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Introduction
We classified the set of 7^-cobordism classes of -Fm-links by their Seifert matrices

in [5]. On the other hand Cappell and Shaneson identified them with essentially a
quotient group of their homology surgery obstruction group [2]. In this paper, we
will find a description of their surgery obstruction in terms of a Seifert matrix. In
relation to Ledimet's recent results [7], we hope this might provide some clue to
whether fm-cobordism or boundary cobordism is stronger than ordinary link
cobordism. It also seems to be an interesting algebraic question to find an algorithm
for obtaining a Seifert matrix from their surgery obstruction.

It has been known that all formulations of the knot cobordism group are
equivalent (see [1, 4, 8, 9, 10, and 11]). In [11], the equivalence between the Seifert
matrix description and the F-group description for the knot cobordism group was
established in an abstract setting, and in [10], the same equivalence was obtained by
explicitly converting a given F-group obstruction to the corresponding Seifert
matrix.

1. Construction of normal maps

A link in Sn+2 is an embedded oriented submanifold that is homeomorphic to m
copies of Sn and a link cobordism between two given links in Sn+2 is a properly
embedded oriented submanifold in Sn+2 x [0,1] that is homeomorphic to Sn x [0,1]
and intersects Sn+2 x 0 and Sn+2 x 1 at the given links. Let Fm be the free group on m
generators. A pair (L, 6) is an Fm-link if L is a link in Sn+2 and d:nl(X)^-Fm is an
epimorphism sending a set of meridians to a fixed set of generators of Fm where X is
an exterior of L in Sn+2, that is, the complement of an open tubular neighbourhood
of L in <S'n+2. By the transversality argument, the epimorphism 6 gives a Seifert
surface, i.e. disjoint oriented submanifolds bounded by L. Conversely, the existence
of a Seifert surface for L produces such an epimorphism by the Thom-Pontryagin
construction. Two such epimorphisms for the same link differ by a generator-
conjugating automorphism of Fm (see [2,5]). A pair (L, 0) is an Fm-cobordism
between (L0.60) and (L1,01) if L is a link cobordism between links Lo and Lx and
0: n1'X.->Fm is an epimorphism extending 80 and 6l up to inner automorphisms
(see [2]) where X is an exterior of L in Sn+1 x [0,1]. C'n(Fm) denotes the set of Fm-
cobordism classes of T^-links. Cn(Fm) is an abelian group under the connected sum
and the group Um of all generator-conjugating automorphisms of Fm acts on Cn(Fm)
by compositions on the epimorphisms.

For our purposes we need naturally a new normal map involving Seifert surfaces.
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We begin by constructing the target of our normal map. Let
V+ be the boundary connected sum of m copies of Dn+2 x S1;
T+ be the disjoint union of m copies of Dn+1 xS1;
X+ be the interior connected sum of m copies of Dn+l x S1;
Y+ be the disjoint union of m copies of SnxS1.

Then they are related by dV+ = TM [)YtX^. Thus (V+,T+,X*) is a simple Poincare
triad because wh (Fm) = 0. In fact F+ can serve as a model of an exterior of a trivial
disk link:m(Dn+1,Sn)c+(Dn+3,Sn+2).

Let (L, 6) be an .Fm-link in Sn+2 and let ad:dX^- Y+ be the obvious homeomorphism.
According to [2], proposition 2-2, ocs extends to a map tx.:X->X^, that induces 6 on
fundamental groups and that induces isomorphisms on homology groups with
integer coefficients. Let

Z*=X*\) m(SnxD2) and £/« = F* U m(Dn+1xD2).
y. T.

Then (£/*,£*) = (Dn+3,Sn+2). By putting the tubular neighbourhood of L back toX,
a extends to a map a:5"+2->Z*. We note that ag,a and a all have degree 1. LetL*
be the trivial link given by m(Sn x 0) of m(Sn xD2) inside Z+. Then S.'1^^) - L. Let
D+ be the disjoint union of m copies of Dn+1 in Z+ such that

(1) 5A*=£*;
(2) if e .X^ ->• V"1*?1 is the map given by the Thom-Pontryagin construction of the

framed submanifold D* r\X+ of X+, then e+ :7rj(JC+)->î m sends the ith generator to
the ith generator for each i = I,... ,m;

(3) a is transverse to D^.
a: Sn+2 -*• Z+ extends to a map d:Dn+3 -> U+ by taking cones. By a small homotopy

of a. relative to the boundary, a becomes transverse to m(Dn+1 xO) in U*. Also we
may assume that a.~1(m{Dn+1 xD2)) is a tubular neighbourhood of a'1 {m(Dn+1 xO))
whose intersection with the ambient sphere Sn+2 is the tubular neighbourhood of L.
Let 6 be a bundle map covering a, of trivial bundles so that £|<r1(m(z)"+1xD:!)) preserves
the tubular neighbourhood structure, or is a SO(2)-bundle map. Let

V = Dn+3\a.-1(m(Dn+1 x intD2)) and T = Srx(m(Dn+1 x 3D2)).

We now define a normal map of triads

by the restriction of (a, b). We call this normal map (/, b) of triads a Seifert normal
map for an i^-link (L,6).

There is a nicer way, which justifies the name of the normal map, to look at the
triad (V, T,X). We had D* in Z* such that a " ^ * ) is a Seifert surface of (L, 6). Let
A+ be the disjoint union of m copies of Dn+2 in £/* such that

(1) dA* =Z>* UL#TO(Z>"+1X0) where m(Dn+1 x 0) <= m(Dn+1 xD2) c U*;
(2) A^ lies on U+ parallel to the radial direction of the cone on which we have

extended a to a;
(3) A+ does not contain the cone point of £/*.
Then a is automatically transverse to A#. It is easy to see that &~~1(m{Dn+l x 0)) is

the Seifert surface a"1^^) pushed into the Dn+3 except the boundary which is the
link L. In fact the trace of the isotopy pushing oTx(D+) into the Dn+3 to place it on
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' xO)) can be identified with a"1^*) and looks like the quotient

Thus T is a part of boundary of a tubular neighbourhood of the Seifert surface
pushed in, and V is an exterior of the Seifert surface pushed into Dn+3.

2. Surgery obstructions

Given an 2^,-link (L,d), let {f,b):(V,T,X)-+(V+,T+,Xt) be a Seifert normal map.
Then f\x induces isomorphisms of integral homology groups and f\dx is a homotopy
equivalence. Let <Dffl be the diagram

- I 1-
- 3 - Z

where rings are integral group rings of fundamental groupoids and a denotes the
augmentation maps and i^ is induced by the inclusion: T+-+V+. Thus Om is simply
the integral group ring of the diagram

zu-uz—»zu-uz

'•I
According to [1] (see also [2]), one can define a surgery obstruction <r(f,b) as an
element of rn+3(<Dm). Since wh (Fm) = 0, we are omitting the s or h superscript. This
is the obstruction to finding a normal map

(f',b'):(V',r,X)-*(V,,Tt,X,)

normally cobordant to (/, b) relative X such tha t / ' induces isomorphisms of integral
homology groups and/'|T- is a homotopy equivalence.

T(ra, n) denotes the map taking the surgery obstruction <r(/, b) of a Seifert normal
map (/, b) for a given 2^,-link (L, 6).

PROPOSITION 1. The map r{m, n):Cn(Fm) ->• rn+3(<I>m) is well defined for n^-2.

Proof. Let (fi,bl):(Vi,Ti,X()^(VJt,,Ti,,Xl)t) be Seifert normal maps for i^-links
(Litdt) for i = 0,1. Then we want to show that if (L0l60) is i^-cobordant to {L^OJ
then o-(/oA) = <r(/iA) i n rn+3(<Dm).

Let L be an i^-cobordism of (L0,60) to (Lvd1) in Sn+2xl and T(L) a tubular
neighbourhood of L meeting Sn+i x i at the given tubular neighbourhood of Li for
i = 0,1. LetX be the closure of Sn+i xI\T(L). According to [2], proposition 23. there

are maps A:X->X. and fi:(X.,Y.) + &.,Yt)

such that
(1) A is an extension of the obvious homotopy equivalence

Ae:dX\int(X0 UX,)->y,;
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(2) A\x = <Xj and A\x =/?oa0 where a.t:(Xt, Yt)-> (X*, Y+) are the maps which
arise from the construction of the Seifert normal maps;

(3) /?|y< is the identity and /? induces the identity on ^ 1 , and /? is a (simple)
homotopy equivalence;

(4) A induces isomorphisms on integral homology groups.
By the construction of/? (see the proof of 2-3 in [2]), /? is actually the identity

outside the (n + 2)-cell of X+ which can be assumed to have no intersection with Z)*.
Thus the triad (Fo, To,Xo) can be assumed to be also obtained from /?oa0. Let /? be
any bundle map whose domain is the target bundle of b0. Let

be another Seifert normal map for (L0,d0) obtained from'using /?oa0:Jf0->Jf+ and
the bundle map /?o60 covering it. Then we have <r(/?o/0,/?o60) = o-(/0,b0) by the
functorial property of this obstruction since /? induces the identity on the
fundamental group (see the proof of proposition 3-2 in [2] and theorem 3-1 and
the following discussion in [1]).

We construct a mapA:Sn+2 xl-^Z+by putting T(L) back toX, that is, by glueing
the obvious homotopy equivalence: T(L)->m(Sn xD2) together with A-.'K^X^.
along 3X\int(X0 \JXX). Let At be the restriction A\sn+ixt:S

n+2 xt^Z+ for tel. For
each tel, At extends to a map At:D

n+3 xt^-U^ by taking cones and A:Dn+3xl^ U*
is defined by A\Dn+3>ct = At. Leti? be a bundle map over A of trivial bundles extending
flob0 and bt which cover /?oa0 and a.v By a small homotopy of A relative to the
boundary, we can assume that

(1) A is transverse to m(Dn+l xD2) in D+;
(2) B\j-i(m(fl»+ixfliH is a SO(2)-bundle map.

We out
y V = Dn+3 x l\A'l(m(Dn+1 x intD2))

and T = A-1{m(Dn+1xdD2)).

Let (F,B) :(V,T,X)-> (V*, T^,X^.) be the normal map given by the restriction of
(A,B). Then it is now clear by the construction of {A,B) that (F,B) is a normal bordism
between normal maps (/?o/0, /?o60) and (/p^x). We glue the restricted normal map

together with (f1,bl):(V1,T1,X1)-+(Vt,Tt,X+) along Xv and denote the resulting
normal map by (f[,b[). But one may consider

(F,B)\X:(X^o,^,3X\int(XoUX^)^-(X+ xI,X^x0,X# xl,YxI)

as a Cappell-Shaneson complementary normal cobordism. Since F\x = A induces
isomorphisms on integral homology groups and F\dx^lat{X UA-, is a homotopy
equivalence, a((F,B)\x) = 0 in rn+3(<&m). We have

inrn+3(Om)

by the additivity of obstructions.
We define the product normal map

VJof0Job0)xI:(V0,T0,X0)xl-*(Vt,Tt,Xt)
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by composing the projection: (Fo,T0,X0) x/->(F0, T0,X0) with (/?o/0,/?o60), and we
glue (ftof0,ftob0) xl and (F,B) together along (V0,T0,X0) to get a new normal map
(F',B'). Then it is easy to see that the normal maps (ftofotflob0) and (f'i,b[) are
normally cobordant relative Xo by the normal map (F',B'). Thus we have

<r(fiof0job0) = <r(/;,b[) in rn+3(Om).

Recall the map i+ :Z U ... U Z->.Fm induced by the inclusion: T+^-V+. The natural
map: Ln+3(i+)->rn+3(<t>m) is injective (see [2]) and so we identify Ln+3(i^) with its
image. According to theorem 4-1 of [2], the assignment of the surgery obstruction
a(G, C) of the complementary normal cobordism (G, C) to an i^-link of dimension
n induces an isomorphism

p(m, n):CJFJ -> rn+3(<S>m)/Ln+3(i+), for n ^ 2, n #= 3.

When n = 3, p(m,n) is an isomorphism onto a subgroup of rn+3(<t>m)/-Ln+3(t+) of
index 2m.

Proposition 1 says that the surgery obstruction given by r(m, n) does not have the
ambiguity of Ln+3(i+) (compare [2], proposition 3'2).

PROPOSITION 2. For n > 2, T(m,n) = p(m, n) modulo Ln+3(i+).

Proof. Let (L,d) be an i^-link and (f,b):(V,T,X)^{V^,T^,X^) be its Seifert
normal map for (L,6). Let

(G,C):(W,d_W,d+W,d0 W)^(X* xI,X+ x0,X+ x 1, 7, x/)

be a Cappell-Shaneson complementary normal cobordism for (L,6). Then
d_W = Xo is an exterior of the trivial link and d+W = X. Now we must show that
(r(f,b) — o-(G,C) is an element of Ln+3(i+).

By the construction of (/, b) and the construction of (G, C) (see [2], lemma 3-1), we
may glue —(G,C) and (/, b) together along X to get a new normal map of triads

(f',b'):(V\J W,T[)d0W,X0)^(V. U X+xl,^ U ^ x / , Z J
A" dX X,xi K.xi

where —(G,C) is the upside-down normal map of (G,C). But the target of the new
normal map is obviously (V^,T^,X^,) again. By the additivity of the surgery
obstruction,

o-(f',b') = o-(f,b)-o-(G,C).
Since (f',b')\x is already a homotopy equivalence, o~(f',b') is an element of Ln+3(i+).

According to proposition 5-2 and the following discussion in [2], the injection
from Ln+3(i+) to rn+3(<J>m) becomes an isomorphism for n even, while Ln+3(i+) = 0 for
n odd. Thus T(m, n) = p(m, n) for all odd n ^ 3.

Let 5 m : %[Fm] -*• Z be the augmentation map. Since the natural map from Ln+3(Fm)
to Fn+3(5m) is injective for n odd, we identify Ln+3(Fm) with its image (see [1]). Define
f n + 3 ( 3 J = rn+3(t5m)/in+3(^n)- The kernel of the natural map from Tn+3(gm) to
rn+3(<Pm) contains Ln+3(Fm) for n odd. In fact Ln+3(Fm) is equal to the image
(L n + 3 (ZU. . .UZ)^r n + 3 (5J )and

Ln + 3(Z u . . . u Z) -> r n + 3 ( S m ) ^ rn+3(<Dm) ̂  o

is exact (see [2]). So there is an induced map: r n + 3 ( 5 m ) -»• Fn+3(<I>m). According to [2],
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theorem 62, for n = 2k — 1 > 5 there is a split short exact sequence

where A is given by the signature or the Arf invariant of the components viewed as
knots and y is the composite of the induced map f n+3(5m) "*• ^n+^m) w ' th p(m, n)'1.
When n = 3, we replace A by Â and we can still have such a split short exact
sequence. Furthermore this sequence respects the natural action of Um with the
trivial action on mPn+l.

We recall some results from [5]. G{m, e) was the set of cobordism classes of Seifert
matrix of type (TO, e). Then the maps taking Seifert matrices

^(m,fc):C2M(fJ^G(m,(-in for k > 3

are isomorphisms. Let if (TO, ( — l)k) be the kernel of the (split) surjective map

taking the signature or the Arf invariant of diagonal blocks. Then we have split exact
sequences a

r - > 0 (k > 3),

or 0^K(m

where r is <j)~l(m, k), that is, the realization of Seifert matrices (see [5], theorem 3-4).
This sequence is also equivariant under the action of Um with the trivial action on
mP2lc (see [5]).

Comparing this sequence with Cappell—Shaneson's short exact sequence, we must
have an isomorphism

i r ( m , e ) : K ( m , e ) - > r 2 k + 2 ( % m ) , e = ( - l ) k

preserving Um-actions and \j/(m,,e) is given by y^or.

3. Computations of surgery obstructions

Now we try to find the map rjr(m, e) explicitly. A main tool will be the fact that
when we define y'1, we can use j{m,1k— 1) instead of p(m, 2k— 1) because they are
the same map. Since \]r(m,e) depends only on k modulo 2, we will assume that
k^3.

By the definition of if (TO, e), any class of K(m, e) has a representative Seifert matrix
A = {Ay) of type (in,e) with the property that for each i = 1, ...,TO

w h e n e = l ,

(•) whene = - l ,

and a\s is even for s = 1
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where Atj are (2l( x 2^)-matrices and a\s is the (s, s) entry of Au and I{ are (lt x lt)
identity matrices for i,j = 1, ...,m.

We will fix A = (Ai}) and 7/s in the form given as above in the rest of this paper,
and we understand that e = (— 1)*.

Let M = Mx U ... U-Mm be a Seifert surface in S2k+1 realizing the Seifert matrix A
of type (m,e) (see [5], theorem 3-4). Then M is a 2&-dimensional handle body with
TO 0-handles and 2lt A;-handles on each ith 0-handle. SoM is an ordered disjoint union
of TO (k — l)-connected submanifolds Mx, ...,Mm in S2k+1. The Seifert pairing

a:HkMxHkM->T

is represented by the matrix A on the basis of HkM given by the fc-handles of If.
dM is a simple m-link of dimension 2k—I with the splitting map idfm. We denote this
2^-linkby (LA,id).

Let (f,b):(V,T,X)^(Vt,Tt,Xt) be a Seifert normal map for (LA,\d). Then the
surgery obstruction <r(f,b) in r2A.+2(<I>m) is the image of [.4] under T(TO. 2k— l)o
<J>(TO,2k— I)"1. Since [A]eK(m,e), we have A(a(f,b)) = 0 in mP2k. We are looking
for an element £ in r2fc+2(5m) such that cr(f,b) is the image of £ under the injection
f2*+2(tU->r2fc+2(Om). Since <r((/,6)|T) = A(<7(/,6)) = 0 in mP2k s L2t+1(Z U ... U Z),
the normal map (/, 6)|r is normally cobordant, relative to the boundary, to a
homotopy equivalence. This normal cobordism can be realized as NxS1 where N is
a trace of framed interior surgeries which make M into mD2k.

We recall that T is the boundary of a tubular neighbourhood of M pushed into the
2)2fc+2 \ye attach NxS1 to V along T and denote the result by W, and extend the
normal map (/,b):(V, T,X)-+ (K», T^,,X^) to a normal map

(f',b'):(W,m(D*kxSl),X)->(V*,T*,X*)

(see for example [12], chapter 1). Then the surgery obstruction cr(f, b') is an element
of r2fc+2(5) becausef'\dw induces at least isomorphisms on integral homology groups.
The quotient of a(f',b') modulo L2kJr2(Fm) is the element £ in r2fc+2(5) which we were
looking for (see the proof of 7-1 in [2]).

For i = l,...,mlet{a[, ...,a2l(} be the basis of HkMt given by fc-handles oiMt such
that the Seifert pairing a: HkM x HkM -> Z with respect to this basis of HkM gives the
Seifert matrix A. It follows from the property (*) of the Seifert matrix A that we can
kill OL\, ..., a\ by framed surgeries on Mv Let N( be the trace of these surgeries on Mt,
t h a t l s ' Nt=MtxH)h[[}...\ih\(

where h] are (&+l)-handles with the attaching spheres a]. Then

dNi=Mi[)dMixI(jD2lc.

We take the ordered disjoint union N = N1 U ... UNm.
By using Van Kampen's theorem and the 1-connectedness of the M('s one can

check that the map/ : V^V* induces an isomorphism on fundamental groups and so
does the map f':W-*V+. Let V and W be the universal covers of V and W,
respectively. Then integral homology groups H+V and H+W are J.[Fm]-modu\es.

V can be constructed as follows. Let S = Sl U ... U Sm be the trace of the isotopy
pushing the Seifert surfaced/ =Mt U ... \JMm into V; more precisely 8 = a-1(A+) 0 V
(see § 1). We note that $ is homeomorphic toMxI. If we cut V open along S, we have
a manifold B which is homeomorphic to D2k+2. Two copies S+, 8~ of S are parts of dB.
We take a copy B(w) of B for each weFm. Let x1,...,zm be generators of Fm. We
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identify S^{w) of B(w) with Sj(x(w) of B(x(w) for all weFm and i = 1, ...,m. Then the
result is V.

We consider

£odd= U #(w) and Beven= U fi(w)
J(«j)—odd (<M))=even

where I is the length of (freely reduced) words of Fm. Then we have in V that
BoM0Beven = UweFmS(w). Let Am = Z[Fm]. The Meyer-Vietoris sequence of the
couple (Boaa,Beven) is given as

i m i i l m

z z
The sequence is one of Am-modules. Since B is homeomorphic to £)2k+2 and S is
homeomorphic to M x I, we have that H{ V = 0 for z 4= k + 1 and //fc+1 V is isomorphic
to the free Am-module over 2(lx + ...-\-lm) generators. We choose a canonical basis

\ajH-l,...,m and }-\ 21,

of Hk+lV as follows. For i = 1, ...,m and j=l,...,lt the cycle which is in
,S'+(e) = Si(xf) and represents the homology class a.) of HkMt ^ Hk8 bounds a chain
c+a) in ^(Xj) and bounds a chain c_aj in B(e), then we let aj be the homology class
represented by the cycle c_ aj U c+ a} in V where e is the identity element of Fm and we
give the chains orientations so that 3c+aj = dc_ocj with orientations. At this point we
calculate the intersection pairings A among these generators of Hk+1 V, which will be
used later. For i, j = 1,..., m and r = 1,..., lt and j = 1,..., l}

But it is easy to see that 6ii
r.w(6ii

s) = 0 unless w = e,xt,xjl. We may assume that the
cycles a' and 6L\ do not intersect each other on iS (̂e) by a small homotopy of a,; this
can be done, for example, by a small translation on <St(e) KM xl in the/-direction.
In the following computation, Ik is the linking pairing in the ambient sphere S2lc+1

and i+ and i_:M^-X are small translations off M along the positive and negative
direction of M.

a*. .dl = c_ a*. e_ «i + c+ <t\ .c+a\ = Ik (a'r,»+ aj) + Ik (a4
r, t_ a',)

a*. a;,(aj) = c+ a^. x4(c_ aj) = c+ a*. i_( - c+ a*)

For i 4= j , it is easy to see that a'.w(a^) = 0 unless w = e,xi ,x^,x ix^1.

a}t = c_a\.c_a{ =

d\. xt(d.{) = c+al
r. Xf(c_ a{) =c+ai

r.i_{-c+ a.[)

= - I k (aj ,»_aj)=-Ik (*l,i+cti)

(because a\,a{ lie on distinct surfaces).
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d\. xjl{d{) = C_CL\. zjl(c+ a{) = c_ a.\. i+( - c_ <x{) = - Ik (a'r, i+ a{).

We recall that the Seifert pairing

is given by cr(a, /?) = Ik (a, i+/?) and gives the matrix A = (Ay) on the basis {a*}. Then
the intersection pairing A on V is represented by a matrix A = (Ati) on the basis {d\}

and Ay = (1— x()(l — x}
 l)Ati for i+j.

Further the quadratic function /i associated to the intersection pairing A is then given
by

/t(a\) = (1 -x;1) <T(4, al) mod Q( -e)
where Q(— e) = {p + ep*\peAm} is a subgroup of Am.

We now construct W from V. We recall that M = Mx U ... U Mm is a Seifert surface
of (L,,,id), and N = NX U ... UNm is the trace of surgeries on M, and W = V \JT(NxSl),
T = M x S\ dV = X \}dx T, and X is an exterior of LA and so nxX S Fm. Let Fm/(xt)
be the set of cosets of the cyclic group (x() for i = 1,..., TO and let X be the universal
cover of X Then

I m I

U {Mt x U1

We attach U ^ ^ ^ ^ x IR1)̂  to V along UweFm/<Xi>(Mt x UX for all i= l,...,m.
Then what we get is W.

Using the Meyer-Vietoris sequence, we have a sequence of Am-modules

0-*HM V^Hk+1 wi 0 (HkMt ® Am/(1 -xt) Am)
*-i z

i-1 Z

We now recall that for i = 1,..., TO

<a<i'--'a2((>
 f o r * = fc

0 otherwise
//*iVt^ (Z<<+i'---.a'2t(> for * = k

\ 0 otherwise
H^y^ lAm(di

r:i= l,...,m,r= 1 2l{} for * = i + l
\ 0 otherwise.

By the construction of N, the map i+ in the above sequence is just a projection.
Thus Hk W = 0. Moreover we can identify ker i+ with

0 (A m / ( l - a ; < )A m <a <
r ®l : r= l lt}).

i-l

We will show that Hk+l W is a free Am-module by determining the extensions of the
given bases of Hk+l V and ker i+ as follows. For i = 1,..., m and r = 1,..., lt, the cycle



540 K i H Y O U N G K O

which is in Sf(e) and represents <x\, now bounds a chain ca\ in a copy of Nt x U1 in W.
We let ,

a' = c_ aj. U ca.\;

then 3(aJ) = a 1
r ®l . Since -a;4a'r = - ( ( - c + a ' r ) U (ca'r)) = c+aju (-caj), we have

j^(a*) = (1—xja*. For i = 1, ...,m and r = lt+l, ...,2lt, we let

Thus with respect to these bases, j * is represented by a matrix J which is a block sum
of matrices

0 / ) i=l,...,m.

We recall the normal map (f',b'):(W,dW)->-(V+,T+, Uy -X,). / ' | w is an integral
homology equivalence and we now know that / ' is (k+ l)-connected. Let A and /i be
the intersection pairing and the associated quadratic function on W. Then the
surgery obstruction (/', b') is the triple (Hk+l W, A, ft) as an element of r2ft+2(5m)- Thus
the isomorphism ijr:K(m, e) ->• f 2fc+2(3m) sends a cobordism class of a Seifert matrix A
to a triple (Hk+X W, A,/i) modulo L2lc+2(Fm).

We now describe <r(f',b') = (Hk+1W,A,fi) in terms of the Seifert matrix A. We
had a canonical basis {&'r} of Hk+1 W. For i = 1, ...,m and r, s = 1 ^, we have
a'. w(a.\) = 0 unless w = e. As we did before, we may assume that the cycles a', a*
do not intersect each other on S+(e) by translating a, on S£(e) by i+. Thus

S.\. a* = (c_ a*. c_ a(
s) + (ca«. cai) = Ik (af

r, t+ a*).

Similarly we can compute A(a*,a{) for all i,j,r,s. However by using the map
j+ •Hk+1 V->Hk+1 W, we can more easily obtain A,/i on W from the result about A, /i
on V. In another words we have

where the notation is self-explanatory. We note that j ^ 1 makes sense because of the
conditions (*) on A. Moreover j ^ 1 is given by the matrix J'1 on our choices of bases,
where J"1 is the block sum of the matrices Jj1

((1"o>17< /J for i = i'-'m-
Thus Aw is represented by a matrix A = (At]) given by

and Ay = J^lA(iJ*~l for i^j,

where * stands for the involution on the ring Am and so

Jif = \ A r fOT l = 1 m-

The quadratic function /iw is given when e = 1 by

0 for r=l,
-x^aiaUccl) for r = li
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and when e = — 1 by

„ ,zu = I fr(aU <) for r=l,...,lt
W*r)- \(l_x^)(r(0liryr) for r = lt+l,...,2lt

modulo Q(— e) = {p + ep*\peQm}.
For the case e = — 1, we note that

^ modQ(

/JLW can be defined for all elements in Hk+l W by using the formulae

/iw(a. + fi) =/iw(a)+pw(fi) + Aw(a,ft),

fiw(pct) =p/iw(a)p* for ot,peHk+1 W and peAm.

4. Main results

The following theorem reviews our long journey.

THEOREM 3. The isomorphism tfr(m, e) :K(m, e) -> f 2fc+2(gm), e = (— 1)* is given by the
composition

K(m, e) A

i I

C^^FJ (LA,id)

>m) <r(f,b) {f,b)--(V,T,X)-+{Vt,Tt,Xt)

2(5m) o-(/',6') ( / ' . ^ ^

where a(f, b') = (Am<{a'}>, A, /i) and A is represented on the basis {a*} byA — (A(j) given
by

((ix)-lI \ (l \ (lt \

and /i is given on the basis by

t f}(l-e)cr(aj,aj) modQ(-e) /or 1 ̂  r

THEOREM 4. 4̂ is S-equivalent to the empty matrix if and only if A is a non-singular
matrix over A_.
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Proof. It follows from [6], theorem 1-6-1 that A is a Seifert matrix of the trivial link
if and only if A is <S-equivalent to the empty Seifert matrix. We use the notation that
we have been using in this section.

The associated normal map to the Seifert matrix A

has the property t h a t / ' | w is a homotopy equivalence because X is now an exterior
of the trivial link. Thus the surgery obstruction cr(/',6') is an element of L2lc+2(Fm).

Conversely, we suppose that o-(f',b') is in L2lc+2(Fm). Since X is an exterior of a
simple link,/' |x is ^-connected and hence f'\dw is fc-connected. Since/' itself is (k + 1)-
connected, we have an exact sequence

But the middle map in the sequence is the adjoint of the intersection pairing which
is non-singular over Am. Thus

HlcdW=Hlc+1 dW=0,

that is, f'\dw is a homotopy equivalence. Thus the link LA is trivial by the unlinking
theorem (see [3]).

We recall the action of Um on G(m,e) and r2J.+2(5m).

THEOREM 5. The map xj/(m, e) in Theorem 3 is equivariant under the action of Um.

Proof. The realization map r: G(m, e) -»- C2fc_1(i
?7

m) sending A to (LA, id), preserves the
action, that is, (L^ A,id) is i^m-cobordant to (LA,a). In fact they are Jf^-ambient
isotopic (see [6], theorem 1-6-2). Moreover the Cappell-Shaneson map

p(m, 2k-1) :Cak_1(lFm) + r 2 f c + 2 (OJ

preserves the action. The other maps in Theorem 3 arise in F-groups and so preserve
the action.

Remark. We may prove Theorem 5 directly as follows. We recall from Theorem 3
that the intersection pairing of i/r(m,e)(A) is given by the matrix A. Let a(j be a
generator of Um sending xt to XjXixJ1 and fixing other generators ofl^ (see [5], lemma
2-4). Let a y .A = B. The matrix B is given in [5]. Let B be the intersection matrix of
ifr(m,e)(B). We fix some notation:

( I -* , ) - 1 / ,

(I-*,)-1/,, ] ' > ( /2i
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We denote the involuted transpose of a matrix U over Am by U*. Then B = (Bst)

is given by

0

VtSt 0),

Bsl — Ast, for s, t 4= i,j.

Let W = (Wst) be a non-singular matrix over Am given by

Ŵst = 0, otherwise.

Then WW* = ((7st) is given by

0 0 \

o st \ , cn
-8t 0 I

0 0), Ci4 = Xfluxj1, Cu = x} VtxJlAit V*,

0 0), Csi=VsAsix}V*xj\ C8t = A8l, for s,t * t,j.

We recall the Um-action on r2fc+2(5m)- The matrix a^.A is the matrix obtained
from A by substituting xi by x^x^^"1 in the entries of A. Then it is easy to see that
C = (A8l) is congruent to

Since St is an e-symmetric non-singular matrix over Z, we have proved that
B = ay.>4 and atj.A represent the same intersection pairing in r2 t + 2(gm). One can
easily check by using the matrix W that the quadratic function of i/r(m, e) {a(i. A)
has value zero on the submodule giving the intersection pairing

-8t 0

and agrees with that of a.y.(i/r(m,e) (A)) on the orthogonal complement of the
submodule. This proves that ft(m,e)(a(j.A) — a(i.(i/r(m,e){A)) in rafc+2(5m)-
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5. Examples

Finally we give few examples to illustrate Theorem 3. Cappell and Shaneson gave
an example of infinitely many boundary links that are not cobordant to split links in
terms of their surgery obstruction (see the proof of theorem 1 in [2]). The cobordism
mentioned here is the usual link cobordism without the /^-structure restriction. The
abelianization of F-group obstruction was shown to be invariant under this
cobordism in these circumstances with mild restrictions. By computing signatures
they showed that the intersection forms of their example are non-trivial and that
infinitely many of them are distinct. In fact the individual components of these links
are all trivial and so it was sufficient to prove that they are not cobordant to split
links.

For any integer N, let A be the Seifert matrix of the boundary link of two
components in S2lc+1 given by

fore= (-1)*.

For N = 1 and k = 1, this link is obtained by taking Whitehead doubles on both
components of the Hopf link. Let x,y be the generators of Fm for m = 2. Then the
conversion through Theorem 3 produces the following A-forms exactly as given in [2]:

0
0

— e
-eN

1
0

— e

-eN

1
1
0
0

N
N
1
0

(x + x 2 1 \
A = when e = — 1,

V 1 N(y + y-l2))

(x-x'1 1 \
A = when e = 1.

V - 1 N(y !-?/)/

In [5], an example of a boundary link was given to demonstrate that the Um

actions on boundary links are non-trivial. The three-component link defined by the
Seifert matrix C as given on p. 679 in [5] is not jPm-cobordant to the trivial link but
any invariants coming from the abelianization will vanish due to its construction. In
fact its A-form is given as follows:

(y — xyx 1 —eyz—l

zy + e —ezyz — z

where to = — ew + w~l + e— 1.

-c
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