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ABSTRACT. This paper gives a PL-isotopy classification of odd-dimensional simple links of
dimension ϊ 8 5 in terms of their Seifert matrices.
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This paper gives an isotopy classification of odd-dimensional (of dimension > 5) simple

links in terms of their Seifert matrices. A similar ambient-isotopy classification of simple

links was obtained by Liang [1], following the ambient-isotopy classification of simple

knots carried out by Levine [5]. In contrast to ambient isotopy, isotopy of knots is an

uninteresting equivalence relation: any knot is isotopic to the trivial knot.

The formulation in this paper is given for two-component links, but everything

generalizes easily to the case of a larger number of components.

The main results of the paper are formulated in the Introduction (§1.6); §§2 and 3 are

devoted to the proofs, and in a supplement (§4) some isotopy invariants of links connected

with cobordism invariants of matrices are considered.

The author is deeply grateful to his research director, O. Ya. Viro, for numerous helpful

discussions.

§1. Introduction

1.1. Links. By an «-dimensional link is meant a piecewise-linear locally flat oriented

submanifold L of the sphere S" + 2, homeomorphic to the disjoint sum S"]}S2

n of two

«-dimensional spheres. Denote by Kt and K2 the connected components of L. It is well

known that each submanifold Kt bounds a piecewise-linear locally flat compact oriented

submanifold Vi of S" + 2, called a Seifert surface of the knot Kr If there exist nonintersect-

ing Seifert surfaces F, and F2 of the components Kx and K2, then L is called a boundary

link, and the manifold V = F, U F2 is called a Seifert surface of the link L. A link of

dimension 2q — 1 is called simple if it has a Seifert surface consisting of (q — l)-connected

components.

1.2. Seifert matrices of links. Let L be a boundary link of dimension 2q — 1, and let V

be a Seifert surface of L. We denote by TV a regular neighborhood of the surface V in

S2q+\ The manifold TV is homeomorphic to the product VXJ, where J = [-1,1], and

where the surface V, lying in TV, is carried to V X {0} by this homeomorphism. Putting
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V+ = V X {1}, let i: V -> V+ be the homeomorphism defined by translation V X {0} -»

V X {1} in the product V X J, and let j : V+ ~* S2q+\V be the inclusion. We define a

form

/: Hq(V; Z)/Tors X Hq(V; Z)/Tors - Ζ

as follows: if x, y £ Hq(V; Z)/Tors, then l{x, y) = lk((j ° i ) ^ , _y), where

Ik: Hq(S2i+]\V\ Z)/Tors X Hq(V; Z)/Tors - Ζ

is the linking coefficient in the sphere Slq+'.

If F, and F2 are Seifert surfaces of the components of the link L, then in the basis of the

group Hq(V;Z)/Tors, consisting of bases of J/ 9(F,; Z)/Tors and Hq(V2;Z)/Tors, the

matrix of the form / can be written as

M =
M,

-εΡ'

where Mi is the matrix of the restriction of / to //^(F,; Z)/Tors, called a Seifert matrix of

the knot Kt, e = (- l) ? , and the prime denotes transposition (see [I]). The matrix Μ of the

form /, equipped with such a decomposition, will be called a Seifert matrix of the link L.

Since M, is a Seifert matrix of the component Kt, the matrix M, + zM[ is unimodular (see

[7]). This is obviously equivalent to unimodularity of the matrix Μ + εΜ'.

1.3. L-matrices. Let ε = ± 1. By an L-matrix is meant a square matrix M, equipped with

a decomposition of the form

M =
M,

-tP'

where M, and M2 are square matrices such that Μ + εΜ' is unimodular. We denote the

number ε in the definition of Μ by ε(Μ).

THEOREM 1.3.1 (LIANG [1]). For any L-matrix Μ and any integer η > 1, there exists a

simple link of dimension An + 2 + ε(Μ), having Μ as its Seifert matrix.

1.4.1-equivalence of L-matrices. Let

M =
-εΡ'

Ρ

Μ,
and N =

Q

N,

be L-matrices, where the matrices M, and Nx have size w, X m,, and M2 and iV2 have size

m2 X m 2 . The L-matrices Μ and Ν are called l-congruent if there exist unimodular 5 , of

size m, X m, and 5 , of size m-, X m, such that

0

0
Μ

Β\ Ο

Ο Β',

We shall say that the L-matrix Μ' is an I-enlargement of the L matrix

M =
-εΡ'
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where Χ, Υ, Ζ and Λ/3 are square matrices. It is clear that the matrices X + εΥ' and

Λ/3 + εΛ/3' are unimodular. The matrix ( ° | ) will be called the nontrivial part of the

/-enlargement. The L-matrix Μ will, in its turn, be called an I-reduction of the L-matrix

Λ/'. We shall say that L-matrices MQ and M\ are I-equivalent if they can be connected by

a chain of /-enlargements, /-reductions and /-congruences.

If in the definition of /-equivalence we restrict ourselves to the special form of

/-enlargements and /-reductions in which the matrix Λ/3 has size zero and the nontrivial

part is equal to (°ol) or (°°), we obtain the definition of l-equivalence of L-matrices (see

[1])·

REMARK. It is easy to show that any /-enlargement of an L-matrix Μ is /-congruent to

an /-enlargement of the L-matrix Μ for which Ζ + εΖ' — 0 and the matrix X + εΥ' is the

identity.

1.5. Isotopy of links. Links L o and L] of dimension η are called isotopic if there exists a

piecewise-linear embedding

F: (5,"Π52") X / - Sn+2 X /

(not necessarily locally flat) such that

(1) F((SrnS2") X {«}) C Sn+2 X {a} for all α Ε I, and

(2) F((S7ilS2") X {/}) = L,, where i = 0,1.

1.6. Formulation of the main results.

THEOREM 1.6.1. If odd-dimensional boundary links are isotopic, then their Seifert matrices

are I-equivalent.

THEOREM 1.6.2. If the Seifert matrices of simple odd-dimensional links of dimension > 5

are I-equivalent, then these links are isotopic.

These assertions, taken together with Theorem 1.3.1, yield an isotopy classification of

simple odd-dimensional links of dimension s* 5 in terms of their Seifert matrices.

§2. Proof of Theorem 1.6.1

2.1. Local isotopy and Rolfsen's theorem. Let Lo and L, be links of dimension n, and

suppose that there exists in the ambient sphere S" + 2 a piecewise-linear ball D of

dimension η + 2 such that

(1) L, and 9/3 intersect transversally,
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(2) the paris (D, D Π L,) are proper ball pairs, and

(3) outside D the links L o and L, coincide.

We shall then say that the links Lo and L, are locally isotopic (see [3]), or that they can be

connected by a local isotopy in the ball D. It is clear that locally isotopic links are isotopic.

Links Lo and L, of dimension η are called ambient-isotopic if there exists a piecewise-

linear homeomorphism F: S" + 1 X / - S"+2 X / such that

(1) F(S" + 2 Χ {α}) C S" + 2 X {a} for all α G /,

(2)F\s---x{o) = id. and
( 3 ) F ( L 0 X {1}) = L,.

Obviously, ambient-isotopic links are isotopic. All these concepts are connected by the

following theorem.

THEOREM 2.1 (ROLFSEN [2]). If Lo and L, are isotopic links, then L, can be obtained from

Lo by a finite sequence of local and ambient isotopies; moreover, two local isotopies, one for

each component, are sufficient.

In view of this theorem and the /-equivalence of Seifert matrices of ambient-isotopic

links (see [1]), to prove Theorem 1.6.1 it suffices to prove the following lemma.

2.2. LEMMA. Seifert matrices of locally isotopic links are I-equivalent.

Let Lo and L, be locally isotopic links of dimension 2q — 1, and let D be the ball of this

local isotopy. It is easy to show that there exist Seifert surfaces Fo and F, of the links L o

and L, satisfying the following conditions:

(1) Fo and F, coincide outside D,

(2) Vj and dD intersect transversally, and

(3) Vj η dD is connected.

It is clear that in such a case the surface W = Fo ΓΊ 3D = Vx (Λ dD is a connected

Seifert surface of the knot Κ = Lo Π 3D = L, Π dD in the sphere 3D. Let U be the

connected component of Fo intersecting D, and put W, = U Π D and W2 = U\W{, so

that U=WX \JWW2.

We first prove Lemma 2.2 for local isotopies such that the group Hq_l(W; Z) has no

torsion. We denote H,(X; Z)/Tors by H^X).

2.3. A special case: Tors Hq_\(W\ Z) = 0. Let G be a finitely generated abelian group

and Η a subgroup. We denote by S(H,G) the smallest pure subgroup of G containing H.

It is clear that rank S(H,G) = rank H.

Let in,-: Hq(W) -• Hq(Wj), for / = 1,2, be the homomorphisms induced by the inclusion

homomorphisms in,·:_//,(W; Z) -* Hq(Wj,Z). We put G^= 5(Imm~, Hq(W,)). It is clear

that the group #, = Hq{Wi~)/Gl has no torsion, so that Hq{W,) = £, Θ G,·. We consider a

segment of the exact sequence of the triad (U,W],W2):

• - - - Hq(W; Z) - Hq{Wx;-L) θ tf,(W2; Z) ^Hq(U; Z)^Hq_x{W; Z) - · · •

and a segment of the induced sequence:

• • · - Hq(W) - ^ ( W , ) θ Hq(W2) ^Hq(U) ^Hq_,(W)

Since Tors Hq_-[(W\ Z) = 0, the induced sequence is exact at the term Hq(U), and

therefore Hq(U) = Im ρ θ G, where G ^ Im3.
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Put B, = S(p(B,), Hq(U)). Let in: Hq(W)

the inclusion homomorphism in: Hq(W;Z)

is easy to see that Im ρ - B] θ B2 θ Τ, and so Η (U) = Bi

Hq(U) be the homomorphism induced by

), and put T- S(Imin, Hq(U)). It

B2® G.

Let τ: //(£/) X Hq{U) -> Ζ be the intersection index in the manifold U; in a basis of

Η (U), consisting of bases for the subgroups Bx, B2, Τ and G, the matrix of the form τ

obviously can be written as

xx
0

0

εΡ[

0

x2

0

εΡ{

0

0

0

ε5

A =

where e = (-\)q and the matrix S, is unimodular. Adding to the generators of the

subgroups 5, and B2 elements of the subgroup T, we make the matrices Px and P2 vanish.

These elements, obtained as a result of such a modification of the generators of Bt and B2,

generate subgroups C, and C2 of Hq(U), which is represented in the form of a direct sum

Hq{U) = Cx® C2®T@ G.

We turn now to the Seifert from constructed on the manifold U:

Let Ν be the matrix of the form lv, in a basis of Hq(U) consisting of bases of the

subgroups C,, C2, Τ and G. As is easily seen, the subgroup Τ is orthogonal to the

subgroup C, θ C2 θ Τ with respect to Ιυ, and the subgroups C, and C2 are also

orthogonal. Taking into account that

Ν + εΝ' =

0

x2

0

0

0

0

0

0

0

s,

we obtain the following form for the matrix N:

Ν =

Μ,

0

0

0 ο ρ,
ο β 2

Ο Α'
F Ζ

thus the Seifert matrix ΛΌ of the link Lo has the form

Μ,

0

0

-εβ;

0

0

Μ2

0

-εβ 2

-ε/"

0

0

0
Υ

0

β,

β 2

χ
ζ

-εβί

0

Ρ

0

β 3

i.e., it is an /-enlargement of the L-matrix

-ε/5'
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Analogous reasoning, carried out for the Seifert surface Vx of the link L, ( shows that its

Seifert matrix Nx is also an /-enlargement of M. Lemma 2.2 is proved for the case

Tors Ηq_,(W;Z) = 0.

Now let Hq_x(W;Z) be arbitrary; we restrict consideration to the case q > 4. The

general proof for all q is essentially analogous to that carried out above, only more

cumbersome; in the case ? > 4 w e shall reduce the proof of Lemma 2.2 to the special case

examined above, utilizing the concept of a cross-section of a Seifert surface of a knot (see

[4])·

2.4. Cross-sections of Seifert surfaces of knots. Let AT be a knot of dimension 2q — 2, W

its Seifert surface, and suppose that in the ambient sphere S2q there exists a piecewise-

linear 2 ̂ -dimensional ball Β such that

(1)35 intersects Κ and W transversally,

(2) the pair ( 5 , Β Π Κ) is a proper ball pair, and

(3) the pairs (W Π B,W Γ\ dB) and (W Π ( S 2 < ? \ 5 ) , W Π dB) are (q - l)-connected.

Then the surface W Π dB is called a cross-section of the Seifert surface W of the knot K.

LEMMA 2.4 (KEARTON [4]). A Seifert surface of a (2q — 2)-dimensional knot for q> 4 has

a cross-section.

Let

in,: Hq_x( W η 35; Ζ) - # , _ , ( W Π Β; Ζ)

and

in 2 : Hq_x(W n 3 5 ; Z ) - Hq_x(\V ΓΊ ( S 2 « 5 ) ; Z )

be inclusion homomorphisms; we shall say that the surface W Π dB is a regular cross-sec-

tion of the surface W if Kerin, = Kerin 2 . It is easy to show that if W has a regular

cross-section, then Tors Hq_i(W; Z) = 0.

2.5. Conclusion of the proof of Lemma 2.2: reduction to the case Tors Hq_x(W; Z) = 0.

We shall represent the given local isotopy in the form of a composition of three local

isotopies satisfying the conditions of §2.3. We adopt the notation of §2.2.

Let Z o and Z, be the principal components of the links Lo andL,, such that

Z , n f l = L, Π £>, and let W - W Π dB be a cross-section of the surface W. Put

Ux = W Π Β and U2 = W\UX, and let 5 = Κ Π dB and C = Κ Π Β.

Thicken the ball Β to a cylinder Β X J, where/ = [-1,1], in the ambient sphere S2q+\

so that 3D Π (Β X J) = Β = Β Χ {0}. The links L o and L, coincide near 3£>, so that

Lon(BXJ) = Lxn(BX J). We can suppose that L, D(BXJ) = Ζ, Π (Β Χ J). The

link L o intersects the cylinder Β X J in the disk C X J, and intersects 3(5 X / ) in the

sphere Q, where

2 = ( c x { - i } ) u ( S X H ) ) ( s x / ) u ( S X ( 1 ) ) ( c x { l}),

and the Seifert surface F of the knot Q in the sphere d(B X J):

F=(UXX { - ι ρ , ^ , . ,

has the surface W as a regular cross-section. We subject the link L o to a local isotopy,

transforming (within the ball Β X J) the disk C X / to a disk which is symmetric, with

respect to 3(5 X 7), to the disk Z^\(C X J); the resulting link is denoted by L'o. Since F

has a regular cross-section, Tors Hq X{F; Z) — 0, and for the above local isotopy Lemma

2.2 is valid.
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We subject the link L, to an analogous local isotopy (which transforms the disk C X J

to a disk symmetric, with respect to 3 ( 5 X / ) , to the disk Z^C X / ) ) ; the resulting link

is denoted by L\. The links L'o and L\ are connected by a local isotopy in D, and the

Seifert surface F' = U2 l)w, U2 of the knot K' = L'o Π 3D = L\ Π 3D in 3D has a regular

cross-section W, so that for this local isotopy, and consequently also for the given local

isotopy, the assertion of Lemma 2.2 is valid, which completes the proof of Theorem 1.6.1.

§3. Proof of Theorem 1.6.2.

3.1. Scheme of the proof. Let the L-matrix Nx be an /-enlargement of the L-matrix No.

For each q > 1 we construct simple (4q + 2 + e(iV0))-dimensional links Lo and L,,

connected by a local isotopy in a ball D, whose Seifert matrices are the L-matrices No and

Nx. From this, in view of the results of [1], Theorem 1.6.2 will be proved.

First, using the nontrivial part of the given /-enlargement, we construct a Seifert surface

W of the knot L, Π 3D in 3D; and then we will construct Seifert surfaces of the desired

links L o and L,, intersecting 3D in the surface W.

3.2. Construction of the surface W. It obviously suffices to restrict attention to one of

the two forms of an /-enlargement, since one form is obtained from the other by

renumbering the components of links. Consider the L-matrix

M,

-εΡ'

and its /-enlargement

0
Υ

0

0

0

χ
ζ

-eQ'3

-εβί

-eg'

0
Q3

Μ3

0

0

0

β,
0

Μ,

-εΡ'

0

Qi

0
/>

Μ2

Nt =

Let Χ, Υ and Ζ be m X m matrices. As we remarked in §1.4, we can assume that

Ζ + εΖ' = 0 and that the matrix X + εΥ' is the identity. Let Aq + 2 + ε(Ν0) - In - 1

(such an η can always be found, since ε(Ν0) — ±1).

In R 2 n + 2 with coordinates x,,... ,x2n+2 we consider the unit sphere S 2 " + 1 . Denote by D

the hemisphere in 5 2 n + 1 given by the inequality χ, s* 0. The hemisphere D will be the ball

of our local isotopy. Put 5 0 = dD, let 5, be the sphere defined in S2n+l by x] = x2 — 0,

and let Z>, be the ball defined in 5 2 " + 1 by xx - x2 = 0 and x3 > 0. Put S2 = 3D,, and let

Ω,,... ,J2m be disjoint smooth (2« — 2)-dimensional balls in 5 2 . To D, in 5, we attach m

handles h",... ,h"m of index n, so that the attaching sphere £, of the handle h" lies in Ω,.

For the resulting manifold D[, generators [a,], . . . ,[a m ] of the group Hn(D[;Z) are

realized by disjoint smoothly embedded spheres a,,... ,am of dimension n. Let γ,, . . . ,ym

be a family of η-dimensional smooth balls in S2 such that γ, ε Ω, and 3γ, = £,, and let

T,,...,Tm be a family of smooth disjoint (n — 2)-dimensional spheres in S2 such that τ,

intersects only γ,, in exactly one of its interior points. To DJ in So we attach m handles

h"~\... ,Λ^~' of index η — 1, using τ , , . . . ,rm as attaching spheres, obtaining a manifold

we denote by W. The handles Λ?" ' , . . . ,h n ~ ' yield generators [/?,],...,[#J of Hn_ x{ W'\ Z),

realized by disjoint smoothly embedded spheres j8 l 5 . . . ,/?m of dimension η — 1, and the

incidence number of the classes [a,·] and [/?,] in W is equal to δ,'. It is easy to see that the

boundary of W is a (2 η — 2)-dimensional sphere.
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Finally, modifying, if necessary, the embeddings of the handles h'{ ' , . . . ,h"m ' without

changing their attaching spheres, we obtain a submanifold W of So such that /^([a,·], [/?,])

= x,j, where lw: H,,(W; Z) X Hn_x(W; Z) ->· Ζ is the Seifert pairing constructed for the

submanifold W of 5(), and xtJ is an element of the matrix X.

3.3. Construction of the link Lx. Let / = [-ε0, ε0], where ε0 is a sufficiently small

positive number. Thicken the sphere 5 0 in 5 2 " + l to a strip R(-e0, e0), defined by

-ε 0 < χ, < ε0, correspondingly thicken the manifold W to a cylinder H7 X / in Λ(-ε0, ε0),

and let Wx and W2 be the upper and lower bases of W X /. Generators of Hn_x(Wt; Z)

and //,,(W^;Z) are realized by smoothly embedded spheres, which we denote by the

corresponding spheres in W supplied with a superscript, for example a}, β2 etc.

Attach to W X / in R(eo,2eo), defined in 5 2 " + 1 be the inequalities ε0 *£ χ, =s 2e0, m

handles H[\,...,H^X of index n, using β\,...,β^ as attaching spheres. Attach also to

WXJ in Λ(-2ε ο,-ε ο), defined in S 2 " + 1 by -2ε 0 *£ χ, < -ε 0, w handles H[\,...,H'^2 of

index «, using β2,...,β^ as attaching spheres. It is clear that such attachings are

realizable. Denote the resulting manifold by T:

τ = (wx J) υ Η[\ υ • ,, υ Η['2 υ • • · u//;; 2 .

A simple argument shows that the boundary of Τ is a (2 η — l)-dimensional sphere. The

manifold Γ is (n — l)-connected, and Hn(T;Z) = Ζ θ · · · θ Ζ (2 in summands). As a

basis for Hn(T;Z) we can take the classes [a,], . . . ,[a m ] and [δ,], . . . ,[8m], where the

notation [a,] is preserved for the image of the classes [a,-] under the inclusion homomor-

phism in: Hn(W\ Z) -* Hn{T\ Z), and a representative δ, of the class [δ;] is obtained, by

gluing, from the middle disks of the handles //," and H"-> and the collar β, Χ /. For such a

basis the Seifert matrix of the knot 3Τ will obviously take the form ( " ) , where F is an

mX m matrix. We may suppose that F + eF' = 0 (this can be attained by modifying the

generators [δ,-]). Finally, we may suppose that F = Ζ (this equality can be attained by

modifying the embeddings of the handles H"2,... ,H£2 without changing their attaching

spheres). Thus the Seifert matrix of the knot 3Γ is equal to (° f).

We construct in the ball Ζ>(-3ε0), defined in S2n+] by χ, < -3ε0, a simple (In - 1)-

dimensional link L with Seifert matrix

M,

-εΡ'

which can be done in view of Theorem 1.3.1. Denote by Bx and B2 the components of L,

and let Αλ and A2 be (n — l)-connected disjoint Seifert surfaces of the components. The

manifold Ai can be represented as a 2 «-dimensional disk to which are attached m, handles

gn,... ,gim of index n. Analogously [7], we transform Ax into a submanifold A\ of £>(-ε0),

by modifying the embeddings of the handles gx,,... ,gXm without changing their attaching

spheres, in order that the link consisting of the components of 37" and dA\ have Seifert

matrix N7, where

ο
Υ

X
ζ

0

ν ο - ε ρ ; Μ,
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Using Q2, we transform A2 into a submanifold A'2 of D(-e0) in order that the link

consisting of the components of 37" and dA'2 have Seifert matrix N3, where

0
Υ

X
ζ

ο
02

0 -EQ'2 M2

We construct in the ball Ζ)(3ε0), defined in S2"+] by xt s* 3ε0, a simple knot B3 with

Seifert matrix M3, and let A3 be an (.·? — l)-connected Seifert surface of B3. Using the

matrix g 3 , we transform A3 into a submanifold A3 of £>(ε0), in order that the link

consisting of the components of θ Γ and dA3 have Seifert matrix N4, where

0
Υ

X
ζ

ο

0 - ε β 3

Denote by L, the link consisting of the components of d(T#dA'3#;]A\) and dA'2, where

the symbol # a denotes connected sum along the boundary. It is clear that the link L, is

simple, and that its Seifert matrix is equal to TV,.

3.4. Construction of the link Ln. Put

Lo Π = L, Π (S2n+\D) .

For the construction of the part of Lo lying in D, to the cylinder W X J in the strip

Λ(εο,2εο) we glue m handles φ " + 1 , . . -,φ«+ ι of index η + 1, using a\,...,a]

m as attaching

spheres. From the construction of W it is clear that such an attaching is possible. Let

5 = {W X J) U <p',!+1 U • · · U<p"m

+\ and then put L o Π D = 35 Π D. It is easy to see that

the submanifold Lo so defined is a simple link with the Seifert matrix

Moreover, by construction, the links Lo and L, are connected by a local isotopy in the ball

D. Theorem 1.6.2 is proved.

§4. Supplement: some isotopy invariants of links

4.1. Cobordism of matrices. Matrices Mt and M2 are called cobordant if their block

difference

Μ, Ο

, 0 -M2

is congruent to a matrix of the form (°B^), where A and Β are square matrices of the same

size. Let ε = ± 1; we shall say that a matrix Μ satisfies property ε if the matrix Μ + εΜ' is

unimodular.

As Levine showed, cobordism classes of matrices satisfying property ε form an abelian

group with respect to block addition, and the cobordism class of a matrix Μ is completely

determined by invariants ex(M), ax(M) and μχ(Μ) (see [6] and [8]).

4.2. Enlargements of Seifert matrices of links. Let a boundary link L have Seifert matrix

-εΡ'
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We call the matrix Μ an enlargement of the Seifert matrix of the link, where

M =

A/,

-eP'

0

0

M2

0

0

0

0

-M,

0

0

0

0

-A/,

From Theorem 1.6.1 easily follows

ASSERTION 4.2.1. Enlargements of Seifert matrices of isotopic links are cobordant.

This assertion can also be obtained differently, making use of the following theorem.

THEOREM 4.2.2 (ROLFSEN [2]). Isotopic links are cobordant if and only if their correspond-

ing components are cobordant.

From Assertion 4.2.1 there plainly follows the isotopy invariance of the family

{ελ( Α/), σχ(Μ), μχ(Μ)}, where Μ is an enlargement of the Seifert matrix of a link.

4.3. EXAMPLES. A link not cobordant to a split link; nonisotopic links not distinguished by

Rolfsen's invariants. As O. Ya. Viro has told me, the signature of a symmetrized

enlargement of the Seifert matrix of a link provides an elementary way to disprove the

erroneous theorem of Gutierrez [9], in which it was asserted that every link of codimension

2 is cobordant to a split link (i.e. to a link whose components can be separated by disjoint

embedded balls). In fact, it is obviously a cobordism invariant, and is equal to zero for

split links. On the other hand, for a (4q — 3)-dimensional link L with Seifert matrix M,

where

Μ =

1
0

0

\o

1
0

1
0

0
1

0
0

0
0

1
1

it is equal to 2 by an easy computation.

Other counterexamples to the formulation of Gutierrez were found by Cappell and

Shaneson [10] and Kawauchi [11].

Moreover, the link L just mentioned and the link -L provide an example of nonisotopic

links that are not distinguished by localized Alexander invariants (see [3]) but (obviously)

distinguished by the invariant σ(Μ + Μ').
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