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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 229, 1977 

KNOT MODULES. I(1) 
BY 

JEROME LEVINE 

ABSTRACT. For a differentiable knot, i.e. an imbedding SI C S,+2, one can 
associate a sequence of modules (Aq) over the ring Z [t, I -l], which are the 
source of many classical knot invariants. If X is the complement of the knot, 
and X -e X the canonical infinite cyclic covering, then Aq = Hq(X).In this 
work a complete algebraic characterization of these modules is given, except 
for the Z-torsion submodule of A 1. 

In classical knot theory there are many "abelian" invariants which have 
proved useful in distinguishing knots, e.g. knot-polynomials, "elementary" 
ideals, homology and linking pairings in the finite cyclic branched coverings, 
ideal classes (see [F], [FS]). It is known (see [T]) that these invariants can all 
be extracted from a certain module A over the ring A = Z [t, t -] and a 
"Hermitian" pairing on A taking values in Q (A)/A (Q (A) is the quotient 
field of A). The construction of A and <, > carries over to higher-dimensional 
knots and, in certain cases, are enough to classify the knot up to isotopy (see 
[L], [T1], [K]). 

In general, there is a finite collection A1,..., An of such modules 
associated to an n-dimensional knot in (n + 2)-space, and <, > exists on Ak 
when n = 2k - 1. Our first purpose in this work will be to give an algebraic 
characterization of these objects. There is already a great deal known in this 
direction (see [K], [Ke], [L3], [G]). Our results, which will be complete except 
for some problems with the Z-torsion part of A 1, will extend and reformulate 
these known results. For this purpose we will find it necessary to define a new 
pairing [ , ] in the Z-torsion part of Ak, when n = 2k. 

In the second part of this work, we will make an algebraic study of the 
modules and forms which have arisen from Part I. Our approach is to 
consider new modules and forms, derived from the original ones, over rings 
with a good structure theory: polynomial rings over fields, and rings of 
algebraic integers. The structure theory then classifies the derived object via 
invariants in these rings. These invariants include-most of the "classical" knot 
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2 JEROME LEVINE 

invariants. Our main results will characterize in many cases the invariants 
which can arise from knots of a given dimension. For example, the rational 
knot modules (i.e. Ak 0 Q) with their product structure can often be com- 
pletely characterized-this has consequences for knot cobordism realizability 
[1]. In addition many integral invariants appear-including the ideal class 
invariants of [FS], but also many new ones-and are characterized. 

Some of the work in this paper in Part I is a redoing of known results, 
referred to above, in an effort to give a more unified and simple presentation 
of the entire subject. For example, we have been able to give a "coordinate 
free" formulation of some of the results of [Ke] and [G]. The middle-dimen- 
sional realization results of [K] are also given a different proof which has 
obvious applications to construction of more general manifolds with sol = Z. 

Some of the results of this work have been previously announced in [Li]. 
However, let me take this opportunity to point out certain errors in [Ll]. In 
?6, part (i) of the first proposition and part (iii) of the second proposition are 
wrong; in fact, there are easy counterexamples. 

We will work in the category of smooth knots, but the same results hold for 
piecewise-linear knots (see [W5]). If the dimension of the knot is different 
from 4, this is also true of topological (locally flat) knots (see [CS]). Only the 
argument of ? 15 does not apply to topological knots. 

1. A (smooth) n-knot (of codimension two) will be a smooth closed oriented 
submanifold K" c S"+2, where Kn is homeomorphic to S'. Most of our 
arguments apply to locally-flat piecewise-linear or topological knots. The 
complement of the knot is the space X = S+2 - K". It follows directly from 
Alexander duality that X is a homology circle, i.e. H*(X) z H*(S'). 
Abelianization defines an epimorphism e: g1(X) -> Z, where a preferred 
isomorphism HI(X) Z is defined by the orientation of K and the duality 
isomorphism H1(X) t Hn (K). The covering space X -4 X associated to 
Ker e c g1(X) is the universal abelian covering of X. The group C( of 
covering translations of X admits a preferred isomorphism with Z via e. In 
other words e has a preferred generating diffeomorphism T. The induced 
automorphism T* of Hq(X) defines a unique module structure on Hq(X) over 
the ring A = Z[t, t'] by setting t = T*. We will use the notation Aq = 

Hq(X) and the sequence {Aq} will be referred to as the Alexander modules of 
the knot K. Later on we will impose additional product structure on these 
modules. 

PROPOSITION (1.1). Aq is a finitely-generated A-module. 

Let X0 be the complement of an open tubular neighborhood of K. Thus X0 
is a smooth compact manifold and, hence, admits a finite triangulation. 
Since X0 c X is a deformation retract, there is an infinite cyclic covering 
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KNOT MODULES. I 3 

space XO of X0, which is an equivariant deformation retract of X. The chain 
complex C*(Xo) is made up of free A-modules on the cells of XO, and, 
therefore, is of finite type. Since A is Noetherian, this implies that H(Xo) z 
Hq(X) is a finitely-generated A-module. For most purposes, we may replace 
X by X0-and we do so for the remainder of this work. 

Let e: A -* Z be the canonical augmentation defined by e(t) = 1. 

PROPOSITION (1.2). If e is used to define a A-module structure on Z (i.e. 
X * m = e(X)m) then Aq OA Z = 0 for all q > 0. Equivalently, multiplication 
by t - 1 defines an automorphism of Aq, q > 0. 

Consider the Cartan-Leray spectral sequence of the infinite cyclic covering 
X -> X. In our case, Ek,1 = Hk(Z; H1(X)), where the (local) coefficients are 
equipped with the Z-action defined by the covering transformations. Using 
the free resolution 

A > AZ--O 

we see that E 2 = 0 for k #7 0, 1, Eo2 = HI(X) ?AZ and 

E21 = Kernel(t - 1: HI H(X 

Since X is a homology circle, E 21 = 0 for I > 1. 
To obtain the case q = 1, note that Ej?? = E02'I = Hj(X) ?AZ is a sub- 

group of H1(X) ; Z, with quotient E? EO20= Kerneltt- 1: HO(X) 
Ho(X)}. Since X is connected and t = 1 on Ho(X), the desired result follows. 

COROLLARY (1.3). Aq is a A-torsion module. 

Let a, ..., am generate Aq, by Proposition (1.1). By Proposition (1.2), we 
may write ai = (t - 1)Ym= 1XAaj for some X. E A. Rearranging this we may 
write: 

m 

2 yituai= O, i = 1, . .., ml 
j=1 

where 

(t - l)XA - I i =j. 

Let A = det(1ij); then Aai = 0 for i = 1, . . ., m. Thus AAq = 0. Since 
= - S., we have e(A) - ?1, and so A 7# 0. 

2. The deepest properties of the {Aq} are derived from duality. To pursue 
this we summarize here the necessary facts which can be found in some detail 
in [M]. Let X be a compact piecewise-linear n-dimensional manifold with 
boundary and X -> X a regular covering space with X = group of covering 
transformations. Using a triangulation of X and left action of 7r, the chain 
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4 JEROME LEVINE 

groups C*(X, a?x) are free left Z[mr]-modules with basis corresponding to the 
cells of X not in ax. If X1 is defined by the dual cell-complex of X, then 
C*(X') are free left Z [r]-modules corresponding to the cells of X1. An 
intersection pairing: Cq(XI aX) X Cn-q(X) Z Z[r], (a, /3)i-> a* /3 is de- 
fined with the following properties: 

(i) bilinear over Z, 
(ii) (ga) ,= g(a * ,) for g E 7r, a E C(XC x), f3 E Cnq(X1), 
(iii) ae *3 - (= (-q-q) /B a, where X " X is the antiautomorphism of Z [r] 

defined by g = g' for any g E 7T, 
(iv) (aa) *,8 = (- l)-* (afl), where a is the boundary operator of the 

appropriate chain complex. 
Let R, S be rings with unit, C a left R-module and G an (R-S)-bimodule. 

Then HomR(C, ) is a right S-module. If 4: C1 -> C2 is a homomorphism of 
left R-modules, then the induced homomorphism 4*: HomR(C2, G) -* 

HomR (Cl, G) is a right S-homomorphism. So for example if C = { Cq is a 
chain-complex of left R-modules, then HomR(C, G) = {HomR(Cq, G)} is a 
cochain-complex of right S-modules. If R = S = G, we denote by C*= 
HomR(C, R) the resulting right R-module. 

By (i), (ii) above, the function a o- a / 3 defines an element [/3] E 
Cq(X, ax)*, for any /3 E Cn_q(X'). Furthermore, the function 4: Cn.q(XI) 

> Cq(X, ax)* defined by 4( /) = [/3] satisfies the property 4(X/3) = 0( 8)X 
according to (i), (ii), (iii). 

THEOREM (2.1). 0 is biective. 

See [M] for a proof. 
Property (iv) implies that 4 is a chain homomorphism, up to sign. Therefore 

4 induces an additive isomorphism: 

(*) Hn-q(X' Hq(X G X) 

where the right-hand side denotes the cohomology of the cochain-complex 
Homz[,jc(C(X ax), Z[7T]). 

Formula ( * ) relates a left Z[T]-module with a right Z[T]-module. To 
properly record the correspondence between these module structures, we use 
the usual technique of changing a right Z [,7]-module A to a left Z [,7]-module 
A by: Xa = aX, for X E Z[,g], a E A. 

The final result is now: 

COROLLARY (2.2). 4 induces an isomorphism of left Z[7T]-modules 

Hn-q(X' ) Heq G(x ax) 

In order to apply duality to obtain intrinsic information about the knot 
modules, we have to deal with a "universal coefficient" problem. Specifically, 
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KNOT MODULES. I 5 

let R, S be rings with unit, C a free left chain complex over R and G an 
(R-S)-bimodule. Then H*(C; G) = H*(HomR(C, G)) is a graded right S- 
module, as are HomR {H*(C), G} and, in general, Extq (H*(C), G). 

These are related, in general, by a spectral sequence. 

THEOREM (2.3). Given R, S, C, G as above, there exists a spectral sequence 
converging to H*(C; G) with EP q jz Extq (Hp (C), G) and differential dr of 
degree (1 - r, r). More specifically, there is a filtration: 

Hm (C; G) = Jm,O D Jm-l,lD *** D JO,m D J-l,m+I = O 

with Jp,q/Jp 1,q+ 1 ; EoP,q All objects and isomorphisms are as right S-modules. 

This spectral sequence is constructed in much greater generality in e.g. [E, 
Chapter XVII]. For the convenience of the reader we will outline its construc- 
tion in our special case. 

Choose an (R-S)-resolution of G, injective over R: 
0 -> G - Q Qo -Q 

and define Xp,q = HomR(Cp, Qq). Then X = {Xp,q} is a double complex of 
right S-modules with differentials dl, d2 of degree (1, 0) and (0, 1), respec- 
tively, which give rise to two bigraded right S-modules H1(X) and H2(X). 
Each of these admits an induced differential from d2, dl, respectively, giving 
rise to homology S-modules H2H1(X) and H1H2(X) which inherit a bigrad- 
ing from X. 

In general, given a double complex X as above, there exists a cohomology 
spectral sequence with E2 = H2H1(X) converging to H*(X), where X is the 
cochain complex, with differential operator d, defined by Xm = 
2p+q=mXp,q) d = di + d2. This arises from the filtration of X defined by 
Fm = 2 q>mXP,q* Notice that EfPq - HP+ (Fq/Fq+j) = HfP (X) and the dif- 
ferential d' on EP,q coincides with that induced by d2 on HPI,q(X). One may 
check also that d' has degree (1 - r, r). 

In our special case, it is immediate that HPIq(X) = HP (C; Qq) t 
HomR(Hp(C), Qq), since Qq is R-injective. Therefore H2H,(X)Pq = 

Extq (Hp(C), G) and this is the desired spectral sequence if it can be proved 
that H*(X) = H*(C; G). 

But, by symmetry, there also exists a cohomology spectral sequence with 
E2 = H1H2(X) converging to H*(X). Since Cp is free, it is immediate that 

Hp,q= f0 q >0, 
H2P = Hom(Cp, G), q=0, 

and then 

HI H2 (X) p=q 
f, q 

>n0, H1H2X)P~= HP (C; G), q =O. 
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6 JEROME LEVINE 

It follows that the spectral sequence collapes and so EP,q = EP,q and HP (X) 
=EP,0 = HP (C; G). 
T he edge homomorphism Hm (C; G) -E ? c E2m ? HomR (Hm(C), G) 

is the usual evaluation. 
If R has homological dimension < 1, e.g. if R is a principal ideal domain, 

then Ef,q = 0 if q # 0, 1. Therefore the spectral sequence collapses: E2 = EW 
and Jp,q = 0 if q #0 O, 1. The result is a family of short exact sequences: 

--> Emo- 1' = 
Jm-l Hm (C; G) ->Em,? -> O. 

This is the usual universal coefficient theorem. 
A similar reduction occurs under the following 
ASSUMPTION. Homological dimension R = 2 and HomR {Hp(C), G } =0 

for all R. In this case E2P,q = 0 for q # 1, 2 and the result is a family of short 
exact sequences: 

0?> > Jm- 1,1 >0. 

But 

Jm -2=2 = =EXtR(Hm-2(C), G), 

Jm-l,i=Jm,o=Hm (C;G), 

Em- = Er"' Ext' (Hm (C), G) 

and we have the following short exact sequence of right S-modules 
O- Ext2R(Hm-.2 (C), G) -> Hm (C; G) ->Ext' (Hm -I (C), G) > . 

We now specialize to the case of interest. Let C = C*(XO, aXo), where XO is 
the complement of an open tubular neighborhood of an n-knot and XO XO 
the universal abelian covering. Let G = R = S = A and we regard A as an 
(A-A)-bimodule via the ring structure. A has homological dimension 2 by the 
Hilbert Szyzygy Theorem (see [Mc]). Since HP (X0) is A-torsion by Corollary 
(1.3) and axO = R X K, it follows easily that HP (Xo, aXo) is A-torsion and, 
therefore, HomA(Hp(XO, aXo), A) = 0. We have now proved 

PROPOSITION (2.4). If XO is the complement of an open tubular neighborhood 
of an n-knot, there exist short exact sequences of right A-modules: 

0 e EXt2A(Hm 2 (Xo, axo)X A) O He (XO O A ) 

EXtX (Hmi 1 (X, a ' ), A) 0. 

We can now combine this exact sequence with the duality isomorphism 
Hem (Xo, aXo) Hn+2-m(Xc), since dim X = n + 2, to obtain: 

0 Ext2A(Hm 2 (XO aXO) A) - Hn+2-m (X) 

Ext I(Hm I ( "o' aAO ), A) -> 0. 
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KNOT MODULES. I 7 

LEMMA (2.5). Hi(XO) Hi (X,O aX) for 0 < i < n. 

Since aX0 = K X R, this is immediate if i < n. When i = n, we have an 
exact sequence 

H+1(X~O' a X n (aXO ) Hn (Xfo )n (Xfo afO ) _*o' 

It will clearly suffice to show that H, + 1(Xo, 4X0) Hn (aXo) is onto. 
Consider the diagram: 

Hn + I (XO X aXo) > n(aXo) - n(X0) 

I 41 1 
Hn+ 1(XO, aXo) - nHn(aX0) - nHn(X0) 

where the vertical maps are induced by the covering map. The composition 
Hn(4X0) - Hn (aXo) -- Hn(X0) is zero, since the image of a generator of 
Hn(aX0) is represented by a translate of K whose linking number with K-in 
the case n = 1-is zero. But Hn(Xo) = 0 if n # 1, while the isomorphism 
HI(X0) z Z can be defined by linking number with K. Since Hn(aX0) -> 

Hn (aXo) is injective, it suffices to show that Hn + 1(Xo, X0) -- Hn + 1(X0, aX0) 
is surjective. 

Consider the Cartan-Leray spectral sequence for the covering (X0,,x0) - 

(X0, aXO). Ep2q = Hp(Z; Hq( Xo aX0)) = 0, if p # 0, 1. Therefore the spectral 
sequence collapses. Since Hm(Xo, aXo) Hm(S n2, K) = 0 for m S n, Ep2q 
= 0 forp + q < n. In particular 

0 = Eon z Ho (Z; H (XO, aX)) 

= Coker{t - 1: Hn(Xo, aX0) - H (X0, aX0)}. 

Since A is Noetherian, it follows by a standard argument that any endomor- 
phism of a finitely generated A-module which is onto must also be one-one. 
Therefore E?2 t Kernel{t - 1: H( aXO) -- Hnn(XO, aX0)} = 0. This im- 
plies that the edge-homomorphism HO(Z; Hn+(X0, ax0)) E= - 

Hn+ (Xo, aXo) is an isomorphism; in particular, Hn+ (Xo, axo) 
Hn+l(Xo, aXO) is onto. 

THEOREM (2.6). If {Aq} are the Alexander modules of an n-knot, we have 
exact sequences of right A-modules: 

O4 Ext(Anqx A) Aq Ext(An+1q A) >0 

for 0 < q < n, and Aq = O for q > n. 

Only the cases 0 < q < n follow formally from the lemma, but we can 
include q = n by observing that Ext,(AO, A) = 0 = Ext2(0,A), since AO - Z 
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8 JEROME LEVINE 

with the trivial A-module structure. The last statement follows directly from 
the preceding short exact sequence. 

3. The short exact sequences of Theorem (2.6) may seem, at first thought, 
to be a rather obscure and unmanageable property of the {Aq}, but we will 
now reinterpret it to give a pleasant final statement of duality for Alexander 
modules. The vehicle for this reinterpretation is consideration of the Z-tor- 
sion submodules. 

We first do some algebra. 
DEFINITION. We will say a A-module A is of type K if it is finitely-generated 

and multiplication by t - 1 induces an automorphism of A. 
DEFINITION. For any A-module A, define t(A) to be the Z-torsion submod- 

ule and f (A) = A /t(A). 
So any Alexander module is of type K-note that the argument of Corollary 

(1.3) shows that any module of type K is a A-torsion module. Also any 
submodule or quotient module of a module of type K is again of type K. 

LEMMA (3.1). If A is of type K, then t(A) is finite. 

We will show that any Z-torsion A-module T of type K is finite. Since T is 
finitely generated over A, there exists a positive integer m such that mT = 0. 
Suppose that m is prime. Then we may regard T as a (finitely-generated) 
module over Am = Z/(m)[t, t - ']. Since Am is a principal-ideal domain, T is a 
direct sum of cyclic Am-modules. But any cyclic Am-module is finite unless it 
is free-this possibility is excluded, however, by the condition that t - 1 is an 
automorphism. 

The general case now follows by induction: Letp be any prime dividing m. 
By induction pT is finite, and T/pT is finite by the preceding argument. 

We introduce the abbreviated notation: 

e'(A) = ExtX(A, A), e2(A) = Extd2(A, A) 

for any A-module A. Note that these are A-modules, since A is commutative, 
and this agrees with the right A-module structure considered in ?2. If A is of 
type K, then so are e (A). Finitely generated follows from A Noetherian. 

PROPOSITION (3.2). Let A be a A-module of type K. 
(i) e'(A) z e'(f (A)) is Z-torsion free. 
(ii) e2(A) z e2(t(A)) is Z-torsion. 

This will follow from: 

LEMMA (3.3). Let A be a A-module of type K. Then 

(i) e'(A) =O iff(A) =O, 

(ii) e2(A) = 0 if t(A) = 0. 
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KNOT MODULES. I 9 

PROOF OF LEMMA. If f(A) = 0, then mA = 0, for some positive integer m. 
Since multiplication by m in e'(A) is induced by multiplication by m in A, 
me'(A) = 0. On the other hand multiplication by m in e'(A) = ExtI(A, A), is 
also induced by multiplication by m in A. From the short exact sequence 
0 -- A >mA -e Am -> 0, we may extract: 

-- HomA(A, Am) > e'(A) m>e'(A) * .... 

But HomA(A, Am) = 0. In fact the argument of Corollary (1.3) shows there is 
A E A such that e(A) = +?1 and AA = 0, for any A-module A of type K. If 4: 
A -- Am is a A-homomorphism, then A(4(a) = O(Aa) = 0 for any a E A. But 
multiplication by any primitive A is injective in Am. 

Now we have shown that multiplication by m in el(A) is injective and 
zero-thus el(A) = 0. 

To prove (ii) consider the exact sequence 0-> A ->m A -> A/mA ->0 for 
any nonzero integer m. This implies the exact sequence: 

e2(A) *e 2(A) -> e3(A/mA) = 0. 

In other words, e2(A) = me2(A), for any integer m. It now suffices to prove 
me2(A) = 0, for some integer m #- 0. 

Let I be the annihilator ideal of e2(A)-i.e. X E I if and only if Xe2(A) = 0. 
By the argument of Corollary (1.3), we may construct, for any integer m =# 0, 
Am E I such that Am =1 mod m. In fact, if {ai} generate e2(A), write 
a, = m2Xaj1. Then det(ij - mij) = Am. We want to show that I contains 
some nonzero scalar. If not then I is contained in some proper principal ideal 
(4), deg k > 0. In particular IlAm, for all m. Therefore 4 is a unit in Am, for 
every m. If m is prime, this means all nonscalar terms of 4 are divisible by 
m-the only possibility is that 4 is a scalar. 

This proves Lemma (3.3). 
To prove Proposition (3.2), consider the exact sequence: 

0 ->t(A) ->A ->f(A)-> 0 

and the associated long exact sequence: 

**HomA(t(A), A) ->el (f(A))-> e'(A)-> e'(t(A)) 

e2(f(A)) -> e2(A) -> e2(t(A)) -> e3(f(A)) = 0. 

We have proved HomA(t(A), A) = e'(t(A)) = e2(f(A)) = 0, which implies 
much of the proposition. 

If m is a nonzero integer, then we have an exact sequence 0 -* f(A) 
m f(A) -- f(A)/mf(A) ->0. This gives the exact sequence: 

e' (f(A)/mf(A)) -> e' (f(A)) e' (f(A)). 
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10 JEROME LEVINE 

Since f(A)/mf(A) is Z-torsion, e'(f (A)/mf (A)) = 0 and el(f (A)) has no 
m-torsion. Therefore el(f (A)) is Z-torsion free. 

If mt(A) = 0, then m: e2(t(A)) -- e2(t(A)) is induced by the zero homo- 
morphism and, hence, is zero. This proves the proposition. 

We now reconsider the exact sequence of Theorem (2.5). 

0-> e2(An-q) -* Aq -> e'(An+ I _q) ->0. 

The first term is Z-torsion while the last term is Z-torsion free. It follows 
immediately that we may reformulate this exact sequence as follows: 

THEOREM (3.4). Let {Aq} be the Alexander modules of an n-knot. If Tq = 

t(Aq) and Fq = f(Aq), then: 
(i) T e2(Anq) = e - q) 
(ii) Fq:- el(An+ 1q) = el(Fn+1-q) 

andAq =0Ofor q>n. 

Thus we get a familiar type of duality relationship between complementary 
Z-torsion submodules and complementary Z-torsion free quotients. 

A useful by-product of the above considerations is the following 

PROPOSITION (3.5). Let A be a A-module of type K. The following conditions 
on A are equivalent: 

(a) t(A) = 0, 
(b) e2(A) = O, 
(c) homological dimension A = 1. 

PROPOSITION (3.6). Let A be a A-module of type K. Then ele'(A) t f (A), 
e2e2(A) ;:,t (A). 

Let 0 -O F2 -e F1 >d Fo -> A -O 0 be a projective resolution of A. By [S], 
the Fl are free. Consider the dual complex: 

d* Fe* F*; 

Ker d* = 0; Cok e* . e2(A); Ker e*/Im d*:- el(A). If e2(A) = 0, then e* is 
a split epimorphism and so e is a split monomorphism. Thus A has homologi- 
cal dimension 1 and (b) =X (c). 

The implication (a) => (b) follows from Proposition (3.2) while (c) =X (a) will 
follow from Proposition (3.6). 

Suppose A is Z-torsion free; we now know A has homological dimension 1. 
If 0 -O F1 >dFo -> A -O0 is a free resolution of A, then e'(A) Z Cok d*, i.e. 
O -* F& d* F1* -> e'(A) -- 0 is a free resolution of e'(A). The first part of 
Proposition (3.6) is now evident, since e'(A) = el(f(A)) by Proposition (3.2). 

Suppose A is Z-torsion. If 0 -O F, >e F1 d Fo -> A - 0 is a free resolution 
of A, then, since el(A) = A * = 0, we have an exact sequence 
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KNOT MODULES. I 11 

dO F e 
F]* e2(A) -> O. 

The second part of Proposition (3.6) is now evident, since e2(A) z e2(t(A)). 
EXAMPLES. For classical knot theory, i.e. n = 1, we have a single Alexander 

module AI. It follows from Theorem (3.4) that T, = 0 (see [C]) while F1 z 

el(F,). For 2-knots there are Alexander modules Al, A2 and we conclude that 
T2 = 0, F2 - el(F1) and T1 z e2(T1). 

As an illustration, let us consider the case of a cyclic module A = A/I, for 
some ideal I c A. It is not hard to check that t(A) z (X)/I and f(A) z 
A/(X), where (A) is the minimal principal ideal containing I. Furthermore A is 
of type K if and only if e(I) = Z. One can also check easily that e'(A) Z 
f(A). We can now conclude that a necessary condition for A to be the 
module of a 1-knot is that I be principal and I = I. 

It is harder to compute e2(A), but if I is restricted to be generated by no 
more than two elements, then one can check directly that e2(A) : t(A). 
Therefore, in order that A be the first Alexander module of a 2-knot it is 
necessary that XI = XI-the second Alexander module must then be isomor- 
phic to A/(A). We have no restriction onf(A). 

In general we may observe that { Tq: 2q < n} determine { Tq: 2q > n}, and 
{Fq: 2q < n} determine {Fq: 2q > n + 2). In addition we have the self-dual- 
ity properties: 

(3.7) LT 
t 

e2(Tq ), 
n = 2q, 

F e'(Fq), n=2q-1. 

4. These self-duality properties can be strengthened by the existence of a 
certain product structure. First we observe the following algebraic facts. 

PROPOSITION (4.1). If A is a A-torsion module, there is a natural isomnorphism 
of A-modules el(A) z HomX(A, Q (A)/A). 

PROPOSITION (4.2). If A is a finite A-module of type K, then there is a natural 
isomorphism of A-modules: e2(A) z Homz(A, Q/Z), where Homz(A, Q/Z) 
inherits its A-module structure from that on A. 

By "natural" we mean that the isomorphism is defined as a natural 
transformation between functors of A. 

Proposition (4.1) is a standard fact implied by the long exact sequence: 

O = HomA(A, Q (A)) -> HomA(A, Q (A)/A) 

ExtX(A, A) -> ExtX(A, Q (A)) = 0 

derived from the short exact sequence 0 -> A -> Q (A) -> Q (A)/A -4 0. 
The proof of Proposition (4.2) will be more complicated. 
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12 JEROME LEVINE 

If A is a finite A-module, then there exists a positive integer k such that 
tk (a) = a for all a E A. Let 9 denote the quotient ring A/(tk - 1), which we 
consider as a A-module. We will establish a sequence of isomorphisms: 

e2(A) - Extk (A, 9) ; HomA(A, Q/Z ?Oz 9) t Homz(A, Q/Z). 

Consider the short exact sequence 0 -* A A 0 0 and the derived 
long exact sequence 

Extk(A, A) -* ExtX(A, 0) -* Ext (A, A) Ext (A, A). 

Since A is finite, ExtX(A, A) = 0 by l emma (3.3) The endomorphism 
tk _ 1 of ExtA(A, A) is induced by tk _ 1 on A, which is zero. This estab- 
lishes the first isomorphism. 

Consider the short exact sequence 0 -* Z -* Q Q Q/Z -*0 and the derived 
exact sequence: 0 -O 0 -* Q 0z 0 -* Q/Z 0 z 0 0. Note that 0 is free as a 
Z-module. From this short exact sequence we obtain another derived exact 
sequence: 

HomA(A, Q Oz 9) HomA(A, Q/Z ?z 0) 

Ext' (A, 9 ) ExtAk(A, Q ? z 0) 

Since A is finite and Q Oz 0 is Z-divisible, ther exists an integer m such that 
mA = 0. But m: Q 0Oz 0,z Q Oz 9. Therefore, any additive functor of two 
variables is zero on (A, Q Oz 0) since multiplication by m is both zero and 
an isomorphism. In particular HomA(A, Q )z 0) = 0 = ExtX(A, Q )z 0) 
and we have the second isomorphism. 

The final isomorphism we construct explicitly. Let c: A -* Q/Z Oz 0 be a 
A-homomorphism. Write 4(a) = }k,fi(a) 0 t'. It is clear that each 4, is a 
Z-homomorphism and 'ik(a) = I+ 1(ta), where i is taken mod k. Conversely, 
given 00: A -- Q/Z a Z-homomorphism, we may define 4: A -> Q/Z ?)z 0 
by 

k-I 

?(a)= E 0o(tk-ia) 0 ti. 
i-O 

It is straightforward to check that 0 -> (P defines the desired isomorphism. 
It remains to verify that the composite isomorphism is independent of k. In 

fact, if kIl and 01 = A/(tl - 1), then multiplication by (tl _ 1)/(tk - 1) 
defines a homomorphism 0 91 which induces a commutative diagram: 

Extl(A, 0) HomA(A, Q/Z ?Z 0) 

e2(A) Homz(A, Q/Z) 

ExtA(A, 01) HomA(A, Q/Z ? 01) 
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From this, independence of k follows immediately. 
This completes the proof of Proposition (4.2). 

COROLLARY (4.3). If A is a finite A-module of type K in which every element 
has order p, where p is prime, then e2(A) z A. 

We may then regard A a.s a AP-module and the corollary follows readily 
from Proposition (4.2), using the structure theorem for modules over the 
principal ideal domain AP. 

It follows from Propositions (4.1) and (4.2) that we may rewrite the 
self-duality properties (3.7) in the following way: 

COROLLARY (4.4). Let {Aq} be the Alexander modules of an n-knot and Tq, 

Fq the Z-torsion submodule and Z-torsion free quotient of Aq, respectively. Then 
there exist pairings: 

<, >: Fq X Fn+ q -Q(A)/A, [,]:Tq X Tnq -Q/Z 

satisfying the following properties: 
conjugate linear: <Xa, /8> = X< a, /3> = <oa, XI3> for X E A; a E Fq; 18 E 

Fn+ I -q; 
nonsingular: the adjoint to < , >, which is a homomorphism (by (i)) Eq * 

HomA(Fn + 1 q' Q (A)/A) is bUective; 
Z-linear: [ma, f8] = [a, m18] = m[a, /3] for m E Z; a E Tq; ,B E Tn-q; 
conjugate selfadjoint: [Xa, 13] = [a, A3] for X E A; a E Tq; 13 E Tn-q; 

_nonsingular: the adjoint to [, ] which is a homomorphism (by (c), (d)) 
Tq -+Homz { Tn-q, Q/Z } is biective. 

The pairings <, > and [, ] are just the adjoints of the given isomorphisms of 
(3.7) in light of Propositions (4.1), (4.2). The other properties are just the 
translations of the algebraic properties of the isomorphisms. 

5. It turns out that the existence of these pairings is almost, but not quite, 
sufficient to characterize the Alexander modules. To accomplish this, we will 
redefine the pairings < , > and [ , ] in a more geometric manner in order to 
prove the following symmetry properties in the middle dimensions: 

(-I)q+l.-Hermitian: <a, 1B> = (-l)q+ K,B a>, when n = 2q - 1. 
(- 1)q+ l-ymmetric: [a 13] = (-1)q+ 1[,B a], when n = 2q. 
The pairing < , > will be a straightforward generalization of the usual 

linking pairing defined on elements of finite order in the homology of a 
compact manifold. We place ourselves in a somewhat more general situation. 

Let X be a compact n-dimensional manifold and X -* X a regular covering 
whose group -w of covering transformations is free abelian. We have an 
intersection pairing: 
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14 JEROME LEVINE 

Cq(XM aX) X Cn-q(X")-?A = Z[17] 
as outlined in ?2. 

Suppose a E Hq(X, ax), /B E Hn-q-I(X) are A-torsion elements. Let z E 
Cq(X aX), w E Cn-q- 1(X') be representative cycles of a, 1B respectively. 
Then we may write Xz = ac for some X E A and c E Cq+ (X, aX). Set 
<a, ,B> = (c. w)/X mod A. Exactly as in the classical case <, > is a well-de- 
fined pairing. Conjugate linearity and (_1)q+'-Hermitian follow from the 
corresponding properties of the intersection pairing (note this is the special 
case q = n - q - 1 of a more general Hermitian property) by the usual 
arguments (see [M]). Alternatively, <, > may be defined by the composition: 

Hq (X, aX ) Hen - (x) XHen-1 (x; Q (A)/A) 

4'2 

HomA(Hn (X), Q (A)/A). 

The first map is the duality isomorphism (Corollary 2.2). 
The second map P* is part of the exact cohomology sequence derived from 

the short exact sequence of coefficients 0 A -> Q (A) -* Q (A)/A O-0 and 
iP2 is the evaluation map. 

Consider the diagram of exact rows: 

0 t Hn.qV2* o HomA {Hn.q(X), Q(A)} 

H (X; Q(A)) c (;Q(A)/A) t e qX en -(X; Q(A)) 

HomA {Hn- q - 1 (XT), Q(A)} -- HomA {Hn -qq -1(), Q(A)/A} 

The vertical maps {Ji} are evaluation maps; 4, and 44 are isomorphisms 
because Q (A) is injective (e.g. the spectral sequence of Theorem (2.3) col- 
lapses). Now let v be infinite cyclic. 

We may analyze 42 with the help of the universal coefficient spectral 
sequence (Theorem (2.3)). Since Ext 2(A, Q (A)/A) = Ext'(A, A) = 0, for any 
A-module A, we see that the E2 diagram has two nonzero rows and by an 
argument similar to that following Theorem (2.3), we obtain a short exact 
sequence 

O 
-- Ext' (Hi (X )Q (A) /A) -->Hei (X; Q (A) /A) 
4(A 
-~Hom(H (),Q (A)/A) -* 0. 
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It follows by a simple diagram-chase that <, > is well defined on A-torsion 
elements, since 43 = 0 on A-torsion, and any homomorphism Hnq(X) 
Q (A) must be zero on A-torsion. 

We now specialize to the case where X is a knot complement and dim X = 
n + 2; in particular, Hi(X) = Ai is of type K for i > 0. Since Ai are A-torsion 
modules, A* = 0 = HomA(Ap, Q (A)). It now follows easily that we have an 
exact sequence: 

0*Ext(An-q, Q1(A)/A)>Hq(X, aX) 

-HomA(An-q- 1 Q (A)/A) -O 
where I is the adjoint of the pairing < , >. Since ExtX (A, Q (A)/A) 
Ext2 (A, A) is finite when A is of type K, we have an isomorphism induced by 
1: 

f (Hq(X, ax)) ; HomA(Anql, QQ(A)/A). 

LEMMA (5.1). If A is a module of type K, then any A-homomorphism 4): 
A -* Q (A)/A is zero on Z-torsion. 

If a E A has finite order, then +(a) lifts to an element X E Q [t, t-'] c 
Q (A). But since AA = 0, where A e A satisfies e (A) = 1, it must be true that 
A X X E A. Since A is primitive, this implies X E A. 

COROLLARY (5.2). If A is of type K, then HomA(f (A), Q (A)/A) 
HomA(A, Q(A)/A). 

We have now proved that the pairing < , > induces a nonsingular pairing 
< K >: Fq X Fn+I - q Q (A)/A where the { Fq} are the Z-torsion free part of 
the modules associated to an n-knot (note that the complement X has 
dimension n + 2). When n = 2q - 1, we refer to this pairing as the Blanch- 
field pairing-it reduces to the pairing of the same name in [K] and was first 
considered for knots of dimension n = 1 in [B]. We have now proved 

THEOREM (5.3). The Blanchfield pairing on the Z-torsion free part of qth 
Alexander module of a (2q - 1)-knot is conjugate-linear, (_ )q+ '-Hermitian 
and nonsingular. 

6. We now turn to the pairing [,]. 
We define a preliminary pairing {, ). Choose an integer k large enough to 

satisfy a finite number of conditions to be itemized in the remainder of the 
discussion. Set 9 = A/(tk - 1) and let I(O) be the A-injective hull of 9. We 
will define 

{ , }: Tq X Tn-q I(O)/9 

satisfying: 
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16 JEROME LEVINE 

conjugate-linear: {Xa, }) = {a, X,8} = X{a, /}), 
nonsingular: the adjoint homomorphism Tq - HorMA(Tn_q,I(M)/O) is bi- 

jective, 
(- l)q(n-q)+l-Hermitian: {a, 1)} - (-l)q(n-q)+l{As a)} 
Assuming, for the moment, such a {, } exists, we show how to construct 

the desired [ , ]. 
Define QO = Q Oz 0. The inclusion 9 c I(O) extends to an injection 

QO c I(9) which is unique because I(O) is Z-torsion free. To see this merely 
notice that t(I(9)), if nontrivial, must meet 0 nontrivially, since I(8) is an 
essential extension (see [Mc]) of 0-but 9 is Z-torsion free. It is clear that 
QOI/ = t(I(0)/0). This implies that 

HomA(A, QO/I) = HomA(A, I (O9)I) 

if A is a Z-torsion module. In particular, {, ) takes values in QO/I. Now we 
have shown in (4.2) that 

e: HomA(A, QOIO) - Homz(A, Q/Z) 

as A-modules, when A is finite, by e(+) = 00 if +(a) = S O4i(a) 0 t'. If we 
define [,I = e o { }, the desired properties of [, ] follow from those of {, 

We now construct {, ). Note first that 

Tn -= t(Hn-q(X)) = t(Hn-q(y, ax)) = 

by duality. So we want to construct an isomorphism: 

t (He,q+2 (X )) ;z: HomA( Tq, I (9)IO). 
Consider the following chain of homomorphisms: 

(6.1) Hq+2(X) -He+' (X; 0) '-Heq(X; I(0)10) 

f* HomAM{A, I()0 HoMA{Tq, I (0)/o) 
8', 3" are the coboundary maps of the exact cohomology sequences derived 
from the short exact sequences of coefficients: 

O A -A O > , 

O a -- I (a) >I (a)/a 
- O. 

e' is an evaluation map and r is defined by restriction. Define D C Hq+2(X) 
to be Image 3' 3 8". We define a homomorphism 4: D -> HomA(Tq, I(9)/O) 
by setting 4((a) = re'(a'), if 3'3"(a') = a. 

We first show that 4 is well defined, i.e. different choices of a' do not affect 
the value of re'(a'). Our choice of a' can be altered by any element in the 
image of the coefficient homomorphism 

He"(X; I(8))>He (X; I(9)/9) 

and so we must show that a certain composition of maps 
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is zero. But it is easily seen that this can be factored through HomA(TQ, I(9)) 
which is zero since I(9) is Z-torsion free. 

Our choice of 8 "(a') may be altered by an element in the image of the 
coefficient homomorphism 

He+l (X) Heq+1 (X; 9). 
Consider the chain of homomorphisms: 

(6.2) e q, Q (A)/A) 

HomA(Tq, Q (A)/A) 

analogous to (6.1). In fact this sequence is mapped into (6.1) by obvious 
coefficient homomorphisms 

Q(A) > I(0) 
U U 

Now 3" is an isomorphism, since He'(X; Q (A)) z HomA(A1, Q (A)) = 0, so 
any change in 8"(a') produces a change in re'(a') which lies in the image 
HomA(Tq, Q (A)/A) -> HomA(Tq, I(O)/O). But by Lemma (5.1), 
HomA(Tq, Q (A)/A) = 0. We next show that 4 is an isomorphism. 

Suppose a E t(Heq 2(X)) and we have a' such that 6'8"(a') = a and 
re'(a') = 0. We would like to show that 8 "(a') is the image of an element of 
He+ (X) or, equivalently, that a' E Heq(X; I(9)/9) lies in the submodule 
generated by the images of Heq(X; I(9)) and Heq(X; Q(A)/A) under the 
appropriate coefficient homomorphisms. 

Note from the universal coefficient spectral sequence (2.3) that, for any 
A-module G with injective dimension one we have the usual exact sequence 

0 
< 
Ext (Hi- I (Xk ), G ) -He' (X-; G ) ->HomA(Ai, G ) ->0. 

In particular this holds for G = I(9), I(9)/9 or Q (A)/A. Therefore we have 
a commutative diagram with exact rows: 

0 O ExtA(Aq 1 , Q(A)/A) - -- (X; Q(A)A) HomA(Aq, Q(A)IA) 0 

t t 0- EtV(A q -1'9 1(0)0) -+ H (X;I(0)I0) > HomA(Aq, (010) 0 

HqX;(0) HomfA (A q 10 MD 0 
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18 JEROME LEVINE 

Furthermore we have the commutative diagram: 

Extk(A, Q(A)/A) - Ext'(A, I(0)10) 
A 2 A 

Ext2(A, A) - + Ext2(A, 0) - > 0 

for any A-module A, where the bottom row is a portion of the long exact 
sequence derived from the short exact sequence 0-> A'-i A ->0 ->0, 
since Ext3 (A, A) = 0. From this it follows that it suffices to show that e'(a') 
lies in the submodule generated by the images of HomA(Aq, Q (A)/A) and 
HomA(Aq, I(O)) in HomA(Aq, I(0)/0). The assumption re'(a') = 0 means 
that e'(a') is induced by an element of HomA(Fq, I(0)/O). We will complete 
the proof that (6.1) defines a monomorphism by observing that 
HomA(F, I(0)/9) is generated by the images of HomA(F, Q (A)/A) and 
HomA(F, I(O)), for any Z-torsion free A-module F of type K. To see this just 
examine the commutative diagram: 

HomA(F, Q(A)/A) - Ext'(F, A) - 0 
A A 

HomA(F, I(0)) -+ >HomA(F, I(0)10) - Extk(F, 0) 

1~ 
Ext2(F, A) = 0 

with exact rows and columns. 
To prove surjectivity of the homomorphism defined by (6.1), we need only 

note that e' and r are both surjective. For e' we have already made this 
observation above from the universal coefficient spectral sequence. For r we 
need only observe that Ext' (Fq, I(O)/O) = 0. But Extk (A, I(O)/O) z 
ExtA(A, 9), for any A, while the exact sequence 0-> A _ 'A -> 0-> 0 
implies a surjection Ext2(A, A) -> Ext 2(A, 0) - 0. If A = Fq, then 
Ext2(A, A) = 0. 

We will now show that k may be chosen so that D= t(He"+2(X)). 
Certainly D c t(H'q+2(X)) for any k, because Tq is finite and 4 is injective. 
To obtain equality we choose k as follows. 

First choose an integer m such that mt(Hq +2(X)) = 0. Now consider 
Heq+2(X; Am) a Z-torsion module. It is also of type K if q < n because 
He'(X) A A+2-i is of type K if i # n + 2, and we may apply the five-lemma 
to the exact sequence 
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KNOT MODULES. I 19 

He (X ) Hq (X Hq+ 1 (X;_A 
H q+2 ( X 

Heq+2 
( 

Therefore Heq+ '(X; Am) is finite and we may choose k so that tk - 1 
annihilates it. 

Let a E t(Heq+2(X)). We will construct a' such that a = 6'6"(a')- 

LEMMA (6.3). Let R be a unique factorization domain; A, ,u relatively prime 
elements in R and C a free chain complex over R. Then there are short exact 
sequences: 

(1) R/(A) R/(X)R/(, 0, 

(2) IN 
(3)A (3) ~~~0 R->R RI ( [) O- , 

(4) O-,RRR/(A)-,O. 

If 6i is the connecting homomorphism of the exact cohomology sequence of C 
associated with (i), then 64 ? 61 = - 63 o 62.. 

PROOF. The exactness of (1), (2) follow easily from X, ,u being relatively 
prime. Given a E H*(C; R/(X, ,u)), lift a representative cycle to a cochain z 
with coefficients in R (since C is free). Then 6z = XzI + AZ2, for some 
cochains z1, Z2. It follows that 61(a) has a representative cocycle Z2 and 62(a) 
has representative cocycle z1. Then 64 O 61(a) and 63 O 82(a) have representa- 
tive cocycles 6z2/X and 3z1/u, respectively. But 0 = 62z = X6z1 + I5Z2, and 
the lemma follows. We apply this lemma to the case X= m, = tk- 1. 
Consider the diagram: 

Hq+2 

ml 

H+( 
I 

) 
00 

-Heq +2 tk > 
1Heq+2 

182 j84 j84 

H'(X; 0/mO) - H- H 1(X; Am) -1 H +l(X; Am) 

The rows and columns are exact. The left square is anticommutative by the 
lemma while commutativity of the right square is well known. Since ma = 0, 
choose a, E Heq+'(X; Am) such that 84(a1) = a. Since tk _ 1 annihilates 
Hq+'(X; Am), we may choose a2 E Heq((X; O/mO) such that a, = 8'(%). 

We now derive a' from a2 as follows. 
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20 JEROME LEVINE 

Consider the commutative diagram: 

Hq(X; 1(0)/0) q 0) 
eXI- f(XI' 

Hf(X; QOIO) 82 

H'(X; 0/mo) 

where 62, 8", 8"' are connecting homomorphisms in the appropriate exact 
cohomology sequence and the remaining maps are induced by coefficient 
homomorphisms: 

1/rn 
0/mO > QO/O c I(O)/O. 

Choosing a' =-i(1/m(a2)), it follows that 8'8"(a')=- 8'82(a2)= 

8481(a2 = a, as desired. 
Note that conjugate linearity of {, } corresponds to the fact that 4 is a 

homomorphism. 
Finally, we will verify the Hermitian property of {, }. This will depend on 

the Hermitian property of the intersection pairing and so we make the usual 
chain level formulation. It will be convenient to use the second definition of 
{, }, namely using the two sequences of homomorphisms: 

Hq+2 H4 am) qHl (X ; A/mO) 

HomA{A A /O HomA{Tq, O/mO) i Hom{Tq, I(9)/O}. 

If (x E '-q' /B E Tq, then {a, ,8) is defined to be ire'(a') I?, where 
a' E Heq(X; 9/mO) satisfies - 8481(a') = a, the dual of a. The above dia- 
gram has shown that these two definitions of {, ) agree. 

This translates into the following. Let z, w be representative cycles of a, ,8. 
Then mz is null-homologous and we may write mz = az', for some (n - q + 
1)-chain z'. Now (tk -_ )z' is null-homologous mod m and so we may write 
(tk - 1)z' = az" + mzo, where z" is an (n - q + 2)-chain and zo an (n - q 
+ I)-chain. Finally we may write {a, ,B) = (- z" w)/m, or rather its image 
under Q 0z A -4 QO c I(0) -- I(0)/0, where z" * w is the intersection num- 
ber in A. 

Similarly we may choose chains w', w" and wo of dimensions q + 1, q + 2 
and q + 1, respectively, so that mw = aw' and (tk -_ )w' = aw" + mw0, and 
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{ a), a) = (-w" z)/m. First note that 

mazo = (mzO) =a (az" + mzO) = a (tk -_ )z' = (tk - 1) az = (tk -_ )mz. 

Since A is Z-torsion free, we have azo = (tk - 1)z. Similarly awo = 

(tk - l)w. Now (tk - 1)Z" * W = - tk(Z" * (tk - 1)W) = - tk(Z" aW) M= 
(- 1)"-q+ltk(az" .wO) using the well-known equality x -ay = (- I)dax 'y, 
where d = dim x. Now az" * wo = ((tk - 1)z' - mzo) * wo, and so (tk -)z" 
w w (- = )n-q+ltk(tk - l)z' * wo mod m. Since m and tk 1 are relatively 

prime, z" * w = (- )n-q+ltkz' *wo mod m. Now mz' *w = z' . ((tk - l)w' 
- 3w") z' *aw" (mod tk - 1) = (-)"-qaz' * w" = (-) MZ. W". 
Since m and tk _ 1 are relatively prime, we have z' * Wo 1(-)n-z * w" 

mod tk - 1. Combining these results we have 

z" *= w -z *w" mod(m, tk ) 

Therefore 
Z" *w = zw ( {a,13)=- m - ~(in QO/O) 

=(-)q(n- q) = (_ )q(n-q)+l { a 

The pairing [,]: Tq X T,,.q - Q/Z has now been shown to have the 
desired properties. When n = 2q, we will refer to this pairing as the torsion- 
pairing and our results can be summarized in 

THEOREM (6.5). The torsion pairing on the Z-torsion subgroup of the qth 
Alexander module of a (2q)-knot is Z-linear, conjugate selfadjoint, (_ I)q+1 
symmetric and nonsingular. 

7. It is enlightening to examine the torsion pairing in the special case of a 
fibered knot. We shall see that it is equivalent to the usual linking pairing on 
the middle homology of the fiber. 

As definition of a (smooth) fibered knot we will use the formulation of [La]. 
A knot K c S"n2 is fibered if there exists a smooth map 4: Sn+2 -R2 
satisfying 

(i) 0 is a regular value and K = -'(0), 
(ii) J/1IpI: Sn+2 - K-> SI is a smooth fibration. 
Then any fiber Fo of q/1j1 is an unbounded manifold whose closure Eo in 

S"+2 is a smooth submanifold with boundary K. Furthermore, if X is the 
complement of a suitable open tubular neighborhood of K, X fibers over S' 
and the fiber is a smooth compact manifold F with aF diffeomorphic to K. 
The fibration X -+ SI determines a diffeomorphism T: F -* F, such that 
Tj 3F = identity, and we can describe X as F x I with identifications (x, 0) 
*-* (T(x), 1). This allows us to identify X with F X R and the generating 
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22 JEROME LEVINE 

covering transformation t of X with the map (x, u) t-> (T(x), u + 1). 
There is an obvious isomorphism H*(X) z H*(F) under which the action 

of t E A on H*(X) corresponds to the automorphism T* on H*(F). 

PROPOSITION (7.1). The pairing T, ]: 1q X Tnq Q/Z corresponds to the 
standard linking pairing (, ) defined on elements of H*(F) of finite order. 

Recall that the latter pairing is defined as follows [Se]. Assume F has a 
PL-structure and F' is the dual structure, let z, w be, respectively, a q-cycle in 
F and an (n - q)-cycle in F' (dim F = n + 1) representing homology classes 
a, /B of finite order. Then mz = ac, for some (q + 1)-chain in F and (a, /3) = 
int(c, w)/m, where int(, ) is the usual intersection number. 

We may define a PL-structure on X = F x R using cells of the form 
{a x i, a x [i, i + 1]) where a is a cell of F and i E z. A dual structure will 
be made up of cells of the form {T x (i + 2), T X [i - I, i + 2 ]), where T is 
a cell of F' and i E Z. The boundary operator is given by: 

a(ax i) =aa x i, 

a(ax[i,i+ 1])= ax (i + 1)-axi-aa x[i,i + 1] 

where a represents an oriented cell, or any chain, of F. 
We now choose a PL-structure on F so that T is a PL-automorphism (see 

[Mu]). Then the covering transformation t of X is PL and the cells map as 
follows: 

t(a x i) = T4 (a) X (i + 1), 

t(ax [i, i+ 1]) = T4 (a) x[i + 1, i +2]. 

Let z, w be cycles in F as above-then z x 0, w x 2 are corresponding 
cycles in X representing a', /3'. We want to show [a', /3'] = (a, /3) = 
int(c, w)/m. We use the definition of [, ] in (6.4). Note that 

m(z x 0) =a(c x 0). 
We must now find z" such that az" = (tk - 1)(c x 0) mod m and then 
[a', /3'] is the constant term of (z" * (w x ))/m E QO/I = Q/Z ?z 0. In 
other words [a', /3'] is the sum of the coefficients of all tik, i E Z. Now k has 
been chosen so that tk = 1 on H*(X; Z/m); therefore (T*)k = 1 on 
H*(F; Z/m). We may write Tk(c) - c = a D mod m, where (D is a (q + 2)- 
chain in F. Now set 

k-I 
Z" = D X O + E Tk (C) X [i,i+ 1]. 

i=O 

So 
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k-I 
az" a=( x 0 + 2 (Tk (C) X(+ 1) 

i=O 

- Tk (c) X i - T(k pC) X [i,i + 1]) 

= T# (c) X 0-c X O + Tk (c) X k 

i-i 
- Tk (C) X O- mY, (Tk (z) X[i,i + 1]) 

i=O 

=c x 0 + tk(c x 0) (mod m) 

as desired. Now 

Z" . (W ) 1i- 

[a A] m = t'(int(T#c w) 

whose constant term is 

int(Tkc, w) int(c, TIcw) int(c, w) 

m m m 

since Tk(w) is homologous to w. 

8. We now examine the "group of the knot" 71(X). In [Ke] Kervaire 
obtains an algebraic description of those groups which can arise as groups of 
a knot of dimension > 3. Our main reason for reopening this subject is its 
relevance to the characterization of knot modules, but we will also, in passing, 
obtain some further information ong,(X). 

We first recall 

THEOREM (8. 1) (KERVAIRE). If X is the group of an n-knot, then S is 
finitely-presented and satisfies: 

(a) H1(T) , 
(b) H2(7T) = 0, 
(c) 'r is of "weight one", i.e. there is a E X such that ST is the normal closure 

(in 7T) of a. 

OUTLINE OF PROOF. ST is finitely-presented, since X is a finite cell-complex. 

HI(7T) = H1(X) t Z. H2(7T) is the cokernel of the Hurewicz homo- 

morphism 7r2(X) -. H2(X), according to [H], but H2(X) = 0. Finally, if <a> is 
the normal closure of a in 'I, then 7T/<a> is the fundamental group of 
X U a 2 = X with a 2-cell attached by a map f: 8e2 _* X representing a. If 
we choose a to be the homotopy class of a "meridian" of the knot K, i.e. the 
boundary circle of a fiber in a tubular neighborhood of K, then X U. e2 is a 
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24 JEROME LEVINE 

deformation retract of S,+2 _ (point). We also notice the following connec- 
tion: 

PROPOSITION (8.2). If g" is finitely-generated and satisfies (8. 1)(a), (c), X is a 
space such that gr,(X) ; zr, X the infinite cyclic covering of X associated to 
1' c x, then H1(X) is a A-module of type K. 

An alternative, purely algebraic description of H,(X) is of interest. As an 
abelian group H1(X) t 7T'/ r" = H1(7T') and the A-module structure is given 
as follows. Consider the short exact sequence: 

1 -+ HI (eT') -T/T 
- HI (T) -+ 1. 

If a E H1(7T), then conjugation in H1(7T') by a pull-back of a in S/ST" is easily 
checked to be independent of the particular pull-back, since H1( g') is abelian. 
This defines a group action of H1(,g) on H1(&'). Choosing a particular 
isomorphism H1(&) ; Z gives an action of Z on H1(&') which then extends to 
a A-module structure in the usual way. 

We leave it to the reader to check that this coincides with the A-module 
structure on H,(X) defined by covering transformations. 

Let axi}) c s" be a finite set of generators. If a E X is as in (8.1)(c), it is easy 
to check that a defines a generator of 'iT/7'. Set P,i= a,a", where mi is 
chosen so that Pi E 7T'. Then (a, fli generate 7T. From this we can conclude 
that {a mafi3a-m: m E Z} is a set of generators of 7T'. If t is the generator of A 
corresponding to a, this implies that {tmBf: m E Z} generate H1(r'), as an 
abelian group, w'here f3i is the reduction of f,3 to H1(7T'). But then {Af3} 
generate H1(T') as a A-module. 

(8.1)(c) means 7T is generated by { faf3-': ,B E 7T}. Therefore 7T' is gener- 
ated by {a m/B8a/3-l'a-l -m: m E Z, /3 E 4T). Since we can write each 8 = 
a ky, where y E 7T', k E Z, 7' is generated by {amyy-la 

- 
1-rn: m E Z, 

y E ST'). If y is the reduction of y to H1(7T'), then the reduction of 
amyaxy laxlrM is tm - tm+lj. In particular we see that (t - I)H1(T')= 

H1(7T'), which implies H1(7T') is of type K. 
We now observe one more condition on 7T, which arises when we bring in 

the second Alexander module. 

PROPOSITION (8.3). If 7T is the group of a knot and A2 is the 2nd Alexander 
module, then there is an epimorphism p: A2 -> H2(7T'), where r' is the commuta- 
tor subgroup of g. 

PROOF. This is a direct consequence of the Hopf theorem [H] applied to the 
space X whose fundamental group is g'. 

9. Our first realization theorem will omit the delicate middle-dimensional' 
duality-this requires entirely different techniques. On the other hand we will 
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include the group of the knot in our results. 

THEOREM (9.1). Let n > 2, r a finitely-presented group and A1,..., An 
A-modules of type K satisfying: 

(i) Hl(Q) ; z, 
(ii) H2(0) = 0, 
(iii) X has weight one, 
(a) A I - H(7r') with the action of t defined by conjugation by an element of X 

generating H,(7r), 
(b) f(Aq,) e(f (A 
(c) t (Aq) ; (An-q))) 
(d) there is an epimorphism p: A2 4* H2(7'). 
According to our previous results, these are necessary conditions for 7, {A,) to 

be the group and Alexander modules of an n-knot. 
Suppose the following extra conditions are satisfied: 
(1) if n = 2q-1, Aq is Z-torsion, 
(2) if n = 2q, Aq is Z-torsion free, 
(3) if n = 2, X has a presentation with one more generator than relation, 
(4) A2 has a Z-torsion free summand F such that p(F) = H2(7'). 
Then there exists a (smooth) n-knot with group S and Alexander modules 

{Ai}. Moreover the knot may be required to be diffeomorphic to Sn if n > 3. If 
n = 2, the ambient sphere may only be a homotopy 4-sphere. 

REMARKS. Conditions (1), (2) serve to trivialize the middle-dimensional 
self-duality (??5, 6). Conditions (3), (4) are certainly not necessary (see 
[Ke])-we will shed a bit more light on (3) below in (9.2). Note that, if n = 3, 
we have, by (1), (4), forced H2(/') = O. I do not know whether pl T2 can be 
nonzero, in general. 

To clear up the relation between (2), (3), (4) when n = 2, we first prove 

PROPOSITION (9.2). Let mr satisfy (9.1)(i), (iii), (3). Then ST also satisfies (ii), 

H,(7T') is Z-torsion free and H2(7T') = 0. 

PROOF. Construct the complex P2 as below in the proof of (9.3). Thus 
T,(P2),~ 'Zr and the infinite cyclic covering P2 associated with r' c 7r has a 
chain complex: 

C2 (fi2 ) C1 (P2) -Co(P2 ) 

made up of free A-modules of ranks n - 1, n, and 1, respectively. (Tr has a 
presentation with n generators and n - 1 relations.) Since H1(7T') Z H1(P2) is 
a module of type K, by Proposition (8.2), this chain complex will become 
exact after OA Q(A)-by (1.3). Therefore, by considerations of rank, d2 must 
be a monomorphism and H2(P2) = 0. By the Hopf theorem [H], H2(/T') --O. 
Furthermore, since 
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Imaged1 = Kernel(Co(Pi2)-A-Z) 

is free, we have the free resolution 0 C2(P2) -> Ker d, -- HI(P2) - 0 and, 
therefore, by Proposition (3.5), HI(P2) = H,(T') is Z-torsion free. Finally, we 
conclude H2(P2) = 0 from the argument of Proposition (1.2) and, therefore, 
by [H], H2(7T) = O. See also [Ke]. 

The first step in the proof of (9.1) is the construction of CW-complexes 
with certain properties. These will be used to construct the desired knots as in 
[W]. 

LEMMA (9.3). Let ST be a finitely-presented group satisfying (9. 1)(i)-(iii), F a 
Z-torsion free A-module of type K and p: F -> H2(7T') an epimorphism. Then 
there exists a connected 3-dimensional CW-complex P with v7r(P) ; er, H2(P) 
z F (where P is the oo-cyclic covering of P associated to iT' C T), p correspond- 
ing to the "Hopf epimorphism" of P i.e. the epimorphism H2(P) -+* H2(7T1(P)) 
which exists by the Hopf theorem [H] and H3(P) = 0. 

If 7T also satisfies (9.1)(3), and F = 0, we may choose P to be 2-dimensional. 

PROOF. Choose a presentation of T: {xl, . . ., x"; r1 = 0, .. ., rm = 0) 
where the r, are elements of the free group on {xi}. Define PI to be the 
one-point union of n circles. If we identify xi with the element of vr1(PI) 
represented by the ith circle, then we may represent each rj by a map fj: 
S I - P1. Construct P2 from P1 by attaching m 2-cells using the {fj}. Clearly 
7r1(P2) - T. Let P2 be the infinite cyclic covering of P2 associated with 

IT C ST. 

H2(P2) is a free A-module, since it is the kernel of a homomorphism 
between free modules, the boundary operator C2(P) -e C1(P2), A has homo- 
logical dimension 2 and every projective A-module is free. We have the exact 
sequence 7r2(P2) - H2(P2) .- H2(Tz') .- 0 from Hopf's theorem. Since H2(P2) 
is free and p: F H2(7r') is onto, we may construct a homomorphism p' to 
give a commutative diagram 

F 

Y |~P 

l2(P2) -- H2(P2) -.+ H2Qr') - 0> 

We may, furthermore, make p' onto as follows. Notice that p' is onto F if 
and only if Ker p c Im p'. Choose a (finite) set of generators of Ker p-recall 
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A is Noetherian. For each of these attach a trivial 2-cell to P2, i.e. form the 
one-point union with a 2-sphere. This has the effect of adding a copy of A to 
H2(P2) which maps to 0 in H2(r'). Now we just extend p' over these new 
summands by mapping them to the corresponding generators of Ker p. 

Since F is Z-torsion free, it has homological dimension 1, by Proposition 
(3.5). Therefore, Ker p' is a free A-module. Moreover, by Hopf's theorem, the 
elements of Ker p are spherical. Choose a basis of Ker p' and represent these 
by maps S2 _> P2. Construct P from P2 by attaching 3-cells using these maps. 
It follows easily that H2(P) F. H3(P) = 0 since the boundary operator: 

C3 (P) Ker p' c H2 (P2) c C2 (P2= C2 (P) 
is injective. 

This proves the first part of Lemma (9.3). 
In case n = m + 1, we can conclude that H2(P2) = 0, using the argument 

of (9.2). We may, therefore, take P = P2. 

LEMMA (9.4). Let A be a A-module of type K and q > 2 an integer. Then 
there exists a connected (q + 2)-dimensional CW-complex P such that r1(P) ; 
Z, Hq(P) A, where P is the universal covering of P, and H,(P) = 0 for 
i = #& 0, q. 

If A is Z-torsion free, we may make P (q + 1)-dimensional. 

PROOF. Choose a free resolution of A: 
d2 d, 

0 -* F2-*F, -*Fo -* A -*0. 

The F, are finitely-generated. Let Pq be the one-point union of a circle and a 
copy of Sq for each member of a basis {xi} of Fo. Then 7Tq(Pq) Hq(Pq) = 
Cq(Pq) Fo. Let {y,} be a basis of F, and choose]i: Sq _ Pq to represent the 
element of 7Tq(Pq) corresponding to dl(yi). Construct P+,1 by attaching 
(q + 1)-cells to Pq using {fi}. Then Cq+I(Pq+i) FI, Cq(Pq+i) = Cq(Pq) ; 

Fo and the boundary operator Cq+ I(Pq+ 1) Cq(Pq+ 1) corresponds to dl. 
Now Hq+l(Pq+i) c Cq+ I(fq+) corresponds to Ker d, and, therefore, d2 
defines an isomorphism F2 z Hq+ I(Pq+ 1). By the theorem of G. Whitehead 
[Hu, p. 167], the Hurewicz homomorphism 'Tq+ I(Pq+ 1) -* Hq+ I(Pq+ 1) is onto. 

Sq+1l_>p Therefore we can represent a basis of Hq+I(Pq+) by maps Pq+I 
which project to maps Sq+l_ pq+. P is now constructed from Pq+, by 
attaching (q + 2)-cells using these maps. 

The chain complex of P is now up to isomorphism: 
d2 d, - 

which implies the desired homological behavior. 
If A is Z-torsion free then it has homological dimension 1 (Proposition 

(3.5)) and we may choose F2 = 0. In this case P = Pq+ . 
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10. The next step in the construction of knots is 

LEMMA (10.1). Let P be a finite d-dimensional complex such that 'r = Tr1(P) 
satisfies (9.1)(i)-(iii), and Hi (P) are A-modules of type K, for i > 0, where P is 
the infinite cyclic covering of P. Then P imbeds in Rn 3 where 

n > sup{2, 2d-3}. 

Let Y be the boundary of a regular neighborhood of P in Rn13. Then 
(i) V1(Y) - VI(P), 
(ii) H*(Y) H*(S1 X Sn+1), 
(iii) Hi(Y) fHi(P) if i 6 n + 1 - d, where Y is the infinite cyclic covering 

of Y, 
(iv) Hd 1(Y) is finite if n = 2d - 3 and Hd- 1(P) is finite. 

PROOF. An argument similar to the proof of Proposition (1.2) shows that P 
is a homology circle. Therefore Hd(P) = 0 and the imbeddability follows 
from a theorem of van Kampen [V]. If N is a regular neighborhood of P in 
R +3, then Y is a deformation retract of N - P. Therefore (N, Y) - 

7i(N, N - P) = 0 for i < n + 3 - d, by general position. Since n + 3 - d 
> 3 and N - P, we conclude (i). The Hurewicz theorem implies (iii). 

Since (N, Y) is (n + 2 - d)-connected, it follows easily that H,(Y) z 
Hi(P) for i < 2 (n + 2)-which implies (ii)-except for the case n = 2d - 3, 
i = d - 1. For this we examine the homology sequence of (N, Y): 

Hd(N, Y)-* Hd.l (Y) -* Hd Il (N) = 0. 

Now Hd(N, Y) z Hd(N) = Hd(P) =0. 
To prove (iv), we consider the homology sequence of (N, Y): 

Hd (,Y ) > Hd l( Y ) >Hd- l(N ) 
It suffices to prove Hd(N, Y) is finite. But Hd(N, Y) Z He (N) z He'(P). 
Since H*(P) is of type K, we have, from the universal coefficient spectral 
sequence, just as in Proposition (2.4), the short exact sequence 

0-* ExtP(Hd2 (F), A) - Hed(p ) Extk (Hd-I (P), A) -O0. 

Since Hd..1(P) is finite, Extk(Hd (f(P), A) = 0 (see Lemma (3.3)). The finite- 
ness of ExtA(Hd-2(P), A) (see Proposition (3.2)) gives the desired result. 

If a E 7TI(Y) is an element satisfying property (iii), represent a by an 
imbedded circle S c Y. S has a trivial normal bundle, since Y is orientable, 
and so has a tubular neighborhood T diffeomorphic to S 1 x Dn+1* 

Define X = Y - T. By general position, 7T,(Y, X) = 0 for i < n. Therefore 
'T,(X) s T(Y), if n > 2, Hi(X)> Hi (Y) and H,(X) -Hi ,(Y) for i < n. 
Since aX is diffeomorphic to S 1 X Sn we may attach to X a copy of D2 X Sn 
via a diffeomorphism between their boundaries. Let z denote the resulting 
manifold. 
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CLAIM. I is a homotopy (n + 2)-sphere if n > 2. 
It follows from van Kampen's theorem and property (9. 1)(iii) of 'g, that I is 

simply-connected. Now H,(2, X) ; Hi((D 2, S') X Sn) t Hi-2(Sn). There- 
fore H,(X) z Hi(Y) for i < n, i #s 1, 2. To check i = 1, 2 we examine part of 
the homology sequence: 

H3 (1) X) -eo H2 (X) - H2 (1) - H2 (1, X) I> HI (X) - HI (1) O0. 

H2(2, X) is infinite cyclic and a generator maps by a onto the elements of 
H1(X) x: H1(Y) represented by a. Since H1(Y) is inifnite cyclic generated by 
a, a is an isomorphism. This shows H1(2) = 0 and H2(X) w H2(2). Now 

Hj(2) ,z Hi(X) ,z Hi(Y) = 0 for 2 < i < n. Since n > 2 this proves, by 
duality, that H*(1) - H*(S"+2). The claim now follows by a theorem of 
J.H.C. Whitehead. 

If n > 3, then E is, in fact, a piecewise-linear sphere by [Sm] and, therefore, 
by changing the attaching diffeomorphism between X and D2 x Sn, on an 
(n + 1)-disk, we may arrange that E be diffeomorphic to Sn+2. 

By setting K = S X 0 c S X D2 c E, we have constructed an n-knot 
whose complement is X. 

We now construct, by these techniques, some particular knots. 
(10.2) Given gr satisfying (9.1)(i)-(iii), (3), there exists a 2-knot in a homo- 

topy 4-sphere with g 1(X) g. 
Let P be the 2-dimensional complex constructed in Lemma (9.3) such that 

,gj(P) - -w, H2(P) = 0. By Lemma (10.1) we may imbed P c R5; the knot 
derived from this enbedding will do. 

(10.3) Let 1 satisfy (9.1)(i)-(iii) and F be a Z-torsion free A-module of type 
K with an epimorphism p: F-> H2(v'). If n > 4, or n = 3 and F = 0, there 
exists a n-knot (diffeomorphic to S) in Sn+2 such that iTI(X) - 7T, Hq(X) = 

0 for 3 < q < [(n + 1)/2] and H2(X) t F if n > 4, is finite if n = 3. 
Let P be the 3-dimensional complex constructed in Lemma (9.3) with 

( 'sx, H2(P) z F, H3(P) = 0. By Lemma (10.1) we may imbed P c 
R"+3 and the resulting knot is readily checked to satisfy the above properties. 

(10.4) Given a A-module A of type K and integers q > 2 and n > 2q, with 
A Z-torsion free if n = 2q, there exists an n-knot (diffeomorphic to S) in 
Sn+2 such that 7T1(X) z Z, Hq(X) z A, Hi(X) = 0 if i #/ q, 0 < i < [n/2] 
and H,(X) finite if i = (n + 1)/2. 

Let P be the complex constructed in Lemma (9.4), of dimension q + 1 if 
n = 2q. Then we may imbed P c R +3 and the resulting knot will satisfy the 
desired conditions as a consequence of Lemma (10.1). 

It is clear that the knots produced in (10.3) and (10.4) must be, somehow, 
combined to get the general knot which will satisfy Theorem (9.1) for n > 3. 
This combination is achieved by the operation of "connected sum" (see [Ha]). 
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Let K1 c SI, K2 c S2 be smooth n-knots. Choose orientation-preserving 
imbeddings D,12 c 1, D12 C S2 such that Dn+2 n K5 = Dn and the re- 
sulting imbeddings Dn c Ki are orientation-preserving. Now choose an 
orientation-reversing diffeomorphism : D n+2 ->D D 2 such that p(D = 
D" and reverses the orientation of Dn. Define the connected sum 

S = S1-Dn+2 U, S2 - Dn+2 K=K- Dn U, K2 -Dn. 

S has an orientation consistent with the orientations of Si - Dn+2 c S; 
similarly for K. It is easy to see that K c S is an n-knot. 

LEMMA (10.5). Suppose Ki c S,, i = 1, 2, are n-knots with complements X, 
and K c S is the connected sum with complement X. Then Hq(X) , Hq(Xj) ED 
Hq(X2), for q > 0. If 7rT(X2) w Z, then 7T1(X) - s7l(XI). 

PROOF. An examination of the connected sum construction shows that X 
can be described, up to homotopy, as the union of X, and X2 identifying a 
meridian of K, with a meridian of K2, preserving orientations. In X1 and X2 
the meridians lift to copies of the real line-therefore X Y X1 V X2. The 
statements about homology follow easily. The statement about fundamental 
group follows from the van Kampen theorem and the fact that a meridian of 
K2 represents a generator of 1TI(X2) ; Z. 

We can now complete the proof of Theorem (9.1) The desired knot will be 
the connected sum of knots K, c Si, i = 1, . . ., [n/2]. We may assume 
n > 3, since, if n = 2, a single knot of type (10.2) will suffice. 

Let K, c SI be a knot of type (10.3) with 7T, F as given-note that, if n = 3, 
conditions (9.1)(1), (4) force F = 0. By (9.1)(4), we may write A2 = F e B2. 
Let K2 c S2 be a knot of type (10.4) with q = 2, A = B2. For i > 3, let 
K, c Si be a knot of type (10.4) with q = i and A = Aq. Properties (9.1)(b), 
(c) follow from Theorem (3.4), while the remaining properties follow in a 
straightforward manner. 

11. As a consequence of Theorem (9.1), we will prove the following 
realization theorem concerning only Alexander modules. 

THEOREM (11.1). Let n > 2, and Al, ... An a sequence of A-modules of 
type K satisfying: 

(a) efjn) e l( (An+ _q)), 
(b) t (A q) st, e2(t (An -q)), 

(1) if n = 2q - l,f(Aq) = 0, 
(2) if n = 2q, t(Aq) = 0, 
(3) t(A1) = 0. 
Then there exists a smooth n-knot (diffeomorphic to Sn) in Sn+2 with 

Aq= Hq(X). 
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REMARK. Restrictions (1) and (2) will be removed when we consider 
realization of the product structure below, but restriction (3) will persist as a 
result of the difficulties with the group of the knot that I have not been able 
to overcome. It is not difficult to realize various special t(A 1), by constructing 
suitable ST or by twist-spinning (see [Z])-but I will not go into this question 
any further in the present work. 

PROOF OF THEOREM (11.1). Let A1 be a Z-torsion free A-module of type K. 
We will construct a group ST satisfying (9. 1)(i)-(iii) such that H1(g') = A1, 
H2(7') = 0. By choosing F = 0, we can then conclude Theorem (11.1) directly 
from (9.1) for n > 3. To cover the case n = 2, we will also require ST to satisfy 
(9.1)(3). In light of Proposition (9.2), Theorem (11.1) will now follow from 
(9.1) for n = 2 also, except that the 2-knot will lie in a homotopy 4-sphere. To 
repair this fault, we will want to impose the further condition on ST that the 
construction of (10.2) produces S4 as the ambient sphere. 

Suppose 0 -F1 d Fo-A1-0 is a free resolution of A1. Since A1 is 
A-torsion, F1 and Fo have the same rank and d has a square matrix 
representation (X.). Since A1 is of type K, (E(Qj)) is a unimodular integral 
matrix. We may change (e(Xi)) to the identity matrix (Sd.) by elementary row 
and column operations. Since these operations can be lifted to (Xv), it follows 
that, by changing bases of Fo and F1, we may assume d has a matrix 
representative (X,) with e(X11) = Su. 

Write X. = -kaiiktk. We now define S to be the group with the following 
presentation: 

(xi), : II ( xjT) = 1, for all i 

The order of multiplication is defined by lexicographically ordering the index 
pairs (j, k), i.e. (j, k) 6 (j', k') iff j < j' orj = j' and k < k'. 

H1(7T) has a presentation: ({Xi), t: Yj,kaYjkXj = 0) written in additive 
notation. Since Eka,,k = e(Xu) = S., this becomes ({X,}, t: Xi = 0), which is 
the infinite cyclic group generated by , the image of T. Furthermore we see 
that g"' is the normal closure of {x,} in -w. In fact {Tkx Trk) form a set of 
generators of g"'. It follows that a presentation of -w' is 

( X H:uXa,j+I 1, for all i, I 

by setting xjk = TkxjT-k and taking all conjugates by powers of T of the 
relations in S. Therefore, a presentation of H1(T') is given by 

({AXjk }: akXj,k+l 
= O, all i, ). 
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If we write Xjk = tkX1, using the A-module structure of H1(-w'), we get the 
presentation, as a A-module: 

(X.: t( iXj)X = 0, all i, I) 

which is also a presentation of Al. 
To check (9.1){iii) we add the relation T = 1, to get 

({xi} Ixj%k = 1,alli) or 
j,n 

({Xi}: }lgkauk = 1, all i 

using the fact that the order of multiplication is defined lexicographically on 
(j, k). Since zka,Yk = e (XU) = 8., we get the trivial group. 

Obviously gr satisfies (9.1)(3). It now follows from [Ke] or (10.2) that there is 
a 2-knot in some homotopy 4-sphere with group ff. We would like to 
demonstrate, however, that such a knot exists in S4. For this we use the 
construction of Kervaire in [Ke]. Given a group -w satisfying (9.1)(i), (iii), (3) 

=T {xl, ... * x+1: r1 = 1,.. , rn = 1), where ri are words in {x,}, we 
consider 

V = SI X S3#S X S3# .. .#S X S3. 

(n+ 1) times 

s7T(Vo) is the free group on {x, ..., xn + }, where x, is represented by a loop 
around the ith SI X S 3. If V is constructed from V0 by surgery on imbed- 
dings f: S' X D3 c VO representing { r}, then f 1(V) ; 71. Let T E -w be an 
element such that the relation T = 1 kills 71. Surgery on V using any imbed- 
ding f: S I X D 3 c V representing T will produce a homotopy 4-sphere 7: (see 
the argument in [Ke]) and the desired knot in l: is justf( * X S2). 

Suppose xn+I = T. Then we may take f to be a standard imbedding 
SI X D3 c SI X S3 into the (n + l)st S x S 3 in VO (missing the disk 
removed by connected sum). If we do this surgery on T before the surgeries on 
{rj}, we obtain 

V1 =S X S3# ,... #S' X S3#S4_S' X S3#... #SI X S3. 

n-times n-times 

Suppose r,(xi,..., xn, 1) = x,. Then fi: S' x D3 C V1 is homotopic to a 
standard imbedding S' x D3 c SI X S3 into the ith SI X S3. 

Therefore, by general position ]i is isotopic to this standard imbedding or 
one obtained from it by twisting the normal framing. But, if the latter is the 
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case, we may change fi by untwisting the normal framing. It follows now that 
surgery on f1 essentially changes the ith SI x S3 to S4 and the resulting 
E= S4# * . . #S4= S4. 

Since our group g" satisfies these two conditions, the proof is complete. 

12. We now turn to the middle-dimensional Alexander modules. The 
problem here is to realize a given Z-torsion free or Z-torsion A-module with 
the appropriate product structure as the middle Alexander module of an odd- 
or even-dimensional knot, respectively. We first discuss the Z-torsion free 
case. 

THEOREM (12.1). Let F be a Z-torsion free A-module of type K equipped with 
a pairing <, >: F X F -> Q (A)/A which is conjugate linear, nonsingular and 
(- I)ql '-Hermitian (see ?4, 5), for some positive integer q. 

If n = 2q - 1 > 3, then there is an n-knot with qth Alexander module 
isomorphic to F, Blanchfield pairing <, > and all other Alexander modules 0. 

We will discuss the cases n = 1, 3 below. 
To prove Theorem (12.1), we will, as usual, construct the complement of 

the desired knot. This construction is the content of 

LEMMA (12.2). Let X = (X.) and ,u = (,u,) be (m X m)-matrices with entries 
in A satisfying: 

(a) det X # O, 
(b) XgT = (_ ly+lt T 

(c) the diagonal entries of XjiT are zero. 
Then, if q > 2, there exists a compact (2q + 1)-dimensional smooth manifold M 
with TrrI(M) z Z, Hi(M) = O for i # 0, q, where M is the universal covering of 
M, and Hq(M) has X as a relation matrix with respect to a set of generators 
{e,) while the linking pairirg: 

<,>:Hq(M) X Hq(M)Q(A)/A 
defined above in ?5, has X -'I as matrix representative with respect to {e,}. 

More precisely, the relations of {EjXijej = 0, i = 1, . .. , m} generate all the 
relations in Hq(M)-it follows that Hq(M) is a A-torsion module, since A = 

det X annihilates every element-and, if X ̀- -y = (y,)-so y. E Q (A)-then 
<e*, ej> = -y mod A. 

PROOF. Define 

MO = S1 X Dn# Sq X Dq+1# .. #Sq. 

m copies 

Then 7rT(aMo) 7 sTI(Mo) ; Z, 7Ti(aMO) = 0 = 7Ti(Mo) for 1 < i < q, 7q(Mo) 

is a free A-module of rank m and grq(aMo) is a free A-module of rank 2m. A 

This content downloaded from 129.215.149.96 on Thu, 25 Dec 2014 09:30:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


34 JEROME LEVINE 

basis {xl, x *, x,m; y1, * Ym} for 7Tq(OMo) is defined by letting x,,y, be the 
homotopy classes of Sq X *, * X Sq in the ith Sq X DqlI, where * E Sq. 
The inclusion sq(OMo) > 7Tq(MO) mapsy, to zero and {xl ..., x} to a basis 
{ei} Of qTq(Mo). 

Define a, E 7Tq(aMo) by ai = Y1jXxj + Xj,4,yj. Consider the intersection 
pairing Hq(fMo) X Hq(aMo) -* A (see ?2). Clearly x, yj = (- I)qyj x, = 8u, 
and x, * xj = yi *yj = 0 if Sq X *, * X Sq are oriented appropriately. There- 
fore 

a,' c- a (j,iik + (- l)"iX1k) = 0, 
k 

by (b). Set ax' = EjAXj and a," = 2jiyj. Then 

a, * a," = 

by (c). 
Now a, and a," may be represented by imbedded spheres. For example ac' is 

represented by taking connected sums of disjoint sections {Sq X U,: Ur E 
Sq} using tubes which wrap around S1 x Sn'-. Since a. " a5" = 0, and q > 2, 
we may use the Whitney process to assume a,' and a" are disjoint (see [Kel]). 
By taking an appropriate connected sum, we may, therefore, represent ai = a, 
+ a," by an imbedded sphere. Since a, * aj = 0, we may use the Whitney 
process, again, to assume these spheres are disjoint. 

Furthermore we may assume that the imbedded spheres representing {ai) 
have trivial normal bundles, since this is true of the representatives of {xi} 
and a connected sum of two submanifolds with trivial normal bundle has a 
trivial normal bundle. 

We now construct M from Mo by adding handles along the imbedded 
framed spheres in aMo representing {ai}. Since the image of ai in 7Tq(Mo) is 

ZjX,ej, it is clear that vq(M) z Hq(M) is as desired. It is also clear that 
-r(M) and Hi,(M), i # q, are as desired. It remains to check the linking 
pairing <, >. 

Let A = det X; then AI = AJ, where I is the identity matrix and AX (=X.) is 
the matrix of cofactors of X. Let zi be the cycle in int Mo carried by Sq X 0 in 
the ith copy of Sq X Dq + 1, which represents e, E 7q (MO). Let Zi' be the cycle 
in aMo representing xi carried by Sq X * in the ith copy of Sq X Dq+l, 
* E aD q+ 1, We want to construct a chain Fi in M such that MF, = Az,' and the 
matrix of intersection numbers (Fi * zj) = Xu1. From this we can then con- 
clude: 

<ei, ew>>- (Fi zj d) = Ae r 

which is the desired result. 
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Let w, be the cycle in aMo representing yi, carried by * x aD"q+ in the ith 
Copy of Sq X D q+ 1, and D, the chain in M - Mo carried by the core disk in 
the handle attached along ai. Clearly EQj(zjz' + uwj) is homologous to aD, in 
aMo, by definition of a,. Therefore 

(Xzj + Itwj) = a (Di + Ei) 

where Ei is a chain in aMo. 
If ui is a chain in Mo carried by *x D then aui = wi. Therefore: 

AZ,' = ~XiXjkZk = X (ia (Dj + Ej kUk) 
j,k j k 

and we may set 

Fi , Xj (Dj + Ej -2 1:jk Uk) 

Now Di *zj = Ei * zj = 0, since zj is carried by int Mo while Di, Ei are carried 
by M - Mo. Furthermore ui * zj is the same as xi yj, up to some fixed sign, 
which is 8.. Therefore F5 * zj = + jXUjAk. 

Finally the sign may be changed by reorienting M. 
REMARK. (1) The same argument proves the analogous theorem for simply- 

connected manifolds, replacing A by Z and M by M. 
(2) A useful reformulation of the hypotheses would replace It by a pre- 

scribed matrix y with entries in Q (A) satisfying: y = (-l)q+ ljT, Xy integral 
(i.e. has entries in A), and XyXT has zero diagonal. The conclusion would be 
that < , > has y as a matrix representative with respect to {ei). 

Suppose we are given a A-torsion module A of homological dimension one 
together with a pairing: < , >: A x A Q (A)/A which is conjugate linear 
and e-Hermitian (e = ? 1). 

To apply Theorem (12.2), we need to find for some generator set {*e, a 
relation matrix X for A and a representative matrix y for <, > satisfying the 
conditions in Remark (2) (replacing (- l)+ l by e). 

PROPOSITION (12.3). Given (A, < , >) as above, there exists a well-defined 
element of 

{ HomA(A, Z/2) if E = -1 

ExtX(A, Z/2) if e = +1 

where Z/2 has the trivial A-structure, which is zero if and only if the desired 
matrices X and y exist. 

PROOF. Let 0 -> F1 A> Fo -> A ->0 be a free resolution with bases {ei} of 

Fo, {ei'} of F,, such that X is the matrix representative of d, i.e. d(e,.) = Xij. 
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Let (,): Fo x Fo -> Q (A) be a conjugate linear lift of < , >-this can be done 
by lifting <e,, e>> E Q (A)/A to arbitrary (e,, ej) E Q (A) and then extending 
the definition of ( , ) bilinearly. We may also choose (e,, ej) = e(ej, e,) for 
i 1 j. If we could also do this for i = j, (, ) would be e-Hermitian. Now 

<e1, e,> = e<Ke, e,>, which means any lift X of <e1, ei> to Q (A) satisfies p = X - 
eX E A. If e = + 1, we may write p = a - a, for some a E A and then set 
(e*, e,) = X - a. If e = - 1, it is necessary to be able to decompose p = a + 
a, for some a E A. This is possible if and only if the scalar term of p is even, a 
condition which is independent of X: if Ao is also a lift of <e,, ei> and 
Po = xo + o E: A, then X - Xo E A and p - po = (X - X,) + (A - Xe) which 
has an even scalar term. 

Define a homomorphism 4: A -; Z/2 by 4o(a) = mod 2 reduction of the 
scalar term of X + X, where X is any lift to Q (A) of <a, a>. By the arguments 
above, 4 is well defined and 4) = 0 is a sufficient condition to lift <, > to the 
desired (,). Conversely it is easy to see directly that the existence of such (,) 
implies . = 0. 

If y is defined to be the matrix representative of (, ) with respect to {ej, 
the only condition possibly not satisfied is that XyX Thave zero diagonal. As a 
first step, let us ask that the diagonal entries have even scalar term. If e = - 1, 
such a diagonal entry 8 satisfies 0 = - 0; which certainly assumes this 
property. If e = + 1, we measure the obstruction by a homomorphism AP: 
F1 -* Z/2 defined by +(a) = mod 2 reduction of the scalar term of 
(d(a), d(a)). Now two different lifts ( , ) of < , > differ by a pairing 
Fo X Fo -> A. The associated 4 will then differ by the restriction of a 
homomorphism Fo -> Z/2 to F1 by d. Conversely, any such change in 4 can 
be "lifted" to a change in (, ). If we consider the exact sequence: 

HomA(FO, Z/2) -* HomA(Fl, Z/2) -> ExtX (A, Z/2) --* 0 

we see that the image of 4 in ExtA(A, Z/2) is a well-defined obstruction to 
choosing ( , ) with the desired behavior. 

We leave it to the reader to check that these obstructions are independent 
of the particular resolution of A. 

The proposition will now follow from 

LEMMA (12.4). Let v be a square matrix over A satisfying P T = EV, for some 
E = + 1, whose diagonal entries have even scalar terms. Then, for some m, the 
block sum: 

Po = e EE O )1 (D e O )D ( o Oie 

m copies 
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is congruent, over A, to a matrix with zero diagonal-i.e. there exists a 
unimodular matrix p, over A, such that pioj T has zero diagonal. 

Assuming this lemma, set v = Xy T'. Using the p which satisfies the lemma, 
we may set 

Yo =y(E 0 1) ... ( 0 1) 

m 

and Xo = A ED I2., where I2m is the (2m x 2m)-identity matrix. Now pto, 'yo 
will satisfy the conclusions of Proposition (12.3). 

PROOF OF LEMMA. Suppose v is a (k x k)-matrix. Let 8 be a (k x k)-matrix 
such that eO + 0 has the same diagonal entries as n-e.g. we may choose 0 to 
be a diagonal matrix. Then the block sum 

= (0 Ik4) 

where Ik is the (k x k)-identity matrix, is congruent to a matrix with zero 
diagonal. In fact, if we set: 

Ik Ik -8 

P= O Ik ? 

o o Ik 

then 

V -Es - E8t Ik 

-T -- O Ik] 

EIk EIk 0 

If A is a A-module of type K, then HomA(A, Z/2) = 0 = ExtAk(A, Z/2). In 
fact t - 1 defines an automorphism of A, but zero on Z/2. Combining this 
observation with Lemma (12.4) and Proposition (12.3), we have 

PROPOSITION (12.5). Let A be a Z-torsion free A-module of type K, and <, >: 
A x A -- Q (A)/A conjugate linear and E-Hermitian. Then for any q > 2 such 
that e = (-q 1, there exists a compact smooth (2q + 1)-dimensional manifold 
M such that r I(M) - Z, H,(M) = O for i #& O, q, and A A Hq(M) so that 
<, > corresponds to the linking pairing: Hq(M) X Hq(M) 4 Q (A)/A. 

LEMMA (12.6). Suppose M is as in Proposition (12.5) and <, > is nonsingular. 
Then 

(a) aM is diffeomorphic to 2 x S1, for some topological (2q - 1)-sphere 2, 
and 

This content downloaded from 129.215.149.96 on Thu, 25 Dec 2014 09:30:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


38 JEROME LEVINE 

(b) 7 = M U E x D 2, where aM is identified with a (E x D 2) by a suitable 
diffeomorphism, is diffeomorphic to S2q+ 1. 

It is clear that the (2q - 1)-knot I x 0 c 2 has (A, < , >) as its qth 
Alexander module and Blanchfield pairing, while the other Alexander mod- 
ules are zero and the group of the knot is Z. This will prove Theorem (12.1). 

PROOF OF (12.6). Note that M has a (q + 1)-dimensional subcomplex K, 
defined by the cores of the handles, such that aM is a deformation retract of 
M - K. Since K has codimension q > 2, it follows, by general position, that 
7r(aM) - s7r(M - K) 7r,(M)-these isomorphisms all induced by inclusion 
maps. 

Now we will show that 7,(aM) = 0 for 1 < i < 2q - 1. This is equivalent, 
by the Hurewicz theorem, to Hi(aM) = 0, 0 < i < 2q - 1. Consider the 
exact sequence 

***Hi+ (M) -,l(,a)> H, p78MA7) 

Now H1(M, aM) H 2q+'-'(M) by duality. By the universal coefficient 
spectral sequence-see Theorem (2.3)-we have a short exact sequence: 

O -> Ext2A(Hf2 ((M), A) -> H' (M) -> Extk (Hj_ I (M), A) -O0 ~~~~~~~~~ 
and so Hi(M, DM) = 0 if i # q - 1, q, 2q. But when i = q - 1, we have 
Hq_ 1(M, aM) = ExtA(Hq(M), A) = 0, since Hq(M) - A is Z-torsion free. 
From the exact homology sequence we now conclude that H(a8M) = 0 for 
i #'= 0, q - 1, q, 2q - 1 while, for these dimensions, HO(AM) -H2q -(IM) R 
Z and there is an exact sequence 

O*Hq (aM) >Hq(M) Hq(M, aM)4 Hq_I(M)-O. 
Furthermore Hq(M, 3M) t Heq+(M) T Heq(M; Q(A)/A) t 

HomA(Hq (M), Q (A)/A), by the arguments in ?5, since Hq(M) is Z-torsion 
free of type K, and Hq+I (M) = 0, and so the homomorphism Hq(M) * 

HomA(Hq (M), Q (A)/A) defined by j* and this sequence of isomorphisms 
coincides with the adjoint of the linking pairing. Thus j* is an isomorphism, 
when the linking pairing is nonsingular, and Hq 1(3M) = 0 = Hq(3M). 

We now know that vr1(aM) z Z and v7i(aM) = 0 for 1 < i < 2q - 1. Let 
f: S' X D 2q 1-O M be an imbedding representing a generator of sl(3M) 
and set V= M uf D2 x D2 1, i.e. add a handle of index 2 to M viaf. 
Since z1(M) t zl(8M) and M is a homology circle, V is contractible and a V 
is simply-connected. Therefore by [Sm], a V is diffeomorphic to S2q. Now 

X =aV- D2 X S2q-2 =8M_f(Sl X D2q-1) 
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is the complement of the framed (2q - 2)-knot D 2 X S2q-2 C a V. By general 
position 7Ti(X) z 7ri(8M) z 7r,(S 1) for i < 2q - 2, which implies, by the 
unknotting theorem of [L2], that D2 X S2q-2 C 8 V _ S 2q is isotopic to a 
composition: 

D2 X S2q-2 lXh2X S2q-2 S2q 

where h is some diffeomorphism of S2q-2 and i is the standard imbedding 
defining the trivial framed knot. It follows readily that 8M, which is obtained 
from a V by surgery along i o (1 x h), is diffeomorphic to S 1 X lh' where 2h 

is the topological sphere defined by identifying two copies of D 2q -1 along 
their boundaries by h. This proves (a). 

To prove (b) we proceed by standard arguments, using the van Kampen 
theorem and the Mayer-Vietoris sequence. We only need observe that M is a 
homology circle and 7r1(aM) 7 r1T(M). 

The proof of Theorem (12.1) is now complete. 

13. We now turn to the realization of a Z-torsion module as the middle-di- 
mensional Alexander module of an even-dimensional knot. 

THEOREM (13.1). Let A be a finite A-module of type K and [,]: A x A 
Q/Z a Z-linear (_ )lI+ I-symmnetric, nonsingular, conjugate selfadjoint pairing. 
If q > 1, there exists a 2q-knot with qth Alexander module and torsion pairing 
isomorphic to (A, [ , ]) and all other Alexander modules 0. 

We will construct a fibered knot as follows. If M is a closed (q - 1)- 
connected (2q + 1)-manifold with Hq(M) finite, then H,(M) = 0 for i # 
0, q, 2q + 1. Suppose h is an orientation-preserving diffeomorphism of M 
such that h* - 1 is an automorphism of Hq(M)-we may suppose that h 
leaves some (2q + 1)-disk D c M fixed. Consider the "mapping torus" V of 
h, i.e. M X I with the ends attached according to the rule (x, 0) = (h(x), 1). 
It is easily checked, if q > 1, that V is homology equivalent to S 1 X S 2q+ l-if 
q = 1, we need a more delicate condition on h (see [Ma]). Furthermore, if V 
is the infinite cyclic covering of V defined by the obvious map V -* S 1, then 

H*(V) z H*(M), and the A-module structure on H*(V) is defined by 
identifying the action of t E A with h*. Now D X I c M X I determines an 
imbedding D x S1 c V. If we remove D X S1 and replace it with aD x 
D 2, the resulting manifold I is a homotopy sphere. Furthermore aD x O c E 
is a 2q-knot in I whose complement is V - D X S 1. It is easy to see that the 
Alexander modules coincide with H*(fV). In case I is an exotic sphere we 
may form the connected sum, away from aD x 0, with - to get a 2q-knot 
in S2q+2. 

Since V fibers over S l with fiber M, the complement of aD X 0 c I fibers 
over S1 with fiber M-point. By Proposition (7.1), the pairing [, ] coincides 
with the linking pairing of M. 
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To prove Theorem (13.1) by such a construction, we will therefore need 
only to prove 

THEOREM (13.2). Let A be a finite abelian group, 0 an automorphism of A and 
]: A X A -* Q/Z a bilinear, ( 1)q+ '-symmetric nonsingular pairing for 

which 0 is an isometry. 
If q > 1 and 0 - 1 is an automorphism, then there exists a closed (q - 1)- 

connected (2q + 1)-manifold M with Hq(M) - A and linking pairing corre- 
sponding to [, ], and a diffeomorphism (orientation-preserving) h of M such that 
h* = 0. 

We will prove this by constructing a suitable q-connected (2q + 2)- 
manifold W and diffeomorphism g of W-then setting M = aW, h = gl M. 
The homological relation between M and W is as follows. Suppose <, > is 
the (nondegenerate) intersection pairing of W defined on H = Hq+ (W). 
Then <, > extends to a pairing on H 0 Q with values in Q. Define H 1 to be 
the dual of H in H ? Q, i.e. Hl = (a: <a, H> c Z}. Then H1 v H and 
<, > induces a nonsingular pairing [, ] of H 1/H = A to Q/Z. One can prove 
that Hq(M) z A and the linking pairing on Hq,(M) corresponds to [, ] (see 
e.g. [WI]). 

There is a further structure on M and W which we must consider. If q is 
even #7 2, 6 and W is a parallelizable manifold, for simplicity, there is a 
quadratic function ,u: H -* Z2, i.e. it satisfies the condition 

(13.3) JL(a + 3) - ,A(a) - ,u(,B)--<a, 1B> mod 2. 

The following is a special case of the results of Wall [W1]. 

THEOREM (13.4). Suppose < , > is a nondegenerate ( I)ql -symmetric 
bilinear form on the free abelian group H and ,u: H -* Z2 satisfies (13.3) if q is 
even # 2, 6. Suppose also that <, > is even if q is odd, i.e. <a, a> is even, for all 
a E H. 

If q > 1, there is a parallelizable q-connected manifold W, with Hi(W) = 0 
for i > q + 1, such that Hz: Hq+,(W) with < , > corresponding to the 
intersection pairing of W and IL corresponding to the quadratic function of W. 

Such W is unique and, in fact, given any automorphism p of H preserving 
<, > and ,u-i.e. <7;(a), P(T)> = <a, ,1>, ,u o 4, = IL-there is a diffeomorphism 
g of W such that g* = 4. 

We also recall that, if M is a (q - 1)-connected (2q + 1)-manifold with 
A = Hq(M), linking pairing [ , ]: A x A -> Q/Z, and q is odd #A 3, 7, there 
is an associated quadratic function b: A -* Q/Z, i.e. b(a + 3) - b(a) - 

b(,B) = [a, ,G] and 2b(a) = [a, a] for any a, ,B E A (see [W2]). 
We will now proceed as follows. Let A, [, ], 4 be as in Theorem (13.2). We 

will construct H, < , >, ,u, p so that <, > is a ( I)q+ '-symmetric nondegener- 
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ate bilinear form on the free abelian group H, even if q is odd, ,u: H -> Z2 is 
defined and quadratic with respect to < , > if q is even, and 4' is an 
automorphism of H preserving <, > and It. The relation to A, [, ], 0 will be: 
H1/H z A, where H1 is the dual of H with respect to <, >, [, ] coincides 
with the pairing induced by <, >, and 0 is the isometry of [, ] induced by 4i. 

Assuming this, we can then construct W, g as in Theorem (13.4); setting 
M = aW, h = gI8Wwill prove Theorem (13.2). 

The existence of the desired H and <, > follows from Wall [W3] if A, [, ] 
satisfy the following extra conditions: 

(13.5) (i) if q is odd, [ , ] must admit an associated quadratic b: A -> Q/Z 
(then b(a) = '<a, a>, for a E H'), 

(ii) if q is even, then [a, a] = 0 for all a E A (note that [a, a] = 0 or 2 by 
skew-symmetry). 

We will show that (13.5) is a consequence of -1 being an automorphism. 
In fact, for (i), we can define 

b(a) = [(1- )-'(a), (a)] 

If a = (1 - )(a'), B = (1 - )(,3') are any elements of A, we have 

[a, a] = [(1 - fr)() ), (1 - 4)(a')] = [a', a'] + [ Oa', Oa'] - 2[', a'.a'] 

- 2([ a', ao'] - [ a', (oa']), since 0 is an isometry 

- 2[(1 - o)a, a'] = 2b(a), 

b(a + /) =[a' + (I -(1 -)(a' + /3')] 

a Ct, (1 p)af' + [ PB' (I - 0) P"] 

+ [A (I - O)af ] + [(I - (A) P, a'] 

= b(a) + b(13) + 2[ /', a'] - ([13', af'] + [4', a' ']). 

But [a, /3] = [(1 - p)(a'), (1 - O)(/3')] = 2[a', /3'] - ([pa', /3'] + [a', Ot /]) 
and we see that b is quadratic with respect to [,]. 

Furthermore, 4 preserves b, since 

b(cpa) = [(1 - q)- 'Ota, Oa] = [p(1p - l 
-' a] = [(1 - ' a ] = b(a). 

Incidentally, this particular b is the only quadratic function associated to [, ] 
which.preserves 4, since any two such b will differ by a homomorphism a: 
A Q/Z such that a = a-or a o (-1) = 0. But O - 1 is onto, and so 

=0. 
To check (ii), note that the function a <a, a> defines a homomorphism 

a: A-> Z2 = {0, 1} C Q/Z. a(a + /3) [a + /, a + [a, a] + 
+ [a, /B] + [/3, a] = a(a) + a(,8), since [, ] is skew-symmetric. Furthermore 

This content downloaded from 129.215.149.96 on Thu, 25 Dec 2014 09:30:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


42 JEROME LEVINE 

a o 4= a, since 0 is an isometry. Therefore a o (4-1) = 0, which implies 
a = 0 since 4 - 1 is onto. 

We next want to lift 0 to an isometry 4 of <, > on H. In [W4], Wall shows 
this can be done stably, with the extra condition that, when q is odd, 4 also 
preserves the quadratic function b: A -> Q/Z defined by b(a) = 2 <a, a>, 
where a E H' is any representative of a E A ; H '/H. But, in fact, the b we 
have defined has these properties. 

Now we have an isometry 4: H ( H1 z H ( H2 between the forms 
<, > K <, >1 and <, > ED K, >2' where <, >, is a unimodular (even quadratic if 
q odd) form on H,, i = 1, 2, which induces the given isometry ( when we 
identify A ; H1/H with (H ED H,)'/H ED Hi = H' ED Hi/H ED Hi = 
H'/H. It follows from the Witt theorem that <, >1 and <, >2 are rationally 
equivalent. Since they are unimodular and even (q odd), they are stably 
integrally equivalent (see e.g. [Hi]). By identifying (H1, <, >1) with (H2, <, >2) 

we may regard 4 as an automorphism of H ED H1, preserving <, > f <K >1. 
Thus H' = H ED H1 with <K >' = K > ED < K >1 and isometry 4 is the desired 
lift of A, [ , ], 4. 

It remains only to construct ,u: H'-* Z2, quadratic with respect to < >' 
and preserving 4, if q is even. First choose any ,u': H'-+ Z2 quadratic with 
respect to < , >'. Set f(a) = jt'(,a) - jL'(a), for all a E H', defining a 
homomorphism f: H'-* Z2. If we can factor f = g o (4 - 1), for some 
homomorphism g: H'-> Z2, then It = It' - g is the desired quadratic func- 
tion preserving 4. Consider the diagram: 

H' ?Z2 

where f is induced by f. If 
- 

exists, it will induce the desired g. Since we are 
dealing here with vector spaces over Z2, it suffices to check that 

f (Ker(4 - 1)) = 0. 

In other words, if +,(a) a mod 2, for some a E H', then f (a) = a . But 

f(a) = ,L'(4a) - J'(a) = JL'(a + 2/) - J'(a) =JL'(a) + JL'(21)) + <a, 2/3> - 

,u'(a) _,'(2/3) =,_'(13) + ,u'(/3) + </,B ,B> 0_ mod 2. 
This completes the proof of Theorem (13.2) and so Theorem (13.1). 

14. If we combine Theorems (11.1), (12.1), and (13.1), using connected 
sums, we obtain 
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THEOREM (14.1). Let n > 1; T2,.. .X Tn-2; F1,..., Fn a collection of, 
respectively, finite and Z-torsion free A-modules of type K satisfying 

(1) Fi , e'(Fn+l-i 
(2) Ti;z: e'(Tn-i). 

Furthermore, if n = 2q - 1, let < , >: Fq X Fq - A be a nonsingular, 
conjugate-linear, (- 1)_ly '-Hermitian pairing, and if n = 2q > 2, let [ , ]: 
Tq X Tq > Q/Z be a nonsingular, Z-linear, conjugate selfadjoint pairing. 

Then there exists an n-knot K with Alexander modules (Ai) such that 
f (Ai) z Fi, t(A,) z Ti, t(A1) = 0, and <, > or [ , ] corresponds to the Blanch- 
field pairing or torsion pairing of K, except for the following cases: 

(i) n = 1, and 
(ii) n = 3 with F2 # 0. 

In order to remove these exceptions we will outline another approach to the 
study of Alexander modules, via "Seifert matrices." This idea for dealing with 
the low-dimensional cases was first used by Kearton in [K] for the case n = 1. 

In our presentation, we will omit many details, which can be found in 
previous works (e.g. [L3]). Let K c S,+2 be an n-knot-then there is an 
oriented submanifold Vn+I C S,+2 such that a V = K (see e.g. [Ll]). This is 
called a Seifert manifold for K. If we set Y = S+2 -V, then there are two 
maps i+, i-: V-* Y defined by translating V off itself in the positive or 
negative normal direction. If X = S-+2_ K, as usual, and X the infinite 
cyclic cover, then there is an exact sequence derived from a Mayer-Vietoris 
sequence: 

d 

(14.2) .. . Hq(V)QzA >Hq(Y)?zA 
- Hs (X ) -Hs_l ( V) OJz A**C 

where d(a? X) = i*(a) X tX - i*(a) X X. 
In fact this breaks up into short exact sequences since a= 0. To see this 

(also see [G]), suppose a = FI.kai 0 ti E aHq(X), and ak, a.m # 0-note that 
any element of G ?z A, where G is an abelian group, has a unique repre- 
sentation as a finite sum SIa, 0 t1, a, E G. Since t - 1 is an epimorphism of 
Hq(X), we may write a = (t - 1)N1, for any positive integer N. If ,B = 

0 ti where ,B, fir 7: 0, we may conclude that a,r+ = O,r a# 0 a1 = + 0 # 
and, therefore, m - k = r + N - I > N, which is impossible. Consequently, 
we have exact sequences 

0>Hq(V) QzA4Hq(Y) QzA>Hq(X)>O. 

Note that this argument works for any coefficient groups. Now consider the 
short exact sequence of coefficient groups 0 -> Z !4 Q 4 Q/Z - 0. Com- 
bining the associated exact homology sequence and the above short exact 

This content downloaded from 129.215.149.96 on Thu, 25 Dec 2014 09:30:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


44 JEROME LEVINE 

sequence, we get a commutative diagram with exact columns and rows: 

I < 1~~~~~~~~~~~~~~~~~~~~~~~I 
O Hq+ (V; QZ) ?z A Hq (Y; QZ) z A > Hq(X; QZ) O 

4a*1 la* 

O > Hq Q) Oz A 
d 

H H@(Y) Oz 
e 

-* H (2 

O Hq(V; Q)Oz A - Hq(Y; Q) OzA e>H (X; Q) --0 

If we let Tq, F denote, respectively, the Z-torsion subgroup and Z-torsion 
free quotient of Hq, we may, in a straightforward manner, derive the follow- 
ing exact sequences, using the fact that Fq - Image i*, Tq = Image a*: 

0 Tq (V) 0z A Tq (Y) z A ITq (X )*O 

0 Fq(V) Qz AFq(Y) z AFq(X) 0. 

We will be particularly interested in the Z-torsion free case. It follows from 
Alexander duality that the linking pairing: 1: Fq( Y) X F,,+ lq(V) * Z is 
nonsingular. Let us consider the special case n = 2q - 1 and choose bases 
(ai) of Bq(V) and {A)3 of Bq(Y) which are dual with respect to 1, i.e. 

I(A3, ai) = 8,. Define a bilinear pairing 1': Fq(V) X Fq(V) -> Z by 1'(a, a') 

I(i* (a), a') = 1(a, i* (a'))-this is called the Seifert pairing. It is now 
straightforward to check that, if A is the matrix representative of 1' with 
respect to the basis {ai,) then the mapping d has a matrix representative 
tA + (-I)qAT with respect to the bases {a, ? 1), {f3i 0 1) of the free 
A-modules Fq(V) Qz A, Fq(Y) ?z A (see [G], [L3]). 

The Blanchfield pairing on Fq(X) = Fq, can also be expressed in terms of 
the Seifert matrix A. 

PROPOSITION (14.3). With respect to the generators yi = e(f8, 0 1) of F1, the 
corresponding matrix representative of <, > is (1 - t)(tA + (- 1)qA Tf 1. 

PROOF. We need to recall a few more of the details of the argument which 
establishes (14.2). Under the projection p: X -> X, p - '(Y) is the disjoint 
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union of {YiJ, wherepIYi is a homeomorphism onto Y. Alsop '(V - K) is 
the disjoint union of { V,}, where each p I Vi is a homeomorphism onto 
V - K. If r denotes the covering transformation inducing the action of t on 
H*(X), we may assume T(Y) = Yi+I, T(V) = V+1 and Y, = Y, U Vi+I u 
V;. The maps i+, iL lift to maps Vi -* Y, and Vi -> Yi_ 1, respectively. 

If A = (a,,), i.e. aij = ((i+(a1), aj), one may check that i+(a,) = 2afi1j, 
while i (ai) = (-l)t+ 'X,a83. Let us identify Y, V with YO, VO c X. Then if 

aii, A are cycles in V = V0, Y = YO representing ai, A,, we may conclude that 
a, is homologous to Ea,I,8j in YO and is homologous to (-l) 'Ea.1r (I38) in 
Y_ I. Let ci, ci' be chains in YO = Y satisfying 

ac. = i- -a q. 

aI- C; = Ii(-)q+ EaIr 1( ) 

Therefore 

-(C T(C,)) = j + 

- E (Tai + (_1) aji) 8I. 

Define B = (b,(t)), the matrix of cofactors of tA + (- l)qA T. In other words 
(tA + (- l)qA T)B = det(tA + (- l)qA T)I. Each b,(t) is an element of A. If 
we set A(t) = det(tA + (- l)qA T), then we have 

OjkA(t) 
= 

bki(t)(taij + (_)l aji) 

and so 

A(T) k = jkA(T) j = 2 bki (T) (Tau + (- l) ai) Ij 
j j,i 

- ki b(T)a (C, - (C,)) = a ( bki(T)(Ci' - (C)) 

We can now compute <Yk, Yl>. By definition, we choose representative 
cycles, say /3k and /,/, in dual triangulations of X, and X E A such that 

= 0Yk . If Xk = ac, then the intersection number (c <31y)/ k, < Yl> 

(mod A). 
The above formula says we may choose X = A(t) and then 

C - bki (T)(C4 - 
(-)) 

Therefore 
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ibki (t) (( cil Al ) - t ( *, # ) 
<7k' Y> a (t) 

Now <c,, /8'> and <ci', ,81> are the ordinary intersection numbers in Y c Sn+2 
and therefore coincide with the linking numbers l(8ac, /3/) and l(ac,', f3') in 
Sn+2. By definition of c* and c ,we have 

( , A (,A - a.j ( j, #It) 

(Ci' ) =I (?ii)A, 1)--)+ j ail(,B,B ) 
J 

Since { ai), { (A) are dual with respect to 1, we have 

( * 1 ) dil- E ivAy, (Ci', l]I i,-(-)q + EajiA 

where .= (I,I j) E Z. So we have 

<7k' Yi> a(t) [(- t)8j, - (tag + (I)qaji)Xjl] 

bkl(t)( -t) - bk,(t)(ta, + (-I)qaji)Xjl 
k(t)I A(t) k 

But libki(t)(tai + (-1)qaji) = 3kjA(t) and so we have 

bkl (t) bkl (t) 
Yk Y> ( t) (t) -2 8kjXjl = (1 - t) () (mod A). 

Since B = A(t)(tA + (-I)qA T) 1, this proves Proposition (14.3). 
It is not hard to show that A + (- I)qA T is a matrix representative of the 

intersection pairing of the 2q-manifold V. Since aV = K, a sphere, the 
intersection pairing is unimodular. If q = 2, we have the existing condition 
that the signature of the intersection pairing A + A T (the index of V) is a 
multiple of 16 (see [L3] for all of this). Conversely, we have 

THEOREM (14.4). Let A be a square integral matrix such that A + (- I)qA T 

is unimodular and, if q = 1, signature(A + A T) is a multiple of 16. If n = 2q 
- 1 > 1, there is an n-knot with Alexander modules Ai = 0 for i #6 q (and, 
therefore, Aq Z-torsion free) and Seifert matrix A. If n = 3, we may have to add 
several blocks of the form (? 0) to A. 

See [Ke], [L4] for a proof. 

15. We are now ready to deal with the exceptions in Theorem (14.1). 
(i) n = 1. Suppose F is a Z-torsion free A-module of type K and <, > a 
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nonsingular, conjugate-linear, Hermitian pairing F x F -> Q (A)/A; then 
there exists a (2q - 1)-knot for any odd q > 1, realizing (F, < , >) as its qth 
Alexander module and pairing. Therefore any Seifert matrix A, of this knot 
determines (F, < , >) completely by Proposition (14.3). 

But, according to Theorem (14.4), there exists a 1-knot with this Seifert 
matrix. It follows that this 1-knot must have 1st Alexander module - F with 
Blanchfield pairing <, >. 

Thus Theorem (14.1) is true for n = 1. 
(ii) n = 3, F2 :# 0. This case is more complicated since we have a new 

obstruction given by the signature condition. 
Let x: Q (A)/A -- Q be the function defined by Trotter in [T1]. We recall 

some of its properties: 
(15.1) (a) x is Q-linear, 
(b) x(X) = - x(X), 
(c) x((t - 1)X) = (1). 
It follows from (a) and (b) that, if <, >: F x F -> Q (A)/A, is a conjugate- 

linear, e-Hermitian pairing, then x o <, > = < >x is a Q-linear, (- e)-sym- 
metric pairing (F ?z Q) x (F ?z Q) -> Q. 

PROPOSITION (15.2). If (Fq, < , >) is the Z-torsion free part of the qth 
Alexander module of a (2q - 1)-knot K C S"+2, V is a Seifert manifold for K, 
and q is even, then signature(<, >x) =-index V. 

PROOF. Let A be the Seifert matrix derived from V. By Proposition (14.3) 
(1 - t)(tA + A T)-' is the matrix representative of < , > with respect to a 
certain set of generators {y,} of Fq, as a A-module. By property (15.1)(c), 
-(A + A T) 1 is the matrix representative of < >x with respect to {Y i}. 

Claim. { yi} generate Fq ?z Q as a vector space over Q. Assuming this for 
the moment, we may then make a rational change of coordinates to replace 
the {y,} by {y,'} so that yj, .. ., yk is a basis for Fq ?z Q (as a vector space 
over Q) and Y,' = 0 for i > k. Under this change of coordinates <, >x now 
has a representative matrix C = (c.) with respect to {Y y}. Clearly c. = 0 if i 
orj > k and the submatrix c' = (c.jIi,j < k) is a matrix representative of 
< K > with respect to a basis. Therefore 

signature(<, %>) = signature C' = signature C = -signature(A + A T) 1 

But signature(A + A T)- 1 = signature(A + A T) and A + A T is a representa- 
tive matrix of the intersection pairing of V. 

PROOF OF CLAIM. The generators {y,} have a relation matrix tA + 
(- I)qA T. In other words, there are rational linear combinations {pi, vi} of the 
{y,} such that Fq is generated (over A ?z Q) by {y,} subject to the relations: 
tpi = q,. Let {yil, ... *, yi,} be a minimal subset of {yi} such that Fq admits 
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such a description-i.e. there exists rational linear combinations (Pi, 
Pk; a,, *.* *, ak) of the {y,} and Fq is generated (over A ?z Q) by the {y,j) 
subject to the relations tp, = a,. Then the {pi} are linearly independent over 
Q. For if not, then some nontrivial rational linear combinations of the 
relations tp, = ai is a relations of the form 0 = a, for some rational linear 
combination a of the a,, and, therefore, of the { y,;}. There are two possibili- 
ties: (i) the { y,} are linearly dependent over Q or (ii) this is the zero relation. 
In case (ii) we have a presentation (over A ?z Q) for Fq ?z Q with more 
generators than relations, which is impossible since Fq is a A-torsion module. 
In case (i), we can eliminate one of the {-y,)} and contradict the minimality of 

{Y.;} 
Thus the {p,) are linearly independent over Q and so we can express each 

y, as a rational linear combination of the {pi). This means we can replace the 
relations tpi = vi by relations ty,j = p,j. Now it is clear that Fq ?z Q has {y,,} 
as a vector space basis over Q and the relations define the action of t on the 
basis elements. This proves the claim. 

COROLLARY (15.3). If (F1, , >) is the Z-torsion free part of the 2nd 
Alexander module of a 3-knot, then signature(<, >x) is a multiple of 16. 

Note that, for any even q, signature(< , >) is a multiple of 8; this follows 
from ? 14, since the intersection pairing of V is an even, unimodular, integral 
quadratic form. Furthermore, for any even q > 2, there is a (2q - 1)-knot 
such that signature(< , >) = 8. This follows immediately from Proposition 
(15.2) and Theorem (14.4). Thus Corollary (15.3) represents a true restriction. 

We can now show that Theorem (14.1) is true for n = 3 with the extra 
restriction that signature(< , >) is a multiple of 16. We use the exact same 
arguement we used above to deal with the case n = 1. The desired (F, <, >) 
produces a matrix A which, according to Theorem (14.1), corresponds to 
some 3-knot, after adding blocks of the form (C ,). This is the desired knot, 
since the extra blocks do not change (F, <, >). 

It is interesting to note that in [CS] Cappell and Shaneson have produced 
topological (locally flat) 3-knots such that signature(<, >x) = 8 and have, in 
fact, shown that signature< , >x/8, reduced mod 2, coincides with the 
Kirby-Siebemann obstruction [KS] to smoothing the knot. One might conjec- 
ture that Theorem (14.1) is true as stated for topological 3-knots. In fact, this 
conjecture seems to follow from the recent paper [SC]. 

16. For convenience we now state the final version of our realizability 
results. 

THEOREM (16.1). Let K be a (smooth) n-knot with Alexander modules 
A1,...A,,,, Blanchfield pairing <, > on f(Aq) if n = 2q -1, torsion pairing 
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[]on t(Aq) if n = 2q. Then 
(a) Ai are A-modules of type K, 
(b) f(Ai) t eV(f(An+ I )) fori= 1,...i n, 
(c) t(Ai) t e2(t(An_J))for i = n - 1; t(An) = 0, 
(d) <, > is conjugate-linear, ( -ly+ '-Hermitian and nonsingular, 
(e) [,] is Z-linear, (- )ql -symmetric, conjugate selfadjoint and nonsingular, 
(f) signature <, >x is a multiple of 16, if n = 3. 
Conversely, given Z-torsion free A-modules {F,}, Z-torsion A-modules { T}, 

all of type K, satisfying: 
(b') FJ e'(Fn+ I ) 

(c') T, e n_i), 
for some integer n, and pairing <, > on Fq, if n = 2q - 1, or [, ] on Tq, if 
n = 2q, satisfying (d), (e), (f), then there exists an n-knot with Alexander 
modules {Ai) such that F, - f(Ai), T, - t(Ai) and Blanchfield pairing corre- 
sponding to < , >, or torsion pairing corresponding to [, ] except for the 
restriction T1 = 0. 
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