A~! according to their type of split (if a new
state included a circle, a more complex weight, a function of A and A~1, had
to be assigned). He continued this process nntil no crossings were left; and
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then took the weighted sum over all the resulting states, obtaining what is
now called the Bracket polynomial of K. This is denoted by:

<K>=3 <o|lK > (-4 - A7l

The Bracket can be generalized to yield a two-variable polynomial invari-
ant, named the L-polynomial. By using L, divided by a factor involving one
of the variables raised to the sum of the knot’s crossing parities {the so-called
writhe w{K)), one can construct yet another polynomial invariant, which s
customarily denoted by F, and is known as the Kauffman polynomial. Thus:

Frele, ) = a™Lc(a, 2)

In [60] Lickorish shows that the Jones and Kauffman polynomials, V and F,
are related by the following equation:

Vie(t) = Fr(—t%, 7% 4 4)

The F-polynomial is quite good at detecting chirality. It is probably a little
better for this purpose than P, because it originates from four instead of
three terms; but it has its shortcomings too. However the Bracket polynomial
is a truly amazing construct. For instance, it was used to confirm the old
conjecture {made by Tait) that the number of crossing points in a connected,
reduced, alternating projection of a link is a topological invariant. Several
other long-standing problems were also dealt with quickly by means of this
and the other new knot polynomials [69], {85].

In spite of its more powerful generalizations, Vi (t) has retained its interest
and value in knot research and applications. Ironically, one reason for this is,
simply, that it has only one variable; which makes it easier to work with!

Amongst all the questions asked after the discovery of the new knot poly-
nomials, the dominating one was: Granting s existence, how may these poly-
nomials be placed in a sound mathematical setting? Many researchers have
tried to shed light on this question, in the past decade, working from a va-
riety of viewpoints, moving in uncharted territories of topology, algebra and
statistical mechanics. The schematic diagram on the next page indicates the
need to underpin satisfactorily the array of aew knot invariants with a unifying
theoretical base. And the next section summarizes some of the work that has
been done in this ‘terra incognita’ since the invariants appeared.

14. Chafting Terra Incognita

Jones’ discovery implied that statistical mechanics must hold clues for
an understanding of his polynomial. Therefore the discovery of V, F and
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P triggered off even more ambitious research, which came from roughly two
(interacting) directions. One of these was from physicists churning out link
invariants. The other was from the mathematical camp of knot-theorists,
trying hard to understand themn.

It became obvious that via Markov's and Alexander’s Theorem, one should
be able to relate algebraic interpretations for link-invariants to the braid
groups. Algebraically, the link problem translates into domesticating a class
function on the Markov classes. However, a head-on attack on Markov equiv-
alence in B, is hopelessly difficult. Luckily, representation theory's richness
provides plenty of room for finding invariants. As the endpoints of braids
define a permutation in a natural way, the symmetric group S, thus exists
as a quotient in B,. It is natural, then, to study how representations of S,
and B, are related. It turns out that ewery irreducible representation of 5,
transforms to a parametrised family of irreducible representations of B,. In
fact, S, transforms to an algebra H, (g}, the so-called Hecke algebra, when
g— 1.

HOMFLY KAUFFMAN'S
P- polynomial F - polynomial
JONES®
V-palynomial
TERRA INCOGNITA

The grand unifying theoretical base

Adrian Ocneanu discovered Homfly as a trace function on the algebras

"~ H.,, which supported a Markov trace as a weighted sum of matrix traces

on their irreducible summands. The quadratic defining relation of a Hecke
algebra afforded an explanation for its skein relation. The Japanese research
feam of Akutsu and Wadati found new link invariants by interpreting further
statistical mechanical concepts [1}, [2], [3], [4]. Their invariants turned out
to be P again, but now in terms of ‘cubic’ Hecke relations, and supporting
skein relations for triplets of links which are equivalent except in one crossing
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point, where they may have left- or right-handed spiralling segments instead
of & single crossing. This was an idea that Conway had already explored when
be discovered V [23]. It is called cabling.

Ualike V', and to a certain extent P, the F-polynomial was discovered by
purely combinatorial techniques, and it seemed at first glance to be completely
unrelated to braids. However, so-called BWM algebras were constructed by
Joan Birman, Hans Wenz! and also, independently, by Jun Murakami {17],
[68]. Geometrically speaking, they extended the braid groups with U-turns,
making them into (braid) monoids. The BWM algebras are quotients of the
complex group algebra CB,,, and they support a 2-parameter family of Markov
traces whose associated link invariant is the Kauffman polynomial. Each of
these algebras contains H,, as a direct summand, and the Markov trace that
associates to Homfly is the restriction to H, of the Markov trace that defines
F.

Each of the algebras just described supported a Markov trace, and so
determined a link-type invariant. In this way a uniform picture of the old and
new link invariants gradually emerged, with the representation theory of B,
being an important central part of the picture.

However, the various generalizations of link polynomials have been sub-
sumed under an even more general and unifying procedure, via the so-called
Yang-Bazter Equation (YBE). A Yang-Baxter operator on a vector space V

iz 2 linear isomorphism R: V @V — V @ V such that the following hexagon
commutes: o
VeavVveV = VeVeV

1®R/ \1®R
VvevevVv VeveV
Rl N A Ret
vevVey ¥ vevev

This is equivalent to requiring that:
(R@Idy)o{ldy @ R)o(R® Idy) = (Idy @ R}o (R® Idy) o (Idy ® R)

This equation is the Yang-Baxter Equation (YBE), introduced by C. N. Yang
in 1967 in the context of the i-dimensional quantum n-body problem as a
factorization condition on the S-matrix. Later it was used by Rodney Baxter
to obtain explicit formulae for the partition function of the 8-vertex model
by the transfer matrix method. The YBE plays a fundamental role in two
physical theories: namely the theory of exactly solvable models in statistical
mechanics, and the theory of completely integrable systems.
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Driver by an idea of Vaughan Jones [49], and returning to the mathemat-
ics behind statistical mechanics, Viadimir Turaev [88] showed that R-matrices
(i.e. YBE solutions} yield a mechanism to produce new representations for By,
each of which lead to new polynomial invariants. Turaev imposed conditions
which ensured that the representations so obtained supported a Markov trace.
Thus was born a machine, ready to produce further link invariants provided it
was fed with R-matrices. Since then the history of the YBE has intertwined
and interacted with developments in knot theory. For example, Hans Wenzl
discovered how, by cabling braids one can find new representations for By,
which in turn yield new solutions to the YBE [94].

The YBE can be written in several forms. There are general methods
which allow one to comstruct R-matrices for the various versions {59}, [75].
Originally, it was not written in the form given above, but as an equation in a
Lie algebraical setting and called the classical YBE {the CYBE). This is easily
explained. Let £ be a Lie algebra, and let r : £82 — £®? be an isomorphism.
Let 13 be r@1: £8% — £ and r;; the image of 71, under the automorphism
of £%% induced by the permutation (1,2)(2,7). The isomorphism 7 is said to
be a solution for the CYBE if:

[r1z, Toa} + 13, 723] + [r12, 723} = 0

The CYBE has been well studied. To any finite-dimensional representa-
tion of a simple complex Lie algebra on a vector space V endowed with an
antomorphism of the Dynkin diagram, there is a matiix R € End(V @V} which
satisfies the CYBE [50], [59]. It was found that CYBE solutions satisfied Tu-
raev's extra conditions. Michio Jimbo gives the E-matrices corresponding to
the fundamental vectorial representations of the non-exceptional Lie algebras
of the series AL, Bl C} D}, A2 and D2, where the upper index denotes the
order of the automorphism of the Dynkin diagram {45]. Jimbo showed that
the R-matrices of the series AL Tesult in operator invariants of ordered tangles
and the Homfly polynomial of a link. The R-matrices of the series BL,C1, D}
and A2 result in operator invariants of framed tangles and the Kanffman poly-
nomial of a link. These are ‘constant’ YBE-solutions. A daunting idea is to
parametrise them and the YBE, much like a Hecke algebra is a parametrised
version of S,. A quantised universal enveloping algebra is such a transforma-
tion of a classical Lie algebra that depends on a transformation parameter g
and recovers the classical algebra in the limit as ¢ — 1. Furthermore, it is
endowed with a comultiplication, as well as an antipode and a co-unit, which
gives it the structure of a Hopf algebra. These objects are better known as
quantum groups, due to their intimate relationship with the gquantum inverse
scattering method, and in that connection first studied by the St. Peters-
burg school of L. D. Faddeev. Quantum groups arose In 1982 as algebraic
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structures describing symmetry properties encountered in solvable statistical
models. However, they have not much to do with quantum mechanics, and
are not groups either! Drinfel’d, who introduced the term gquantum group,
defined the structure as a Hopf algebra, essentially a bialgebra with an an-
tipode. Quantum groups constitute an exciting generalization of the concept
of symmetry. In this context, the parametrised YBE becomes the Quantum
YBE (i.e. QYBE).

The invariants from the quantum group setiing are polynomials, They
are gathered under the heading quantum invariants, also called generalized
Jones invariants. Since transfer matrices satisfy the YBE if and only if they
are a representation for B, every quantum invariant is obtained from a trace
function on an R-matrix representation for B,,.

The renaissance in the interactions between between physics and knot
theory (recall Gauss’s use of properties of knots in the solution of an electro-
magnetic problem, and Thompson's plans to describe chemistry in terms of
knots) was due to statistical mechanics studies. But nowadays there are at
least three other, different, ways in which physics and knot theory are related.
Not only is there topological quantum field theory, but the theory of quantum
invariants has alse proved to be closely related to conformal field theories.
In this connection one should mention Edward Witten’s papers [96], where
it is shown that Jones’ polynomial and its generalizations are related to the
topological Chern Simons actions.

So, order is emerging from chaos, and new results are being achieved con-
tinuously. The order appears to be part of an even larger order, which involves
the physics of conformal field theory, and leads to further invariants, now in
arbitrary 3-manifolds. As we have seen, the theory of R-matrices gives a gys-
tematic description for the quantum invariants. It has been known for a long
time that any compact orientable 3-manifold arises {up to PL-homeomorphism
or diffeomorphism, depending on the choice of category) as the boundary of
a 4-manifold M, where M is obtained by attaching 2-handles to the 4-ball,
along some framed link in S3, i.e. by surgery along framed links. Lickorish
and Wallace proved this at the beginning of the 1960s [61], [92]. One can think
of framing as the thickening of the knot inta a ribbon-like object. Any closed
oriented 3-manifold may thus be obtained by performing surgery along differ-
ent framed links in the 3-sphere. This yields an equivalence relation on framed
links. Robion Kirby proposed a set of moves which generated this equivalence
relation [55]. Roger Fenn and Colin Rourke simplified them. Their moves may
be described by means of tangle generators [33]. By using Kirby, Fenn and
Rourke calenlus, Nicolal Reshetikhin and Vladimir Turaev in 1991 defined 3-
manifold invariants using the theory of quantum groups. They produced new
3-manifold invariants, which can be defined from any simple Lie algebra, pro-
vided the associated quantum groups have the structure of & finite dimensional
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modular Hopf algebra [76]. ‘

The theory of quantum invariants had led to the dlscovgry ‘of tangle ca.‘te-
gories. By looking at the most generalized form of ‘kno’c‘3 which is a grz?.ph with
‘knotted ribboned parts’, one can construct so-called rlbbon_ categones.‘ The
finite dimensional representations for quantum groups comprise guch a ribbon
category. This connection could thus be used to find the new 1qvar1ants for
3-manifolds. Other results made Reidemeister’s theorem a covgnan!: functor
between the categories of links and diagrams, while quantum Invariants be-
came covariant functors from tangle categories to categories of modules. On
the whole, category theory has been able to cut a lot of cake, as the language
was quite effective to formulate and extend very general ideas about the central
link polynomials. . o

So far, the story has been one of ‘simple’ hierarchzcal‘ _genera.hza.mon&
An exciting change of perspective comes from V. A. Vassiliev [91}. He
considers the so-called knot space M, which is the space of {ﬂl embeddings
v : §' «= 8%, This allows one to study more than just a su.lg]e knot and
the ways in which distinct knots relate to each other. The object of utmost
interest is the natural stratification of M . Deforming knots to the level where
we permit self-intersections of the cord in which they are realised leads to the
notion of chambers in M. The discriminant € of M is defined to be the Sf%t
of mappings which are not embeddings. This is a singular hypeISurface.m
M . The components of M — C are clearly in one-to-one correspon(?lence with
the knot types. Thinking of a numerical knot invariant as a function on t:he
components of M — C one is led to study the cohomology of M. Vassiliev
introduced a system of subgroups of H*(M —C}:

0=G;CGCGC...c H*M-0)

where 7 is reduced cohomology with integer coefficients and G, is free abelian
of finite rank. The evaluation of an element in G;/G;_: on the component of
M — C corresponding to an oriented knot type K . vields a ratio.nal r}umber
u;(K) associated to K. This is a Vassiliev invariant ofvorder 1. Like 1';he
Jones invariants, one computes Vassiliev invariants from a diagram by changing
crossings. However, the combinatorics of the comeputation are very much more
difficult. . ‘ .
Vassiliev’s invariants are rational numbers, while generalized :]ones invari-
ants are Laurent polynomials over Z[g, ¢”!]. Joan Birman and Xiao-Song Lin
showed that there is a relation between them {16]. Let a knot K hax.fe J.ones
polynomial Vi (t). Set U{K) = Vk(e*) and express it as a pawer series in

UL (K) = i w(K)T

=0
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then wug(K) = 1 and each w,(K), for i > 1, is a Vassiliev invariant of order
2. Although this scheme so far works only for knots, the Vassiliev invariants
seem to offer at least part of the topological framework we seek for the quan-
tum invariants. Hence there are speculations abounding. For instance, it is
well-known that quantum groups do not detect invertibility of knots, but Vas-
siliev’s invariants just might. This would make them stronger than quantum
invariants. The research with ribbon categories and Vassiliev invariants have
caused the singular braid monoid to place itself permanently on the scene.
Moreover it threatens to become just as fundamental a mathematical tool as
the braid groups. However, amongst all of these recent developnents, mainly
involving the braid groups, the knot complement group is far from forgotten.
David Joyce, Colin Rourke and Roger Fenn have concocted an algebraic struc-
ture, which dates back to John Conway and van Brieskorn in the 1960s, and
is now called a rack. It generalizes the knot group, but also captures aspects
of the peripheral systom. This completely classifying invariant seems to be a
promising and exciting new part of the overall picture [34], [51].

15. The Future?

In the foregoing sections we have seen how vague, intuitive notions about
knotted structures, beginning with the work of Listing, Gauss, Kirkman, Tait
and Little of last century, were gradually developed until they reached, by the
last decade of this century, extremely high levels of abstraction and complexity.
Concerning the future of this process, one can only speculate on how far, and
mn which directions, the current attempts to solve a variety of outstanding
problems will take us.

The prime knots with up to 13 crossings have been distingunished and
tabled; and these knots are relatively simple objects. Attacks on the classifi-
cation of 14- and 15-fold crossing knots are in progress; there are very many
more of such knots, and no doubt it will require combinations of several of the
avallable invariants to distinguish them all. It will be difficult, and perhaps
not sensible, to produce diagrams for these vast numbers of knots; most will
be ‘known’ only by their corresponding invariant values, arranged in classes
and stored in some digitised form. The baffling problem of finding a single,
complete, knot invariant (if one exists) still remains. :

Future research will certainly be affected by the amazing developments
stemming from Jones' discovery. They continue unrelentingly; yet many simple
guestions remain unanswered. It is still not known whether a non-trivial link
can have the same V-, P- or F-polynomial as has the trivial link of the same
number of components; we know this can happen for A and V. Resolution of
this question would lead to significant conceptual progress. No generalization
of it to knots and links of higher dimension has yet been achieved.
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From the point of view of contemporary topological knot theory, the chief
problem is to find an interpretation of the new invariants in terms of classical
algebraic topology (homology theory, homotopy theory and such) or differen-
tial geometry (differential forms, connections, etc.). Here considerable specu-
lation has produced little of note. Perhaps there can be no such interpretation,
and states-model theories from statistical mechanics must be incorporated into
topology. Perhaps we shall witness the emergence of other, exciting and en-
tirely new theories, such as quantum mathematics, enriching mathematics.
Who can tell? The recent interactions between knot theory and the rest of
mathematics are really quite bewildering. They indicate that there is much
still to be done.

Knot theory as it stands today represents a significant stream of ideas,
flowing from the challenging difficulties of describing and understanding the
phenomenon knot and its observable properties. The abstract heights it has
reached, and the applications it has so surprisingly found in the wake of Jones’
discoveries, give eloquent support to the often-mentioned notion of: ‘the seem-
tngly inevitable utility of mathematics conceived symbolically without reference
to the real world”

It has been said that knots are more numerous than the stars, and are
equally mysterious and beautiful. Like the stars seen at night, knots pervade
our senses and challenge us to understand them. This happens now, not only in
our everyday working world but also, as we learn from the quantum physicists,
in our deeper philosophical efforts to explain the mysteries of fundamental
physical and biological phenomena. The needs to understand these mysteries
will continue o give impetus to the currently widening spread of research into
theories and applications of knot theory.

Bibliographic Notes

Knot theory has a substantial literature, albeit very scattered; literature on
the history of the subject is also scattered, fragmentary and sporadic. The
earliest works, before the turn of this century, tend to mention many interest-
ing sources; but as a rule authors on knot theory after 1900 are rather sparing
with their historical information. Luckily there are a few exceptions such as
Dehn/Heegaard [29]. From a mathematician’s point of view, undoubtedly the
most impressive accounts of knot theery's history may be found in Gordon
[39] and Thistlethwaite [86]. The encyclopaedic work by Burde/Zieschang [22]
evaluates and records the state of the field immediately before the spectacular
discovery of the Jones polynomial. Their book supplies fragmentary histori-
cal data; but their bibliographic listing has over 1000 entries to compensate.
Wilhelm Magnus has written about the early history of braid theory in [64].
Jozef Przytycki has described parts of the modern history of knot theory in

i, Ml nibid.
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[73]; and Joan Birman has written a speculative and exciting overview article
[15] of the very latest developments.

After the discovery of the Alexander polynomial, knot literature came in
a steadily increasing flow. Nowadays one may speak of an explosive growth of
papers in the field. Yet comprehensive books, both monographs and textbooks,
are still few and far between. Kurt Reidemeister's pioneering work Knoten
Theorie of 1932 appeared in English translation [74] in 1983. Its approach,
of course, follows the combinatorial spirit of its times, and so only supplies
a historical introduction to the subject. Another book still of much value is
Introduction to Knot Theory, by Richard Crowell and Ralph Fox (1963) [25].
This gives a beautiful introduction to the subject from the classical algebraic
topalogical point of view, and is a fine tribute to the developments which
emerged in the post World War II period. Knots and Links by Dale Rolfsen
(1976) is remarkable for a number of reasons [77]. It is a giant leap into
(geometric) topology, and introduces all developments up to the mid-70s. An
excellent introduction to the theory of braids is Braids, Links and Mapping
Class Groups by Joan Birman [14].

Following the explosion of activity in applied knot studies in the late 80s,
a stream of books on the topic has been published. For example, Louis Kauff-
man’s Knots and Physics [54], hard on the heels of books such as Braid Group,
Krnot Theory and Statistical Mechanics (edrs. C. N. Yang and M. L. Ge, 1989}
and New Developments in the Theory of Knots (edr. Toshitake Kohno, 1990};
these last two are volumes @ and 11 in World Scientific’'s Advanced Series in
Mathematical Physics. This present book is volume 11 in World Scientific’s
Series on Knots and Everything. And in January 1992 the first edition of
Jowrnal of Knot Theory and its Ramifications appeared, also published by
World Scientific; the subject has, at last, its own Journal.

It is inevitable that the new ideas and theories about knots will gradually
be introduced into syllabuses for graduate and nndergraduate mathematicians
and physicists. Textbooks for teaching the subject will come forth. An ex-
cellent recent example is Knot Theory, by Charles Livingston (Mathematical
Association of America, 1993); he covers much of the classical theory, and con-
tinues through to high-dimensional knots and the combinatorial techniques of
various of the new polynomial invariants. He includes many exercises suitable
for undergraduates, to whet their appetites and help them come to grips with
this exciting but demanding subject.
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CHAPTER 12

ON THEORIES OF KNOTS

John Turner

“‘And everybody praised the Duke,
Who this great fight did win.’
‘But what good came of it at last?’
Quoth little Peterkin.
‘Why, that I cannot tell,” said he,
‘But ‘twas a famous victory!’”
[On G. T. Fechner turning psychology into

an exact science; quoted in The World of
Mathematics, J. R. Newman, p. 1165.]

1. Is Knot Theory Topology?

The earliest scientific paper we know in which a mathematician discusses the
problem of constructing & mathematical theory of knots, contains the following
paragraph:
Whatever the twists and turns of a system of threads in space,
one can always obtain an expression for the calculatton of its
dimensions, but this ezpression will be of little use in practice.
The craftsman who fashions a braid, e net, or some knots will be
concerned, not with questions of measurement, but with those of
position: what he sees there is the manner in which the threads
are interlaced.

Alexandre Theophile Vandermonde (1735-1796)
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