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Abstract: Let BO be the space which classifies stable real vector bundles. The
mod 2 cohomology ring H*(BO;Z,) is the polynomial algebra over Z, generated
by the universal Stiefel-Whitney classes wi,wz,ws,.... In this paper, we define an
endomorphism Dy (k> 1) of H*(BO;Z,), and determine Dyv; for the i-dimensional
universal Wu class v;. As applications, we prove that, in the polynomial v, =
vk (w1, wa, w3, ..., W), wr appears with. coefficient 1 if and only if k£ is a power of
2, and obtain detailed formulas on the Wu class and the Stiefel-Whitney class.

1. Introduction

. For a closed smooth manifold M, let v;(M) (e H'(M;Z,;)) denote the
i-'dlmensional Wu class of M and let w;(M) (e H(M;Z,)) denote the i-
dimensional Stiefel-Whitney class of M. Then the following equalities hold
(cf. [3, Theorem 11.14] and [4, p. 245]).

(1.1)  wo(M) = vo(M) =1, wi(M):ZOSjsiquv,»_j(M) if i>1,

where Sq’ is the Steenrod squaring operation (cf. [5, Chapter 1]). Thus the
Stiefel-Whitney class w;(M) is determined by the Wu classes v;(M) (0 < j <1i).
Conversely, the Wu class v;(M) is determined by the Stiefel-Whitney classes
w;(M) (0 < j <i) inductively. Using (1.1) and the properties of the Steenrod
squaring operations, we have vo(M) =wo(M) =1, (M) =wi (M), (M) =
Wy (M) 4+ wi(M)2, v3(M) = wy(M)wi (M), . ...

Since v;(M) = 0 for i > (dim M) /2 (cf. [7, Section 1]), we have w3(M) =0
wy(M)wy (M) =0 and wi(M)*> =0 if dim M =3. Thus all Stiefel-Whitne};
numbers of a 3-dimensional closed smooth manifold M are zero (cf. [3
Problem 11-D]). So M can be realized as the boundary of some smootli
compact manifold of dimension 4 (cf. [3, Theorem 4.10]).
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Let BO be the space which classifies stable real vector bundles. Then its
mod 2 cohomology ring H*(BO; Z>) is the polynomial algebra Zy[wi, w2, w3, .. .
over Z, on the universal Stiefel-Whitney classes w; (¢ H (BO; Zy)) for‘ i>1
(cf. [3, Theorem 7.1]). In the way parallel to (1.1), the i-dimensional universal
Wu class v; (€ H'(BO;Z)) is defined by the equalities:

(1.2) wo=vo=1, wi= zosjsisqfu,»_j if i>1

(cf. [1, (1.2)], [8], [9, (L.1)]). Let f: M — BO be the classifying map for the
stable tangent bundle of M. Then f*(w;) = w;(M) and f*(vi) = vi(M) for
i >0 (cf. [9, Section 1]). In this paper, we study the problem to express v; as
a polynomial of w;, wi_1,...,Wi.

As for the endomorphisms of the cohomology ring H*(BO;Z,) =
Zy[w1, w2, w3, ...}, J. Milnor defined in [2, p. 225] the doubling homomorpl?sm
d : H*(BO;Z,) — H*(BO;Zy) by d(wi) =wy. We define, for any positive
integer k, another endomorphism

Dy : H*(BO; Z,) — H*(BO; Z>)

as follows. o N
If X = wi1)Wi) - - - Wi(e), Where, for any n with 1 <n </, i(n) is a positive
integer and wy,) is the i(n)-dimensional universal Stiefel-Whitney class, then

Dix = Wiy—kWi) - - - Wite) + Wi)Wi)—k - - - Wie) T + WiyWi2) - - - Wi(e)—k>
where w; =0 if j <0, and Dgx =0 if dim x < 0.
If x=Y,x;, where x; is a monomial, then

Dpx = zi Dy.x;.

In the following, let v; =0 if j <O0. Then we prove
THEOREM 1. For any i-dimensional universal Wu class vi,
Div; = v if k=2% (a=0),
=0 otherwise.
As an application of Theorem 1, we have

COROLLARY 2. In the polynomial vi = ve(w1, w2, .. ., WE), Wi appears with
coefficient 1 if and only if k=2 (a = 0).

Let n =29+ b, where a and b are integers with @ >1 and 2> b=0.
According to Lemma 6.3, we may write
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Un = Z[n/Z]-HSjSZa wiPj_1 + R[n/z],

where [x] is the integer m with m < x <m+ 1, and where P, and R, denote
some polynomials of wy, wi_1,...,w;. Using Theorem 1, we determine P;_;
completely in Theorem 6.4.

If a > 2, then, according to Lemma 7.2, we may write

= P, 2.
Un = Z[n/3]+1§j§2ﬂ WJP]—I + Z[n/3]+1sjsza—l+[b/2] w; Q]—l -+ R[n/S]a

where Pr, Or and R; denote some polynomials of wg,wi_1,...,w;. Using
Theorem 1, we determine P;_; completely in Theorems 7.1 and 8.1.

In the next paper, we will study Q;_;.

R. E. Stong proved in [6, Lemma, p. 315] that vy. is indecomposable.
Corollary 2 and Theorem 6.4 improve the result.

This paper is arranged as follows. In Section 2 we recall the binomial
coefficients and the Wu formula. In Section 3 we study some properties of
the endomorphism D;. In Section 4 we establish a formula on D;Sg’x
for xe H*(BO;Z,). In Section 5, using the formula in Section 4 we give
a proof of Theorem 1, and using Theorem 1 we have Corollary 2. As other
applications of Theorem 1, we prove Theorem 6.3 in Section 6, Theorems 7.1
and 8.1 which are detailed formulas on Wu classes and Stiefel-Whitney classes
in Sections 7 and 8.

2. Binomial coefficients and the Wu formula

Let  and s be integers with r > s >0 and let C,; denote the binomial
coefficient r!/(sl(r — s)!). Then the following is well-known (cf. [5, Lemma
2.6, p. 5)).

LemMa 2.1. Let a=3_;.,,a()2" and b=7_;_,b(i)2" be 2-adic

expansions, where 0 < a(i), b(i) <1 for 0<i<m. Then

Cho = H0§i5m Cb(i),a(i) mod 2.

For any integers r and s, let C,; denote the usual binomial coefficient
whenever r >s5>0, let C_; =1 and let C.; =0 otherwise. Then the fol-
lowing is easily verified.

LemmA 2.2. For any integers r and s such that (r,s) # (—1,0),(0,1),

Crs=Cro15+ Gt 5ot
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For non-negative integers ¢, m and n, define an integer A(/,m,n) as
follows.

M) =Yy ComasCrmines

Then we have
LemMa 2.3. Let £, m and n be non-negative integers. Then
A(,m,n) = Coymyin + Cum,n—¢—1 mod 2.
In particular, if n < ¢, then
A(/,m,n) = 20<S§n C/—s,scm+s,n~s = Ct’+m+l,n mod 2.
Proor. We prove the former congruence by induction on (¢,m,n). If
¢ =0, then we have, for any non-negative integers m and n,
A0,m,n) = Cpp = Cpn + Cimn-1 + Cmyn-1 mod 2
= Cypri1,n + Ciyn1 by Lemma 2.2.

Hence the former congruence holds for (¢,m,n) = (0,m, n). If /=1, then we
have, for any non-negative integers m and n,

A(1,m,n) = C1,0Cmn + Co,1Cm+1,n-1 = Cn
=Cpn+Cpn-1+ Cin-1 + Cimyn—2 + Ci,n—2 mod 2
= Cut1,n T Cprrn—1 + Cm,n—2 by Lemma 2.2
= Cyi2,n + Ciyn—2 by Lemma 2.2.

Hence the former congruence holds for (£,m,n) = (1,m,n). If n=0, then we
have, for any non-negative integers ¢ and n,

A(¢,m,0) = Cr,0Cno =1 =Crimi1,0+ C,—t—1-

Hence the former congruence holds for (£,m,n) = (¢,m,0).
Assume that s > 2 and that the former congruence holds for any (£,m,n)
where # <s—1 and n>1. Then we have

A(s,m,n) = E 0<i<scs—i,icm+i,n—i

_ (Cs_i_l,i+Cs—i~1,i—1)cm+i,n—i by Lemma 2.2

- 0<i<s

_ _ Co—i—1,iCnri,n—i + E L<icso Cs—im1,i-1Cpiyn—i

- 0<i<s—1

Universal Wu classes, universal Stiefel-Whitney classes and an endomorphism Dy 81

=A(s—1,mn)+A(s—2,m+1,n—1)
= Cyormn + Cones + Cspmn—1 + Cuy1,n—s mod 2
by the inductive assumption
= Cyrmn + Cim,n—s + Copmn—1 + Cines + G, n—s—1 by Lemma 2.2
= Copmpn + Copmyn—1 + Cyy -1 mod 2
= Copmit,n + Coynos—1 by Leﬁma 2.2.

Hence the former congruence holds for (£,m,n) = (s,m,n).
So the former congruence holds for any non-negative integers 7, m and n.

The latter congruence is clear since Cyyy4—s =0 forn < sand Cy, ,_y—1 =0
for n < /. ’ O

The following Wu formula is useful for our proofs.
THEOREM 2.4 (Wu) (cf. [4, p. 245], [8], [9, (1.3)]). Let i and j be any

integers. Then, for the universal Stiefel-Whitney class wj,

i —
Sq'w; = E Ostéicj—i—Ith,tWi—thﬁ-ta

where Sq' is the zero homomorphism for i < —1 and w; =0 for j < —1. (Here
C, s denotes the Z, reduction of the binomial coefficient C, ;.)

Using (1.2) and Theorem 2.4, we have
ExamMpPLE 2.5. vo=wo=1, vy =wy, v =wy + Wf, U3 = Wowy,
_ 2 4
va = wa+wawi +ws +wl, o5 = wawy + wiwi + wiwg + waw;,
Vg = WqW -I—WW2+W2—|— 3 2?2
4W2 4W] 3 T wiwawy + wiwy + wiwy,

V7 = Wawowp + w_%wl -+ W3W2W12.

3. Some properties of Dy

In this section we study some fundamental properties of Dy.

LemmMa 3.1.  For any elements x,y € H*(BO; Z,),

Dy(xy) = (Drx)y + x(Dyy).

In particular, Di(x?) = 0.
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Proor. If x,y e {0,1} U {monomials}, the equality holds clearly.
If x=3,;x and y =7y, where x;,y; € {0,1} U {monomials}, then we
have

Di(wy) = Y, Delwiyy) = Y, {(Dwxi)yj + xi(Diy)}

(5 pee) (5 )+ (5) (5, o) = @iy 00

LEMMA 3.2. For the universal Stiefel-Whitney class wj,
DlSquj = Squj_l.

ProoF. If i> j, then D;Sq'w; =D10=0. .If i=], the.n PlSqui:
Dyw? =0 by Lemma 3.1. On the other hand, Sq'w;_; =0 for i = j. Hence
the equality holds for i > j.

Suppose that j >i. Then we have

D Sq'w; = ZOSmsiCj-i_1+m’mD1(Wi-mwj+m) by Theorem 2.4
= -C'—i—1+m,m(wi—m—le—|—m + Wi—ij-l—m—l)
0<m<i 7
= Zl< <i(Cj—i—|—m—2,m—1 + Cj—i—i—m—l,m)wi—ij-l—mAI + wiwj—1
=m=
= Z1gmgiCf—"+’"*2»mw"*"‘wf+m—1 + wiwj_q by Lemma 2.2.
Now, if j>i+2, then
DlSquj = ZoéméiCj—i+m_2’mWi_ij+m_1 = Sq'wj_1 by Theorem 2.4,
and if j=1i+1, then
i 2 2 Qi
DlSqlWH—l = Zl<m<icm—l,mwi—mwi+m +w; =w; = Sq'Wp |

LemMA 3.3. Let t be any positive integer. Then, for the universal Stiefel-
Whitney class wj,
Dyir1Sq'w; = Dyy1DeSq'wy + D1Sq Wi

Proor. Note that by Lemma 3.1
Dt+1Dt(Wi—ij+m) + Dl(Wi—m——th+m~t) = D21+1(Wi~mwj+m)~
Then we have

Dus1Sgw; = . Cii-tsmmD2ust(WimWjem) - by Theorem 2.4

= Zo<m<iCj—i~1+m,m{Dt}lDt(Wi—ij+ln) + Dl(wi—m~th+m—I)}
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= D1 D; ZOSmQ Cj—i~1+m7m(wi—mwj+m)

+ Dy 203m5i~t Cj—i—1+m,n1(Wi—m—th+m—t)
= Dt+1DtSqiwj —|—D1Sq"_’wj_t by Theorem 2.4. O

Lemva 3.4. Let t be any positive integer. Then, for any element
x € H*(BO; Zy),

DZ[.X - D[D[X.

Proor. It suffices to prove the equality when x is a monomial of
the universal Stiefel-Whitney classes, namely it suffices to prove the
equality

Do (wiyWi) - - - Wiey) = DeDi(WiyWic2) - - - Wie))»

where wy,y (1 <n</) is the i(n)-dimensional universal Stiefel-Whitney class.
' We prove the equality above by induction on /. If /=1, then
D.Di(wi1)) = Diwi1)—1 = Wig1)—2 = Dawiy).

Assume that the equality holds for / =s. Then we have

DDy(wity - - - Wie)Wi(s41))
= DA D:i(Wi1) - - - Wis) ) Wigs1) + (Wit - - Wits) ) WiGs1)—t 1 by Lemma 3.1
= DDy(wi1y - - - i) Wigs+1) + Di(Wicty - - - Wig) ) Wigs1)—1
+ Di(Wi1) - - Wigs)) Wigs1)=t + Wic1) - - - Wis) Wi(s+1)—21 by Lemma 3.1
= Da(Wi1) - - - Wi(s)Wigs+1) + Wi(1) - - - Wi(s) Wis+1)—2¢
by the inductive assumption
= Day(Wi1) - - - Wiy Wi(s+1)) by Lemma 3.1.
Hence the equality holds for 7 = s+ 1. O

TueorEM 3.5. Let k be any power of 2. Then, for the universal Stiefel-
Whitney class wj,

DkSquj = Squj_k.

Proor. Let k=2" (r=0). For fixed i, we prove the equality by in-
duction on (j,7). By Lemma 3.2, the equality holds for (j,7) = (j,0), where
j is any integer.

Assume that the equality holds for (j,r), where j is any integer and
k=s=2" (=1). Then we have
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Dy,Sq'w; = D;D;Sq'w; by Lemma 3.4
= D,Sq'w;_s by the inductive assumption
= Sq'w;_»; by the inductive assumption.

Hence the equality holds for (j,r+1), where j is any integer and k=
25 = 271 ‘ O

4. A formula on DySq'x
TaroreMm 4.1. Let k be any positive integer. Then, for the universal
Stiefel-Whitney class wj,
DkSquj = ZO§s§k~l Ck—s—l,sSqi_SWj—k+s~

Proor. We prove the equality by induction on (i,j, k). If (i,j,k)=
(i, j,1), the equality holds for any i and j by Lemma 3.2.

Assume that 7 > 2 and that the equality holds for (i, j, k), where i and
j are any integers and k <n — 1. Then we intend to prove the equality for

(i,7,m)
If n=2¢ (t=1), then we have

Dy Sq'w; = DD, Sq'w; by Lemma 3.4

= 2099-1 Ci_s-1,sDSq" " Wj—r4s by the inductive assumption

_ i—(s+7),,.
= ZOgsgt—l ZOsrst—l Ct-s—l,scl—r—l,qu Wji_2t4(s+7)

by the inductive assumption

_ i-m,,.
—ZOSm£2t—2Bqu Wj=2i4m;

where By = oirm Ci_s-1.sCi—r—1,-. Here, if m is odd, B, =0 mod2, and
if mis even, By = Cippp-1,mp2 = Corom-2,m = Cormm—1,m by Lemma 2.1. We
therefore have

i i—2m
Dy, Sq'w; = E o<m<iol Cor_om—1,2m89" " Wj—2t12m-
On the other hand,
i— i—2m
ZO<S<2I—1 Corms-1,55¢" " Wj-214s = ZO<m<t—1 Cor-am-1,2m54 Wj—2t+2m

since Cy;—s—1,5 is even by Lemma 71 if s is odd. Hence we obtain the desired
equality for (i, j,n) = (i, j,21).
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If n=2t+1 (t>1), then we have
D2118q'w; = D1 DSq'w; + Sq''wj—i by Lemmas 3.3 and 3.2

= ZOSSQ_I Cios—1,D1418¢"Wj_s1s + Sq' "' wj_1-1
by the inductive assumption

= 203s5t~1 ZOSrstC’—S—LSct—r,qul_(S+r)Wj—2t+(S+r)—1 + Sqi~twj—t—1
by the inductive assumption

_ i -

- ZOsmSZt—l CnSq"™ " Wi—204m-1+ Sq' er—t—lv

where Cp =3, Cig1,sCip .
Case 1. 0<m<t-1

Cn= =
m Z()gsSm Cios—1,sComs,m—s = ZOgsgl—l Cis-1,5Cromrs,m—s
:A([_ l?t_mam) ECZt—m,m mod 2

by the latter part of Lemma 2.3.

Case 2. t<m<2t—-1 1If C1,Cr,, is odd, then t—s5—1>s and
t—r>r, and so s+r<t—1. But this is impossible since s+r=m > t.
Hence C,, is even.

Combining Cases 1 and 2, we have
D i e i—m [—1
21419G"' W, E o<mer_g C2r-mmSq""Wjatim-1 + Sq" w1
— i—s
_5_ O<s<t CZI—S,sSq Wj—2t4s—1

= i—s
ZO <s<2t CZI—SYSSq Wj_2¢4s5—1-

The last equality holds, because if Cy,;; is odd for 0 <s < 2¢, then 2t —s > s

namely 0<s<¢ Thus we obtain the desired equality for (i,j,n) =
(i, 7,2t + 1).
Hence the equality holds for any (i, j, k). ]

Remark. If k is a power of 2, then Cj_,_; s is even for 1 <s <k —1 by
Lemma 2.1. Hence Theorem 4.1 is a generalization of Theorem 3.5.

Tueorem 4.2. Let k be any positive integer. Then, for any element
x € H*(BO,; Z,),

DySq'x = ZOsssk—l Ck_s_17sSqi_SDk_sx,
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ProoF. If dim x <0, then each side of the equality is 0. '
For fixed k& and x = wjq)w;q2) - - - Wj()» where wjm (1 <m</) is the

universal Stiefel-Whitney class, we prove the equality by induction on (i., ).
If (i,/) = (i, 1), then the equality holds for any integer i by Theorem 4.1 since

Die—sWj1) = Wj1)~less: ' .

Assume that n > 1 and that the equality holds for (i,¢) = (i,n), namely
for x = o= wj)Wj() - - - Wi(m)» where i is any integer. Set f = Wj(41). Then we
have

DySq' () = D EOSPSi(S‘IPOC)(Sqi_pﬁ)
= 3y PSS TR+ N, (S5 T)

by Lemma 3.1

B ZO Spsi{z()sSsk—l Cr—s1,5(Sq" " Dje—stx) (Sq"?B) }

+ ZOS})SZ’{ZOﬁssk—I Ck‘sﬂl’S(SqP“)(Sqi_pstk‘s’B)}

by the inductive assumption
=3 cochr Crsm 550 {(Dis2)ff}
+ ZOgsgk—l Ck_s_1,SSqi_S{oc(Dk_sﬁ)}
= sy Crmo1,550 {(Destr) + o Di—sf)}
=3 iy Chost,oS7 ™ Dici(0) by Lemma 3.1.
Hence the equality holds for x = off, namely for (i,/) = (i,n+ 1), where i is

any integer. Thus the equality holds for any monomials.
For x = );x;, where x; is a monomial, we have

DiSq'x = Zj DiSq'x;

i—s
= Zj Zo <s<k-1 Ciems-1,55¢" Dic—s%;

= _1,65¢" " Dy Z,x-
ZOssgk—ICk_S 1,504 k—s 7

— 1.5 Dy _gx. O
ZOsssk-lck 51,804 k—s
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5. Proofs of Theorem 1 and Corollary 2
First, we prepare two lemmas.

Lemma 5.1. Let k be any power of 2. Then, for any element
x € H*(BO; Z,),

DiSq'x = Sq'Dyx.

Proor. 1If k is a power of 2, Cy_s_; s 1s even for any s with 1 <s <k —1
by Lemma 2.1. Hence the result follows from Theorem 4.2. |

LemMa 5.2. Let k be any power of 2. Then, for any integer i >k,
Dkvi = Vj—f.

Proor. We prove the equality by induction on i for any fixed k, where
i>k. If i=k, then we have

Dyvy = Dy (wk + lejsk quvk_j) by (1.2)
= wp + lejgk Sq’ Dyvk—; by Lemma 5.1.
Here Dyvp_j =0 for 1 < j<k. Hence

Dpv = wy = 1g by (1.2).

Assume that j>k+1 and that Dpv; = v;_; holds for any i, where
k<i<j—1. Then we intend to prove the equality for i = j.
Now, we have

Dkl)j = Dk (Wj -+ lessj quvj_s> by (12)
= Wj_k + lesgj—k Sq°Drvjs by Lemma 5.1
= wj_k + Zlgsgj—k SqVj—s—1c by the inductive assumption

= Vj—k by (12)

Hence the equality holds for i = j.

We therefore have the equality Dyv; = v,y for any i > k, provided k is a
power of 2. O

Proor oF THEOREM 1. If i<k, Div; =0 =v;_;. Hence it suffices to
consider the case where i > k. We prove the result by induction on (i, k),
where i > k.

Step 1. If k=1, the result holds for any integer i > 1 by Lemma 5.2.
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Step 2. Assume that m >n >2 and that the result holds for any (i, k),
where k < n — 1 and i > k, and, in addition, for any (i,n), where n <i<m — 1
if n<m. Then we intend to prove the result for (i,k) = (m,n).

Now, we have

Dnvm = Dn <Wm + lets’n Sqtl)m_[> by (1’2)
= Win—n + letsm D, Sq"vm-1

t—s
= Wpp—n + letgm ZOsssn—l Cn~s—1,sSq Dy _som—r
by Theorem 4.2

=Dy sUm—t- *
= Wm—n 1 ZOssgn—l Crs-1.s Zlgtsm Sq n—svm=t (+)

If n=27, then C,_s_1 is even for  <s<n— 1. Hence we have

Doy = Win + 21g;gm Sthnvm—t
= Wyen + Z1< B Sq Vm_tn by the inductive assumption
<t<m—n
= Upn by (1.2).
If n=27+¢q (22 > g=>1), then, unless n—s is a power of 2,
D, my =0 for 0 <s<n—1 by the inductive assumption.

Hence, in the equality (x), it suffices to consider the case where n — s =29,
0<s<n—1and 0<s<n-—s—1. These imply 2 <n<2%"~—1, and so
a=p. Then we have

DopUp_t = Upp—s—2r by the inductive assumption.
Since Cpa_1n-2¢ (= Cor_1,q) is odd by Lemma 2.1, we have
D,vy = Wi—n + Car—1,4 Zlggm Sq  om—2pr—; by (*)
=Wmen+ D 54  Om2r 1
= Win—n + 20g j<m-n Sq7vm-n-j
= Wip—n + Wim—n by (1.2)
=0.

Hence the result holds for (i,k) = (m,n).
Combining Step 1 with Step 2, we obtain the result for
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(1,D),(2,1),...,(1),...5(2,2),(3,2),...,(3,2),.. .5
oo (myn),(n+1,n),...,(Gn),...;...
namely for all (i,k) with i > k > 1. O

ProoF oF COROLLARY 2. By (1.2) and Theorem 2.4 we can write

U = W + g ; Xis

where ceZ, (= HY(BO;Z3)), xi=wjywiz).. - Wiy and 1<i(m)<k—1
for every m with 1 <m <¢. Then Drvy =c since Diwr =wy (=1) and
Dkx,- = 0.

On the other hand, by Theorem 1, Dyvy = vy (= 1) if and only if k is a
power of 2. Hence ¢ =1 if and only if k£ is a power of 2. O

6. A formula on v, for n=274+b (2°>b>0)

Let w; (e H'(BO;Z,)) stand for the i-dimensional dual universal Stiefel-
Whitney class, namely let w; satisfy

(wo +wi +wy 4+ )(o + W1 + W +---) =1 (e H'(BO; Z3))
(cf. [3, p. 40]). We prepare three lemmas.

Lemma 6.1. If i > k = 1, then, for the dual universal Stiefel-Whitney class
w; € H(BO; Z,),

Diw; = w;_y.

PrOOF. We prove the equality by induction on (i, k), where i > k > 1. If
(i,k) = (k,k), then we have

Dyewie = Dy (Zlgsk~1 WsWie—s + Wk) = Zlgssk—l Die(Ws i) + wo
= Zlgsgk—l{(Dkws)wk"s + ws(DyWr—s)} + wo by Lemma 3.1
=wy = 1= Wy.

Assume that j>/k+1 and that Dpw; = w,_, for any (i,k), where
l<k<i<j—1. Then we have

Dyew; = Dy (lessj—l WsWj—s + Wf) = lesgj—l Di(WsWj—s) + Wy

= lessj—l{(Dkws)wj_s + ws(DiWj—s)} +wj—r by Lemma 3.1
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= ssk—l(DkWS)wj_S + Zkgssj—l(DkWS)wj'S
+ Zl<s<j—k ws(Dicj—s) + j—k+1<s<j-1 Ws(Dicjs) + Wj-k-

Here

ZISssk—l(Dkws)wj‘s =0,
Wi_g = We_j Wi
ZkSSijl(DkWS)W]_S Zkﬁsﬁj——l s—kWj=s
= WoWj—r + Zk+15sgj—1 Ws—k Wj—s,

Wi_g) = WWi_j—
lessj—kWS(Dka_s) Zlgsgj—k sWj—k=s

by the inductive assumption
= _kWi— Wik W
Zk+1Ss£j—lws leWj—s + Wj-kWo,

Zj—k+1sssj—1 Wy (D wj—s) = 0.

Thus we obtain Dgiw; = woWj_s + Wj—kWo + Wj—k = Wj—s. Hence the equality
holds for (i,k) = (j, k). .
We therefore have the equality for any (i,k) with i >k > 1. O
In the following, let Py and R; denote polynomials of wy, wr-1,..., W1
(k> 1) and Po,Ro € Z, (= H'(BO;Z2)).

LEMMA 6.2. For any positive integer n, write n=2%+b (2°>Db > 0).
Then we have

Uy = W2alp -+ RZ“—l-

ProoF. If n=1, that is, a=0 and b =0, then the equality holds for
Ry=0. If n=2% (a>1), that is, b = 0, then we may put v, = Pow, + Ry—1
by (1.2) and Theorem 2.4. Using Lemma 3.1 repeatedly, we have D,R,—1 = 0.
Hence, by Theorem 1, vg = Dyv, = Dp(Pown + Ru—1) = Powo = Po as desired.

If n=2+b (2 > b > 0), then we may put

Up = Zosigb Wp—iP; 4+ Raa_y

by (1.2) and Theorem 2.4. Using Lemma 3.1 repeatedly, we have
Dy(w,—iP;) =0 for 1 <i<b and DpRpe1 = 0. Then, by Theorem 1, 0=
Dnvn = P()W() = Po. . . .

Assume that 0 < j<b and that P;=0 for any i with 0<i<j-L
Then
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v, = stisb Wy—iP; + Rya_1.

Using Lemma 3.1 repeatedly, we have Dy j(>;<i<h Wn—iPi) = woP; and
Dy _jRya—y = 0. Hence, by Theorem 1, 0 = D,_jv, = woP; = P;. We therefore
have P; =0 for any i with 0 <i < b by induction on i, and so v, = wy Py +
Rya_y. Then vy = Dyavy, = (Dyawoa)Py = P, by Theorem 1 and Lemma 3.1.

Thus we have obtained the result. [
Lemma 6.3. Let n=2+b, where a and b are integers with a > 1 and

29>b>0. Then we have

Un = Z{n/2]+lsjs2” WiPj-1 + Rin2),

where Py and Ry are some polynomials of wi,wi_1,...,w1, and Pre_i = vp.
Furthermore, P;_1 may be replaced by P,_;.

Proor. By Lemma 6.2, v, = woav, + Rpe_;, Where Ry is a polynomial of

Wi, Wk—1, - .., w1. If, for j <[n/2], w;P;_; exists in the polynomial Ry._;, then
clearly w;P;_; is a polynomial of wy, o), W21, -+ ., wi. If wszj exists in Rpa_j,
then dim P; =n—2j >0, and so j < [n/2]. Hence wszj is a polynomial of
Win/2], Wn/2]-1, - - - »W1. Thus we obtain the former part.

If w;P;_1 is in the sum of the lemma, then dim P;_; =n— j. Hence the
latter part is clear. (Note that n— j < j—1 for [n/2]+1<j.) O

THEOREM 6.4. Let n=2%-+b, where a and b are integers with a > 1 and
29>b>0. Then we have

Un = Zoggza—l—[b/z}-l W2e—iWivh + Rpnya).

In particular, vye = Wya + 3| _; pe1_ Waa_iW; + Rya-1.  Here Ry denotes some
polynomial of wi,wi_1,...,w1.

Proor. According to Example 2.5, we have the former part for 2 <n <7
as follows.

If n=2, that is, a=1 and b =0, then vy = wy + w? = wyWovg + w?.

If n=3, that is, a=1 and b =1, then v3 = waw; = waigv;.

If n=4, that is, a=2 and b=0, then vs=ws+wsw; +wi+w}=
(W4W0 + W3W1)Uo -+ W% + Wf.

If n=>5, that is, a = 2 and b = 1, then vs = waw; + waw? + wiw; +wow} =
(W41/T/0 + W3W1)U1 + W%Wl + W2W13.

If n =6, that is, a = 2 and b = 2, then ve = waws + waw? + w2 + wywyw; +

Wswi + Wiwg = waTovs + w3 + wiwawy + wawi + wiwi.
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2 _
If n=7, that is, a =2 and b =3, then v7 = wawrw; + wiwy + wawawi =

WaToU3 + Wiwy + wawawy.
Let @ > 3. Then we may put

Un = Waelp + leisza-l—[b/z]—l wae—iPp+i + Rinpo)

for n=29+b (2> b >0) by Lemma 6.3. We intend to prove that Ppy; =
#v, by induction on i. Now, we have

0 = Dae_1vy = Wi0p + (Dae—1waa_1)Por1 = W10y + Ppy1

by Theorem 1 and Lemma 3.1. Hence Py = Wivp. o
Assume that 2 < j <291 —[b/2] — 1 and that Py,; = W0, for any i with
1<i<j—1. Then, using Theorem 1, we have

0 = Daa_jvn = wjvp + Zgigza-l—[b/z]—l{(DZ“—fWZ“"'>Pb+"}

P — —iPysi+ Phyj
:ijb+215isj W]_,Pb.H = vab+21gi§j—1 Wj—i pi T Lbtj

— W, Wi Py by the inductive assumption
= Wjp + 5 1<izjo1 WimiWith + Lty y
= (w; + leisj—l Wj—iW;)Vp + Phj i0p + Ppyj

Hence Ppi; = Wjvp. We therefore obtain that Py, = wvp for any i with

l<i<2¢!—[b/2] -1
Thus we have completed the proof of the former part. The latter part
follows immediately from the former part. O

Corollary 2 follows also from Theorem 6.4.
Using (1.2), Example 2.5 and Theorem 6.4, we have

EXAMPLE 6.5.
vy = (wg + w1 + weiy + ws w3 )vo + Ry
= wg + wywy + we(wa + w12) + ws(ws + wf) + Ry,
vg = (wg + Wy -+ Wiy + wsW3)v1 + Ra
= wgwy + wywi + we(wawi + w3) + ws(wswy + wi) + Ra,
v10 = (ws + w1 + weW2)v2 + Rs

4
= Wg(Wz + W12) + W7(W2W1 + W13) -+ W6(W§ -+ Wl) + Rs.
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7. A formula on v, for n=29+b (29> b >2%1)
In this section we prove

THEOREM 7.1. Let n=2%+b, where a and b are integers with a > 2 and
24> b>2%1 Then we have

Un = ZOSiSZ“-[nﬁ]—I Wae—iWilp

2
+ 22”-1—[b/2]si§2“~[n/3]—] Waa_iQ2e-i=1 + Rinp3),
where Qi and Ry are polynomials of wi,wi_1,...,W1.
Before proving Theorem 7.1, we prepare a lemma.

LemMA 7.2. Let n=2%+b, where a and b are integers with a > 2 and
29>b=>0. Then we have

—— N N 2 .
Un = Wpalp + Z[n/3]+lsj52“—l i1+ Z{n/3]+l§js[n/2] Wi Qi1 + Ripy3),
where Py, Qi and Ry are polynomials of wi,wi_1,...,w1.

Proor. By Lemma 6.2, v, = wyavp + Rpa_j, where Ry is a polynomial of
Wi, We—1, - -, w1. If j <[n/3], then both w;P;_; and wszj_l are polynomials
of Win/3), Wny3)—1,---,w1. If w?Q; | exists in the sum above, then dim Q;_; =
n—2j>0,and so j <[n/2]. If w)Q; exists in the sum above, then dim Q; =
n—3>0, and so j<|n/3]. Hence w’Q; is a polynomial of wy,s,
Win/3]=1y« - -, W1 ]

Proor oF THEOREM 7.1. By Lemma 7.2, we have
bn = ZOsisza_[n/3]~1 Woa_iPpa_j

2
+ 22“—1—[b/2]$is2“—[n/3]~1 Waa_iQae—i-1 + Riuy3),

where P, Or and Ry are polynomials of wy, wi_g,...,w; and Pya_; = vp.
Let 7 be any integer with 1 <r <2%—[n/3] —1 and assume that the
equality Py._;_; = W;vp holds for any integer i with 0 <i<r—1. Then we
intend to prove that the equality Ps«_,_; = Ww,1p holds.
Applying Dj._, to the equality of Lemma 7.2, we have, by Lemma
3.1

2

Dya_yv, = E o<icy Wr-iP2e—ic1 + E 0<i<20_{n/3]1 Waa_iDya_yPra_i g

2
+ Zza—l_[b/z]giszn—[n/s]—l WaeiDae—rQre—ict + DoeerRpnys).
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Now, 2¢ — 1 =29 —r > [n/3] + 1> 297" + 1. (The last inequality follows
from the inequality b >2¢"!) Hence 2¢—r is not a power of 2, and so
Dya_,v, =0 by Theorem 1. Furthermore, D2« Rjy3 =0 clearly.

If i>r—1, then Dy Pra_j_y =0 and Dye_yQra_i_1 =0 by Lemma 3.1.
Moreover, if 2¢'—[b/2| <i<r, then Dy Qi1 = 0 since 2%—r>

dim Qza_iﬂl =2%+ b— 2(211 — l) .
Thus we have, by Lemma 3.1 and the assumption,

0= ZOSiS?’ Wr~iP2a—i*1 + ZOSiSr—l Wza—iDza,_rpza_i_l
= ZOsiSr;l DZ”—r(Wza—ipza—i_l) 4+ Pra_y1
- ZOsisr—l D2“—r(W2ﬂ—iWivb) + Ppa_y1
= ZOSiSr_l{W;._iWiUb + Wz"—i(DZ”—rWi)Ub + W2"~iwiD2a#rUb} + Pyer1.
Here, D2a_r1/_Vi =0 since 2¢—r> i from b> 2a—1, and Dzﬂ—rUb — 0 since

2¢ _1>20 _r>20141 Therefore Py, 1= (> 0<i<r1 Wy_iWi)vp = V_"r’g

Using (1.2), Example 2.5 and Theorem 7.1, we have

ExampPLE 7.3.

3, 202
U6 = Wawy + Wwaw? + w3 + wawawy -+ wiwi + wywj

= (w4 + w3i1)02 + w302 + Ra,
v7 = wawawy + wiwi + wywawi = (wa + w3iw1)vs + w302 + Ry,
vy = (W -+ w1 + weiy + wsiws)va + wg Qs + w304 + Ra,
v1s = (s + WyT1 + weiwy + Wwsib3)vs + Wi Qs + w304 + Ry,
vy = (wg + w7y + weWwa + WsW3)v + W%Q6 + WéQS + W§Q4 + Ra,

vis = (Wg + Wy + we2)v7 + wi Q6 + wzQs + Rs.

8. A formula on v, for n=2°+b 2! >b=0)

For X € H*(BO;Z,) and for a positive integer k, the symbol <.X k>
denotes the sum of all monomials of wi, Wr—1,..., W1 which appear in X,
namely

X5k = zimsk (1<j<n) WiyWi(2) - - - Wi(n)
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for X = Zi(j)sk(lsjgn) WiyWi(2) - - - Wign) + Zj>k w;Y;, where Y; is a sum of
monomials of w;,wj_i,...,w; in H*(BO;Z,).

THaeoreM 8.1. Let n =2+ b, where a and b are integers with a > 2 and
2971 > b >0. Then we have

Un = Zogiga—l—l Wae—iWilh
T Zzn—l <i<29—[n/3]-1 Wwae—iPye—izy

2
+ Zzﬂ-la[b/z]siszﬂ—[nﬁ]—l Waa_iQae—i-1 + Riuy3),

where Py, Qp and Ry are polynomials of wi,wi_1,...,w1.
Furthermore, for 2°7! <i<2%—[n/3] —1, we have

P2”~i~1 = <W,'Ub + wi_za—lvza—1+b; 24 —j— 1>

Proor. The former part: If we replace, in the proof of Theorem 7.1,
1<r<2—[n/3]-1by 1<r<2¢!—1and 29-122~r>[n/3]+1>
27141 by 29— 1>2%—r>2%"1 11, then we have the desired equality by
Lemma 7.2.

The latter part: We prove the equality of the latter part by induction on i.

Step 1. We prove the equality for i =21, Applying D,.: to the
equality of the former part, we have, by Theorem 1 and Lemma 3.1,

Uya-14p = E 0<i<a-1_1 W2a~1_iwil)b + E O<i<2e-1_1 W2a_iD2a—1 (V_Vl'l)b)

+ Zza_l sisza_[nﬂ]_l(W2“‘1—iP2“—z'~1 +wya_iDye1 Pra_j 1)

2
+ Zza—l_[b/z]gisza—[n/3]—1 Wie_iDre1 Qae—ict + Daa-t Ryy3).

Here, by Lemma 3.1, Dyu1Pya; 1 =0 for i>2%" since 241 >2¢—j—1,
and Dje1Qra ;1 =0 for i <2 — [n/3] — 1 since dim Qpa_;y =n—2(2% — i) <
21, Moreover, by Lemma 3.1, Dya:(#;vp) = 0 for i < 29! since b < 2971,
and Dja1Rp,3 = 0 by Lemma 3.1, Hence vya-1p = D gojcpat_q Waa1_;Wilp -+
Pyai_1. We therefore have

— = na—1
Py = <02a—1+b + 20<i<2a—1—1 Woa-1_;Wilp; 2 - 1>
= {Va-14p + Woa-10p; 20l 1>.

Step 2. Ifa=2,then b=0or 1, and so n=4 or 5. In case n =4, by
Example 2.5,

Vs = w4 -+ wawi + w3 + Wi = ws + w3y +wa Py +wi0) + Ry,
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where Py = iy 4+ 033 1> = {(wy + w?) + (w2 +w{); 1) =0. In case n= 5, by
Example 2.5,

U5 = Wawp + W3W% 4+ wzwf + w%wl = wavy + w3 v; + waPy + W%Ql + Ry,

where P; = {01 + v3;1> = {(w2 + whwi +wawi; 1) = wj. Hence the result
holds for a = 2.
Let a>3. Assume that 20! <r<2%—[n/3]—1 and that the equal-

ity
Pra_j_1 = {Wivp + Wi_ga-1V3a-11p; 2¢ —i—1)

holds for any i with 2a-1 < j<r—1. We intend to prove that the equality
holds for i =r.

Since 202+ 1<[n/3]+1<2¢—r<2%"'~1, 2%—r is not a powet
of 2. Hence Dyu_,v, =0 and Dye,vp =0 by Theorem 1. Furthermore,
Dse_Rpyy3 =0 by Lemma 3.1. So applying Dy, to the equality of the
former part, we have

0= DZ“——r ZOSiSZ“‘l——l W2a_iwivb
+ D2a-—r Zza*lgigza—[nﬂ]q W2a_iP2a_l'_1
2
+ Doy 22"*1—[b/2]si32“—[n/3]—1 Wia_;Q20-i-1
=0+Q0+0,

where, by Lemma 3.1,

= ZOSisza—l_l{wr—iwivb + waa_i(Dya_,Wi)0},

@= Zza-lsigr_l(wr—iPZ“—i—l + woa_iDaa_pPra_i_1)

+ erisZ”—[n/B]—l(W""Pz"‘i—l +wae_iDae—rPra—i-1)
= Zza_nsiS,_l(Wr—iPza—i—l + Wya_iDpa_pPra_i—1) + Pra_r—1,

®= Zza—l—[b/Z]sisza_[n/s]—1 Wia_iDaarQroi-1.

Now, using the fact that 2% —i>2%—r —1in (@ and Q), we have
(@20 =1 =10 = (3 cperry W32 =7 1),

(@2 =r—1)= <Zza_1s,-£,_1 Wy—iPya_i_1;2% —1 — 1> + Pya_y1.
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If .2“ —i< ?" — r'— 1, then Djya_;Qre ;1 =0. Hence {((3);2—r—1>=0.
Using the inductive assumption and the fact that 2 —i—1>r—i and
20 —i—1>2%—r—1 for 21 <i<r—1, we have

(@;2°—=r—1)
- <Zza-lsi3r—1 Wr—i{Wilp + Wi_gam1Vgam1 ;2% — i — 13;2% —r — 1> + Pya_yq

- Zz“siy—l {Wr—iWivp + Wy iWi_pa1Vge11p5 2% = 7 — 1) + Ppayy.

We therefore obtain

Pras g = <(Z i+ Y _
2=l 0<izaeig Wr=iWit el <jcpy Wr=iWi | Vb

+ (ZZ“‘I <i<r—1 Wr_l'wt'_za—l)vza—l_,_b; 2a —F — 1>
= {Wpvp + Wy_ga-1Uga-144;2% —r — 1. ]
Using (1.2), Example 2.5 and Theorem 8.1, we have

ExampLE 8.2.
vg = Wg + W7W| + Weiy + ws3 + waP3 +wsPy +wiQs + wiQ) + Ry,
Py = {Wq +14;3)
_ 2 2 4
{(wa + w3 +wawi +wi) + (wa +wawy + w3 +wi);3) = wswy + wow?,
Py = {Ws + Wyvg;2)
_ 2
= {(ws + wswi + w22w1 + wf) + wi(wa + wawy + w22 + wf); 2> =0,
vg = (g + Wy + weiwa + wsiws)vy + waP3 + wiQs + Rs,
P3 = (g + v5;3)
_ 2 2 4
{wa 4+ wy + wowi + wi)wy + (wawy + W3W12 + w22w1 + wzwf); 3>
= wiw? +w},
vio = (Ws + w7 + we iy + WsiW3)vy + waP3 + w2 Qs + w03 + Rs,
P3 = {40y +v6;3)
= ((wa + w3 + wyw? +wi)(wy + w?)
+ (wawyp + W4W12 -+ wg + wawawy + W3W13 + w%w%); 3>

2
= w3 + wawawi + waw} + w3 + wiw? + w,
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2
vy = (wg + wyiwy + weWz + W5W3)D3 + waP3 + W§Q4 + w03+ Rs,
P3 = {Wav3 + 753>
2.
= {(was + w% + wzwf + w‘f)wzwl + (wawawi + w%wl + wawawy); 3)

2 3 2.3 5
= Wiwy + Wiwawi - wiwy + wawy + wawi.
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SLIGHTLY GENERALIZED CONTINUOUS FUNCTIONS

Idris ZorLuTUNA, Mahide Kiicik and Yalgin KOgUx
(Received January 30, 2007)

Abstract: A new class of functions, slightly generalized continuous functions, is
introduced. Basic properties of slightly generalized continuous functions are studied.
The class of slightly generalized functions properly includes the class of slightly
continuous functions and generalized continuous functions. Also, by using slightly
generalized continuous functions, some properties of domain/range of functions are
characterized.

1. Introduction and preliminaries

Slightly continuity were introduced by Jain [8] in 1980 and next have been
developed by Singal and Jain [16]. Balachandran et al. [2] introduced the
notion of generalized continuous functions and investigated some of their basic
properties. The same authors [12] continued the study generalized continuous
functions and defined the concepts of generalized homeomorphism and gc-
homeomorphism. Next, Cueva [5, 6] obtained further results on g-continuous
and g-closed (g-open) functions which defined by Malgan [13]. On the other
hand, Nour [15] and Baker [1] introduced the some weak forms of slightly
continuity which are called slightly semi-continuity and slightly precontinuity,
respectively. In this paper, we first defined slightly generalized continuous
functions and show that the class of slightly generalized continuous functions
properly includes the classes of slightly continuous functions and generalized
continuous functions. Second, we obtain some results on g-closed sets and
investigate basic properties of slightly generalized continuous functions con-
cerning composition and restriction. Finally, we study of the behavior of some
separation axioms, related properties and GO-compactness, GO-connectedness
under slightly generalized continuous functions. Relationships between slightly
generalized continuous functions and GO-connected spaces are investigated.
In particularly, it is shown that slightly generalized continuous image of a GO-
connected space is connected.

Throughout this paper, spaces (X,7) and (Y,o0) (or simply X and Y)
always mean topological spaces on which no seperation axioms are assumed
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