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EQUIVARIANT STABLE HOMOTOPY AND FRAMED BORDISM 

BY 

CZES KOSNIOWSKI 

ABSTRACT. This paper gives an elementary proof of the result that 

equivariant stable homotopy is the same as equivariant framed bordism. 

1. Introduction. Let G be a fmite group. The purpose of this paper is 
to give an elementary proof of the result that equivariant stable homotopy and 
equivariant framed bordism, as G homology theories, are the same. 

The idea of the proof is as follows-full defimitions and details will be 
found inside-let coG(X, A) denote equivariant framed bordism and let 7S',G(X, A) 
denote equivariant stable homotopy. Then, for any subgroup H of G, we have 
the following commutative diagram 

oG(X, A) - ev G(X, A) 

soW,H) HrH sVY(H)(XH,AH) 

where W(H) denotes the quotient N(I)/H and N(H) is the normaliser of H in G. 
The maps t1 and 4) are the Pontrjagin-Thom maps, while T.', and *Pr denote 
taking fixed point sets with respect to H. 

To each subgroup H of G, we can associate a pair of G spaces (EF, EF'). 
If, in the commutative diagram, we replace (X, A) by (X, A) x (EF, EF') = 

(X x EF, X x EF' U A x EF) then we can show quite easily that 
(1) VW, is an isomorphism, 
(2) iH is an isomorphism, and 
(3) 'f is injective. 

It therefore follows that 1 (and 'I') is an isomorphism. 
Next, to the group G we can associate a finite sequence of G spaces 0= 

EF1 C EF2 C * * * C EFn with the following properties. 
(1) For each i, 1 is an isomorphism for the space (X, A) x (EF+ 1, EF,). 
(2) For each G homology theory there is a long exact sequence involving 

the spaces (X, A) x (EFj, EF.), (X, A) x (EFk, EF.), (X, A) x (EFk, EF,) for 
any i <j <k. 
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(3) EFn is G contractible. 
So, by induction and the five lemma, the result easily follows. 

This result, for X a point, was first announced by G. Segal [12] with a 

proof to appear in J. J. O'Connor's thesis [9]. A proof by H. Hauschild was 

given in his thesis [6]. The result for X a point also appears as a corollary in 

the thesis of R. Rubinsztein [11]. 

2. Equivariant framed bordism. Let V be a G module-i.e. a finite dimen- 

sional real vector space on which G acts linearly, and let M be a G manifold. 

If t is a G vector bundle on M, we say that t has a V trivialization if there 

exists some integer n and a G bundle isomorphism OM s.t. 

OM: t e (R x ) (V x M) (Rn x M) 

where Rn denotes the trivial n dimensional G module. A V framed G manifold 

is a G manifold M together with a G homotopy equivalence class of V trivializa- 

tions of the tangent bundle of M. 
Notice that this definition of a V framed G manifold differs from that used 

in [7] and [12] where Rn is replaced by any G module U. However we do have 

the following result which will be needed later on. 

LEMMA 2.1. If M is a free G manifold then the above two notions of V 

framing are equivalent. 

PROOF. We need only show that if 7M e (U x M) (V x M) 4 (U x4 

for some G module U then TM e (Rn x M)(V x M) e (Rn x M) for some 

n. The G vector bundles over M are in a one-to-one correspondence with the 

vector bundles over MIG (see [1]), the correspondence being given by E -- E/G, 

r*(E') - E' where ir: M -+ MIG. So 

TM/G e (U x M)/G ! (V x M)/G e (U x AI/G 

as vector bundles over MIG. Now, there exists some bundle E over MIG such 

that (U x M)/G e E is a trivial vector bundle over M/G-say Rn x MIG. Thus 

we have 

TM/G D (Rn x A)/G (V x A)/G (R x M/G 

and 

TM D (Rn x M) _ (V x M) D (Rn x M). 

Let (X, A) be a G topological pair; then a V framed bordism element of 

(X, A) is a pair (M, f) where 
(i) M is a V framed G manifold, and 
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(ii) f: M -- X is an equivariant map with f3M) C A. (aM denotes the 
boundary of M.) 

If M is a V framed G manifold, then we have a trivialization 

M: TM (Rn x ) - (V x m) (R x Al. 

Let ?M denote the trivialization 

-OM OM e (-id): TM D (RI x M) D (R xM) 

(V x M) e (RT x M) (E (R x M) 

where -id: R x M R x M is the map defined by sending (t, m) to (-t, m). 
The manifold with this framing will be denoted by -M. 

Two V framed bordism elements (M, f), (M, f) of (X, A) are said to be 
equivalent if there exists a pair (N, q) where 

(i) N is a V e R framed G manifold, 
(ii) M U (-M') C AN, the induced V framings on 3N restricted to M, 

-M' agreeing with that on M, -M' respectively, 
(iii) q: N -*X is an equivariant map with q IM-f, q I (-M') = and 

q(aN\(M U (-M'))) C A. 
The set of V framed bordism elements of (X, A) under this equivalence 

relationship forms an abelian group denoted by 4G(X A). 
Let V ., V1, . Vr be a complete set of irreducible nonisomorphic G. 

modules-with V0 being the trivial one dimensional G module, i.e. R. Thus any 
G module V may be represented uniquely as a sum V = El ni VI where the 
ni are integers (ni, > 0) and n1Vi means the direct sum of n1 copies of V,. 

An element a E RO(G)-the real representation ring of G-may be written 
as a = 1_ a1oiV where the ai are integers. Let a+ be the sum Z ot,V where 
ota > 0 and let ax be the sum Y - ok Vk where ark < 0. Then ax = a+ - a- and 
each of a+ and a- are G modules. We defme 

G (X, A)-ow+(D(ad) x X, S(d-) X X U D(C) x A) 

where D, S stand for the unit disc and unit sphere respectively. 
The set { wG,(X, A); a E RO(G)} forms a G homology theory indexed by 

elements a E RO(G). (This theory has suspension isomorphisms for trivial G 
modules R", although later on it will follow that we have suspension isomor- 
phisms for all G modules.) 

3. Equivanrant stable homotopy. We recall [7] the definition of equivar- 
iant stable homotopy. If V is a G module, let S V denote its one point compact- 
ification, in which oo is regarded as base point. We say that a G module W is 
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admissible if W contains at least one copy of each irreducible G module-for 
example, W may be Y,= V1 where the Vi are as defined in ?2. 

We define 7S CG(X, A) to be the direct limit (over k E Z) of the G homo- 
topy classes of base point preserving G maps from SkWe a+ to SkWO,-A 

(X+/A+). In symbols 

VsrG(X, A) = lim [skwe0a+;Sk Weaf A (X+/A+)]G. 

The maps 

[skW o+;skWecv.O A (X+/A+)]G 

- [s(k+ 1)WOa+. Sk+1)wa- A (X+/A+)] 

are given by suspending with SW. 
This definition is independent of the choice of W-so long as W contains 

at least one copy of each irreducible G module-see [71. 
The set {7rSG(X, A); a E RO(G)} forms a G homology theory and has 

suspension isomorphisms for all G modules I, i.e. 

rsG (X, A) - rsG v(D() x X. S(() x X U D() x A), 

in other words it forms a G homology theory in the sense of [71. 

4. The commutative diagram. Since 

hG(X, A) = hG+(D(ae) x X, S(e) x X U D(o) x A), 

in the case that h = X or h = tr, we shall henceforth only look at hG(X, A) 
where V is some G module. 

The aim of this section is to show the existence of the following commuta- 
tive diagram. 

coG(X, A) Nov--- G(X, A) 

cow - (XH., AH) T gsP W(H)H AH) 

(a) The map '1 is given by the Pontragin-Thom construction, which we 
proceed to describe. 

Let (M, f) be a V framed bordism element of (X, A). We know that TM 
( (RW x m) (V GtRW) x M, also we may embed M in (k - n)W where k is 
some large number and W is admissible in the sense of ?3. If v(M, (k - n)W) 
denotes the normal bundle of M in (k - n)W then we have the following bundle 
isomorphisms: 
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TM e v(M, (k - n)W)_ (k - n)W x M, 

(V x M) (Rn x A) 0 v(M, (k -n)W) e (R' x M) D ((k -n)W x M) 

so 

v(M, (k - n)W E Rn 9 V') n (Rn x Al) E ((k - n)W x M) 

and thus 

v(M, kW V) _kW x M. 

In other words we can embed M in kW ? V for some large k, such that 
the normal bundle is kW x M. Consider the following sequence of maps: 

SkWO V = D(kW e V)/S(kW 0 V) -> D(v)I(D(vI aM) U S(v)) 

(M x D(k4))/((aM x D(kW)) U (M x S(kW))) 

f x id 
-k - (X x D(kW))/((A x D(kW)) U (X x S(kW))). 

The composite defines an element of lr,G(X, A) and so defines the map (D. 
(b) If (M, f) is a V framed bordism element of (X, A) then MH is a VH 

framed W(H) manifold and fIMH: MH - XH is a W(H) equivariant map with 
f(aMH) C AH. We therefore define q&@(M, f) to be (MH, fIMH). 

(c) The map e) is the Pontrjagin-Thom construction as in (a). 
(d) 'I' is defined by taking fixed point sets with respect to H, i.e. 

[SkweV S X > [SkWHeVH; SkWH A XHIAH]W(H)I 

W1 is clearly admissible for the group W(H).) 
The diagram is clearly commutative. 

5. Families. Recall that a family F in G is a collection of subgroups of G 
such that 

(a) ifHEFandKCH,thenKEFand 
(b) if H E F and g E G, then gHg1 E F. 
Following Palais [10], see also Bredon [2], we define universal spaces EF 

as follows. If H is a subgroup of G, let EW(H) denote the universal W(H) space 
(i.e. a contractible free W(H) space such that EW(H) -k EW(H)/W(H) = BW(H) 
is a numerable W(H) principal bundle). Let EF be defined by 

EF = * (G XN(H) EW(H)) 

where the join is taken over a complete set of conjugacy classes of subgroups H 
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in F. (Note. The join used here is not the Palais join as in [10] and [2] -this 
is needed only if F is not a family.) 

We have, in particular, if X is a G space all of whose isotropy subgroups 
belong to F then there is a unique map (up to G homotopy) X -+ EF. 

Given a G homology theory hG we define a new G homology theory 
hG [F, F'] for pairs F' C F of families in G by 

h* [F, F'](X, A) = hG(X x EF, A x EF U X x EF'). 

This idea, in this form, comes from tom Dieck [5]. That hG [F, F'] is indeed 
a G homology theory is not too difficult to prove. For example, the long exact 
sequence 

(5.1) 
* * * - hG [F, F#] (A) -+hG [F, F'] (X) -+hG [F, F#] (X, A)** 

is obtained by looking at the associated hG theory long exact sequence of the 
triple (X x EF, X x EF' U A x EF, X x EF') and using the fact that 

hG(X x EF' U A x EF, X x EF') - hG(A x EF, A x EF) (by excision) 

- hG [F, F'] (A). 

Let F" C F' C F be families in G and consider the triple (X x EF, X x 
EF' U A x EF, X x EF" U A x EF). Looking at the associated hG theory 
long exact sequence and using the fact that 

hG(X x EF'U A x EF, X x EF" U A x EF) 

hG(X x EF', X x EF" U A x EF') (by excision) 

hG [F', F"] (X, A) 

we obtain the following long exact sequence 
* 

hG [F', F"] (X, A) hG [F, F"] (X, A) -khG [F, F'] (X, A) 

(5.2) hG I [F', F"](X, A) * * 

Note. For bordism type theories we can also define hG [F, F'] (X, A) 
along the lines of Conner and Floyd [4] and Stong [13] -the resulting theory 
agrees with the one defined above, see the paper of tom Dieck [5]. 

If F' = 0 then we write hG [F, F'] (X, A) as hG [F] (X, A), if furthermore 
F = { 1}, the family consisting of just the trivial subgroup, then we write it as 
hG [free] (X, A). 

If F = All, the family consisting of all subgroups then hG [All] (X, A) = 

hG(X, A). 
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6. Proof of main theorem. Recall that two families F' C F in G are said 

to be adjacent if F\F' only contains the conjugates of some single group, say H. 

Throughout this section let F' C F be adjacent families in G with H E 

F\F'. Returning to the commutative diagram (?4), replacing (X, A) by the pair 

(EF x X, EF x A U EF' x X) gives the following commutative diagram. 

cG4[F, F'](X, A) > gsvG[F, F'](X, A) 

cWnH) [free] (XH, AH) , rSVHW(H) [free] (XH, AH) 

(Observe that (EF x X') = EW(H) x XH and (EF x A U EF' x X)H EW(H) 
x AH.) 

THEOREM 6.1. ,, is an isomorphism. 

PROOF. We shall first define a map 

8: xwf(H) [free] (XH, AH) wG[F F'](X, A). 

Let (N, t) E wW(Hj) [free] (XH, AH), so N is a VH framed W(H) manifold and 
t: N --+ EW(fI) x XH is a W(H) equivariant map with t(aN) C EW(H) x AH. 
It follows that N must be a free W(H) manifold. Let (VH)? denote the orthogo- 

nal complement of VH in V and consider the following manifold 

Q = G XN(H) (N x D((VH)1)) 

which is easily seen to be a V framed G manifold. The isotropy subgroups in Q 
are contained in the family F, hence there is a unique (up to G homotopy) equi- 
variant map ql: Q -+ EF. (The map qH: QH -- (EF)f = EW(H) agrees with 

pt where p: EW(H) x XH - EW(H) is the projection map.) 
We thus obtain a map 

q = ql x (G XN(H) t): Q -EF x (G XN(H) XH) C EF X. 

Since 

aQ = G XN(H) (aN x D((VH)l)) U G xN(H) (N x S((VH)l)) 

it follows that q(aQ) C EF x A U EF' x X and so (Q, q) determines an element 

of ?G [F, F'] (X, A). We defime E by E8(N, 2) = (Q, q). Clearly E,,8 = id. 

The fact that eT'I, = id follows from the next two lemmas. 

LEMMA 6.2. If M is a V framed G manifold then the normal bundle of 

MH in M is trivial and is given by MH x (VH)J. 
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PROOF. TM 0 (Rn x M) = (V x M) e (Rn x M) so 

TMHe(RV x0MH) (VH xM)e(Rn XMH) 

and 

TMHV 9 W(MH, M)O (Rn XMH) (TM e (Rn x M))1M11 

((V X M) (R x M))IM" _ (V x MH) ( (R XMH) 

(VH x MH) 0 ((VH)? X MH) ae (Rn x MH), 

which implies that v(MH, Ml) is MH x (VH)? since the H representation in TMH 

e (Rn x MH) is HI trivial but not so in v(MH, M). 
The next lemma is the analogue of Lemma 5.1 in [13]. 

LEMMA 6.3. Let (M, f) and (M' f') be elements of woG [F, F'] (X, A) and 
suppose that M' is a regularly embedded submanifold of M with f IM' = f'. If 
every point of M\M' has isotropy group belonging to F' then these elements 
represent the same class in wG [F, F'I (X, A). 

PROOF. Consider M x I where I is the unit interval, with r: M x I - 

EF x X given by r(m, t) = f(m). We have 
(i) M x I is a V (D R framed G manifold, 
(ii) M U (- M') C 3(M x 1), with the induced V trivializations on aN 

restricted to M, -M' agreeing with that on M, -M' respectively, 
(iJi) r: M x I-+ EF x X is an equivariant map with 

r(a x I)\(M U (-M'))) = (aM x I U M U (-M))\(M U (-M'))) 

= r((aM x I) U (-(M\M'))) C EF x A U EF' x X. 

THEOREM 6.4. q4H is an isomorphisnm 

PROOF. This result follows from Lemma 2.1 and the fact that transversal- 
ity works for G maps between free G spaces-see for example [8]. 

COROLLARY 6.5. F is injective and TI' is sur/ective. 

THEOREM 6.6. If A = 0 then 'rI' is injective. 

PROOF. Suppose f E 7rSVG [F, F'] (X) and that 'rr(f) = 0, i.e. that 
'' (f) E 7rs w(Hff) [free] (XH) is W(H) null homotopic. 

Since EF is the join of G XN(H) EW(I) with EF' we consider G XN(H) 

EW(H) as being a subspace of EF. Also X x (G XN(H) EW(H)) is a subspace of 
D(kW) x X x EF in the obvious way, and hence a subspace of SkW A X A 

(EF/EF'). 
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Let L = f 1(X x (G XN(H) EW(H))) and let * denote the base point of 
Sk W A X A (EF/EF'); then L n ff1 (*) = 0. We shall show that L = 0. Let a 
be some point of L and let Ga denote the isotropy subgroup at a, then either 

(I) Ga 4 F, 
(II) Ga E F\F', or 

(III) Ga E F'. 
In case (I) Ga ?f F then Gf(a) 5 F since Ga C Gf(a) ? H E F, and hence this 
case does not arise. In case (II) Ga E F\F' means that Ga is conjugate to H and 
f(a) E (Sk W A X A (EF/EF'))Ga which by assumption on TI'(f) may be assumed 
to be the base point and hence a L, so this case does not arise. Finally in case 
(III) Ga E F', but f restricted to such points factors through (D(kW) x X x EF') 
which is in the base point of (Sk W A X A (EF/EF')), thus this case also does 
not arise. 

It follows that L = 0, in other words F(X x (G XN(H) EW(H))) =0. 
Since the complement of X x (G XN(H) EW(I)) in Sk W A. X A (EF/EF') is G 
contractible it follows that f is G null homotopic. 

COROLLARY 6.7. 4) is an isomorphism. 

PROOF. If A = 0, then this follows immediately from Theorems 6.1, 6.4 
and 6.6. In general the long exact sequence 5.1 and the five lemma provide a 
proof. 

We have shown that 4) is an isomorphism for every pair of adjacent famil- 
ies. Since G is a finite group we can find families 0 = F1 C F2 C ... C Fn = 

All, such that F, C Fi, 1 are adjacent families in G. So by induction ahid the 
five lemma on the long exact sequence 5.2 we can show that 4) is an isomor- 
phism for all pairs F' C F of families in G. In particular for 0 C All. This com- 
pletes the proof of the result that equivariant framed bordism is the same as 
equivariant stable homotopy. 
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