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XL.

ON KNOTS. Part II.

[Transactions of the Royal Society of Edinburgh, Vol. xxxn. Read 2nd June, 188i.]

One main object of the present brief paper is to take advantage of the results

obtained by Kirkman*, and thus to extend my census of distinct forms to knottiness

of the 8th and 9th orders; for the carrying out of which, by my own methods, I could

not find time. But I employ the opportunity to give, in a more extended form than

that in the short abstract in the Proceedings, some results connected with the general

subject of knots, which were communicated to the Society on January 6, 1879, as well

as others communicated at a later date, but not yet printed even in abstract.

I. Census of 8-Fold and of 9-Fold Knottiness.

1. The method devised and employed by Kirkman is undoubtedly much less

laborious than the thoroughly exhaustive process (depending on the Scheme) which was

fully described and illustrated in my former paperf; but it shares, with the Partition

method, which I described in § 21 of that paper and to which it has some resemblance,

the disadvantage of being to a greater or less extent tentative. Not that the rules

laid down, either in Kirkman's method or in my partition method, leave any room for

mere guessing, but that they are too complex to be always completely kept in view.

Thus we cannot be absolutely certain that by means of such processes we have obtained

all the essentially different forms which the definition we employ comprehends. This

is proved by the fact that, by the partition method, I detected certain omissions in

Kirkman's list, which in their turn enabled him to discover others, all of which have

now been corrected. And, on this ground, the present census may still err in defect,

though such an error is now perhaps not very probable.

* The Enumeration, Description, and Construction of Knots with fewer than Ten Crossings. Trans. R.S.E. xxxii.

t No. XXXIX. above.
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On the other hand, the treatment to which I have subjected Kirkman's collection

of forms, in order to group together all mere varieties or transformations of one special

form, is undoubtedly still more tentative in its nature; and thus, though I have grouped

together many widely different but equivalent forms, I cannot be absolutely certain that

all those groups are essentially different one from another.

Unfortunately these sources of possible error, though they tend (numerically) in

opposite directions, and might thus by chance compensate one another so far as to

make the assigned numbers of essentially different forms accurate, cannot in any other

sense compensate. In other words, there may still be some fundamental forms omitted,

while others may be retained in more than one group of their possible transformations.

Both difficulties grow at a fearfully rapid rate as we pass from one order of knottiness

to the next above; and thus I have thought it well to make the most I could of the

valuable materials placed before me; for the full study of 10-fold and 11-fold knottiness

seems to be relegated to the somewhat distant future.

2. The problem which Kirkman has attacked may, from the point of view which

I adopt, be thus stated:—"Form all the essentially distinct polyhedra* (whether solids,

quasi-solids, or unsolids) which have three, four, &c, eight, or nine, four-edged solid angles."

Thus, in his results, there is no fear of encountering two different projections of the

same polyhedron ; or, in the language of my former paper, no two of his results will

give the same scheme. Thus there is no one which can be formed from another by the

processes of § 5 of my former paper.

3. But, when a projection of a knot is viewed as a polyhedron, we necessarily

lose sight of the changes which may be produced, by twisting, in the knot itself when

formed of cord or wire
;
a process which (without introducing nugatory crossings) may

alter, often in many ways, the character of the corresponding polyhedron. This subject

was treated in §§ 4, 11, 14, &c. of my former paper. But it is so essential in the present

application that it is necessary to say something more about it here. It would lead

to great detail were I to discuss each example which has presented itself, especially in

the 9-folds
;
but they can all be seen in Plate VI., by comparing together two and two

the various members of each of the groups.

The following example, however, though one only of several possible transformations

is given, is sufficiently general to show the whole bearing of the remark, so far at least

as we at present require it.

* This word is objectionable, on many grounds, in the present connection. But a more suitable one does

not occur to me; and the qualification (given in brackets) will prevent any misconception. Of course no pro-

jection of a true polyhedron can be cut by a straight line in two points only.
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It is obvious that either figure may be converted into the other, by merely rotating

through two right angles the part drawn in full lines, the dotted part of the cord

being held fixed. Also, the numbers of corners or edges in the right and left-handed

meshes in these two figures are respectively as below :
—

55332 64332

443322 433332.

These numbers would necessarily be identical if the forms could be represented by
the same scheme. As will be seen by the list below, § 6, these are respectively the

second, and the sixth, of the group of equivalent forms of number viu of the ninefold

knots. (See Plate VI.)

The characters of the various faces of the representative polyhedra (so far at least

as the number of their sides is concerned) are widely different in the two cases.

[Mr Kirkman objects to this process that it introduces twisting of the cord or tape

itself. No doubt it does, or at least seems to do so, but the algebraic sum of all the

twists thus introduced is always zero; i.e., by "ironing out" the tape in its new form,

all this twist will be removed. I have often used a comparison very analogous to this,

to give to students a notion of the nature of the kinematical explanation of the equal

quantities of + and —
electricity, which are always produced by electrification. If the

two ends of a stretched rope, along whose cylindrical surface a generating line is drawn,
be fixed, and torsion be applied to the middle by means of a marlinspike passed

through it at right angles, one half of the generating line becomes a right-handed, the

other an equal left-handed cork-screw. Thus the algebraic sum of the distortions is

zero. And, in consequence, if the rope be untwistable (the Universal Flexure Joint of

§ 109 of Thomson and Tait's Natural Philosophy) and endless, the turning of the spike

merely gives it rotation like that of a vortex-ring. Such considerations are of weighty

import in many modern physical theories.]

As will be seen, by an examination of the latter part of Plate VI., even among
the forms of 9-fold knottiness there are several which are capable of more than one

different changes of this kind. Some of these I may have failed to notice. But it is

worthy of remark that the 8-folds seem, with two exceptions, to resemble the 7-folds

in having at most two distinct polyhedral forms for any one knot.

4. Kirkman's results for knottiness 3, 4, 5, 6, 7, when bifilars and composites are

excluded, agree exactly with those given in my former paper. I have figured these

afresh in Plate VI., in the forms suggested by Kirkman's drawings, omitting only the

single 6-fold, and the single 7-fold, which are composite knots.

As will be seen in the Plate, where they are figured in groups, there are but
18 simple forms of 8-fold knottiness. Besides these there are 3 not properly 8-fold,

being composite (i.e., made up of two separate knots on the same string); either two
of the unique 4-fold, or a trefoil with one or other of the two 5-folds. These it was
not thought necessary to figure, especially as they may present themselves in a variety
of forms.
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And the Plate also shows that there are 41 simple forms of 9-fold knottiness.

Besides these, and not figured, there are 5 made up of two mere separate knots of

lower orders, and one which is made up of three separate trefoils.

5. Thus the distinct forms of each order, from the 3rd to the 9th inclusive, are

in number
1, 1, 2, 4, 8, 21, 47;

or, if we exclude combinations of separate knots,

1, 1, 2, 3, 7, 18, 41.

The later and larger of the numbers in these series, however, would be considerably

increased if we were to take account of arrangements of sign at the crossings, other

than the alternate over and under which has been tacitly assumed
;

for these are, in

certain cases, compatible with non-degradation of the order of knottiness. This raises

a question of considerable difficulty, upon which I do not enter at present. Applications

to one of the 8-folds and to one of the 9-folds will be found in my former paper,

§ 42 (1).

Another interesting fact which appears from Plate VI. is, that there are six distinct

amphicheiral forms of 8-fold knottiness: at least if we include one, not figured, which

consists of two separate 4-folds ; in which case we must consider that there are two six-fold

amphicheirals, the second being the combination of right and left-handed trefoils, described

in § 13 of my former paper. Thus the number of amphicheirals is, in the 4-fold,

6-fold, and 8-fold knots respectively, either 1, 2, 6, or (if we exclude composites), 1, 1, 5.

All but two of these 8-fold amphicheirals were treated in my former paper, two having

been separately figured, and the other being a mere common case of the general forms

of § 47.

Finally, as a curious addition to the paragraphs on the genesis of amphicheiral

knots, given in my first paper, I mention the following, which is at once suggested

by the amphicheiral 6-fold :
—

Keeping one end of a string fixed, make a loop on the

other
; pass the free end through it and across the fixed end

; pass the free end again

through the external loop last made, then across the fixed end, and so on indefinitely.

The second time the fixed end is reached we have the trefoil (if the alternate over and

under be adhered to), the third time we have the amphicheiral 6-fold; and, generally,

the nth time, a knot of 3(n — 1) fold knottiness, which is amphicheiral if n is odd.

Three of these were, incidentally, given in my former paper.

But, reverting to the main object of my former paper, we now see that the

distinctive forms of less than 10-fold knottiness are together more than sufficient (with

their perversions, &c.) for the known elements, as on the Vortex Atom Theory.

6. From the point of view of theory, as suggested in §§ 12, 21, of my former

paper, it may be well to give here the partitions of 2n which correspond to true knots—
for the values of » from 3 to 9 inclusive. The various partitions, subject to the proper

conditions, are all given, in the order of the number of separate parts in each; those

T. 41



322 ON KNOTS. PART II. [XL.

which have a share in one or more of the true knots, as given in the Plate, are

printed in larger type.

n = 3
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Of these there are employed for knots proper only

2, 1, 4, 4, 12, 17, 36,

respectively. The remainder give links, or composite knots, or combinations of these.

(See Appendix.)

To enable the reader to identify, at a glance, any knot of less than 10-fold

knottiness, I subjoin the partitions corresponding to each figure in Plate VI. It is to

be remembered that (as in § 15 of my former paper) deformations which are compatible
with the same scheme, however they may change the appearance of a knot, do not alter

the partitions. But it is also to be remembered that identity of partitions, alone, does

not necessarily secure identity of form.

The 3, 4, 5, and 6-folds may be disposed of in a single line.

w=3
33

222

« = 4

332

« = 5
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XII. XIII. XIV. XV.

6532

54322 433222 3322222

for the

PART II.

XVI.

754

XVII.

[XL.

XVIII.

772

3322222

I.

44433

433332

XIV.

655 763

433222 3322222 3322222 3322222 55222

Finally, for the Ninefolds, the list is

II.

54333 54333 44433 44433

533322
°r

443322
°r

533322
°r

443322
63333 63333

or or
533322 443322 533322

III.

54333 44433
or

443322 443322

V. VI.

IV.

54432 54432 54432 54432

533322
°r

533322
°r

443322
°r

443322

VII.

44442

443322

64332

443322

55332
°r

443322

64332
°r

443322

55332
"

°r
443322

54432 54432
0r

433332433332

IX.

54432

443322

VIII.

64332 55332 64332 55332 55332 64332

443322
°r

443322
°r

533322
or

533322
"

433332
°r

433332

X. XL XII.

5544 64422 64422 64422 64422

3333222 433332
°r

333333
°r

533322
°r

443322

5553

3333222

XIII.

55422 55422 55422

443322
°r

533322
°r

433332

XIV.

65322 65322 65322 65322

433332
°r

433332
°r

533322
°r

443322

XV.

65322 55332 55332 65322

443322
°r

443322
°r

543222
°r

543222

XVII.

64332 64332 54432 54432

533322
°r

443322
°r

533322
°r

443322

XX.

XVI.

7632 7632 7632

3333222
°r

3333222
°r

4332222

XVIII.

64332 54333 54432

543222
°r

543222
°r

543222

XIX

55

533322

55422 55422 . 55332 54432 54432
°r

443322 543222
°r

543222
°r

54322:

[See Part III. below, § 20, p. 344; and fig. l, pi. VII. 1898.]
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to simple forms only: for we have set aside, as composite knots, all such as have any
one component separable, so that it may be drawn tight without fastening together
two laps belonging to one or two of the other components.

Thus, as a few of the examples of 2-fold knotfulness among the 8-folds, we have

vi. and xi. (3-fold and once-beknotted 5-fold);

and II. and V. (each two 4-folds); while

in., ix., and xiv. are different forms of two (linked) 3-folds.

Among the 9-folds we have, for instance,

xxx. and xxxiii. (4-fold and clear coiled 5-fold),

xvi. and xxvi. (3-fold and S 6-fold),

xiv., xv., xvill., and xxv. (4-fold arid once-beknotted 5-fold).

But we have also

IV., xili., XXIII., and xxiv. (linked 3-fold and 4-fold),

xx., xxvii. (two 3-folds, linked, and with one kink).

The analysis of self-locked knots, such as iv. and vn. of the 8-folds, and n., ix., x.,

xix., &c, of the 9-folds, is considered below.

II. Beknottedness.

7. The question of Beknottedness (on which I have occasionally made short com-

munications to the Society since my papers of 1876-7 were printed in a brief condensed

form) has been again forcibly impressed on me while endeavouring to recognise identities

among Kirkman's groups. I still consider that its proper measure is the smallest number

of changes of sign which will remove all knottiness. But, shortly after my former paper
was published, I was led to modify some ideas on the subject, which were at least

partially given there. I had been so much impressed by the very singular fact of

the existence of amphicheiral forms, that I fancied their properties might in great
measure explain the inherent difficulties of this part of the subject. I have since come

to see that this notion was to some extent based on an imperfect analogy, due to

the properties of the 4-fold amphicheiral, and that the true difficulty is connected with

Locking.

8. The existence and nature of this third method of entangling cords were first

made clear to me by one of the random sketches which I drew to illustrate Sir W.
Thomson's paper on Vortex-Motion [Trans. R. S. E., 1867-8]. I had not then even

imagined that the crossings in any knot or linkage could always be taken alter-

nately over and under, though I found that I could make them so in all these

sketches. The particular figure above referred to again presented itself, among others

possessing a similar character, while I was studying the peculiar group of plaited knots
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whose schemes contain the lettering in alphabetical order in the even as well as in the
odd places. (See §§ 27, 42, of my former paper.) But I soon saw that, though I had
first detected locking in those members of the group of plaits where three separate
strings are involved, essentially the same sort of thing occurs in the other members
of the group, though they are also proper knots in the sense of being each formed

with a single continuous and endless string. And, as the above very simple example
sufficiently shows, we can have locking, independent of either knotting or linking, with

two separate strings. For it is clear that the irreducibility of this combination depends
solely upon the sign of the central crossing. There is no real linking of the two

cords, and there is obviously no knotting. But if the sign of any one of the crossings,

except the central one, be changed, the whole becomes the simple amphicheiral link,

the linking having been introduced by the change of sign. [This, as will be seen in

§ 14 below, is an excellent example of a case in which the key-crossing of a locking
is also a root-crossing of a fundamental loop.]

9. We may therefore define, as one degree of locking, any arrangement, or in-

dependent part of an arrangement, analogous to that above (whether it be made of

one, two, or three separate strings), the criterion being that the change of one sign

unlocks the whole. But it is well to notice, again, that if, in the above figure, we

change the sign of any crossing except the central one, we have one degree of linking

left, and that this has in reality been introduced by the change of sign. This remark

extends, with few exceptions, to more complex cases.

10. Thus, though the following 8-fold knot (which I reproduce from No. XXXIX.

above, § 47, p. 314) does not, at first sight, appear to depend on locking, we have only to

make a simple transformation (as ante, § 3) to reduce it to the symmetrical form in

which the single degree of locking is at once evident. It was by considering this knot,
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with its (quite unexpected) single degree of beknottedness, that I first saw the true bearing
of locking in the present subject. (It is given as x. of the 8-folds in Plate VI.)

Other excellent instances of the same difficulty are the following. The first of

these is completely resolved, the second changed to the 3-fold, while the third becomes

apparently two linked trefoils, all by the change of the single crossing in the middle

of the lock. But with the 9-fold knot (which is merely a different projection of Plate

VI., fig. xxxv.) the trefoils are so linked after this operation, that the change of sign
of one crossing of either resolves the whole. This is, however, much more easily seen

by at once changing the signs of the middle and of the lower (or the upper) crossing,

for the whole is thus resolved. [This course is at once pointed out by the process

of § 13 below, if we choose as fundamental crossings the three highest in the figure.]

Hence the beknottedness is 1, 2, 2 in the last three figures respectively.

11. Another instructive example is afforded by the 8-fold knot below, which is

figured as iv. on Plate VI. :
—

At a first glance it appears to be made of two once-linked trefoils, and therefore to

have three degrees of beknottedness. But a little consideration shows that neither

the trefoils nor the link have alternations of signs {i.e.,
there is neither knotting

nor linking), but that the whole is kept from resolution solely by the lap of cord

which has been drawn as a straight line in the figure. This forms, as it were, the
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tail of a Rupert's drop; break it, and the whole falls to pieces. A change of sign
of either of the interior crossings on that lap makes one trefoil; of either of the

4 lateral external crossings, the 6-fold amphicheiral ;
of the upper crossing, the 4-fold

amphicheiral ;
and of the lower axial crossing, the 5-fold of one degree of beknotted-

ness. All these modes of resolution lead to the result that the knot is of 2-fold

beknottedness.

11 It is now obvious why, in consequence of locking and not of amphicheiralism
as I first thought, the electro-magnetic test fails in certain classes of cases to indicate

properly the amount of beknottedness. For it is clear that in pure locking there is

no electro-magnetic work along the locked part of any one of the three courses in-

volved. Hence, for the part of a knot or link which is locked, the electro-magnetic
test necessarily gives an incorrect indication of beknottedness. Perhaps it may be

said that, in such cases, beknottedness is not the proper name for this numerical

feature of a knot:—but it is obviously correct if defined as in § 7 above.

13. A simple but thoroughly practical improvement on the methods given in my
first paper for the graphical solution of Gauss' problem (extended) is as follows:—
Draw the knot or link, as below, with a double line, like the edges of an untwisted

tape, and dot (or go over with a coloured crayon) one of the two lines. Now it

is easy to see that, of the four angles at a crossing, one angle is bounded by full

lines, and its vertical angle by dotted lines. These will be called the symmetrical

angles. Also it is clear that the electro-magnetic work has one sign for the crossings

when the symmetrical angles are right-handed, and the opposite sign when they are

left-handed. Thus we can at once mark each crossing as r or I, silver or copper,

at pleasure. If the figure be a knot, and if we cut it along a line dividing a

symmetrical angle, re-uniting the pairs of ends on either side of that line, the whole

remains a knot (still with alternations of over and under if the original was so),

but of knottedness at least one degree lower. When the line divides an unsym-
metrical angle, the whole becomes (after re-uniting the ends, as before) two separate

closed curves, in general linked and, it may be, individually knotted. [When we treat

a link in this way at any of the linkings (i.e., where two different strings cross one

another), it becomes a knot. It is curious that by this process a knot is equally

likely to be changed into a knot or into a link, while a link always becomes a knot.]

This method has the farther advantage of showing at a glance the various sets of

crossings which we may choose for omission (in the electro-magnetic reckoning), as

due merely to the coiling of the figure, not to knotting, linking, or locking. For

each such crossing must belong to a simple loop, which, for reference, we will call

T. 42
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fundamental. Such a loop is detected immediately by its having (throughout) the

full line or the dotted line for its external boundary, and therefore is necessarily

closed at a symmetrical angle. If we now erase these fundamental loops in succession,

till no crossings are left, the crossings at their bases form one of the groups which

may be tried. When part of the knot has locking, it is sometimes necessary to try

more than one of these groups before we arrive at the true measure of beknottedness.

As this is a matter of importance, it may be well to discuss it a little farther.

14. When there is no beknottedness (whether true, or depending on linking or

locking), the electro-magnetic work, with the proper correction for mere coiling, is

certainly nil. But this proper correction requires to be found, and where there is

locking its discovery sometimes presents a little difficulty. When there is no locking,

all we need do is to draw the knot afresh, beginning at a point external to each

of the fundamental loops, and making each crossing positive when we first reach it.

It is evident that the fundamental loops or coils will now be simply laid on one

another. The signs of all the crossings on any one loop may be changed, while

that of the base of the loop is immaterial, and this process may be carried out with

some or all of the other fundamental loops in any order. Compare the various signs

in any state thus produced with those (alternate or not) of the original knot, so as

to find the smallest number of changes necessary for its full resolution. The sign
of the crossing at the base of each fundamental loop is simply to be disregarded.

Another mode of going to work is to alter the signs at pairs of points where two

fundamental loops cross, so as to diminish as far as possible the necessary number
of real changes of sign. But we must be very careful in using this process, to see

that it does not introduce locking.

15. When there is locking in part of the knot, the real difficulty is met with

only if the crossing or crossings, which form as it were the key of the locked part,

must also be taken as the base or bases of fundamental loops. In this case we
commence the fresh drawing of the knot at a point exterior to the locking, but on

the fundamental loop of which one of the key crossings forms the base. This ensures

that the completion of the fundamental loop is effected by the last of the operations

on the locked part. But the application of the method can be learned far more

easily from an example or two than from any rules which could be laid down. Thus
the following drawings represent the results of this method as applied to two of the

knots already figured. In the first of these the two lower external crossings are taken
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for the fundamental loops, and we see that the knot (if originally over and under

alternately) requires for its full resolution only the change of sign of each of the

two crossings which lie in its axis of symmetry. But, if we had chosen the crossings

last mentioned as bases of fundamental loops, we should at once have felt the difficulty

due to locking.

In the second, all four crossings in the axis of symmetry close fundamental loops;

but the change of the sign of the lowest of these, alone (which is the key of the

locked part), is required for the full resolution.

42—2
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APPENDIX.

Note on a Problem in Partitions.

(Read July 7, 1884.)

In the partition method of constructing knots of any order, n, of knottiness, we have

to select from the group of partitions of 2n those only in which no part is greater than n,

and no part less than 2.

Thus, as given in the text, § 6, we have for sevenfold knottiness the series of partitions

of 14 ;—but they are now arranged below in classes according to the value of the largest par-

tition.

222222277
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Values of r.

012345678
+
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Table of the values of p\ ;
the number of partitions of s in which no one is less than 2,

nor greater than r.

{The values of r are in the first row, those of s in the first column.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

2

2

2

3

2

3

3

3

3

4

3

4

4

4

4

5

4

5

5

5

5

6

5

2
1

3

2

4

3

5

4

7

5

8

7

10

8

12

10

14

12

16

14

19

16

21

19

24

21

27

2

3

3

5

5

7

7

4
3

6

6

9

9

4
6

7

10

11

10 14 .16

10 13 17

13 19 23

14 20 26

17 26 33

18 27 37

22 36

23 36

28 47

29 49 72

34 60 86

36 63 96

42 78 115

44 80 127

50 97 149

53 102 166

60 120 .

63 .

47

52

64

7

7 8

11 11 12
12 13 13 14
18 19 20 20 21
19 21 22 23 23 24
27 29 31 32 33 33 34
30 34 36 38 39 40 40 41
40 44 48 50 52 53 54 54

44 51 55 59 61 63 64 65

58 66 73 77 81 83 85 86

64 75 83 90 94 98 100 102

82 95 107 115 122 126 130

91 110 123 135 143 150

113 134 154 168 180

126 155 177 197

155 189 220

171 215

207

55
65 66

87

From what has been stated in the previous pages, it is easy to see how to extend this

table; forming the successive terms of each row by adding step by step upwards to the

right along a diagonal, thence upwards to the top, zig-zag along the row of heavier type

as soon as it is reached.



Ampnich*

THE FIRST SEVEN ORDERS OF KNOTTINESS.

AmphicW I Two forms

Plate VI.

II Two forms

3 A *A sB sC /3 sA y eF S eG II, 7 C IV; ?D V, tE III, ?G
HI Two forms IV Unique V Unique VHJiuque VII Unique Iun.Amphich

1
II Three foms III Two forms IV Unique

VII, 7L VI, ?P X, 7S DC, 7T VUI, tU XI, tV sB 8E 8G
V Tkeeforms.thiWJ^AjnihicM VI Two forms VnUn.Ajnjh. VIII Two forms IX Unique

8X 8F
X Two forms

8Q sT
XI Two forms

8Y 8 1. 8 Am 8 Ac 8 Av 8 Ap 8 At 8 Au sA:
XII On AmphicW XinUijiaue XIV Unique XV Unique XVIUpMue XVII Un.Amph' XVjnjnyue I Unique

8Bi I Bj 8 B
q-

III Two foTms

bBv bBw
IV Pour forms

8By 8Bz

8 Bo 8 Ax
II Six forms

8 Bg s Br

9B
.

9 J 9K 9P 9Q
V Unique VI Three forms*

9Y 9 Z
VH Two forms

9 I, 9V
VIII Six forms

»S 9Af 9Ar 9 An 9X
IX Unique

9 Ab 9 Aj 9 A
<J

X Unique XI Unique

9Ae 9Ap
XII Four forms

9AS 9At 9 Au 9Av
XIU Three forms

9C1c 9 CI 9 B c

XIV Four forms

9Bk 9B1

9B-u ».Dj
XV Four forms

9A1 9ATi 9Az
XVI Three forms

9Bg 9B w
XVU Four forms

sCd 9C e sDw
XVIU Three forms

9Eh

Cf 9 Di aFj gEl
X Two foras XX Three forms

Cj 9Ft 9 Gy 9D(j aDs 9Dt 9D11 sDv gFg 9Ea

XXI Four forms XXU Four forms

9Dy gEs
OUT! Two forms

9Ee 9Ef
XXIV Two forms

9E2 9Fa
XXVIII Two forms

9Eq 9 Eu
XXV Four forms

gGd 9Ge 9£x 9Ev
XXVI Three forms

9Ew 9DI jD«
XXVII Two forms

9F0 9En 9Fi 9Fk 9 GV 9 E m 9 Gl 9Kz 9Ht 9 Gp gGq
XXIX Two forms XXX Two forms XXXI Two forms XXXII Two forms XXXIII Two forms

9Gt 9Gv 90x
XXXIV Two forms

9 Hi 90? 9HI1 eHa aHj sHs git

XXXV Unique XXXVI Unique XXXVII Umjus XHYlli Unique mrXUnique XL Unique

30
gHy slh,

XL1 Urique

9la 9li 9 It 9le all »lp

* ( See foot-note, p. 324 below. 1898.)

9lr alt; »I*

To face p. 334 .






