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Abstract. By the use of the Karoubi Tower diagram we generalize the classical invariants of
quadratic forms. Similar to Quillen’s highef-theory generalization of the classickEltheory
groups, these invariants are an extension of the classical invariants by the use of homotopy theory.
The iterated forgetful maps in the Karoubi Tower & valued and yield a generalization of the
standard (rank, discriminant and total Hasse—Witt) invariants of quadratic forms in two directions.
First, we get invariants of all degrees. Second, these invariants are defined for every Hermitian ring.
They yield and generalize the Clifford invariant in the case of a field of characteristic different from

2, or in the case of an arithmetic Dedekind domain contaiéing

Mathematics Subject Classifications (1991)19Dxx, 19G38, 19L47.

Key words: Hermitian ring, Hermitian form, quadratic fornk -theory, invariants.

1. Introduction

Quadratic forms over a fiel® have been extensively studied, in particular their
classification by the use of invariants. The classical invariants of non-singular sym-
metric bilinear forms over a field are rank, discriminant, Hasse—-Witt and signature
invariants [12, 16]. Invariants rank, rank(mod 2), discriminant and Hasse-Witt are
Ko, Ko/2Ko, K1/K? andK2/2K, valued, respectively. We writ&; for theith K -
theory groupK; R. These invariants assemble into the Clifford invariant, which is a
homomorphism from the Witt ringV (R) into the Brauer—Wall grou@ W (R). In
some special cases, for example in the case of a finiteffigldn the case op-adics

@,,, or in the case of algebraic number fields, the Clifford invariant (together with
rank and signatures) classify the quadratic forms (see [16]). Recall that%/v@e‘h

the category of quadratic forms and the category of Hermitian forms(@&ek/, 1)

are equivalent.

The classical invariants of quadratic forms over a field were generalized in many
ways. In particular, one desires to have a general theory of quadratic forms over any
commutative ring (see [2, 8]). For another example of generalized classical invariants
see Giffen’skK;, valued Hasse—Witt invariants fow, €)-reflexive forms [4]. In [11],
Milnor defines ‘Stiefel-Whitney invariants’ of quadratic forms over a field. These
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invariants are defined by the use of MilnoR&theory groups and in low degrees
Stiefel-Whitney invariants yield the classical invariants of quadratic forms over a
field.

Using the Karoubi Tower, we give a construction of invariants of Hermitian forms
over any Hermitian ring. Our construction resembles Quillen’s generalization of the
classicalK -theory groups. There is an obvious analogy in defining the classical
K -theory groups and the classical invariants of quadratic forms. Quilk+tiseory
groups are the homotopy groups of a certain space, whose lower homotopy groups
realize the classicak-theory groups. Similarly, our invariants are the maps be-
tween the homotopy groups of certain spaces ii&R), where in lower dimen-
sions these maps realize the classical invariants. Our invariants (using all degrees)
yield the classification of forms over fields and rings for which the inclusion of the
K -theory fixed set into th& -theory homotopy fixed set induces an isomorphism
on o (compare [5]). Low degree cases of these invariants generalize the classical
invariants of quadratic modules over a field and over (arithmetic) Dedekind domains
([2, 8]). In particular, our invariants yield and generalize the Clifford invariant in the
case of afieldchar=# 2) or in the case of an arithmetic Dedekind domain containing
1

Let (R, a, €) be a Hermitian ring, i.eR is a ring with unit element 1y is an
anti-involution ande is a central element, such thate)e = 1. Let P(R) be the
category of finitely generated projective I&tmodules and let{ (R, «, ¢) be the
category of Hermitian modules, that is the category of finitely generated projective
left R-modules with an(R, «, ¢)-Hermitian form [9]. LetKkRandK Herm(R, «, )
be the associateki-theory spaces.

1.1. THE KAROUBI TOWER
For a Hermitian ring R, «, €) we constructed [9] the Karoubi Tower diagram:
QUKVy QKVg KR KUpg KUy
| oy [ome [ m | | g
S QUKHM— ... 5QKHY KHO KA ... SKHEY ...

l QHFVIg l QFVR l Fp l Fyp l FUInQ

Q' KVy QK Vg KR KUg KUy

whereV2 =R = U, KH™ =KHerm(V}, o, €)andK H'™" = KHerm(U}, , €).

1.2. INVARIANTS OF A HERMITIAN RING

Karoubi Tower generalizes the classical invariants of quadratic forms. The maps
mo($2" Fyr) are K, R valued homomorphisms, which yield invariants for every
Hermitian ring and for everyr > 0. These generalizations simplify and under
some assumptions agree with the generalizations of Bass and others.
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THEOREM. In the case of a local ringR the mapro(Fr) is the classical rank map.

In the case of a Dedekind domakwhich contains%, the mapro(Fr) yields the
rank map[8]. In the case of an arithmetic Dedekind domain (or in the case of a field)
containing%, the mapr1(Fy,) yields the discriminant map and the mﬁ@(Fv,g)
yields the total Hasse—Witt invariant.

2. Classical Invariants

If G is a group, we writg,G to denote the subgroup of elements of ordein

G and G/n to denote the groui'/nG or G/G", respectively, for an additive or
multiplicative group. The following is a brief dictionary of the classical theory of
invariants of quadratic forms over fields:

e Rank: Rank is the dimension of the free module underlying a quadratic
form [12].

e Discriminant: Let(M, ¢) be a (non-singular) quadratic module of rankver
a field R. The discriminant of(M, ¢), denoted byd(M, ¢) is the element
(—1)"»=D/2det(q) e R*/2, where dely) is the determinant of the matrix
associated tg. The discriminant depends only on the Witt classWi{R).
If I < W(R) is the fundamental ideal (the ideal of classes of even rank) in
W(R), thend defines a homomorphisah: I — R*/2 with the kernell?,
whereR* is the multiplicative Abelian group of invertible elementsRr{12].

e Hasse-Witt invariant: LeR be a field andB a multiplicative Abelian group
of exponent 2. A symbop: R* x R* — B is a bimultiplicative function
satisfyingep(x, 1 — x) = 1 for everyx # 1 in R*. The universal symbol is a
symbolg: R* x R* — B, such that for any other symbgl: R* x R* — B’
there exists a unique homomorphisfn B — B’, such thatpy’ = f o ¢.
There exists a universal symbol (Steinberg sympol)R* x R* — Ky/2 ~
I%/13 ~ ,Br(R), where B(R) is the Brauer group [11, 16(12.11)]. Under the
determinantisomorphisiki; ~ R* the Steinberg symbalis givenby(x, y) —

[xUy] € K2/2,whereK; x K1 = K, is the standard map. Letbe the Stein-

berg symbol. Any quadratic modul#/, ¢) admits an orthogonal decomposition
(M, q) = (x1) ® - - - ® (x,,) and one defines the total Hasse invariHptM, q)
byH,(M, q) = ]"[l.sj ¢(x;, x;). H,(M, q) does not depend on the choice of the
orthogonal decomposition. Furthermore, quadratic modules of the same rank
and belonging to the same classi{R) have the same total Hasse invariant.
For anyX € I one can choose a quadratic mod{lg, ¢) whose class ifiV (R)

is X such thatrankM, ¢) = 0(mod 8. The total Hasse-Wittinvariant &f € 1

IS hy(X) def H,(M, q). The restriction of the total Hasse—Witt invariant/to
is a homomorphisni? — ,Br(R), with the kernel’3.

There exists a general theory of the classical invariants of quadratic forms over a
commutative ring (see [2, 8]).
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Let R be a Dedekind domain and assume that R*. The Clifford invariant is
a homomorphisnW (R) =l BW(R), whereW (R) is the Witt ring andBW (R) is
the ‘Brauer—Wall group’ (see [2, 8]). The image of the Clifford invariant is called the
‘Hasse—Wall group’ and is denoted B§W (R). It follows from the study oB W (R)

(see [8, 10]) that there exists a filtration B#W (R):
1 <> BWy(R) — BWi(R) — BWy(R) — BW(R)

with the following properties:

BWi(R) R*
BW,(R) ~ Br(R), AR T
BWy(R) ~ PiC(R). BW(R) _ N
BWi(R) BWu(R)

where BI(R) is the Brauer group oR and PigR) is the Picard group oR. Further-

more,BW>(R) N HW(R) ~ 2Br(R). The groupBW (R)/BW>,(R) is known as the
graded quadratic group & and is denoted by Q(R). Note also that iR is a field

(char# 2), then,Br(R) ~ K»/2 [11, 16 page 89))R*/2 ~ K1/2, PidR) ~ 1 and

Zy ~ Ko/2. The Clifford homomorphism and the above filtrationBd¥ (R) induce

the filtration of W (R):

1 <> W3(R) < W2(R) = W1(R) = Wo(R) < W(R)

whereWs(R) = Ker(Cliff ) andW;(R) = Cliff “X(BW;(R)) fori = 0, 1, 2. In the
case of a fieldchar # 2) this filtration coincides with the filtration of the powers of
the fundamental ideal, i.¢! ~ W;(R) fori = 1, 2, 3, wherel is the fundamental
ideal in the Witt ringW (R). Also W1(R) = Wo(R).

3. Generalized Invariants

Let (R, «, €) be a Hermitian ring. Applyrg to the Karoubi Tower (see Section 1.1
and [9 (1.5)]). To simplify the notation we write the associate diagram of Abelian
groups in the following way:

K, K,_1 K1 Ko
l hn l hn—1 l h1 l ho
In+1 Hn in Hn,]_ In—1 . i2 Hl i1 HO io W (K T)
l fn l fa-1 l A l fo
Kn Kn—l K]_ KO

whereK; = ;(KR), H; = m;(KHerm(V}, a, €)) andW is the cokernel ofg. Re-
call, the diagram from[9(2.3)] and its properties. The rﬂapﬁi Kofactorsadiy —
moFz,(uS, KR) — Ko. LetT', be the homomorphisiiy LN woFz,(. S, KR).
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DEFINITION 1. The homomorphism§,, forn = 0,1,..., 00 are called the
invariants of a Hermitian ringR, «, €).

Consider the following diagram

ho

Ko Ho w 0
l id l Iy l Wp
Ko —, 70F,(,S" . KR) W, 0

whereW and W,, are the cokernels dfg andT",, o kg, respectively and, is the
homomorphism (invariant) induced by the invaridht The rest of this chapter is
mostly devoted to the following theorem:

THEOREM 2. Let (R, id, 1) be a Hermitian ring.

(@) If R is a field of characteristic different from 2, then the homomorphigm
is equivalent to the Clifford invariant and the grouf, is isomorphic to the
Hasse—Wall grougd W (R).

(b) If R is an arithmetic Dedekind domain containiéghen the Clifford invariant
W — BW factors asW =3 W, — BW.

For any Hermitian ring R, «, €), let I, be the image of the map, = ip o i1 o

- oi, (see diagram (KT) above). The invariafits (or simply homomorphisms
f, from (KT)) yield homomorphismse,,: I, — f,(H,)/f.(Kera,) ~ I,/1,,1 for
everyn > 0.

Remarl3. Let I, be the inverse limit of the tower of groups <~ I, — --- —
Iy — W. Invariantsg,, forn = 0,1, 2, ... classify W upto the subgroug... In
particular, if I, = 0, then the invariantg, classifyW.

PROPOSITION 4.The mapgV N w, factorsasW — W/I,,1 — W,,where the
first map is the quotient map, the second is an inclusbrg mo(KHerm(Uyg, «, €))
and W, C moFz,(,8"", KUg). If KR is —1 connected, theWV = (K Herm
(Ug, @, €)) and W, = moFz,(,ST™, KUg).

Proof. The first statement is clear since the two sequerlfes> W — W,
andH, - W — W/I, — 0 are exactW C no(KHerm(Ug, «, €)), W, C
70F7,(o ST, KUR) (W = mo(K Herm(Ug, a, €)) andW,, = moFz, (8", KUg),
if KRis —1 connected) by the exact sequences following from [9 (2.3)] O

Remark. The homomorphismg, arel, /1,1 \@Iued and in generd|,/I,,1 is
isomorphic to a subgroup of the quotient groupgiBf(Z,, K,,). Namely f, h,, is the
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map 1+ (—1)"t, wherer is the involution onkK,, and Im(k,,) C Ker(x,). Thus
Ker(1— (—=1"7)
Im(1 + (—1)7)
Ker(1 — (—1)"t) quotient
fu((m(hy,))
quotient Ker(l— (—=1)"1) fn(Hy)
~ Il‘l In .
fu(Ketta)) = ful(Ker@yy /1t

The inclusion Ke¢l — (—1)"t) D f,(H,) follows from the exact sequences in the
Karoubi Tower.

H'(Z3, K,) =

THEOREM 2(a)

() Let(R,id, 1) be a Hermitian field and let the characteristic Bfbe different
from 2. The groupW, is isomorphic to the Hasse—Wall grougW (R), the
homomorphisnW 2 W> is equivalent to the Clifford invariant ang = I’
fori = 1,2, 3. (Therefore Wy ~ W/I, ~ BW(R)/BW2(R), Wog ~ W/I; ~
BW(R)/BW1(R), @2 I — I,/I3 ~ K»/2 ~, Br(R) is the ‘total Hasse-Witt’
invariant, ¢,: Iy — I/I, ~ K1/2 ~ R*/2 is equivalent to the discriminant
homomorphismwy = ¢o: W — W/I; ~ Ko/2 ~ Z, is therank(mod 2)
invariant andl’g is the rank map.)

(i) Let(R,id, 1) be aHermitian ring and assume tha&tis an arithmetic Dedekind
domain with2 € R*. The groupW, is isomorphic to the quotient groupW (R)/
BW5(R) ~ QU (R), the homomorphis¥ 2 wyis equivalent to the compo-
sition W(R) 2% BW(R) — BW(R)/BW,(R), Wi(R) = I, andWo(R) = Io.
(ThereforeWo ~ W/Iy ~ BW(R)/BW1(R), p1: Iy — I1/I> ~ K1/2 ~ R*/2
is the discriminant homomorphismygy = ¢o: W — W/I; ~ Ko/2 ~ Z2 ®
Pic(R)/2 composed with the projectiofy, ® Pic(R)/2 — Z, is therank(mod
2) invariant andl'g composed with the projectiakiy ~ Z & Pic(R) — Z is the
standardrankmap.)

(i) Let(R,id, 1) be a Hermitian ring and assume thRtis a Dedekind domain with
2 € R*. The groupW, is isomorphic to the quotient groupW (R)/BW1(R),
the homomorphisniv 2% W is equivalent to the compositioW (R) ci,
BW(R) — BW(R)/BWy(R) andI; C Wo(R). (Thereforewo = ¢o: W —
W/I; ~ Ko/2 ~ Z,®Pic(R) /2 composed with the projectiafy & Pic(R) /2 —
Z, is therank(mod 2)invariant andT"y composed with the projectioky ~
Z & Pic(R) — Z is the standard rank map.)

Proof. A detailed proof can be found in [10]. Compare also [7(4.2.3)], which
turns out to be equivalent to the statement (i) above. O

Now let F be a number field, that is some finite extension of ratioffalket R
be such aring thad ¢ R c F, whereQ is the ring of (algebraic) integers if.
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Such aringr is called an arithmetic Dedekind domain. [Rebe the set of hon-zero
prime idealsP C R. Letfp = R/P, that isfp is a finite field of characteristip,
where? is over the idea(p). Let Fp be theP-adic completion of the field” and
07) the completion ofdp in Fp, whereOp is the ring of integers irF localized at
P. By assumptlor% € R and so all the fieldsp, for P € PP, have odd characteristic.
Let P e P be an ideal ove(p) and let 0— K»(Op) — Kz(fp) — Ki(fp) — O
be the ‘localization sequence’ (see for example [15(5.3.28)]).

LEMMAS. The mapKz(Fp) — Kj(fp) from the exact sequence above induces an
isomorphismK»(Fp)/2 > K1(fp)/2 ~ Zs.

Proof. Recall thatk>(Fp) ~ uu(Fp) @& H, wherep(Fp) is the group of roots of
unity in Fp and H is a divisible and torsion free group (see [6(10)]). One gets
the exact ‘torsion sequence 6> tOf(Kz(Op)) — /,L(Fp) - Ki(fp) — 0.

The group to(Kg((’)p)) is the kernel of the surjectlve ma;p(Fp) — fp* and
is isomorphic to thep-primary subgroup, w(Fp) of u(Fp) (see [17(14.10)] or
[13(5.8 Cor.)]). Sincey # 2 one concludes tha:t(l?p)/z = Ka(fp)/2 ~ Z5. Since
K2(Fp)/2 ~ w(Fp)/2 we are done. O

Recall the Karoubi Tower (KT) and especially the following relations:

(R)  fa(H2(R)) c K>(R)
I(R)  fa(Keraz(R)) ~ fa(Keraa(R))’

h2(K2(R)) C Keraz(R), h2(K2(F)) = Keraa(F),

and
K2(R)? C fa(Keraz(R)) C K2(R).
Let E = fo(Keraa(R)).

LEMMA 6. There exists a natural surjectiokiz(R)/E — 2Br(R).
Proof. The mapK2(R) — K»(F) induces the maK,(R)/2 — K»(F)/2.
Because of the functoriality and smthZ(F)) = Keray(F) the mapK2(R)/2 —

K>(F)/2 factors ak»(R)/2 EN K>(R)/E LY K»(F)/2, wherej is surjective and
thus Im(k) = Im(kj). Look at the following commutative diagram:

0 —— Ky(R) —— Ky(F) —— P Ki(fp) ——— O
PeP

]
Ka(F) —— @ Ka(Fp)

l PeP

0 — Br(R) —— Br(F) —— @ Br(Fp).
PeP
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The top and the bottom sequences are the ‘localization exact sequences’ for
K-theory [15(5.3.28)] and for the Brauer group [14(6.35)], respectively. The bot-
tom two vertical arrows are the maps which induce the isomorphigng) /2 —
,Br(F)and @ Ko(Fp)/2 > @ 2Br(Fp) [11, 16 page 89]. Using Lemma 5 we

PeP ) PeP
get the following diagram:

Ko(R)/E —> Ka(F)/2 —> @ Kao(Fp)/2 —>0
PeP

|

|

¢ L- l-
0—> 2Br(R) —— Br(F) —— @ 2Br(Fp)
PeP

where the two horizontal sequences are exact and the two isomorphisms induce the
desired surjection. O

Let (R, id, 1) be a Hermitian ring and assume thats an arithmetic Dedekind
domain containin%. All the groups which appear in the following theorem are
associated to the ring.

THEOREM 2(b) The Clifford invariant’ — BW factors asw — W, — BW.
(Thereforels C W3 and there exist natural surjectiorns,/2 — ,Br and /I3 —
zBr.)

Proof. The following diagram is self-explaining:

O——L=W, w Wi
l lCliff id
O— | —Br -HW —— W, ——0
’f ?
K,/E i i
P2 T wa |
0] IZ/IS W2 W1

The existence of the mafi,/E — ,Br is essential in defining the mayy, —
HW. O

EXAMPLE. In the case of a finite fieldF,, 1, 1) the computations of the Karoubi
Tower [9(4), 10(3)] imply thaf, = 1% = {0} . (If ¢ is even, thed = {0}.) Therefore,

the quadratic forms over a finite field are determined by dimension and discriminant
(see Remark 3).
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EXAMPLE. Ifinthe case of afieldR, 1, 1) the groupl 3, wherel is a fundamental
ideal, is torsion free, then the quadratic forms oReare classified by dimension,
discriminant, Hasse—Witt and signature invariantd.3lf= {0}, then the quadratic
forms are classified by dimension, discriminant and Hasse—Witt invariants. Namely,
the kernel of the total signature homomorphism equals to the torsion subgr@tp of
(see [12] and compare Remark 3).

Finally, in the case wheKRis —1 connected (see [9(1.8)]), the invariaiits or
more precisely the induced invariantg, can be described by the use of equivariant
Postnikov tower of the infinite loop spaBd&R. Recall the map

H.(Z>, KR) — K Herm(R, o, ¢) — H*(Z», KR)
| t
N

fromthe remark atthe end of chapter 3in [9]. The homotopy cofibFE.¢f,, KR) —

K Herm(R, «a, €) is homotopy equivalent to the homotopy direct limit of the Karoubi
Tower and its Oth homotopy group is isomorphicita The homotopy cofibre of
the norm mapV': H,(Z,, KR) — H*(Z», KR) is the Tate spectrunil (Z,, KR).
Thus, we get the mapy — noH (Z», KR). There exists the mapoH (Zo, KR) —
noﬁ(Zg, KR(O, ..., n)), induced by the Postnikov tower projection.

THEOREM 7. IfKRis —1 connected, then the composition homomorphigmn-
moH (Z, KR) — moH(Z,, KR(O, ..., n — 1)) is equivalent to the invariant,, .
Proof. See [10]. O
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