CUTTING, PASTING AND THE DOUBLES OF MANIFOLDS WITH BOUNDARY

Katsuhiro KOMIYA

(Received 6 March 2000)

Dedicated to the memory of the late Professor Katsuo Kawakubo

0. Introduction

Cuttings and pastings of manifolds lead to the so-called SK-groups of manifolds. Various kinds of such groups are found in the literature [1, 2, 4–7]. In this paper we will investigate the relations between them.

The manifolds considered here are all in the unoriented category. Let P and P' be m-dimensional compact smooth manifolds with boundary, and $\varphi: \partial P \to \partial P'$ be a diffeomorphism. Pasting P and P' along the boundary by φ , we obtain a closed smooth manifold $P \cup_{\varphi} P'$. For another diffeomorphism $\psi: \partial P \to \partial P'$, we obtain another manifold $P \cup_{\psi} P'$. The two manifolds $P \cup_{\varphi} P'$ and $P \cup_{\psi} P'$ are said to be obtained from each other by cutting and pasting (Schneiden und Kleben in German). If a closed manifold M is obtained from a closed manifold M' by a finite sequence of cuttings and pastings, we say that M and M' are SK-equivalent to each other. This is an equivalence relation on \mathcal{M}_m , the set of m-dimensional closed smooth manifolds. Note that if M and M' are SK-equivalent then $\chi(M) = \chi(M')$ since

$$\chi(P \cup_{\varphi} P') = \chi(P) + \chi(P') - \chi(\partial P) = \chi(P \cup_{\psi} P'),$$

where χ denotes the Euler characteristic. The set of all equivalence classes of m-dimensional closed smooth manifolds, denoted by \mathcal{M}_m/SK , is a semigroup with the addition induced from a disjoint union of manifolds. The Grothendieck group of \mathcal{M}_m/SK is called the SK-group of m-dimensional closed manifolds and is denoted by SK_m . This group has been introduced and observed in Karras $et\ al\ [4]$.

As a generalization of this group, in Komiya [5] the author introduced the SK-group of pairs of manifolds. Let $m \ge n \ge 0$ be integers. Let (P, Q) be a pair of an m-dimensional compact smooth manifold P and an n-dimensional compact smooth submanifold P of P with P0 and P1. Let P1, P2 be another pair, and P3 : P4 and P5 and P6 another pair, and P8 is a diffeomorphism inducing a diffeomorphism

 $\varphi|\partial Q:\partial Q\to\partial Q'$. Then we obtain a pair $(P\cup_{\varphi}P',Q\cup_{\varphi|\partial Q}Q')$ of an m-dimensional closed smooth manifold $P\cup_{\varphi}P'$ and an n-dimensional closed smooth submanifold $Q\cup_{\varphi|\partial Q}Q'$. If $\psi:(\partial P,\partial Q)\to(\partial P',\partial Q')$ is another diffeomorphism, then two pairs $(P\cup_{\varphi}P',Q\cup_{\varphi|\partial Q}Q')$ and $(P\cup_{\psi}P',Q\cup_{\psi|\partial Q}Q')$ are said to be obtained from each other by cutting and pasting. As in the absolute case, the cutting and pasting process induces an SK-equivalence relation on $\mathcal{M}_{m,n}$, the set of pairs (M,N) of m-dimensional closed smooth manifolds M and n-dimensional closed smooth submanifolds N of M. The set of equivalence classes denoted by $\mathcal{M}_{m,n}/SK$ is a semigroup, and we obtain the SK-group $SK_{m,n}$ of pairs as the Grothendieck group of $\mathcal{M}_{m,n}/SK$.

Koshikawa [6] also generalized SK_m to the SK-group $SK_m(\partial)$ of manifolds with boundary. Let (P, Q_1, Q_2) be a triple such that P is an m-dimensional compact smooth manifold with boundary $\partial P = Q_1 \cup Q_2$, Q_1 and Q_2 are (m-1)-dimensional compact smooth submanifolds of ∂P with $Q_1 \cap Q_2 = \partial Q_1 = \partial Q_2$. Let (P', Q'_1, Q'_2) be another triple, and $\varphi: Q_2 \to Q'_2$ a diffeomorphism. Then we obtain a compact smooth manifold $P \cup_{\varphi} P'$ with boundary $\partial (P \cup_{\varphi} P') = Q_1 \cup_{\varphi \mid \partial Q_1} Q'_1$ after an appropriate smoothing on the boundary. Given another diffeomorphism $\psi: Q_2 \to Q'_2$, we obtain a second manifold with boundary. In the same way as above, we define an SK-equivalence relation on $\mathcal{M}_m(\partial)$, the set of m-dimensional compact smooth manifolds with boundary, and obtain the SK-group $SK_m(\partial)$. In Koshikawa [6] the notation SK_m^0 (pt, pt) is used instead of $SK_m(\partial)$.

We denote by $(M, \partial M)$ a compact manifold M with boundary. If $(M, \partial M) \in \mathcal{M}_m(\partial)$, then its double $DM = M \cup_{\mathrm{id}} M \in \mathcal{M}_m$ is defined where id: $\partial M \to \partial M$ is the identity. Since ∂M is considered as an (m-1)-dimensional submanifold of DM, a pair $(DM, \partial M)$ is in $\mathcal{M}_{m,m-1}$. The first purpose of this paper is to study the relation between $\mathcal{M}_m(\partial)$ and $\mathcal{M}_{m,m-1}$ through the SK-groups and the construction of the double.

We also obtain the equivariant SK-group SK_m^G of m-dimensional closed smooth G-manifolds where G is a compact Lie group. See Karras et al. [4] and Kosniowski [7]. See also Hara [1] and Hara and Koshikawa [2] for the equivariant SK-group of compact smooth G-manifolds with boundary. Let \mathcal{M}_m^G be the set of m-dimensional closed smooth G-manifolds. As in the non-equivariant case, we define an equivariant SK-equivalence relation on \mathcal{M}_m^G , and obtain a semigroup \mathcal{M}_m^G/SK . SK_m^G is the Grothendieck group of \mathcal{M}_m^G/SK . In this paper we only consider the case of $G = \mathbb{Z}_2$, the cyclic group of order two. For $(M, \partial M) \in \mathcal{M}_m(\partial)$, DM admits a smooth \mathbb{Z}_2 -action which interchanges the two copies of M in DM. The second purpose of this paper is to study the relation between $\mathcal{M}_m(\partial)$ and $\mathcal{M}_m^{\mathbb{Z}_2}$.

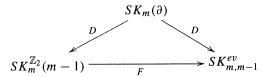
Let $\mathcal{M}_{m,m-1}^{ev}$ be the subset of $\mathcal{M}_{m,m-1}$ consisting of $(M,N) \in \mathcal{M}_{m,m-1}$ with $\chi(M) \equiv \chi(N) \mod 2$. Note that at least one of $\chi(M)$ and $\chi(N)$ is zero since an odd-dimensional closed manifold has zero as its Euler characteristic. We obtain the SK-group $SK_{m,m-1}^{ev}$ as the Grothendieck group of a semigroup $\mathcal{M}_{m,m-1}^{ev}/SK$. For $(M,\partial M) \in \mathcal{M}_m(\partial)$, we see $\chi(DM) \equiv \chi(\partial M) \mod 2$ since $\chi(DM) = 2\chi(M) - \chi(\partial M)$. The construction of the double of $(M,\partial M) \in \mathcal{M}_m(\partial)$ leads to a homomorphism $D: SK_m(\partial) \to SK_{m,m-1}^{ev}$.

Let $\mathcal{M}_{m}^{\mathbb{Z}_{2}}(m-1)$ be the subset of $\mathcal{M}_{m}^{\mathbb{Z}_{2}}$ consisting of $M \in \mathcal{M}_{m}^{\mathbb{Z}_{2}}$ such that all components of the fixed point set $M^{\mathbb{Z}_{2}}$ of M are of dimension m-1 or empty. The SK-group $SK_{m}^{\mathbb{Z}_{2}}(m-1)$ is obtained as the Grothendieck group of $\mathcal{M}_{m}^{\mathbb{Z}_{2}}(m-1)/SK$. The construction of the double also leads to a homomorphism $D: SK_{m}(\partial) \to SK_{m}^{\mathbb{Z}_{2}}(m-1)$ since the \mathbb{Z}_{2} -action on DM has ∂M as its fixed point set.

For a compact \mathbb{Z}_2 -manifold M we see $\chi(M) \equiv \chi(M^{\mathbb{Z}_2}) \mod 2$ (see, for example, Kawakubo [3, Ch. 5]). There is a correspondence $\mathcal{M}_m^{\mathbb{Z}_2}(m-1) \to \mathcal{M}_{m,m-1}^{ev}$ which sends $M \in \mathcal{M}_m^{\mathbb{Z}_2}(m-1)$ to a pair $(M, M^{\mathbb{Z}_2}) \in \mathcal{M}_{m,m-1}^{ev}$, and this induces a homomorphism $F: SK_m^{\mathbb{Z}_2}(m-1) \to SK_{m,m-1}^{ev}$.

We will obtain the following result.

THEOREM. The following diagram is commutative



and the three homomorphisms D, D and F are isomorphisms.

1. SK-group of pairs

There are correspondences

$$\mathcal{M}_m \longrightarrow \mathcal{M}_{m,n}, \quad M \longmapsto (M,\emptyset),$$

 $\mathcal{M}_{m,n} \longrightarrow \mathcal{M}_n, \quad (M,N) \longmapsto N.$

These induce homomorphisms between SK-groups,

$$i: SK_m \to SK_{m,n}$$
 and $j: SK_{m,n} \to SK_n$.

From Komiya [5, Theorem 1.1] we have a split short exact sequence

$$0 \longrightarrow SK_m \stackrel{i}{\longrightarrow} SK_{m,n} \stackrel{j}{\longrightarrow} SK_n \longrightarrow 0.$$

324 K. Komiya

Karras *et al.* [4, Theorem 1.3a] shows that if m is odd then $SK_m = 0$, and if m is even then SK_m is isomorphic to the group \mathbb{Z} of integers by the isomorphism which sends $[M] \in SK_m$ to $\chi(M) \in \mathbb{Z}$, where [M] denotes the class represented by $M \in \mathcal{M}_m$. When n = m - 1, these facts imply that $i : SK_m \to SK_{m,m-1}$ is an isomorphism if m is even, and that $j : SK_{m,m-1} \to SK_{m-1}$ is an isomorphism if m is odd.

To prove the theorem, we need to define a certain subgroup of SK_m . Let \mathcal{M}_m^{ev} be the subset of \mathcal{M}_m consisting of $M \in \mathcal{M}_m$ with $\chi(M) \equiv 0 \mod 2$, and SK_m^{ev} be the Grothendieck group of \mathcal{M}_m^{ev}/SK . In the same way as above, there are homomorphisms $i: SK_m^{ev} \to SK_{m,n}^{ev}$ and $j: SK_{m,n}^{ev} \to SK_n^{ev}$, and we obtain the following.

Proposition 1.

$$SK_{m,m-1}^{ev} \cong \begin{cases} SK_m^{ev}, & m \text{ is even,} \\ SK_{m-1}^{ev}, & m \text{ is odd.} \end{cases}$$

In fact, $i: SK_m^{ev} \to SK_{m,m-1}^{ev}$ is an isomorphism if m is even, and $j: SK_{m,m-1}^{ev} \to SK_{m-1}^{ev}$ is an isomorphism if m is odd.

2. SK-group of manifolds with boundary

The correspondences

$$\mathcal{M}_m \longrightarrow \mathcal{M}_m(\partial), \quad M \longmapsto (M, \emptyset),$$

$$\mathcal{M}_m(\partial) \longrightarrow \mathcal{M}_{m-1}^{ev}, \quad (M, \partial M) \longmapsto \partial M$$

induce homomorphisms

$$i_b: SK_m \to SK_m(\partial)$$
 and $\partial: SK_m(\partial) \to SK_{m-1}^{ev}$.

PROPOSITION 2.

$$SK_m(\partial) \cong egin{cases} SK_m, & m \ is \ even, \\ SK_{m-1}^{ev}, & m \ is \ odd. \end{cases}$$

In fact, $i_b: SK_m \to SK_m(\partial)$ is an isomorphism if m is even, and $\partial: SK_m(\partial) \to SK_{m-1}^{ev}$ is an isomorphism if m is odd.

Proof. Koshikawa [6, Theorem 1.2] implies that $[M_1, \partial M_1] = [M_2, \partial M_2]$ in $SK_m(\partial)$ if and only if $\chi(M_1) = \chi(M_2)$. Using this fact, we first show that i_b is an isomorphism. Assume m is even. The construction of the double of $(M, \partial M) \in \mathcal{M}_m(\partial)$ induces a homomorphism $D: SK_m(\partial) \to SK_m$ whose image corresponds

to $2\mathbb{Z}$ under the isomorphism $SK_m \cong \mathbb{Z}$. Hence there is a homomorphism $D': SK_m(\partial) \to SK_m$ such that $2D' = D: SK_m(\partial) \to SK_m$. We easily see that $D' \circ i_b = \operatorname{id}$. To show $i_b \circ D' = \operatorname{id}$, for $(M, \partial M) \in \mathcal{M}_m(\partial)$ let $N \in \mathcal{M}_m$ be a manifold with $\chi(N) = \chi(DM)/2(=\chi(M)$ since m is even). Then $i_b \circ D'([M, \partial M]) = [N, \emptyset] = [M, \partial M]$. Hence $i_b \circ D' = \operatorname{id}$.

We now turn to the proof for ∂ to be an isomorphism if m is odd. Consider the correspondence

$$\mathcal{M}_{m-1}^{ev} \longrightarrow \mathcal{M}_m(\partial), \quad N \longmapsto (I \times N', 2N'),$$

where $N' \in \mathcal{M}_{m-1}$ is a manifold with $\chi(N') = \chi(N)/2$, I is the unit interval [0, 1] and $2N' = \partial(I \times N') = N' \cup N'$. This induces a homomorphism $q : SK_{m-1}^{ev} \to SK_m(\partial)$. We easily see $\partial \circ q = \operatorname{id}$. To show $q \circ \partial = \operatorname{id}$, for $(M, \partial M) \in \mathcal{M}_m(\partial)$ let $N'' \in \mathcal{M}_{m-1}$ be a manifold with $\chi(N'') = \chi(\partial M)/2$. Note that $\chi(\partial M) = 2\chi(M)$ if m is odd. We see $q \circ \partial([M, \partial M]) = [I \times N'', 2N''] = [M, \partial M]$. Hence $q \circ \partial = \operatorname{id}$. \square

3. SK-group of \mathbb{Z}_2 -manifolds

Consider the correspondence

$$\mathcal{M}_m^{ev} \longrightarrow \mathcal{M}_m^{\mathbb{Z}_2}(m-1), \quad M \longmapsto 2M'.$$

Here $M' \in \mathcal{M}_m$ is a manifold with $\chi(M') = \chi(M)/2$, and 2M' is given a free \mathbb{Z}_2 -action which interchanges the components. This correspondence induces a homomorphism $i_e: SK_m^{ev} \to SK_m^{\mathbb{Z}_2}(m-1)$, and the correspondence

$$\mathcal{M}_m^{\mathbb{Z}_2}(m-1) \longrightarrow \mathcal{M}_{m-1}^{ev}, \quad M \longmapsto M^{\mathbb{Z}_2}$$

induces a homomorphism $\eta: SK_m^{\mathbb{Z}_2}(m-1) \to SK_{m-1}^{ev}$.

Proposition 3.

$$SK_m^{\mathbb{Z}_2}(m-1) \cong egin{cases} SK_m^{ev}, & m \text{ is even,} \\ SK_{m-1}^{ev}, & m \text{ is odd.} \end{cases}$$

In fact, $i_e: SK_m^{ev} \to SK_m^{\mathbb{Z}_2}(m-1)$ is an isomorphism if m is even, and $\eta: SK_m^{\mathbb{Z}_2}(m-1) \to SK_{m-1}^{ev}$ is an isomorphism if m is odd.

To prove Proposition 3, we need one more SK-group, $SK_m^{\mathbb{Z}_2}$ (free). Let $\mathcal{M}_m^{\mathbb{Z}_2}$ (free) be the subset of $\mathcal{M}_m^{\mathbb{Z}_2}$ consisting of $M \in \mathcal{M}_m^{\mathbb{Z}_2}$ such that the \mathbb{Z}_2 -action on M is fixed point free, i.e. $M^{\mathbb{Z}_2} = \emptyset$. $\mathcal{M}_m^{\mathbb{Z}_2}$ (free) is also a subset of $\mathcal{M}_m^{\mathbb{Z}_2}(m-1)$.

326 K. Komiya

 $SK_m^{\mathbb{Z}_2}$ (free) is the Grothendieck group of $\mathcal{M}_m^{\mathbb{Z}_2}$ (free)/SK. There is a canonical homomorphism $SK_m^{\mathbb{Z}_2}$ (free) $\to SK_m^{\mathbb{Z}_2}$ (m-1). As is shown in Kosniowski [7, 5.3], if m is even then $SK_m^{\mathbb{Z}_2}$ (free) is isomorphic to \mathbb{Z} by the isomorphism which sends $[M] \in SK_m^{\mathbb{Z}_2}$ (free) to $\chi(M/\mathbb{Z}_2) \in \mathbb{Z}$ where M/\mathbb{Z}_2 is the orbit space of M, and if m is odd then $SK_m^{\mathbb{Z}_2}$ (free) = 0.

Proof of Proposition 3. Assume m is even. For $M \in \mathcal{M}_m^{\mathbb{Z}_2}(m-1)$ let T be a \mathbb{Z}_2 -invariant open tubular neighborhood of $M^{\mathbb{Z}_2}$ in M. Then the Euler characteristic of the double D(M-T) of M-T is divisible by 4, since $\chi(D(M-T))=2\chi(M-T)$ and $\chi(M-T)$ is even since the \mathbb{Z}_2 -action on M-T is free. Hence there is a manifold $M' \in \mathcal{M}_m^{ev}$ with $\chi(M') = \chi(D(M-T))/2$. The correspondence $M \mapsto M'$ induces a homomorphism $E: SK_m^{\mathbb{Z}_2}(m-1) \to SK_m^{ev}$. $E \circ i_e = \mathrm{id}$ is easily shown.

To show $i_e \circ E = id$, we first recall some known results from Kosniowski [7]. In Kosniowski [7, 2.2], $SK_m^G[H; U]$ is defined as the SK-group of G-vector bundles of type [H; U] over closed G-manifolds. When $G = \mathbb{Z}_2$ and $\sigma = [\mathbb{Z}_2; \tilde{\mathbb{R}}]$, there is a homomorphism $\nu: SK_m^{\mathbb{Z}_2}(m-1) \to SK_m^{\mathbb{Z}_2}[\sigma]$ which sends $[M] \in SK_m^{\mathbb{Z}_2}(m-1)$ to the SK-equivalence class of the normal bundle $\nu(M)$ of $M^{\mathbb{Z}_2}$ in M. $SK_m^{\mathbb{Z}_2}[\sigma]$ is isomorphic to SK_{m-1} by the isomorphism which sends a bundle to its base space (see Kosniowski [7, 5.3.4]). Hence we see for $M \in \mathcal{M}_m^{\mathbb{Z}_2}(m-1)$ that $[\nu(M)] = 0$ in $SK_m^{\mathbb{Z}_2}[\sigma](=0$ since m is even). We also see that the bordism class of $\nu(M)$ in the bordism group of bundles is zero, because the line bundle associated to the double covering $M-T\to M-T/\mathbb{Z}_2$ gives a bordism between $\nu(M)$ and the zero, where T is a \mathbb{Z}_2 -invariant open tubular neighborhood of $M^{\mathbb{Z}_2}$ in M. From Kosniowski [7, Corollary 2.7.2] we see $[M] = [N_1] - [N_2]$ in $SK_m^{\mathbb{Z}_2}(m-1)$ for some $N_1, N_2 \in \mathcal{M}_m^{\mathbb{Z}_2}$ (free). Since $i_e \circ E([M]) = [2N_1'] - [2N_2']$ for some $N_i \in \mathcal{M}_m$ with $\chi(N_i') = \chi(N_i)/2$ for i = 1, 2, we must show $[2N_1'] - [2N_2'] = [N_1] - [N_2]$ in $SK_m^{\mathbb{Z}_2}(m-1)$. We easily see this equality in $SK_m^{\mathbb{Z}_2}$ (free) and hence in $SK_m^{\mathbb{Z}_2}(m-1)$. This completes the proof for i_e to be an isomorphism.

We now turn to the proof for η . Assume m is odd. The inverse homomorphism $r: SK_{m-1}^{ev} \to SK_m^{\mathbb{Z}_2}(m-1)$ of η is constructed as follows. For $[N] \in SK_{m-1}^{ev}$ let $N' \in \mathcal{M}_{m-1}$ be a manifold with $\chi(N') = \chi(N)/2$. Consider a \mathbb{Z}_2 -manifold $N' \times \tilde{S}^1 \in \mathcal{M}_m^{\mathbb{Z}_2}(m-1)$, where N' has a trivial \mathbb{Z}_2 -action and \tilde{S}^1 is the one-dimensional sphere with a \mathbb{Z}_2 -action whose fixed point set consists of two points. Define r to be the homomorphism which sends $[N] \in SK_{m-1}^{ev}$ to $[N' \times \tilde{S}^1] \in SK_m^{\mathbb{Z}_2}(m-1)$. Then $\eta \circ r = \mathrm{id}$ is easily shown.

For $[M] \in SK_m^{\mathbb{Z}_2}(m-1)$, $r \circ \eta([M]) = [N'' \times \tilde{S}^1]$ where $N'' \in \mathcal{M}_{m-1}$ is a manifold with $\chi(N'') = \chi(M^{\mathbb{Z}_2})/2$. To show $r \circ \eta = \mathrm{id}$, we must show that

 $[M] = [N'' \times \tilde{S}^1]$ in $SK_m^{\mathbb{Z}_2}(m-1)$. Note that $\eta([M]) = \eta([N'' \times \tilde{S}^1])$. There is a commutative diagram

$$SK_{m}^{\mathbb{Z}_{2}}(m-1) \xrightarrow{\eta} SK_{m-1}^{ev}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \cap$$

$$SK_{m}^{\mathbb{Z}_{2}}[\sigma] \xrightarrow{\cong} SK_{m-1}.$$

From this we have $[\nu(M)] = [\nu(N'' \times \tilde{S}^1)]$ in $SK_m^{\mathbb{Z}_2}[\sigma]$, where $\nu(\)$ denotes the normal bundle of the fixed point set. As in the proof for i_e , the bordism classes of $\nu(M)$ and $\nu(N'' \times \tilde{S}^1)$ are both zero in the bordism group of bundles. Hence Kosniowski [7, Corollary 2.7.2] implies that $[M] - [N'' \times \tilde{S}^1]$ is contained in the image of $SK_m^{\mathbb{Z}_2}(\text{free}) \to SK_m^{\mathbb{Z}_2}(m-1)$. Hence we have $[M] = [N'' \times \tilde{S}^1]$ since m is odd and $SK_m^{\mathbb{Z}_2}(\text{free}) = 0$. This completes the proof.

4. Proof of the theorem

It is straightforward that the diagram in the theorem is commutative, and it is shown as follows that $D: SK_m(\partial) \to SK_{m,m-1}^{ev}$ is an isomorphism. There is a commutative diagram

$$\begin{array}{ccc} SK_m & \xrightarrow{i_b} & SK_m(\partial) \\ \downarrow & & \downarrow D \\ SK_m^{ev} & \xrightarrow{i} & SK_{m,m-1}^{ev}, \end{array}$$

where 2 is the homomorphism induced from the correspondence $M\mapsto 2M$. The homomorphism 2 is an isomorphism. When m is even, i_b and i are isomorphisms by Propositions 1 and 2. Hence D is an isomorphism if m is even. In a similar way, using Propositions 1, 2 and 3, we can show that the homomorphisms $D: SK_m(\partial) \to SK_{m,m-1}^{ev}$, $D: SK_m(\partial) \to SK_m^{ev}(m-1)$ and $F: SK_m^{ev}(m-1) \to SK_{m,m-1}^{ev}$ are isomorphisms for any m.

REFERENCES

[1] T. Hara. Equivariant SK invariants on \mathbb{Z}_{2^r} manifolds with boundary. Kyushu J. Math. 53 (1999), 17–36.

K. Komiya

- [2] T. Hara and H. Koshikawa. Equivariant SK group of manifolds with boundary. Kyushu J. Math. 49 (1995), 455–461.
- [3] K. Kawakubo. The Theory of Transformation Groups. Oxford University Press, Oxford, 1991.
- [4] U. Karras, M. Kreck, W. D. Neumann and E. Ossa. Cutting and Pasting of Manifolds; SK-Groups. Publish or Perish, Boston, 1973.
- [5] K. Komiya. Cutting and pasting of pairs. Osaka J. Math. 23 (1986), 577–584.
- [6] H. Koshikawa. SK groups of manifolds with boundary. Kyushu J. Math. 49 (1995), 47–57.
- [7] C. Kosniowski. Actions of Finite Abelian Groups. Pitman, London, 1978.

Katsuhiro Komiya Department of Mathematics Yamaguchi University Yamaguchi 753-8512 Japan