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XLI.

ON KNOTS. Part III.

[Transactions of the Royal Society of Edinburgh, 1885.]

(Chapter I. read June 1st, Chapter II. July 20th, 1885. One change, small but important, was made

during printing. It is described at the end of the paper.)

The following additional remarks are the outcome of my study of the polyhedral
data for tenfold knottiness, which I received .from Mr Kirkman on the 26th of last

January. My main object was, as in the first chapter of Part II., to determine the

number of different types; as well as the number of essentially different forms which

each type can assume, as distinguished from mere deformations due to the mode of

projection.

This study has been a somewhat protracted one, in consequence (1) of the great
number of tenfold knots; (2) of the very considerable number of distortions of several

of the types, many of which are essentially distinct while others present themselves

in pairs differing by mere reversion
;
and especially (3) of the fact that the polyhedral

method often presents some of the distinct forms of one and the same type projected

from essentially different points of view (of which, in the present case, there are some-

times twelve in all). Reason (3) depends on the fact that Kirkman 's method occasionally

builds up various forms of one type on different bases of a lower order, and it really

involves additional labour only; but great care is requisite to avoid confusion as regards

(2), and in consequence I may not have fully reduced the final number of distinct

types. [At the end of this paper I shall give a simple illustration of the nature of

this special difficulty.]

The fact that I was dealing with knottiness of an even order induced me to

commence the testing of the materials at my command by picking out the Amphi-
cheirals. This led to some new considerations of a very singular nature, which are
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treated in the first of the following chapters. The second deals with the tenfolds as

a whole.

I. Various Orders and Classes of Amphicheirals.

1. As one form of check on Kirkman's results, I sought for an independent method

of forming all the amphicheirals of a given order. But, as will be seen below, we must

be careful in this matter, which is not so simple as I first thought. I therefore com-

mence by recalling the original definition of an amphicheiral.

In § 17 of my first paper I introduced it thus :
—

An amphicheiral knot is one which can be deformed into its own perversion.

The word "deformed" was here used in the sense of alteration of form by mere

change of point of view, or mode of projection ;
a process which leaves the number

of corners in each mesh, and the relative positions of the various meshes, unchanged.
This definition implies that the right and left handed meshes are similar in pairs and

similarly situated in congruent groups ;
and it will be adhered to for the present, though

we shall afterwards find that there are at least three other senses in which a knot

may be called amphicheiral, and shall thus be led to speak of different orders and

classes of amphicheirals. The above definition will then be considered to belong to amphi-
cheirals of the First Order and First Class.

2. Suppose an amphicheiral knot to be constructed in cord, and extended over

the surface of a sphere which swells out when necessary so as to keep the cord tight

like the netting on a gazogene. Let its various laps be displaced until the several

corresponding pairs of right and left handed meshes are made equal as well as similar.

Trace its position on the sphere. Now suppose it to become rigid, and move it about

on the surface of the sphere. We can again bring it to coincide with its former trace,

but in such a way that each left-handed compartment now stands where the corre-

sponding right-handed one was, and each right-handed where its corresponding left-handed

was. Now such a displacement, as we know, can always be effected by a finite rotation

about a diameter of the sphere as axis.

This axis, of course, cannot terminate (at either end) inside a mesh, else that com-

partment could not be shifted by the rotation to the original position of the corresponding
one of the other kind. Hence either end of the axis must be at a crossing, or midway
on the lap of cord passing through two adjoining crossings. A little consideration

shows that if one end be at a crossing the other also must be at a crossing, and the

whole must be a link. This is easily seen from the fact that, if one end of the axis

be at a crossing, the four meshes which meet there must each exactly fit that next

it when the whole is turned through a right angle ;
and the series which immediately

surrounds these must possess a similar property, &c, &c. Thus the whole spherical

surface must be covered with a pattern which consists of four equal and similar parts,
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each of which takes the place of the preceding one at every quarter of a rotation

about the axis. And four laps of the string must therefore proceed all in the same

way from one end of the axis to the other; since, if we can trace one lap of the

string continuously from one crossing to the other, exactly the same must be true of

the other three. [Of course, if the string cannot be traced from one crossing to the

other, there must be two separate strings at least.]

Hence, for a true knot, both ends of the axis must be the middle points of laps ;

and therefore—
There must be two laps, at least, in every amphicheiral knot, each of which is common

to a pair of corresponding right and left handed meshes; and when the whole is sym-

metrically stretched over a sphere the middle points of these laps are at opposite ends

of a diameter.

3. With regard to the middle point of either of these laps, the various pairs of

corresponding right and left handed meshes are situated at equal arcual distances

measured in opposite directions on the same great circle. Hence if the whole be opened

up at the middle point of either of these laps and projected on a plane symmetrically

about the middle point of the other, the halves into which the plane figure is divided

by any straight line passing through the latter point are congruent figures applied on

opposite sides of that line as base; the point being, as it were, a centre. There are,

thus, at least two ways of opening up any amphicheiral knot so as to exhibit this

species of quasi-symmetry.

What precedes is on the supposition that the system of right, or of left, handed

meshes can be applied to itself in one way only. If there be, as happens in some

specially symmetrical cases, more than one way of doing this, there is a corresponding

increase in the number of pairs of common laps, as defined in the preceding section.

It has also been assumed above that, on the sphere, the systems of right and left

handed meshes are not only similar but congruent. The question of the possible existence

of knots in which the system of right hand meshes shall be the reversion of the left

hand system will be considered later.

4. We now obtain a perfectly general, though of course in one sense tentative,

method of constructing amphicheirals of any order. Think of the result of § 3 as to

the congruency of the halves of the knot when opened at either of the pair of cor-

responding laps. As a continuous line necessarily cuts the projection of a complete knot

in an even number of points, the half figure which is to be drawn on one side of

the common base must meet it in an odd number of points because one lap has been

opened. Let these be called, in order, A, B, C, &c. Then, to form the half figure,

these points must be joined in pairs, the odd one forming one end of the line whose

other terminal is at the broken lap. These joining lines, and that with the free end,

must be made to intersect one another in a number of points equal to half the

knottiness of the amphicheirals sought. Every mode of doing this gives a figure which,

when its congruent has been applied on the other side of the base, possesses the

amphicheiral quasi-symmetry above described.

T. 43
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5. To ensure that the figure shall be a knot, and not a link or a set of detached

figures, the following precautions are necessary. If A', B', C, &c, in. the congruent

figure correspond to A, B, C, &c, in the original, they will be adjusted to one

another as follows. (The case of five is taken as being sufficient to show the general

principle.) ABODE
E' D' C B' A'.

Now if B be joined with D, however the joining line be linked with the others, B will

be joined to D'; and these parts will form, together, one closed circuit, so that the

figure is not a knot. Similarly if A and E be joined. Similarly if A be joined to B,

and also D to E. If C be the terminal of the free lap, so will C; and again we

have a figure consisting of more than one string.

It will be observed that the common characteristic of these excepted cases is that

each possesses at least partial symmetry in the mode in which points to be joined

are selected from the group. Hence the rule for selection is simply to avoid every trace

of symmetry.

Even when this is done the final result may be a composite knot, i.e., two or

more separate knots on the same string. These can be detected and removed at

once, so that it is not necessary to lay down rules for preventing their occurrence.

Repetitions of the same form from different points of view form the only really

troublesome part of this process. These are inevitable, as we see at once from the

fact that there may be several essentially different ways of cutting the complete

quasi-symmetrical figure into congruent halves by lines meeting it in the same odd

number of points. But it may also often be cut by one such line in one odd number

of points and by another in a different odd number.

Still, with all these inherent drawbacks, the method is applicable without much

labour to the tenfold amphicheirals ;
and it fully answered my purpose.

6. I had proceeded but a short way with the application of this method when

I found that there may be more than one distinct amphicheiral belonging to the same

type.

One example of this had been already given in § 48 of Part I. while I was

dealing with amphicheirals, and again in Part II. in my census of eightfolds (Type V.),

but I had carelessly passed it over as a special peculiarity probably due to the fact

that the knot in question, though not composite, was constructed of portions each of

which possessed, all but complete, the outline of the fourfold amphicheiral. From the

point of view taken in § 4 above, however, the reason of the property is evident.

For if the half knot, when the extremities of the strings are all held fixed, be

capable of a distortion which shall change the relative positions of some of its meshes

or the numbers of their corners, the same can of course be done with the congruent

half. The whole preserves its type, and is still amphicheiral, but it becomes an

essentially distinct form.
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It will be seen that there is one type of tenfolds which has four different

aniphicheiral forms; another contains three; while there are four types each with

two forms. The remaining seven amphicheiral types are either unique forms or have

no amphicheiral distortion.

7. We are now prepared for one extension of the definition of an amphicheiral

given in § 1 above. But we prefer to establish a new and independent definition:—
thus

An amphicheiral knot of the First Order and Second Class is one which can be

distorted into its own perversion.

Under this definition every distortion of an amphicheiral knot is included, even

although it be such that its right and left handed meshes do not correspond to one

another in pairs. For, whatever be the distortion, and whatever parts of the knot be

affected by it, an exactly similar distortion might have been applied to the congruent

parts of the original amphicheiral. These two distorted forms are, of course, capable
of being distorted one into the other:—and that other is its perversion.

Every amphicheiral knot of the first order and second class corresponds to, and

can be distorted into, at least one of the first class:—but the converse is not neces-

sarily true.

8. Whether there are other classes of amphicheirals of the first order besides

these I do not yet know. I have made attempts to construct a specimen of a supposed
Third Class which should have the property of being changed into its own perversion

by the twisting of a single, limited, portion, while the result could not be obtained

by any simpler method. Such forms, if they exist, must in general be incapable of

distortion into amphicheirals of either the first or the second class. This search has

been fruitless. Among the requirements which it introduces, is the necessity for an

ordinary amphicheiral in which two pairs of corresponding right and left hand meshes

shall have one common corner; a condition which does not seem to be satisfied except

by the simplest (amphicheiral) link, in which indeed it must be satisfied, as there are

but four compartments in all. But this gives no satisfactory solution.

9. We may now take up the curious question raised in the last paragraph of

§ 3 above.

A simple method of producing arrangements in which the group of left handed

meshes is similar to, but not congruent with, that of the right handed follows at

once from the fact that, if one end of a diameter of a sphere trace a figure of

any kind, the other end traces a similar and equal but (except in special cases of

symmetry) non-congruent figure. These figures can, if we choose, be taken so as

together to form one closed curve
;
and this, along with a great circle of the sphere,

forms a link of two cords possessing the required property. On the plane we can

carry out this construction by describing any figure within a circle, along with its

inverse as regards the circle but on the opposite side of the centre; and arranging

43—2
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so that these may join into a continuous curve linked with the circle. But this

arrangement remains a link when we unite the new curve with the circle by so

introducing new meshes as to leave the whole possessed of the required property.

Or, we may trace any curve on a hemisphere, and its image (in the common

base) on the other hemisphere. These, together with the great circle separating the

hemispheres, give another link solution.

It is clear, from the essentially limited nature of the spherical surface, that these

two methods give the only possible solutions of the problem:
—

i.e., when the cor-

responding right and left handed meshes required by the conditions are made equal

in pairs, the lines joining similarly situated points in them must either meet in one

point (which, of course, must be the centre of the sphere), or they must be parallel.

10. As I did not at once see how to obtain solutions corresponding to unifilar

knots by means of either of these methods, I asked Mr Kirkman whether he knew

of a polyhedron which possessed the requisite property. The first he suggested to

me corresponded, as I easily found, to a trifilar which belongs to the results of the

first method above :
—

i.e., one of its cords being taken as the circle, the other two

were inverses of one another with regard to it. But, as soon as he mentioned to

me that the polyhedron, corresponding to a composite knot consisting of two separate

once-beknotted 5-folds on the same string, satisfies the special conditions of the present

question (though inadmissible on other grounds), I saw why I had failed in obtaining

unifilars by the first of the two methods above. For the purpose of avoiding trifilars

from the first I had always made the curve traced by either end of the moving
diameter (in the process of § 9 above) cross the great circle wherever it met it, so

as to join that traced by the other end. No insertions of new meshes could then

reduce the whole to a unifilar without depriving it of the property for which it was

sought.

11. But if we make the closed curve traced by one end of the moving diameter

touch the great circle in one point, the point of contact must of course be regarded
as a crossing, while the circle and the closed curve necessarily fuse into one continuous

line. The same happens with the curve traced by the opposite end of the diameter.

Thus we may obtain with the greatest ease any number of unifilars satisfying the

conditions. And it is clear that, by a slight extension of the definition above, all

such knots will be brought under the general term amphicheiral. To make them

true knots, i.e., not composites, the curves traced by the ends of the diameter must

intersect one another, which implies that they must each cut the great circle in two

points at least besides touching it at one or more. Hence the lowest knottiness in

which they can possibly occur is 10-fold
; i.e., 2 points of contact with the great

circle, 4 intersections with it, and 4 intersections of the two branches.

This process fails when applied in connection with the second method of § 9, for

it brings in triple points which cannot be opened up into three double ones without

depriving the whole figure of the desired property.
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12. The 10-fold, whose genesis is described in last section, has the form shown
in Plate VII. fig. D, where the great circle is made prominent. It is easily recog-
nised as the ordinary amphicheiral, fig. 31, of Plate VIII. The reason why it figures
in both categories is that the arrangement of the right or left handed meshes, being
symmetrical, is not changed by reversion. Thus every ordinary amphicheiral, which is

in this sense symmetrical, belongs also to the new kind of amphicheirals with which
we are now dealing.

Plate VII.
fig. A shows a 12-fold knot, which is its own inverse with regard

to the part drawn as nearly circular, and which is not amphicheiral in the ordinary
sense.

Equal distortions of two corresponding parts give it the new form
fig. B, which

is also its own inverse with regard to the circular part.

But if, as in
fig. C, we perform one of these distortions alone, the form is no

longer its own inverse. But it is certainly amphicheiral, in the sense that it can

be distorted into its own perversion. This is effected, of course, by undoing the

single distortion which produced C from A, and inflicting the other of the pair of

distortions which, together, produced B from A.

13. Thus there are at least four different senses in which a knot may be amphi-
cheiral.

A (a) Those in which the systems of right and left hand meshes are similar and

congruent.

A (B) Unsymmetrical distortions of any of the preceding, when such exist. [When
the distortion is symmetrical the knot remains one of A (a).]

B (a) Those in which the systems of right and left hand meshes are similar

but not congruent.

B (8) Unsymmetrical distortions of any of the preceding. [When the distortion

is symmetrical the knot remains one of B (a).]

A and B may be spoken of as different Orders, the First and Second; a and 8
as Classes, First and Second. As already stated, the knot of

fig. D belongs to both

orders. But no knot can belong either to both classes of one order, or to the first

of one order and the second of the other.

14. In fig. (D) the 10-fold (fig. 31) of § 11 is drawn so as to exhibit its sym-

metry. And we thus see at a glance that there are at least two ways (indicated

by heavier lines, one continuous, the other dotted) in which we can choose the laps

which are to form the circle with regard to which it is its own inverse.

Fig. 38 of the 10-folds, which by reason of its symmetry belongs to both orders

of amphicheirals, can have its circles shown as in figs. (E) and (F).

15. But if we take a non-symmetrical knot of the kind B (a), such as
fig. A

above treated, we obtain some still more striking results as to the number of ways
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in which we can choose the laps which form the circular portion. In this figure

corresponding right and left handed meshes are marked with the same letter.

Thus, if we throw out the right hand mesh, d, from the contents of the circle

and take in the left hand d instead, the figure (drawn to show the new circle)

becomes fig. G.

If we throw out f and take the amplexum instead, we obtain
fig. H.

But, if we throw out from the circle g, c, and e, and take instead of them the

corresponding external meshes, the figure takes the curious form K. Here the full

line is the new boundary between the two halves of the figure. This new boundary,
as well as the entire figure, is easily seen to be its own inverse with regard to the

part bounded by the heavier portion of the full line. This, however, is only one of

four ways in which it might be selected from the full line alone. Such modifications

are very curious as well as numerous, but we cannot pursue them here.

16. In the upper rows of Plate VII. I have given the amphicheirals of the

first class, up to the tenfolds inclusive. They are drawn on the principle of § 4

above, and the first form in which each presented itself has been preserved. A
comparison of these, with the corresponding figures as drawn in Plate VIII. directly

from Kirkman's results, is very instructive.

[Added, Oct. 19, 1885.—Though the general statement in § 11 above is true from

the point of view there taken, there is a possibility of evading it. Thus, if we draw

a figure like E, Plate VII., but with a four-pointed star inside, we get vii. of the

8-folds; which is thus shown to be an amphicheiral of the Second, as well as of the

First, Order. But, if we try a three-pointed star, we get the simplest trifilar locking;
as in Part I. § 42 (1), and Part II. § 8.]

II. Census of Ten-fold Knottiness.

17. Omitting composites, the number of separate types of 10-fold knottiness

is, as shown in Plates VIII., IX., 123. Of these 48 are unique, while the remaining
74 give 315 distinct forms, 364 individuals in all. The largest number of distinct

forms for one type is 12
;

and there are two such groups. One type which furnishes

a group of 10, has 4 of them amphicheirals of the first order and first class, the

remainder of the second class.

Each of the figures is drawn in the special deformation in which it is presented

by the polyhedral method
; and, for reference, the corresponding designation of the

knot in Kirkman's list is appended to it.

18. Of the 107 partitions of 20, under the limits imposed by the nature of a

knot, 52 only are utilised; the rest belonging to links, composites, &c. These

are as below
;

each being followed by a distinctive letter, which will presently be

employed (for brevity) in place of it.
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For knots with 6 right handed and 6 left handed meshes:—
653222 A 544322 F
643322 B 543332 G
633332 C 533333 H
554222 D 444332 K
553322 E 443333 L

For 5 meshes of one class and 7 of the other:

77222 a 65432 I

76322 b 65333 m
75422 c 64442 n

75332 d 64433 p
74432 e 55532 q

74333/ 55442 r

66422 g 55433 s

66332 h 54443 *

65522 k 44444 u

5522222 a

5432222 £
5333222 y

4442222 8

4433222 e

4333322 ?

3333332 q

For 4 of one and 8 of the other :
—

8732 a 7652 f

8633 b 7643 g

8552 c 7544 h

8543 d 6653 k

7742 e 6554 1

43322222

33332222 *

And for 3 of one and 9 of the other:—
992 p

983 q

974 r

965 s

875 t

776 u

332222222 X

19. In Part II. of this series I arranged the types of each degree of knottiness

in the order in which their respective deformations first appeared in Mr Kirkman's

lists. This had the disadvantage of mixing up together types with very different

relative numbers of right and left handed meshes. On the present occasion I have

taken in the first rank the knots which have an equal number of meshes (six) of

each kind, next those which have respectively 5 and 7, 4 and 8, &c. This will

considerably simplify the process of seeking for any particular ten-fold in so long a
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list. The arrangement of the various types in each rank, however, follows somewhat

closely the order of their earliest appearance in the first list which I got from

Mr Kirkman, that upon which I commenced the present work.

To identify any 10-fold, all that is necessary is to count the numbers of comers

in the respective right and left handed meshes, look out the contracted expressions

for the corresponding partitions of 20 in § 18, and then search below for the symbol,
or pair of letters so obtained. Their order, of course, is immaterial, as it can be

altered by a mere change of mode of projection. If the symbol occur more than

once, a closer examination must be made, account being now taken of the way in

which the right, or the left handed, meshes are coupled together. This is easily

done as in § 20 of my first paper.

20. The number of distinct forms which I detected as not contained in

Mr Kirkman's first list of 10-folds bears a far smaller ratio to the whole than was

the case with the nine-folds. I consider that this is due not to my remissness, but

to Mr Kirkman's improvements in his methods, i.e., rather to the non-existence than

to the non-detection of omissions
;

and I think it is improbable that any distinct

variety of a recognised type has escaped detection. Thus in the present census some

types may be omitted (this is more likely to be true of unique types than of others);

and I may have, as already indicated, grouped in two or more smaller detachments

the varieties of one and the same type. But the possibility of either defect is due

to the somewhat tentative nature of the methods employed.

The guarded way in which I spoke (Part II., § 1) of the completeness of the

Censios has been justified by a recent observation made by Mr Kirkman, viz., a

9-fold not included either in his list or in mine. Fortunately this knot, figured as fig.

L., PL VII., is not a new type but a distinct form of type VI. of the 9-folds as

shown in the Plate attached to Part II. My methods ought to have supplied this

additional member of a group, of which some forms had been furnished by Kirkman
;

but I had not, at the time, much readiness in applying them. The labour of the

10-folds has made me much more skilful than before in this matter.

21. In the following list, the order is the same as in the plates. The symbols
for each knot are so written that the second, in all cases, corresponds to the group
of meshes to which (as the figure happens to be drawn) the amplex belongs.

The various Types of Ten-folds with their distinct Forms.

Six right and six left hand meshes
;

24 non-unique types, 14 unique ;
133

individual distinct forms in all. Amphicheirals of the first order and first class are

marked by a bar over the symbol instead of a repetition.
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1. C, G, GC, GG, CG, KC, KG, G, GK, K. 2. FC, GF, GF, GF.

3. HB, LB, BC, GB, BG, KB, HF, FC, FG, LF, GF, FK.

4. GE, KE, GE, GE, BK, GB, GB, KB, BG, GB, EK, EG.

5. FF, KB, FB, BF, FF, FK. 6. GE, LE, KE.

7. FE, FG, FB, EB, EG, EE, FE, FG, FB. 8. FK, KF. 9. F, FF, F. 10. GF, KF.

11. BF, KE, BB, GF, KG, GB, EF, KB, BE. 12. LF, LF, FH. 13. KG, K,G.

14. B, E, G, EB, BG, EG. 15. A, EA, E. 16. BB, FB, KB, KF, FB, FF.

17. GF, GF. 18. FD, DB, KD. 19. FA, KA, FA, GA, GA, EA.

20. BA, KA, KA, AF. 21. GA, GA, AF, BA. 22. FB, B, F. 23. DB, FD.

24. EA, AA. 25. KG. 26. G. 27. F. 28. LK. 29. K. 30. LG.

81. F. 32. EF. 33. FE. 34. EF. 35. D. 36. AD. 37. A. 38. H.

Five meshes of one kind, seven of the other. Forty-three non-unique types,

twenty-one unique
—200 distinct forms in all.

39. es, es, ep, yp, sy, sy. 40. em, em, ef. 41. el, ee, yl, ye, rje, rjl, Q, £e, ef, l£.

42. £q, yl, el, yq, eq, ft 43. ef, em, ep, es, yf, ym, ys, yp, p%, s£ £m, tf. 44. se, te.

45. £d, %h, eh, eh, ed, ed, h%, d£. 46. £1, £1, t)l. 47. ky, ek, rjk, £k.

48. eh, ed, em, h0, m0, d0. 49. £c, £c, 17c, yc, fc, ec. 50. gy, eg, t,g, £g.

51. ft, #>, f6, be, yb. 52. 0b, eb, h0, eh, eh, eb. 53. er, 0r, el, el, 01, 10. 54. pe, te.

55. s0, t0, m0, s0, p0, s0. 56. 8f Up, 8s. 57. My, yn, en, en.

58. fr, ry, ee, ye, fe, er. 59. 81, 8q. 60. ee, ey, ly, el, %l, fe.

61. ee, el, et, t0, 90, 10 62. e0 p0 10 el, ep, ee. 63. ek, ky, &. 64. 01, 0q, s0

65. r0, ec, er, 0c. 66. e6, 0b, eb. 67. d0 m0, 01. 68. dj3, 01, 80.

69. eg, gy. 70. 8d, 18. 71. 0r, t0, e0. 72. 10, r0. 73. pa, ta, la, ra.

74. ec, r0, re, c0. 75. ek, 0k. 76. 0c, ec. 77. ea, ea, a0. 78. b0, h0.

79. 0c, ec. 80. ra, ac. 81. ha, ab. 82. ?«. 83. se. 84. et. 85. {*.

86. fr. 87. ys. 88. K- 89. er. 90. gfc. 91. eq. 92. re. 93. J&.

94. mf 95. re. 96. el. 97. Ze. 98. eZ. 99. eh. 100. £&. 101. b0. 102. aa.

Four meshes of one kind, eight of the other. Seven non-unique types and eight

unique
—

twenty-five distinct forms in all.

103. <rf, 0f. 104. kb,, «a, 0a. 105. /cd, «g, d0, g0. 106. kc, 0c. 107. 0d, 10.

108. 0b, g0. 109. 01, 0h. 110. *k. 111. 1*. 112. «L 113. /eg.

114. 0k. 115. 0f. 116. 0e. 117. a0.

Three meshes of one kind, nine of the other. Six unique types.

118. Xu. 119. Xq. 120. Xp. 121. Xs. 122. Xr. 123. Xt.

T. 44
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22. The nature of the special difficulty hinted at in the beginning of the

paper will be easily seen from the simple case illustrated by the four figures M,
Plate VII. They denote various forms of the type 40 of Plate VIII.

It will be noticed that the crossings A, B, C may, one, two, or all, be changed
from one lap of the string to the other, as shown in the second figure. Also D
may be transferred to a position between A and B, or between A and C. There

are thus two positions for each of A, B, and C
;

and three positions for D
; giving

24 combinations in all. But it is clear that we need not shift D at all, so far as

the outline of the figure is concerned
;

for a mere rotation of the whole in its own

plane (as A, B, and C are similar to one another) will effect this. Then a change
of B will merely give the reverse of the figure obtained by changing C. Again, by

inverting the first figure about a point in the inner mesh, we get the second. If

we had changed C, and then inverted, we should have got the same figure as by

changing simultaneously A and B. By changing C alone in the first, we get the

third ;
but by shifting D in the first we get the fourth

;
and these two are obviously

each the reverse of the other. Thus the 24 figures reduce to the three shown in

Plate VIII. As another example, take the third form of the third type of 10-folds

as given in Plate VIII. Two of the crossings on its external boundary can be shifted,

but each to one other place only. The form itself, and the same with one or both

of these crossings shifted, give a set of four; each of which can take five new

forms by the shifting of other crossings. But it will be found that the 24 forms

thus obtained are identical in pairs ;

—thus reducing to the 12 given in the Plate.

23. Mr Kirkman informs me that he has nearly completed the enumeration

and description of the polyhedra corresponding to the unifilar 11 -folds. I hope,

therefore, at some future time to lay before the Society the census of 11 -fold

knottiness. This was the limit to which I ventured to aspire nearly two years ago,

in a paper* which, I am happy to think, directed Mr Kirkman 's attention to the

subject.

24. It must be remembered that, so far as these instalments of the census

have gone, we have proceeded on the supposition that in each form the crossings

have been taken over and under alternately. But, as was shown in § 13 of Part I.,

as soon as we come to 8-folds we have some knots which may preserve their

knottiness even when this condition is not fulfilled. These ought, therefore, to be

regarded as proper knots and to be included in the census as new and distinct

types. This is a difficulty of a very formidable order. It depends upon the property
which I have called Knotfidness (Part I. § 35

;
II. § 6), for whose treatment I have

not yet managed to devise any but tentative methods.

To show, by a single case (even though not thoroughly worked out), of how

great importance is this consideration, I have appended to Plate VII. the five figures

N
;

with the nature of each crossing indicated. The numbers affixed show the

positions they occupied in the census of 8-folds, when the crossings were alternately

over and under. Then they were all unique knots, incapable of any change of form.

*
"Listing's Topologie," § 22, Phil. Mag., Jan. 1884. [To be reprinted below. 1898.]
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Now they are capable of being changed into one another. The linked trefoils in

N, xiv. are perversions of one another. But we may have them of the same kind,

and the link such that there shall be continuations of sign. This was briefly treated

in Part I. § 42, 1. How many new types may by this process be added to the

census, I have not yet made out with certainty even for the 8-folds.

P.S.—I may introduce here, as a note on Part I. of this series of papers, a

remark or two with reference to the three-ply plaits treated there
;

in § 27 as fully

knotted, and in § 42, 1, as fully beknotted. First, it is obvious that the 4-fold, as

first drawn in § 17, should have been repeated in Plate V., at the head of the

series of figures 15, 16, 17, &c. It is the case of Sn 4- 1 of § 27, with w = l.

Secondly, with its crossings arranged as in fig. P, Plate VII. of the present paper,
it should have come in before figs. 24 and 25 of Plate VI., Part I., in a form

reducible to the ordinary trefoil. Fig. 25 of that Plate puzzled me much at the

time when I drew it, for I could not account for the production of a 3-fold and a

5-fold (linked) from a figure possessing a peculiar kind of (cyclonic ?) symmetry
round an axis. The figure is accurate, but I now see that it gives an erroneous

impression of the true nature of the knotfulness. The correct idea is at once obtained

from Plate VII., fig. Q, of the present paper. The knot is an irreducible trefoil,

with a second of the same character tied twice through one of its three-cornered

meshes.

(Added, September 3, 1885.)

Three days ago I received from Mr Lockyer a copy of a most interesting

pamphlet
" On Knots, with a Census for Order Ten," a reprint from the Trans.

Connecticut Acad., vol. vn., 1885. The author, Prof. Little of the State University,

Nebraska, has made an independent census of 10-fold knots
; employing the partition

method, with some new special rules analogous to those in Mr Kirkman's recent

paper. So far as I can judge from a first hasty comparison of the mere number

of types and forms in each class, there are important discrepancies between this

census and my own. One of these, at least, is due to a slip on my part ; and, as

my paper was not printed off when I detected it, I have taken the opportunity of

correcting it both in the text and in the corresponding Plate. I had failed to notice

that the two forms which now appear under. No. 109 really belong to one type.

Hence I have had to reduce by one the number of the distinct 10-fold types which

was originally given in my paper. I hope in time to make a full comparison of the

two versions of the census. Meanwhile I may note that there is one omission, and

also one duplicate, in Class VI. of Mr Little's version. This duplicate has led him

to insert one type too many.

More than a month ago I received from Mr Kirkman the full polyhedral data

for the census of 11-folds, which I hope soon to undertake. The number of forms

is so great, and the time I can spare for the work so limited, that I cannot

promise it at an early date. [This arduous work was kindly undertaken by Prof. Little,

who, in 1890, gave the 357 types in Plates I., II., Trans. R.S.E., vol. xxxvi., 1898.]
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