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INTRODUCTION

IN THIS paper we show how the well known models for loop spaces of Boardman and
Vogt[3], James[5], May[9], and Segal{10], can be viewed in a natural way as ““Thom
spaces for immersions”. Thus homotopy classes of maps into these models cor-
respond to bordism classes of immersed manifolds with certain extra structures. By
considering the multiple points of such immersions we obtain operations in homotopy
theory. Special cases are the generalised and higher Hopf invariants of James 6], the
Hopf ladder of Boardman and Steer[2], and the cohomotopy operations of Snaith[12],
and Segal[11].

In §1 we establish the connection between models of loop spaces and structured
immersions. In §2 we describe the process of ‘“‘taking k-tuple points™ in what might be
termed an ‘“‘external Hopf invariant”, and set out its properties in Theorem 2.2. We
then get the Segal and Snaith operations by composing with a suitable “forgetful”
function. A similar procedure is followed in §3 where the James operations are
described.

We are grateful to the referee for many helpful comments.

§1. IMMERSIONS AND COMBINATORIAL MODELS OF LOOP SPACES

We work in the category of compactly generated Hausdorff spaces[13] with
non-degenerate base points, denoted *. A frequent example of such a space will be the
Thom space T(£) of a vector bundle £ We also let ¢ denote the total space of the
vector bundle. The n-fold suspension S$"X, of a space X is X A (I"/3I"), and
X™(resp. A*X) denotes the k-fold Cartesian (resp. smash) product of X with itself.
Then, for example, A*T(£) = T(£*!). Define an element of X,,,k (resp. Xnx) to be an
ordered ( (resp. unordered) subset of R™, 0<m <, of k elements each with a label in
X. Thus, X.x is an open subspace of (R™ X X )”‘] and X, is 1ts quotient under the
action of the symmetric group 3. In particular, Xm ' =X, =R"xX. If C denotes a
one-point space, note that the “configuration spaces**

Cor ={(r1,. ... 0| ER™, ri# rif i# j}

and C,, have natural smooth structures.
Forgetting points labelled *, we get the topological quotient C(X) = (IIX,,,k)/ ~.

See [10] for details. A point of C,(X) is uniquely represented by a functxon (p A—-X, ‘

where A is a finite subset of R™ and ¢(A) C X\ {*}. In particular, Cy, (8= Hka is

the space of finite subsets of R™. C,(X) is filtered by the subspaces FkC (X)=
{¢ € Cu(X): |[dome|=<k}.

Finally define a space C,‘(X) as follows. Consider finite sets ® of functions with
distinct domains, so that if ¢ E® then ¢: A— X, where A C R" and |A|=k. We
identify two such sets ® and @' if &' C P and for each ¢ € P\®’ there is some
a € dome so that ¢(a) = *. The resulting set Cy ¥(X) of equivalence classes is topolo-

gised as a quotient of a subspace of II (Xnx)'/Z;. Note that a point in C,*(X) is
k=0

uniquely represented by a @ consisting of functions into X\ {#}; we will usually
represent elements of C,"(X) in this way, and it will be convenient to identify C, K (X)
with this set of unique representatives. Note also that C'(X) = Cn(X).
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284 U. KOSCHORKE and B. SANDERSON

Now let V be a manifold without boundary (all manifolds in this paper will be
assumed smooth), and let ¢ be a vector bundle over some space B. We will consider
“decompressible’ immersions into V, with normal bundles modelled on £ or its
“twisted power” £, over B, More precisely let (M,g,g) be a triple determined by a
commutative diagram,

g
vV—> §m.k

{ l

V*—-M——-’Bmk
\L

where M is a closed manifold, unlabelled maps are the obvious ones, g is a bundle
map with domain the normal bundle v of the immersion g,:M -V, and g=
(g1,82): M = V X C,y is an embedding. Define $,.*(V,£) to be the bordism set of such
triples (bordisms over V X I). We will be mainly concerned with the case k =1, i.e.
with bordism of embeddings in V x R™ which project to immersions in V, with normal
bundles expressed as pullbacks of £. We will denote the resulting set $,'(V,£) simply
by £.(V, £).

Examples. (i) If £ is the trivial bundle € over a one point space B of dimension
n>0, then #,(V, §) is the set of bordism classes of embeddings g: M > V XR"
which project to codim. n framed immersions in V. (ii) If £ =€’ (over a one point
space), m = », then §,(V, &) corresponds to the set of isomorphism classes of finite
coverings of the closed components of V. (iii) If £ = y" is the universal n-vector
bundle and m = 0 (resp. m = «), then #,(V, £) may be identified with bordism classes of
codim. n embeddings (resp. immersions) in V.

Let [,] denote based homotopy classes, and let V. denote the one-point
compactification of V.

THEOREM 1.1. There is a bijection
) B: I (V)= Ve, C(T(ONN.

Proof. Let [M,g,g1 € $,5(V,£). Without loss of generality assume g, extended to an
immersion g}:v— V so that (g}, g): v— V X C,, is an embedding, where g; is the
composition v = &,k - Cmi, and further assume that for each » € V (g))7'(v) is finite.
Define f: V.- C.X(T(£)) as follows. We have &, C T(£)mi and we let f(v) be the set
of functions {g(x).€ T(E)mx: gi(x) = v}. Now set 3[M,g,g] = [f]. To describe an inverse
a for B, begin with f: V. —>C ~(T(£)), and consider VCcvx C.x defined by V=
{(v.dome): @€ f(u)} Then V is a manifold with manifold structure pulled back from
V. Define f: V—->§,,.k by f(v, domg)= @. After a suitable approxnmanon we may
assume that V is a smooth submanifold of V x C.x and that f is transverse to the
zero section B, of &qp Let M = f“'B,,.,k, let g be the inclusion M C VCVx Congor
and let g: v - £, be the “restriction” of f, where v is the normal bundle of M in V,
which may be identified with the normal bundle of g,. Then set a[f] =[M.,g.g]. As in
the classical Pontrjagin~-Thom construction it is not hard to see that a« and 8 are well
defined and inverse of one another.

Let D, (X) be the space of finite sets of disjoint *little cubes™ in R™, labelled in X.
There is a map q: D,(X)->Q"S"(X) which is a weak homotopy equivalence
provided X is connected, [10, p. 15]. We show in the appendix that the map a:
D.(X)- C,(X), which assigns to a set of cubes their centres, is a homotopy
equivalence. Composing q with a homotopy inverse for a gives a map i: C,(X)—>
Q"S™(X). On the other hand, there is a natural map ¢: $,(V, £)> $(V +R", EP€e™)
which forgets that g, is an immersion.
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THEOREM 1.2. The following diagram commutes, and in case dim £>0 each
function is a bijection.

Fn(V.E) —> Fo(VXR™, E@€™)
s l8
[V Cn(T(£)] —> [V S™(T(E)] = [S"V.,S™(T(&)]

Proof. f € i.B[M,g.g], where f:S™V,— S"T(£), may be described as follows. Let
gi: v—V and g3: v—>R™ be as in the proof of 1.1, and let g1 be the composition
v &, —> € Further assume a tubular neighbourhood of (g{x g} v in VXR™ is
trivialised in the obvious way. Then f is the Pontrjagin-Thom construction S"V.—>
T(v®e€™) composed with S™T(g): $7”T(v)> S™"T(&). Clearly f also represents
B[ M,g.g]. Finally, recall that 8 is an isomorphism by 1.1, and i, is an isomorphism if
X is connected (i.e. dim¢ > 0).

Remark 1.3. We have used results from homotopy theory to show that, up to
bordism, embeddings can be compressed into immersions in a unique way, i.e. ¢ is
bijective (in particular in the notation of {7] ™ = $"*™ n > 0). This geometric result
is not at all obvious in general. However, for large m the bijectivity of ¢+ (and hence
of i.) follows directly from immersion theory. Thus we have a simple geometric proof
for the well known weak equivalence of (IIO (EX, x X*)]X,)] ~ with Q"S"X (see

s=

e.g. 4.10 and 5.4 of [1]) at least if X is a (connected) Thom space. In fact, by using the
theory of [4] chapter VIII, one could extend the geometric proof to cover the case
when X is a connected CW-complex.

Theorem 1.1 may be sharpened (in case m > 0) by introducing a monoid structure
in the relevant sets. A choice of (smooth) embedding j: R™II R™ - R™ determines an
obvious addition C,)(X)x C,*(X)- C,*(X). The corresponding monoid structure on
F(V,£) may be very crudely described as ‘disjoint union’ of immersions.

In the next section we will also need a multiplication C,*(X) X C,/(X) - C¥'(X).
This is defined by (@, @)= ® ={(oUe)i™": ¢ € ¢;}. The corresponding multi-
plication $,4(V,£) X $,/(V,£)—» #5(V,£) may be described as follows:

(IM'g'.g"], IM"g".gN|- [M,g.2],
where we assume g is transverse to g, and therefore
M ={(x,y) € M'xXM": gi(x)=gi(y)}

is a submanifold of M'x M”, and g| (or g) determines an immersion g,: M - V. Then

for the normal bundle of g, we have » = v’ x »"|, and (g,g) may be constructed, using j,

from the diagram
: v v X v o € X €y = Enis

! l i d

M—>M' X M” > By X Bui~ Bmicn (1.4)

§2. MULTIPLE POINTS OF IMMERSIONS AND COHOMOTOPY OPERATIONS
In this section we will define operations

llbmk: ym(v’g)éjmk(v’gh k = 112,39 sty

which arise from an analysis of self-intersections of immersions. We then compose
with a function #,*(V,£)> $(V.&.4) to get an operation 8,%: £,(V,£)—> FV,Eni),
which is the geometric interpretation of a map Cp(X) - Co FiCpn(X ) Fi_,C,(X)) when
X is a Thom space, and which is briefly described as follows. To an immersion g;:
M-V with normal bundle classified by ¢ we associate an immersion g M(k)-> V,
of the k-tuple point manifold of g;, with normal bundle classified by &mi and the
definition is completed by choosing an embedding of M(k) in R”. The details follow.
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Consider a class [M.g.g] € $.(V.£). Thus we have an immersion g: M-V
decompressed by g, to an embedding in V XR" and equipped with a bundle map g
v-> £ over a map M - B. ’

By [8] we may assume that all multiple self-intersections of g, are transverse. We
say simply that g, is self-transverse. In particular given k > 1 the set

M) ={(x....x) € M gy(x)=...=g(x). and x;# x; if i#j} forms a closed
submanifold of M'" on which the symmetric group X, acts freely. We call M(k) =
M(k)/Z, the k-tuple point manifold. Let gi*: M(k)> V be the immersion defined by
gf Ixi.... xl=gix)=...=gix). The immersion g% M(k)y-> M(k)-> V has
normal bundle #(k) say. There is the diagram of bundle maps

ﬁ(k)__)vx...xy_)gx...xg
ol ! !
MK)>MXx:--xM->BX---XB,

and we have gz“: v(k)—> Mk)— C‘,,,_k, where M(k)—> C,.. is given by (x1,...,x)—
(gAX1). . ... gAx)). Putting together the bundle map #(k)— &% and g, and factoring
by the action of X, gives g*: v(g:*) > £ns Set

UM g.gl=[Mik).g" g )

Remark 2.1. Define ¢: Cn(X)— C.H{(X) by ¢' € y(¢) whenever ¢’ is a restriction
of ¢ to a subset of k elements. Then with X = T(£) ¢ induces .

Let S: $.X(V.£)— $4.(V.£) be the ‘suspension’ induced by the inclusion R" C
Rm-f—l.

THEOREM 2.2. The family of operations
Yt Fu(V.E) > FA(V.E) k=12.....

satisfies the following properties:

(a) (identity) ¢, = id.

(b) (normalisation) if y € $.(V.£) can be represented by (M.g.g) where g, is an
embedding, then " (y) =0 for k> 1.

(c) (Cartan formula).

Sty +y) = Stk () + SWE (D g (YN + ..+ S (¥

Proof. (a) and (b) are immediate from the definition of ¥.". For the Cartan formula,
let y =[M,g.2l.y'=[M’g'.g']l, and assume that the immersion g, I gi: MUM' > Vis
self-transverse. The k-tuple point manifold then has a component M(i.j) coming from
the intersection of g, (i): M(i)— V with gi(j): M'(i)— V for each i,j, so that i +j=k.
These components may be linked in V X G, but not in V X Cpaix; just push them out
first to different x,..; — levels and then into appropriate x; — regions in R™*".

Define a function x.*: $.5(V, & $AV, &) by forgetting fi: specifically,
k(Mg =[Mg' g where g'=(g.8%), & = (8.8)): v= & XR”, and gi: M>R" is
any embedding. k.. is compatible with addition and with the multiplication

FA Vi) X Fo V. bms) = FAV Einics1)s

defined from transverse intersection along the lines of (1.4).
The composed operations

O = K - s F(V.£) = Ful Vibni), k=12,
satisfy analogous properties to these given for ¢ in Theorem 2.2; no suspension S is
needed in the Cartan formula here, since previously S was used only to correct g».
Remark 2.3. There is a map
ki Co¥(X) > CA T (€mi)) = CA FiConl Fi- (Crn( X))
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corresponding to k. Indeed, « is ip

R”x F(C(X) F_ (Cn(X)), ¢ = (e(dome,p(p)), where e: C,

and p: Xm‘keE(C,,.(X)/E‘_,C,,,(X) is the obvious q

duced by the map X,,—
+—>R" is any embedding
uotient map. The composition

0: Cm(x)-’ ka(X)—") CQ(F‘ka(X)’E(—ICm(X)),

corresponding to the operation 6, can be de

scribed as follows. Given ¢ € C,(X),

0(¢) has domain {e(A) ¢ RA C dom g, |A| =k}, and 0(¢) (e(A)) = p(p|A).

6 is adjoint (after using the equivalence of D, with Q°S® and wit

map defined by Snaith{12].

By taking £=¢° over a point, we recover th
embedded in V x R™) of Segal[11, p. 108], induced

h C.) to the stable

€ operations (on covering spaces
by ¢: C,.(5% - Ca(Cr.0); moreover

our Cartan formula corresponds to formula (b) in Theorem 4 of [11).

If V is Euclidean space and £ is a trivial bu
8.’ is just the “double-point Hopf invariant”

corresponds to the generalised Hopf invariant
in [7].

ndle over a point, then the operation
FH,, of [7]. In the meta-stable range, it
of Whitehead and James, as was shown

§4. THE JAMES-HOPF INVARIANT

In this section we compose a modification ,* of

¥* with a forgetful map «* to get

an operation 8*: #,(V,£)- g ( V.£%). We then show that g corresponds to the higher
James-Hopf invariant[6]. We follow the conventions of [2].

6" is briefly described by, 0"[M,g,§]=[M(k),g(k),g(k)], where g(k), is the im-

mersion of the k-tuple point manifold M(k) and

g(k), is chosen to preserve the

lexicographic order on g(k);'(v), for each v € V. Details follow.

An element of C\« is uniquely represented by (¢,

,tz,...,tk) where t|>t2>... > b,

therefore C,, may be ordered (lexicographically from the left). Now let C*(X) be

the space of finite sequences of functions ¢ = (@0 ..

-+¢s), so that in particular

Ci*(X) is a quotient of C*(X). Then ¥: Ci(X)- C*(X) factors through C,*(X): use
the order on Ci« to order functions by their domains. Correspondingly we have d*:
j.(V,f)»j,"(V,g), where an element of j.“(v,g) is represented by (M,g,z.0) where
[Mgg]¢ y,"(v,g) and for each v € V o, is a total order on g;'(v) depending continu-
ously on v, i.e. for any two paths ¢, ¢’ in M with 81C = gic" we have: ¢(1)< c'() if

c(0) < c'(0).

Note that the order on R' induces a homeomorphism Y,, = C,, x Y™ for any Y.
We can now describe «*: FHV.E) - g, (Vg4 Corresponding to [M,g.g,0] there is a

diagram

v Ci x ¢t

l l

4] (22.83)
Ve M—— Cix X B!

!

[3]

To get K"[M,g,g’,o], replace g, by any map g;: M - R which satisfies the following

condition. For each v € V the order on gi'(v) induced b

R coincides with the order O,. We must show that
shortly. First recall the infinite reduced product Y,
represented by a word y,+... + Yi. where no y;

so that hy=id. and hy(u7'[0.1)) = *. Then there is
whose adjoint W: Y_x [ - Y A (l/3]) is defined by

W(yl +...+ ykvt) =[yi’(tak i

for oo <1t =< giloy, where gi=u(y)+... + u(y;) f

Recall that we have maps q: D(Y)->QSY and
the modification of D,(Y) in whic
Then the inclusion D.(Y) C D, (Y)
q' respectively.

y the embedding gi|: gi'(v)—
such a g} exists. We will do this
of [S]. A point of Y, is uniquely

= *. The nondegeneracy of the base
point means that there is a map u:Y > R,', with 47'(0)

=*and a homotopy h,: ¥ —» Y
a cononical map w: Y,-QSY

i—I)/u(yi)]

orl<sj<k and oo =0.
a: D(Y)>C\(Y). Let D;(Y) be

h cubes are allowed to meet in their boundaries.
is a homotopy equivalence, and «a, q extend to o',
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LEMMa 3.1. There is a homotopy w,: Yu—>QSY of w = w,, and a map I": Yo DY)
so that q¢' I'= w,.

Proof. Define I': Y.— Di(Y) by iy, +...+y)=Ilcn ...y, .. ..y, where the
cube ¢; has centre oo — u(y;)/20: and diameter u(y;)/oy, and

i if u(y;)=1
yi=R A0 201 u(y:) if1R2=su(y)<1
* ifo<u(y)<1/2

Let ,, m be projections of Y X (I/aI) on the first and second factors respectively.
Define w,: YoXI—>Y A (I/3])as follows;

772“‘): = 11'2‘&' and for a',»_,/a'k =l =< 0','/0’1(‘,
Yi s=su(y) =<l

Wy + ...+ yut) =) Ry, 2(s — u(y)ls sR=u(y)<s
* 0=<u(y)ssl2.

Now let 7: C¥(X)— (A*X). be given by

w(¢)=; et A ... A @i(th),

where ® = (¢ . .. ,p) and dom ¢; = (t}, ... .t*) with indexing agreeing with the given
order in ® and the usual order in R' respectively.

Define « = a'l'm: C,*(X)— C,(A*X). One can now see that the g3, required for the
definition of «*, exists by working around the following diagram

xk

FH V.8 - F(V. )
w8 ni g
(Ve GHT(EN]) —> [V., CUAT(E).

THEOREM 3.2. Let 8% = x*.¢* then the diagram

gk
F(V,ey—— Fi( V,fm)
B 0 Bt
[SV., ST(E) ——> [SV., SAT ()]
commutes for k =123, ..., where vy is the James—Hopf invariant, and dim £ > 0.

Proof. Recall that v, is defined by commutativity in the following diagram

[SV.. SX]—s [SV., SA*X]
IR I

[V.0QSX] [V. QSA*X]
1w 1w,

[Vm Xw] R— [Vc- (AkX)w]
&
where g is the combinatorial extension given by

glx+.. .+xs)=2x0(,, Ao A Xethy
a

the sum is ordered lexicographically and o runs over all order preserving injections
{1,...,k}={1,..., s} The proof is completed by a diagram chase, using 1.2 and 3.1,
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and by checking commutativity in the following diagram,

[V C(X)] — [V G
1l L
[chXw] —_> [ Vc,(AkX)m].

g'

Remark 3.3. There is the addition in #,(V.£*1), given by “stacking the immersions
on top of each other,” and a multiplication

F(V.E¥) x (VN> F (V.41

given by transverse intersection and coming from the obvious map (A*X). X (A'X)=—
(A**'X)o-k* commutes with these operations and one easily sees that 2.2 holds for g*
in place of ¢*. In particular we recover the Hopf ladders

=Sy k=123,... of [2].

Note that the characteristic axioms (a), (b), (c) in [2, p. 185] correspond to the
properties (a), (b), (c) in our 2.2.

Finally, there is a geometric interpretation of A, in [2] (Theorem 6.8). This
corresponds to the composition of ¥*: #(V,6)—>F*(V,£) with the isomorphism
FHV0) = F(V,£%), induced by mapping {t;,...,t}€ Cix (Where L 6> > k)
to (ty, ... 1) € Ca=RE
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APPENDIX
Recall that a point of D,,(X) (see p. 5) is uniquely represented by

[€1r o o Xt o oo K] € (D X XWNZ,,
where each & is a ‘little cube’ in R™; see [8] for details.

PROPOSITION. If X is a compactly generated Hausdorff space with a non-degenerate base point, then the
‘centre’ map a: D, (X)- C,(X) is a homotopy equivalence.

Proof. Choose u: X —[0, 1] so that ()=, and h: X X I > X so that hju"'[0, 1) =+ and hy= id. If
(ci- ... ) € Cux let @ - & be a little cube with centre ¢; and diameter ¢. Define 8: C,,(X)— D,.(X) by

B[C|, e Opy Xy e .,xk] = [qo . C"], cen @ Ek, v(xl), e U(Xk)],

where ¢ = min {1, 1/4|c; — ¢jl/w(x): 1 <i,j=<k},]-|is the product norm on R™, w(x;) = min {u(x;), 1/2} and v(x;)
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is given by
X; if ll(x,'] =1
v(x)=1{ h(x. 201 —ulx)y if 12<u(x)=<1
* if 0<u(x)=<1/2.

It is easy to check that 8 is well defined and that &8 =1 and fa = 1.




