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Abstract—This paper uses simplicial complexes and simplicial
(co)homology theory to expose a foundation for data structures for
tetrahedral finite element meshes. Identifying tetrahedral meshes
with simplicial complexes leads, by means of Whitney forms, to the
connection between simplicial cochains and fields in the region modeled
by the mesh. Furthermore, lumped field parameters are tied to
matrices associated with simplicial (co)homology groups. The data
structures described here are sparse, and the computational complexity
of constructing them is O(n) where n is the number of vertices in the
finite element mesh. Non-tetrahedral meshes can be handled by an
equivalent theory. These considerations lead to a discrete form of
Poincaré duality which is a powerful tool for developing algorithms
for topological computations on finite element meshes. This duality
emerges naturally in the data structures. We indicate some practical
applications of both data structures and underlying theory.
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1. INTRODUCTION

In many algorithms for finite element applications there are
computations which do not depend on the metric of the space. In these
cases, once the vertex coordinates are used to ascribe an orientation
(±1) to the elements of the mesh, it is only the finite element
connection matrix which is left to play a purely integer combinatorial
role in the computation which handles the topological business of the
algorithm. More precisely, the connection matrix alone contains a
wealth of topological information about the discretized region, realizing
its simplicial or cellular complex [22].

The complex is an old and venerable idea in algebraic topology
and electrical circuit theory [19], but has not attracted much attention
in 3-dimensional finite elements technology. Moreover, it is intimately
connected to homology and cohomology theories which are an algebraic
expression of how the topology of a region is tied to fields in the region
and is the formalism which links fields in the continuum to lumped
circuit parameters [13]. Nevertheless, the profound consequences of
this algebraic structure can be seen in the computation of cuts for
magnetic scalar potentials [11, 5], discretization of the magnetic helicity
functional [6], and Whitney forms for finite elements [21, 9, 3]. More
generally, the same data structures are related to presentations of the
fundamental group of the triangulated region, sparse matrix techniques
for 3-d finite elements, and, when the metric of the space is introduced,
general 3-d finite element computations.
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In this paper we consider finite element data structures which
incarnate the simplicial chain and cochain complexes and point out a
duality theorem which is a useful tool in algorithm development. The
data structures tumbled out of development of finite element-based
algorithms mentioned above (cuts and helicity), and this paper is a
companion to [11]. Since the data structures were born in this context
we make reference to it, but this does not limit their generality. In
fact, the data structures are not new – some likeness of the structures
described here is often found in computer graphics [4] — however
we are attempting to give the motivation for their existence and a
connection to the relevant physics. Furthermore, while the structures
are primarily described in the context of tetrahedral discretizations,
they extend to cellular discretizations (e.g. hexahedral meshes) at
slightly higher time and storage complexity. That we seem to talk
only about “first-order” elements is due to the fact that we are looking
at the underlying connections and hence we pick the simplest and
most elegant data structure. The entire discussion can be repeated
for higher-order elements.

1.1. Outline

To begin, we will define the term simplicial complex. Then, noting
that a finite element mesh is a simplicial complex, we will define
and construct data structures which realize simplicial maps, boundary
operators, and the bases of chain groups in the simplicial complex. In
a sense, these will simply be a set of finite element connection matrices
describing objects (simplices) in each dimension of the mesh. In Section
3 we will define the simplicial cochain complex and give realizations
of the coboundary operators. This will leave us with a connection
matrix from Section 2 and a coboundary operator in each dimension.
In Section 4 we argue that the coboundary operators can be regarded
as connection matrices for a dual complex, and underscore the duality
theorem which makes sense of that notion. The rest of the paper is
focused on applications in 3-d field computation. Section 4 discusses
so-called Whitney forms in the context of finite elements and an
application of Whitney forms to helicity in magnetic field computation.
Section 5 discusses a duality theorem which is exploited in Section 6
when discussing cuts for magnetic scalar potentials. Section 6 discusses
the algebra which rests on the basic structures of Sections 1–3 and
relates these to lumped parameters in electrical engineering.
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2. THE COMPLEX ENCODED IN THE CONNECTION
MATRIX

This section begins with some definitions needed for the algebraic
framework, leading to the simplicial chain complex. Since there are
many good references [7, 22, 23], we do not elaborate on the technical
details. Following the definitions, we show that bases for the chain
groups of the complex can be constructed in a simple hierarchy of data
extracted from the finite element connection matrix.

Figure 1. 3−, 2−, 1−, and 0− simplices

2.1. Background and Definitions

Let {v0, . . . , vp} be an affine independent subset of points in Rn. Affine
independence means that for points {v0, . . . , vp}, the set {v1− v0, v2−
v0, . . . , vp− v0} is a linearly independent subset of Rn. The convex set
spanned by {v0, . . . , vp} is called a p-simplex with vertices v0, . . . , vp
and is denoted by

σp =< v0, . . . , vp > . (1)

This representation is unique up to a sign which can be assigned to
the permutations of the vertex indices. As illustrated in Figure 1, a
tetrahedron is a 3-simplex, and its faces, edges, and nodes are 2-, 1-
and 0-simplices, respectively. Note that affine independence of the
vertices gives rise to barycentric coordinates on simplices so that any
point in a p-simplex can be written uniquely in terms of the vertices
[24, 22]. Barycentric coordinates are essential to simplex-by-simplex
interpolation of functions as in the finite element method [24].

Formally, a simplex < v0, . . . , vq > spanned by a proper subset of
q+1 vertices of σp is called a q-face of σp. A formal linear combination
of p-simplices is called a p-chain. A simplex can be assigned an
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orientation which is induced by the permutation of vertex order in
< v0, . . . , vp >, odd permutation giving negative orientation and even
permutation giving positive orientation. The boundary of a p-simplex
is the p− 1-chain which is the following alternating sum of p− 1-faces:

∂pσp = ∂(< v0, . . . , vp >) =
p∑
i=0

(−1)i < v0, . . . , vi−1, vi+1, . . . , vp > .

(2)

Note that< v0, . . . , vi−1, vi+1, . . . , vp > is the p-face opposite vertex vi.
This definition can be used to find the boundary of a p-chain and, by
(2) and direct calculation, one can verify that in general ∂p−1∂p(·) = 0,
i.e. the boundary of the boundary of any chain is zero. The operator
∂p determines a matrix of incidence of p−1-simplices with p-simplices;
we will have more to say about this when discussing the coboundary
operator in Section 3.2.

A simplicial complex K is a collection of simplices such that every
face of a simplex ofK is inK and the intersection of two simplices inK
is a face of each of the simplices. For each p ≥ 0, the structure formed
by taking p-chains with integer coefficients in a complex K is a finitely
generated free abelian group Cp(K;Z) with basis all the p-simplices in
K. This is called the p-chain group of K.

The connection between Cp(K) and Cp−1(K) is via the boundary
map. Defining the boundary map on a basis of Cp(K), the map extends
by linearity to a map

∂p : Cp(K)→ Cp−1(K) (3)

so that it is a homomorphism between the chain groups. Thus, on a
complex of dimension n the collection of abelian groups Ci(K;Z) and
boundary homomorphisms give the sequence

0−→Cn(K) ∂n−→ · · · ∂p−→ Cp−1(K)
∂p−1−→ · · · −→ C1(K) ∂1−→ C0(K)→ 0.

(4)

Since Im ∂p+1 ⊆ ker ∂p (∂p∂p+1(·) = 0), (4) defines the chain complex
of K, denoted by (C∗(K), ∂) or simply C∗(K).

As described below, the finite element connection matrix contains
this basic algebraic structure. It is of interest because while
Im ∂p+1 ⊆ ker ∂p, in general Im ∂p+1 
= ker ∂p and the part of
ker ∂p not in the inclusion contains useful information formulated
concisely via homology groups and the exact homology sequence as
described elsewhere [22]. However, the chain complex fits between
the data which is readily available from the finite element mesh and
“higher” topological structures such as the homology groups and the
fundamental group of K.
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2.2. From Connection Data to Chain Groups

In this paper, the prime example of the simplicial complex K is
a tetrahedral finite element mesh, a tetrahedral discretization of a
manifoldR in R3 with boundary. Below we show that bases of the chain
groups Ci(K) related to a tetrahedral mesh can be computed from the
connection matrix by “following the boundary homomorphism down
the chain complex”.

Consider an n-dimensional simplicial complex K with mn n-
simplices and m0 vertices or 0-simplices. There is a total ordering of
the vertices on the index set {0, . . . ,m0 − 1} called the global vertex
ordering. There is a partial ordering of vertices such that vertices of a
p-simplex are locally ordered on {0, . . . , n}. The connection matrix is
the following mn ×m0 matrix defined in terms of the global and local
orderings:

Cin,jk =
{

1 if global vertex k is the jth local vertex of the ith n-simplex

0 otherwise
.

(5)

For a 3-d finite element mesh, C3 is simply the connection matrix which
is the output of a mesh generator. In general, (5) also defines lower
dimensional subcomplexes, Cp, 0 ≤ p ≤ n, or p-skeletons of a mesh. In
any case, Ci3,jk is an m3 ×m0 matrix, but typically m3 = km0 where
k is approximately 5 to 6. Since a tetrahedron has four vertices, the
connection matrix C3 has 4m3 nonzero entries so that the matrix is
very sparse.

Because of sparsity, only the nonzero entries of the matrices Cp
are stored in mp×(p+1) arrays such that the ith row gives the (global)
indices of the vertices σ0,k which define the ith p-simplex:

Cip = {σ0,k0 , . . . , σ0,kp} (6)

where 0 ≤ i ≤ mp − 1 and mp is the number of p-simplices in the
mesh. This is an efficient way of storing (5), and in this form Cp also
resembles a basis for the chain group Cp(K) (the notation intentionally
takes them to be the same). It must be emphasized that referring to
the nonzero entries of the matrix in a table of pointers to the global
vertex ordering gives computational efficiency and a direct link to the
maps and definitions of Section 2.1.

Consider the following map which extracts the jth p-face of the
kth (p+ 1)-simplex:

fj(σp+1,k) =< σ0,0, . . . , σ̂0,j , . . . , σ0,p+1 >, (7)



Data structures for finite elements 157

where 1 ≤ i ≤ mp, 1 ≤ k ≤ mp+1, 0 ≤ j ≤ p + 1, and σ̂0,j denotes
that vertex σ0,j is omitted. Note that j and k do not uniquely specify
the p-simplex since < σ0,0, . . . , σ̂0,j , . . . , σ0,p+1 > may be a p-face in
more than one (p+1)-simplex. The representation of the p-simplex by
vertex ordering is unique up to orientation, but the orientation induced
from the (p + 1)-simplex can always be adopted in order to maintain
consistency. In any case, the map gives the p-faces of the p+1-simplex
when used for 0 ≤ j ≤ p+ 1.

To build Cp, equation (7) can be used p+2 times on each (p+1)-
simplex in Cp+1 (effectively taking the boundary of each p+1-simplex in
Cp+1). In each instance this requires that an algorithm which extracts
the p-simplices determine from the existing data for Cp whether the
result of applying (7) is a new p-simplex or one that has already been
extracted. Thus, starting with Cn, it is possible to go down the complex
(4) and extract all the tables Cp.

Below is an algorithm which builds Cp from Cp+1. The algorithm
visits each p-face of every p + 1-simplex, or (p + 2)mp+1 applications
of (7).

Algorithm 1 (Extraction of Cp from Cp+1)
Set Cp to be empty.
ForEach σp+1 ∈ Cp+1

ForEach p-face of σp+1

If p-face is not in CpThen add p-face to Cp.
EndFor

Endfor

The decision at the inner loop requires a search through Cp but
if implemented in an efficient data structure such as a linked list, the
search is bounded by the number of times any vertex of the p-face is a
vertex in a p-simplex.

2.3. Considerations for Cellular Meshes

While we focus primarily on simplicial complexes, all of the
algebraic structure described is consistent for cellular complexes (e.g.,
hexahedral meshes). In practice, the data structures are somewhat
more complicated because the vertices, while ordered on a cell, are
not generally permutable. This affects the definition of (7) so that
some additional information about the ordering of vertices may have
to be preserved at every step of the algorithm. This also influences
the way in which the algorithms are implemented — in particular,
depending on application, it is most efficient to extract the 1- and
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2-complexes simultaneously, 3-cell by 3-cell, in order to avoid storing
extra information about vertex ordering.

3. THE COCHAIN COMPLEX

In de Rham theory, integration on manifolds in Rn is formulated as
an algebraic structure which pairs p-chains with differential p-forms.
The algebras of differential p-forms are related in a (de Rham) complex,
and the related (co)homology groups are the link between lumped field
parameters and topological invariants of the manifold in question [13].
An elaboration of this is given in Section 6. In the discrete setting (e.g.,
triangulated manifolds), cochains play a role analogous to differential
forms and since simplicial (co)homology satisfies the same axioms as
the de Rham cohomology, the theories are equivalent [10]. In this
section we define cochains and their algebraic structure. The algebra
is dual to the chain complex. Then we see how this structure also
comes out of the connection matrix.

3.1. Simplicial Cochain Groups and the Coboundary
Operator

Formally, the simplicial p-cochain group Cp(X;Z) is the group of
homomorphisms from p-chains to (for the present purpose) the
integers:

Cp(X;Z) = hom(Cp,Z). (8)

Cp(X;Z) is a Z-module and not a vector space, but one can regard
the homomorphisms as functionals on chains and denote the operation
of a cochain cp ∈ Cp(X;Z) on a chain cp ∈ Cp(X;Z), by functional
notation:

cp(cp) =< cp, cp > . (9)

The p-coboundary operator dp is the adjoint of the boundary
operator. It is defined by

< dpcp, cp+1 >=< cp, ∂p+1cp+1 > . (10)

so that

dp = (∂p+1)T : Cp(X;Z) −→ Cp+1(X;Z). (11)

From this point the p-coboundary operator is always written explicitly
as the adjoint operator ∂Tp+1. Equation (10) is simply a discrete
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rendition of Stokes theorem on manifolds:∫
Ω
dω =

∫
∂Ω
ω (12)

where ω is a differential p-form, dω is a p + 1-form, Ω is a p + 1-
chain, and ∂Ω is its boundary. This “generalized Stokes theorem” can
be called the fundamental theorem of multivariable calculus. Since
∂2 = 0, ∂Tp+1∂

T
p (·) = 0, and there is a cochain complex:

0←−Cn(K)
∂Tn←− · · ·

∂Tp←− Cp−1(K)
∂Tp−1←− · · · ←− C1(K)

∂T1←− C0(K)←− 0.
(13)

3.2. Coboundary Data Structures

Since the coboundary operator is the adjoint of the boundary operator,
it can be formulated in terms of pairs of simplices (σp, σp−1) and their
“incidence numbers. Consider a p-simplex σp =< vo, . . . , vp > and a
p−1-face of σp, σp−1 =< v0, . . . , v̂j , . . . , vp >. Let π be a permutation
function on {0, . . . , p}, then

(signπ)σp =< vπ0, . . . , vπp >=< vj , v0, . . . , vj−1, vj+1, . . . , vp >
(14)

where signπ = ±1 depending on the parity of π. When σp−1,j is a
face of σp,i, signπij is a nonzero entry in a p-simplex–p − 1-simplex
incidence matrix.

The coboundary operator ∂Tp can be represented by storing only
the nonzero entries of ∂Tp , nz(∂Tp ), and referencing each p − 1-simplex
to the p-simplices in which the p− 1-simplex is a face in sets of pairs

nz(∂Tp (σp−1,j)) = {(σp,i, signπij)|σp ∈ Cp(K)} (15)

where σp,j need only be referenced by its global number j. Since a
p-simplex has p+1 p− 1-faces, every p-simplex is found in p+1 of the
sets described in (15). This is equivalent to saying that there are p+1
nonzero entries per column in ∂Tp .

In general (15) can be implemented efficiently in a linked list so
that ∂Tp becomes a list of linked lists. In the codimension 1 case (∂Tn ),
an n− 1-simplex is shared by at most two n-simplices and there is no
need to store signπij explicitly since the data can be indexed by the
incidence number as follows:

nz(∂Tn (σn−1,j)) = {(σn,i|signπij = 1), (σn,l|signπlj = −1)} (16)

We will simply denote the data structure which contains (15) for
all p− 1-simplices as ∂Tp and generate it by the following algorithm:
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Algorithm 2. (Construction of ∂Tp )
Set ∂Tp to be empty.
ForEach σp−1 ∈ Cp−1 (mp−1 p− 1-simplices)

ForEach σp such that signπij 
= 0
augment list for σp−1 with (σp, signπ).

EndFor
EndFor

At first sight, the inner loop of algorithm 2 seems to require a
search through all of the Cp data structure for each case where σp−1 is
a p − 1-face. In practice the searching can be avoided by performing
the augmentation procedure each time the p−1-simplex is encountered
in the inner loop of algorithm 1. With an efficient data structure
implementation, reaching the point where the ∂Tp list is augmented is
bounded by the number of times σp is a p-face.

4. APPLICATION: WHITNEY FORMS

Recent years have seen the growing use of so-called Whitney 1-forms or
edge elements for a variety of finite element computations. The general
idea comes from Whitney [27, 26] and was developed in [9, 21] to which
we refer for proofs. It starts with a linear Whitney map which makes
piecewise linear differential q-forms from simplicial q-cochains:

W : Cq(K)→ L2Λq(X) (17)

where X is a compact oriented C∞ Riemannian manifold of dimension
n, L2Λq(X) is the space of square-integrable de Rham C∞ differential
q-forms on X, and K is a simplicial triangulation of X. Let µi be
barycentric coordinates corresponding to vertices vi in K. The basic
form Wσ ∈ L2Λq(X) on a q-simplex σ, is defined as

Wσ = q!
∑q

k=0(−1)kµik dµi0 ∧ . . . ∧ d̂µik ∧ . . . ∧ dµiq q > 0
W (vi) = µi q = 0

(18)

where ∧ denotes the wedge product for differential forms and, as in
Section 2.2, ·̂ denotes that the differential is excluded. Note that
the construction of this q-form corresponds neatly to the process of
extracting q− 1-simplices from q-simplices in Section 2.2. We mention
two properties of the Whitney map:

(i) W∂T c = dWc for c ∈ Cq(K) where ∂T c ∈ Cq+1(K) is the
simplicial coboundary of c. The exterior derivative d : Λq → Λq+1

applied to Wc is well-defined in this case.
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(ii) Let < , > denote the pairing of Cq(K) and Cq(K) as in (9). Then∫
cq

Wcq =< cq, cq > (19)

for every cochain cq ∈ Cq and chain cq ∈ Cq(K).

The first property is significant because it implies that the simplicial
cohomology groups of K and the de Rham cohomology group of X
(see Section 6) are isomorphic.

In addition to the Whitney map (17), there is a de Rham map

R : L2Λq(X)→ Cq(K) (20)

which is defined on a basis of chains by∫
cq

ω =< cq, cq > (21)

and the second property of the Whitney map ensures that

RW = I (22)

where I is the identity map. The convergence WR → I as a mesh is
refined is a special case of both finite element theory and Whitney’s
program, but this obvious connection does not seem to exist outside
of computational electromagnetics and the work of Dodziuk [8, 9] and
Müller [21].

For c, c′ ∈ Cq(K), an inner product can be defined:

(c, c′) =
∫
X
Wc ∧ ∗Wc′ = (Wc,Wc′). (23)

This is nondegenerate by the property of the de Rham map. Although
there is no obvious metric inherent to the simplicial complex K, this
inner product inherits a metric from X through the Whitney map. As
a mesh is refined, the inherited metric in the inner product converges
to the (Riemannian) metric on X.

4.1. Example: The Helicity Functional

For finite element computations of magnetic fields, a Whitney 1-form
can be used to discretize the magnetic field intensity. Namely,

ω = H · dr. (24)
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Then, on a 1-simplex,

hij =
∫ vj

vi

ω (25)

define the variables of a 1-cochain for ω. In this formulation, it is
interesting to note that the contribution of the so-called helicity density
ω∧dω to the finite element “stiffness” matrix is independent of metric
and constitutive laws [15]. In particular, the contribution of the helicity
on a tetrahedron to the stiffness matrix is

1
2

∫
σ3

ω ∧ dω =
1
6
(h01h23 − h02h13 + h03h12) (26)

The righthand side is a quadratic form which remains invariant by
the action of the Lie group SL(4,R) associated with piecewise linear
volume-preserving diffeomorphisms.

5. THE DUAL COMPLEX AND DISCRETE POINCARÉ
DUALITY FOR (CO)CHAINS

One reason for developing the coboundary data structures is to make
use of a duality relation which relates cochains of the simplicial complex
K to chains on the dual complex of K. A thorough development
of the dual chain complex of K (c.f. [22]) usually starts with the
first barycentric subdivision of K and construction of “blocks” in the
subdivision which are dual to the p-simplices of K where the dual
blocks are unions of certain sets of open simplices in the subdivision.

Although the definition of the dual complex [22] relies on some
geometry, the incidence data for the dual complex can be recovered
from the coboundary data structures of the simplicial complex [25], so
we will formally define the dual chain complex DK with the following
construction. The dual complex of a simplicial complex K, is a cell
complex DK obtained by identifying p-simplices on K with (n − p)-
cells. In general DK is not a simplicial complex, so it is necessary
to use the terminology of cells. However it is possible to formulate a
complex C∗(DK) as previously done for K in (4).

In explicit terms, we identify 3-simplices with 0-cells (vertices of
DK), 2-simplices with 1-cells (edges), 1-simplices with 2-cells (faces)
and 0-simplices with 3-cells. Since the coboundary data structures
already contain the incidence of p-simplices in p + 1-simplices, these
can be reinterpreted on the dual complex as the boundaries of n − p-
cells. For example, the entries of (16) can be regarded as the 0-cells
incident to a 1-cell in DK which passes “through” the barycenter of
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σ2,j . Equation (15) is interpreted as the boundaries of 2- and 3-cells
(∂T1 and ∂T2 respectively) in DK associated with (3− 2)- and (3− 3)-
simplices, respectively, in K.

A useful form of Poincaré duality formalizes the connection
between ∂Tp and boundaries of (n − p)-cells in DK seen in the data
structures. It establishes a duality between cochains in K and chains
inDK. While the complexes Cp(K) and Cp(K) are duals by definition,
there exists a nondegenerate bilinear “intersection pairing”

I : Cp(DK)× Cn−p(K) −→ R. (27)

This leads to the duality

Cp(DK) ∼= Cn−p(K) (28)

since both are duals of Cn−p(K) [22]. Comparison of the chain
complexes C∗(K) and C∗(DK) in light of this duality says that
boundary and coboundary operators can be identified:

∂Tp+1 = ∂̆n−p (29)

where ∂̆ denotes the boundary operator on DK. The same
identification is seen in the data structures. Hence, for the price of
extracting the cochain complex from the connection matrix, we have
learned everything about the dual chain complex.

6. APPLICATIONS: SIMPLICIAL (CO)HOMOLOGY
AND CUTS FOR SCALAR POTENTIALS

So far we have spelled out the simplicial consequences of the finite
element connection matrix. In this section we look at two applications
of simplicial (co)chain complexes and Poincaré duality to see how they
beneficial in 3-d finite element computation.

6.1. Simplicial (Co)Homology

The chain complex is readily available from the connection matrix,
but for many purposes it is merely the starting point. In this section
we consider how homology groups follow from the chain complex
and see how they algebraically expose the lumped parameters of
electrical engineering (e.g., current, voltage, flux) which come about
from integration on p-chains.

For the boundary homomorphism ∂p in equation (3), we call
ker ∂p = Zp(K) the p-cycles in K and Im ∂p+1 = Bp(K) the p-
boundaries in K. Both Zp(K) and Bp(K) are subgroups of Cp(K),
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and furthermore, Bp(K) ⊆ Zp(K) ⊂ Cp(K). This is true since if
β ∈ Bp(K) then β = ∂p+1α, for some α ∈ Cp+1(K), but ∂p∂p+1α = 0
says that β ∈ ker ∂p, i.e., β ∈ Bp(K).

In general it is interesting to ask when is a p-cycle not a p-
boundary. This information is summarized in the pth simplicial
homology group of K, p ≥ 0, defined as the quotient group

Hp(K) =
Zp(K)
Bp(K)

=
ker ∂p

Im ∂p+1
. (30)

This quotient group consists of equivalence classes of cycles c such that
∂c = 0 but c is not a boundary. Two p-cycles a and b are in the same
equivalence class if they satisfy the equivalence relation:

[a] ∼ [b]⇐⇒ a− b = ∂cp+1, (31)

where c is p + 1-chain and [a] denotes the homology class of a. The
rank of Hp(K) is the number of independent equivalence classes in the
group and is known as the pth Betti number of K, denoted by βp(K);
intuitively, β0(K) counts the number of connected components of K,
and β1(K) counts the “number of holes in K” [20, 12, 11].

Calling Zp(X;Z) = ker ∂Tp the group of p-cocycles, and
Bp(X;Z) = Im ∂Tp−1 the group of p-coboundaries, the pth cohomology
group is:

Hp(X;Z) =
Zp(X;Z)
Bp(X;Z)

=
ker ∂Tp+1

Im ∂Tp
. (32)

To make the connection with lumped parameters, we also need to
introduce relative homology groups. Let L be a subcomplex of K, that
is a simplicial complex contained in K. Then the pth relative simplicial
homology group of K “modulo” L is

Hp(K,L;Z) = Hp(C∗(K)/C∗(L);Z), (33)

that is, the homology of the quotient of the two complexes. In
particular, if L = ∂K, two p-cycles from an equivalence class in
Hp(K, ∂K) form a p-boundary in K when taken in combination with a
p-chain in ∂K. Relative cochains (with integer coefficients) are defined
by

Cp(K,L;Z) = hom(Cp(K,L),Z) (34)

so that the pth relative cohomology group is

Hp(K,L;Z) =
ker ∂Tp

Im ∂Tp+1

(35)
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Electrostatics Magnetostatics
Parameter voltage, V flux, φ

Relative cohomology group H1(Ω, ∂Ω) H2(Ω, ∂Ω)
Parameter charge, Q current, I

Absolute cohomology group H2(Ω) H1(Ω)

Entries of an energy
quadratic form normalized
to charges or currents

C−1
ij = V

Q =∫
cj

Ei·dl∮
Si

Di·ds
[Si] ∈ H2(Ω)

[cj ] ∈ H1(Ω, ∂Ω)

Lij = φ
I =∫

Si
Bj ·ds∮

cj
Hj ·dl

[Si] ∈ H2(Ω, ∂Ω)
[cj ] ∈ H1(Ω)

Table 1. (Co)homology groups to “lumped parameters” in electro-
and magnetostatics

where ∂Tp : Cp(K,L;Z)→ Cp+1(K,L;Z).
Table 1 outlines the relation of these (co)homology groups

to “lumped parameters” in electro- and magnetostatics. For
electrostatics, Ω is the charge-free region and for magnetostatics, Ω
is the region free of conduction currents.

Finally, we note that Poincaré-Lefschetz duality on chains
“descends” to the (co)homology groups, that is, Hp(DK) ∼=
Hn−p(K, ∂K).

6.2. Cuts for Magnetic Scalar Potentials

In “magnetoquasistatics”, displacement current is ignored in Ampére’s
law, and the magnetic field is described by

curlH = J. (36)

In nonconducting regions J = 0 and one may ask if H = −gradψ
where ψ is a single-valued scalar potential defined in the nonconducting
region. In general ψ is multivalued since Ampére’s law shows that

I =
∮
ci

gradψ · dl 
= 0 (37)

if I 
= 0 and ci is a closed path linking the current I. For reasons
of computational cost and numerical analysis, it is still worthwhile to
pursue the scalar potential in 3-d if one can introduce cut surfaces and
impose a discontinuity across the cuts in order to make the potential
single-valued. Informally, cuts are orientable surfaces embedded in the



166 Gross and Kotiuga

current-free region such that when integrating H · dl around a closed
path which links current, the path must pass through the cuts. Cuts
coincide with the flux measurement surfaces Si in the right column of
table 1 [11].

The existence of cuts as compact, embedded, orientable manifolds
in R can be formulated via a constructive proof which gives an
algorithm for computing them on finite element meshes which are
triangulations of the nonconducting region [14]. There are many facets
to the algorithm, but here we touch on only one. The first step to
computing a set of cuts for a mesh is to compute a set of topological
constraints which represent a set of generators for classes inH2(K, ∂K)
[11]. By the Poincaré-Lefschetz duality of Section 4 this problem can
be phrased as finding a basis for classes in H1(DK), and reduces to
finding a basis of the nullspace of ∂T2 , or a set of vectors {ζ1, . . . ζβ1}
satisfying

∂T2 ζi = 0 (38)

subject to Im ∂̆T0 = 0 [11]. The problem is motivated strictly
by topological considerations at every step and requires the data
structures C3, C2, ∂T3 , ∂T2 , ∂T1 of Sections 2 and 3 and the duality
of Section 4 for the computation.

7. CONCLUSION

Once a tetrahedral finite element mesh is identified as the triangulation
of a 3-manifold with boundary, simplicial complexes give a systematic
and general way for creating and organizing finite element data
structures. The simplicial chain and cochain complexes are the bridge
between the topology of the manifold, vector fields in the region, and
structures from algebraic topology which are useful for finite element
computation. The data structures are the most natural for using
Whitney elements, in particular Whitney edge elements. Helicity
functionals and cuts for magnetic scalar potentials are good examples
of applications where the metric of the space and the topology can be
separated. In these contexts, the data structures provide a high degree
of computational efficiency.
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Table of notation

[·] Equivalence class of ·.
βp(R) pth Betti number, βp(K) = Rank Hp(R).
∂ Boundary operator.
∂T Coboundary operator.
∂̆ Boundary operator on dual mesh.
µi Barycentric coordinates, 1 ≤ i ≤ 4.
µ Magnetic permeability.
π Permutation map.
σp,i ith p-simplex in simplicial complex K.
ψ Magnetic scalar potential.
B Magnetic flux density vector.
Bp p-coboundary group.
Bp p-boundary group.
Cijk Connection matrix, 1 ≤ i ≤ m3, 1 ≤ j ≤ 4, 1 ≤ k ≤ m0.
Cp pth chain group.
Cp Data structure for basis of Cp.
d Coboundary operator.
D Electric displacement field.
E Electric field.
H Magnetic field intensity.
Hp(R;Z) pth cohomology group of R with coefficients in Z.
Hp(R;Z) pth homology group of R, coefficients in Z.
Hp(R, ∂R;Z) pth cohomology group of R relative to ∂R, coefficients in Z.
Hp(R, ∂R;Z) pth homology group of R relative to ∂R, coefficients in Z.
J Current density vector.
K Simplicial complex.
DK Dual cell complex of simplicial complex K.
L2Λq(X) Space of square-integrable differential q-forms on manifold X.
mp Number of p-simplexes in a triangulation of R.
m̆p Number of p-cells in dual complex.
np Number of p-simplexes in a triangulation of ∂R.
O(·) Order(·).
R de Rham map, R : L2Λq(X)→ Cq(K).
v vertex.
W Whitney map W : Cq(K)→ L2Λq(X).
X Riemannian manifold.
zp p-cocycle.
zp p-cycle.
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